locking, lockdep: Convert sprintf_symbol to %pS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
51 }
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
74 }
75
76 /*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85 {
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 val &= ~TRB_TYPE_BITMASK;
97 val |= TRB_TYPE(TRB_LINK);
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci))
100 val |= TRB_CHAIN;
101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102 }
103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev->dma,
105 (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111 struct xhci_segment *seg;
112 struct xhci_segment *first_seg;
113
114 if (!ring || !ring->first_seg)
115 return;
116 first_seg = ring->first_seg;
117 seg = first_seg->next;
118 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119 while (seg != first_seg) {
120 struct xhci_segment *next = seg->next;
121 xhci_segment_free(xhci, seg);
122 seg = next;
123 }
124 xhci_segment_free(xhci, first_seg);
125 ring->first_seg = NULL;
126 kfree(ring);
127 }
128
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring->enqueue = ring->first_seg->trbs;
133 ring->enq_seg = ring->first_seg;
134 ring->dequeue = ring->enqueue;
135 ring->deq_seg = ring->first_seg;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139 */
140 ring->cycle_state = 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring->enq_updates = 0;
143 ring->deq_updates = 0;
144 }
145
146 /**
147 * Create a new ring with zero or more segments.
148 *
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
152 */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156 struct xhci_ring *ring;
157 struct xhci_segment *prev;
158
159 ring = kzalloc(sizeof *(ring), flags);
160 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161 if (!ring)
162 return NULL;
163
164 INIT_LIST_HEAD(&ring->td_list);
165 if (num_segs == 0)
166 return ring;
167
168 ring->first_seg = xhci_segment_alloc(xhci, flags);
169 if (!ring->first_seg)
170 goto fail;
171 num_segs--;
172
173 prev = ring->first_seg;
174 while (num_segs > 0) {
175 struct xhci_segment *next;
176
177 next = xhci_segment_alloc(xhci, flags);
178 if (!next)
179 goto fail;
180 xhci_link_segments(xhci, prev, next, link_trbs);
181
182 prev = next;
183 num_segs--;
184 }
185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187 if (link_trbs) {
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 xhci_dbg(xhci, "Wrote link toggle flag to"
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev, (unsigned long long)prev->dma);
193 }
194 xhci_initialize_ring_info(ring);
195 return ring;
196
197 fail:
198 xhci_ring_free(xhci, ring);
199 return NULL;
200 }
201
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 struct xhci_virt_device *virt_dev,
204 unsigned int ep_index)
205 {
206 int rings_cached;
207
208 rings_cached = virt_dev->num_rings_cached;
209 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 virt_dev->num_rings_cached++;
211 rings_cached = virt_dev->num_rings_cached;
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 xhci_dbg(xhci, "Cached old ring, "
215 "%d ring%s cached\n",
216 rings_cached,
217 (rings_cached > 1) ? "s" : "");
218 } else {
219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 xhci_dbg(xhci, "Ring cache full (%d rings), "
221 "freeing ring\n",
222 virt_dev->num_rings_cached);
223 }
224 virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
229 */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 struct xhci_ring *ring)
232 {
233 struct xhci_segment *seg = ring->first_seg;
234 do {
235 memset(seg->trbs, 0,
236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci, seg, seg->next, 1);
239 seg = seg->next;
240 } while (seg != ring->first_seg);
241 xhci_initialize_ring_info(ring);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
244 */
245 INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 int type, gfp_t flags)
252 {
253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 if (!ctx)
255 return NULL;
256
257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 ctx->type = type;
259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 if (type == XHCI_CTX_TYPE_INPUT)
261 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 memset(ctx->bytes, 0, ctx->size);
265 return ctx;
266 }
267
268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 struct xhci_container_ctx *ctx)
270 {
271 if (!ctx)
272 return;
273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 kfree(ctx);
275 }
276
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 struct xhci_container_ctx *ctx)
279 {
280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 struct xhci_container_ctx *ctx)
286 {
287 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 return (struct xhci_slot_ctx *)ctx->bytes;
289
290 return (struct xhci_slot_ctx *)
291 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 struct xhci_container_ctx *ctx,
296 unsigned int ep_index)
297 {
298 /* increment ep index by offset of start of ep ctx array */
299 ep_index++;
300 if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 ep_index++;
302
303 return (struct xhci_ep_ctx *)
304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307
308 /***************** Streams structures manipulation *************************/
309
310 void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311 unsigned int num_stream_ctxs,
312 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313 {
314 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317 pci_free_consistent(pdev,
318 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319 stream_ctx, dma);
320 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321 return dma_pool_free(xhci->small_streams_pool,
322 stream_ctx, dma);
323 else
324 return dma_pool_free(xhci->medium_streams_pool,
325 stream_ctx, dma);
326 }
327
328 /*
329 * The stream context array for each endpoint with bulk streams enabled can
330 * vary in size, based on:
331 * - how many streams the endpoint supports,
332 * - the maximum primary stream array size the host controller supports,
333 * - and how many streams the device driver asks for.
334 *
335 * The stream context array must be a power of 2, and can be as small as
336 * 64 bytes or as large as 1MB.
337 */
338 struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339 unsigned int num_stream_ctxs, dma_addr_t *dma,
340 gfp_t mem_flags)
341 {
342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345 return pci_alloc_consistent(pdev,
346 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347 dma);
348 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349 return dma_pool_alloc(xhci->small_streams_pool,
350 mem_flags, dma);
351 else
352 return dma_pool_alloc(xhci->medium_streams_pool,
353 mem_flags, dma);
354 }
355
356 struct xhci_ring *xhci_dma_to_transfer_ring(
357 struct xhci_virt_ep *ep,
358 u64 address)
359 {
360 if (ep->ep_state & EP_HAS_STREAMS)
361 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362 address >> SEGMENT_SHIFT);
363 return ep->ring;
364 }
365
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368 static struct xhci_ring *dma_to_stream_ring(
369 struct xhci_stream_info *stream_info,
370 u64 address)
371 {
372 return radix_tree_lookup(&stream_info->trb_address_map,
373 address >> SEGMENT_SHIFT);
374 }
375 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
377 struct xhci_ring *xhci_stream_id_to_ring(
378 struct xhci_virt_device *dev,
379 unsigned int ep_index,
380 unsigned int stream_id)
381 {
382 struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384 if (stream_id == 0)
385 return ep->ring;
386 if (!ep->stream_info)
387 return NULL;
388
389 if (stream_id > ep->stream_info->num_streams)
390 return NULL;
391 return ep->stream_info->stream_rings[stream_id];
392 }
393
394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
395 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396 unsigned int num_streams,
397 struct xhci_stream_info *stream_info)
398 {
399 u32 cur_stream;
400 struct xhci_ring *cur_ring;
401 u64 addr;
402
403 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404 struct xhci_ring *mapped_ring;
405 int trb_size = sizeof(union xhci_trb);
406
407 cur_ring = stream_info->stream_rings[cur_stream];
408 for (addr = cur_ring->first_seg->dma;
409 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410 addr += trb_size) {
411 mapped_ring = dma_to_stream_ring(stream_info, addr);
412 if (cur_ring != mapped_ring) {
413 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414 "didn't map to stream ID %u; "
415 "mapped to ring %p\n",
416 (unsigned long long) addr,
417 cur_stream,
418 mapped_ring);
419 return -EINVAL;
420 }
421 }
422 /* One TRB after the end of the ring segment shouldn't return a
423 * pointer to the current ring (although it may be a part of a
424 * different ring).
425 */
426 mapped_ring = dma_to_stream_ring(stream_info, addr);
427 if (mapped_ring != cur_ring) {
428 /* One TRB before should also fail */
429 addr = cur_ring->first_seg->dma - trb_size;
430 mapped_ring = dma_to_stream_ring(stream_info, addr);
431 }
432 if (mapped_ring == cur_ring) {
433 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434 "mapped to valid stream ID %u; "
435 "mapped ring = %p\n",
436 (unsigned long long) addr,
437 cur_stream,
438 mapped_ring);
439 return -EINVAL;
440 }
441 }
442 return 0;
443 }
444 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
445
446 /*
447 * Change an endpoint's internal structure so it supports stream IDs. The
448 * number of requested streams includes stream 0, which cannot be used by device
449 * drivers.
450 *
451 * The number of stream contexts in the stream context array may be bigger than
452 * the number of streams the driver wants to use. This is because the number of
453 * stream context array entries must be a power of two.
454 *
455 * We need a radix tree for mapping physical addresses of TRBs to which stream
456 * ID they belong to. We need to do this because the host controller won't tell
457 * us which stream ring the TRB came from. We could store the stream ID in an
458 * event data TRB, but that doesn't help us for the cancellation case, since the
459 * endpoint may stop before it reaches that event data TRB.
460 *
461 * The radix tree maps the upper portion of the TRB DMA address to a ring
462 * segment that has the same upper portion of DMA addresses. For example, say I
463 * have segments of size 1KB, that are always 64-byte aligned. A segment may
464 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
465 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
466 * pass the radix tree a key to get the right stream ID:
467 *
468 * 0x10c90fff >> 10 = 0x43243
469 * 0x10c912c0 >> 10 = 0x43244
470 * 0x10c91400 >> 10 = 0x43245
471 *
472 * Obviously, only those TRBs with DMA addresses that are within the segment
473 * will make the radix tree return the stream ID for that ring.
474 *
475 * Caveats for the radix tree:
476 *
477 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
482 * extended systems (where the DMA address can be bigger than 32-bits),
483 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
484 */
485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486 unsigned int num_stream_ctxs,
487 unsigned int num_streams, gfp_t mem_flags)
488 {
489 struct xhci_stream_info *stream_info;
490 u32 cur_stream;
491 struct xhci_ring *cur_ring;
492 unsigned long key;
493 u64 addr;
494 int ret;
495
496 xhci_dbg(xhci, "Allocating %u streams and %u "
497 "stream context array entries.\n",
498 num_streams, num_stream_ctxs);
499 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501 return NULL;
502 }
503 xhci->cmd_ring_reserved_trbs++;
504
505 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506 if (!stream_info)
507 goto cleanup_trbs;
508
509 stream_info->num_streams = num_streams;
510 stream_info->num_stream_ctxs = num_stream_ctxs;
511
512 /* Initialize the array of virtual pointers to stream rings. */
513 stream_info->stream_rings = kzalloc(
514 sizeof(struct xhci_ring *)*num_streams,
515 mem_flags);
516 if (!stream_info->stream_rings)
517 goto cleanup_info;
518
519 /* Initialize the array of DMA addresses for stream rings for the HW. */
520 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521 num_stream_ctxs, &stream_info->ctx_array_dma,
522 mem_flags);
523 if (!stream_info->stream_ctx_array)
524 goto cleanup_ctx;
525 memset(stream_info->stream_ctx_array, 0,
526 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
527
528 /* Allocate everything needed to free the stream rings later */
529 stream_info->free_streams_command =
530 xhci_alloc_command(xhci, true, true, mem_flags);
531 if (!stream_info->free_streams_command)
532 goto cleanup_ctx;
533
534 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
535
536 /* Allocate rings for all the streams that the driver will use,
537 * and add their segment DMA addresses to the radix tree.
538 * Stream 0 is reserved.
539 */
540 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541 stream_info->stream_rings[cur_stream] =
542 xhci_ring_alloc(xhci, 1, true, mem_flags);
543 cur_ring = stream_info->stream_rings[cur_stream];
544 if (!cur_ring)
545 goto cleanup_rings;
546 cur_ring->stream_id = cur_stream;
547 /* Set deq ptr, cycle bit, and stream context type */
548 addr = cur_ring->first_seg->dma |
549 SCT_FOR_CTX(SCT_PRI_TR) |
550 cur_ring->cycle_state;
551 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553 cur_stream, (unsigned long long) addr);
554
555 key = (unsigned long)
556 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557 ret = radix_tree_insert(&stream_info->trb_address_map,
558 key, cur_ring);
559 if (ret) {
560 xhci_ring_free(xhci, cur_ring);
561 stream_info->stream_rings[cur_stream] = NULL;
562 goto cleanup_rings;
563 }
564 }
565 /* Leave the other unused stream ring pointers in the stream context
566 * array initialized to zero. This will cause the xHC to give us an
567 * error if the device asks for a stream ID we don't have setup (if it
568 * was any other way, the host controller would assume the ring is
569 * "empty" and wait forever for data to be queued to that stream ID).
570 */
571 #if XHCI_DEBUG
572 /* Do a little test on the radix tree to make sure it returns the
573 * correct values.
574 */
575 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576 goto cleanup_rings;
577 #endif
578
579 return stream_info;
580
581 cleanup_rings:
582 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583 cur_ring = stream_info->stream_rings[cur_stream];
584 if (cur_ring) {
585 addr = cur_ring->first_seg->dma;
586 radix_tree_delete(&stream_info->trb_address_map,
587 addr >> SEGMENT_SHIFT);
588 xhci_ring_free(xhci, cur_ring);
589 stream_info->stream_rings[cur_stream] = NULL;
590 }
591 }
592 xhci_free_command(xhci, stream_info->free_streams_command);
593 cleanup_ctx:
594 kfree(stream_info->stream_rings);
595 cleanup_info:
596 kfree(stream_info);
597 cleanup_trbs:
598 xhci->cmd_ring_reserved_trbs--;
599 return NULL;
600 }
601 /*
602 * Sets the MaxPStreams field and the Linear Stream Array field.
603 * Sets the dequeue pointer to the stream context array.
604 */
605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606 struct xhci_ep_ctx *ep_ctx,
607 struct xhci_stream_info *stream_info)
608 {
609 u32 max_primary_streams;
610 /* MaxPStreams is the number of stream context array entries, not the
611 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
612 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
613 */
614 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616 1 << (max_primary_streams + 1));
617 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618 ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619 ep_ctx->ep_info |= EP_HAS_LSA;
620 ep_ctx->deq = stream_info->ctx_array_dma;
621 }
622
623 /*
624 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626 * not at the beginning of the ring).
627 */
628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629 struct xhci_ep_ctx *ep_ctx,
630 struct xhci_virt_ep *ep)
631 {
632 dma_addr_t addr;
633 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634 ep_ctx->ep_info &= ~EP_HAS_LSA;
635 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636 ep_ctx->deq = addr | ep->ring->cycle_state;
637 }
638
639 /* Frees all stream contexts associated with the endpoint,
640 *
641 * Caller should fix the endpoint context streams fields.
642 */
643 void xhci_free_stream_info(struct xhci_hcd *xhci,
644 struct xhci_stream_info *stream_info)
645 {
646 int cur_stream;
647 struct xhci_ring *cur_ring;
648 dma_addr_t addr;
649
650 if (!stream_info)
651 return;
652
653 for (cur_stream = 1; cur_stream < stream_info->num_streams;
654 cur_stream++) {
655 cur_ring = stream_info->stream_rings[cur_stream];
656 if (cur_ring) {
657 addr = cur_ring->first_seg->dma;
658 radix_tree_delete(&stream_info->trb_address_map,
659 addr >> SEGMENT_SHIFT);
660 xhci_ring_free(xhci, cur_ring);
661 stream_info->stream_rings[cur_stream] = NULL;
662 }
663 }
664 xhci_free_command(xhci, stream_info->free_streams_command);
665 xhci->cmd_ring_reserved_trbs--;
666 if (stream_info->stream_ctx_array)
667 xhci_free_stream_ctx(xhci,
668 stream_info->num_stream_ctxs,
669 stream_info->stream_ctx_array,
670 stream_info->ctx_array_dma);
671
672 if (stream_info)
673 kfree(stream_info->stream_rings);
674 kfree(stream_info);
675 }
676
677
678 /***************** Device context manipulation *************************/
679
680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681 struct xhci_virt_ep *ep)
682 {
683 init_timer(&ep->stop_cmd_timer);
684 ep->stop_cmd_timer.data = (unsigned long) ep;
685 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686 ep->xhci = xhci;
687 }
688
689 /* All the xhci_tds in the ring's TD list should be freed at this point */
690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
691 {
692 struct xhci_virt_device *dev;
693 int i;
694
695 /* Slot ID 0 is reserved */
696 if (slot_id == 0 || !xhci->devs[slot_id])
697 return;
698
699 dev = xhci->devs[slot_id];
700 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701 if (!dev)
702 return;
703
704 for (i = 0; i < 31; ++i) {
705 if (dev->eps[i].ring)
706 xhci_ring_free(xhci, dev->eps[i].ring);
707 if (dev->eps[i].stream_info)
708 xhci_free_stream_info(xhci,
709 dev->eps[i].stream_info);
710 }
711
712 if (dev->ring_cache) {
713 for (i = 0; i < dev->num_rings_cached; i++)
714 xhci_ring_free(xhci, dev->ring_cache[i]);
715 kfree(dev->ring_cache);
716 }
717
718 if (dev->in_ctx)
719 xhci_free_container_ctx(xhci, dev->in_ctx);
720 if (dev->out_ctx)
721 xhci_free_container_ctx(xhci, dev->out_ctx);
722
723 kfree(xhci->devs[slot_id]);
724 xhci->devs[slot_id] = NULL;
725 }
726
727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728 struct usb_device *udev, gfp_t flags)
729 {
730 struct xhci_virt_device *dev;
731 int i;
732
733 /* Slot ID 0 is reserved */
734 if (slot_id == 0 || xhci->devs[slot_id]) {
735 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736 return 0;
737 }
738
739 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740 if (!xhci->devs[slot_id])
741 return 0;
742 dev = xhci->devs[slot_id];
743
744 /* Allocate the (output) device context that will be used in the HC. */
745 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746 if (!dev->out_ctx)
747 goto fail;
748
749 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750 (unsigned long long)dev->out_ctx->dma);
751
752 /* Allocate the (input) device context for address device command */
753 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754 if (!dev->in_ctx)
755 goto fail;
756
757 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758 (unsigned long long)dev->in_ctx->dma);
759
760 /* Initialize the cancellation list and watchdog timers for each ep */
761 for (i = 0; i < 31; i++) {
762 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
764 }
765
766 /* Allocate endpoint 0 ring */
767 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768 if (!dev->eps[0].ring)
769 goto fail;
770
771 /* Allocate pointers to the ring cache */
772 dev->ring_cache = kzalloc(
773 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774 flags);
775 if (!dev->ring_cache)
776 goto fail;
777 dev->num_rings_cached = 0;
778
779 init_completion(&dev->cmd_completion);
780 INIT_LIST_HEAD(&dev->cmd_list);
781 dev->udev = udev;
782
783 /* Point to output device context in dcbaa. */
784 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786 slot_id,
787 &xhci->dcbaa->dev_context_ptrs[slot_id],
788 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
789
790 return 1;
791 fail:
792 xhci_free_virt_device(xhci, slot_id);
793 return 0;
794 }
795
796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797 struct usb_device *udev)
798 {
799 struct xhci_virt_device *virt_dev;
800 struct xhci_ep_ctx *ep0_ctx;
801 struct xhci_ring *ep_ring;
802
803 virt_dev = xhci->devs[udev->slot_id];
804 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805 ep_ring = virt_dev->eps[0].ring;
806 /*
807 * FIXME we don't keep track of the dequeue pointer very well after a
808 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809 * host to our enqueue pointer. This should only be called after a
810 * configured device has reset, so all control transfers should have
811 * been completed or cancelled before the reset.
812 */
813 ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814 ep0_ctx->deq |= ep_ring->cycle_state;
815 }
816
817 /* Setup an xHCI virtual device for a Set Address command */
818 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
819 {
820 struct xhci_virt_device *dev;
821 struct xhci_ep_ctx *ep0_ctx;
822 struct usb_device *top_dev;
823 struct xhci_slot_ctx *slot_ctx;
824 struct xhci_input_control_ctx *ctrl_ctx;
825
826 dev = xhci->devs[udev->slot_id];
827 /* Slot ID 0 is reserved */
828 if (udev->slot_id == 0 || !dev) {
829 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
830 udev->slot_id);
831 return -EINVAL;
832 }
833 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
834 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
835 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
836
837 /* 2) New slot context and endpoint 0 context are valid*/
838 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
839
840 /* 3) Only the control endpoint is valid - one endpoint context */
841 slot_ctx->dev_info |= LAST_CTX(1);
842
843 slot_ctx->dev_info |= (u32) udev->route;
844 switch (udev->speed) {
845 case USB_SPEED_SUPER:
846 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
847 break;
848 case USB_SPEED_HIGH:
849 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
850 break;
851 case USB_SPEED_FULL:
852 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
853 break;
854 case USB_SPEED_LOW:
855 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
856 break;
857 case USB_SPEED_WIRELESS:
858 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
859 return -EINVAL;
860 break;
861 default:
862 /* Speed was set earlier, this shouldn't happen. */
863 BUG();
864 }
865 /* Find the root hub port this device is under */
866 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
867 top_dev = top_dev->parent)
868 /* Found device below root hub */;
869 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
870 dev->port = top_dev->portnum;
871 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
872
873 /* Is this a LS/FS device under a HS hub? */
874 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
875 udev->tt) {
876 slot_ctx->tt_info = udev->tt->hub->slot_id;
877 slot_ctx->tt_info |= udev->ttport << 8;
878 if (udev->tt->multi)
879 slot_ctx->dev_info |= DEV_MTT;
880 }
881 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
882 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
883
884 /* Step 4 - ring already allocated */
885 /* Step 5 */
886 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
887 /*
888 * XXX: Not sure about wireless USB devices.
889 */
890 switch (udev->speed) {
891 case USB_SPEED_SUPER:
892 ep0_ctx->ep_info2 |= MAX_PACKET(512);
893 break;
894 case USB_SPEED_HIGH:
895 /* USB core guesses at a 64-byte max packet first for FS devices */
896 case USB_SPEED_FULL:
897 ep0_ctx->ep_info2 |= MAX_PACKET(64);
898 break;
899 case USB_SPEED_LOW:
900 ep0_ctx->ep_info2 |= MAX_PACKET(8);
901 break;
902 case USB_SPEED_WIRELESS:
903 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
904 return -EINVAL;
905 break;
906 default:
907 /* New speed? */
908 BUG();
909 }
910 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
911 ep0_ctx->ep_info2 |= MAX_BURST(0);
912 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
913
914 ep0_ctx->deq =
915 dev->eps[0].ring->first_seg->dma;
916 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
917
918 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
919
920 return 0;
921 }
922
923 /* Return the polling or NAK interval.
924 *
925 * The polling interval is expressed in "microframes". If xHCI's Interval field
926 * is set to N, it will service the endpoint every 2^(Interval)*125us.
927 *
928 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
929 * is set to 0.
930 */
931 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
932 struct usb_host_endpoint *ep)
933 {
934 unsigned int interval = 0;
935
936 switch (udev->speed) {
937 case USB_SPEED_HIGH:
938 /* Max NAK rate */
939 if (usb_endpoint_xfer_control(&ep->desc) ||
940 usb_endpoint_xfer_bulk(&ep->desc))
941 interval = ep->desc.bInterval;
942 /* Fall through - SS and HS isoc/int have same decoding */
943 case USB_SPEED_SUPER:
944 if (usb_endpoint_xfer_int(&ep->desc) ||
945 usb_endpoint_xfer_isoc(&ep->desc)) {
946 if (ep->desc.bInterval == 0)
947 interval = 0;
948 else
949 interval = ep->desc.bInterval - 1;
950 if (interval > 15)
951 interval = 15;
952 if (interval != ep->desc.bInterval + 1)
953 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
954 ep->desc.bEndpointAddress, 1 << interval);
955 }
956 break;
957 /* Convert bInterval (in 1-255 frames) to microframes and round down to
958 * nearest power of 2.
959 */
960 case USB_SPEED_FULL:
961 case USB_SPEED_LOW:
962 if (usb_endpoint_xfer_int(&ep->desc) ||
963 usb_endpoint_xfer_isoc(&ep->desc)) {
964 interval = fls(8*ep->desc.bInterval) - 1;
965 if (interval > 10)
966 interval = 10;
967 if (interval < 3)
968 interval = 3;
969 if ((1 << interval) != 8*ep->desc.bInterval)
970 dev_warn(&udev->dev,
971 "ep %#x - rounding interval"
972 " to %d microframes, "
973 "ep desc says %d microframes\n",
974 ep->desc.bEndpointAddress,
975 1 << interval,
976 8*ep->desc.bInterval);
977 }
978 break;
979 default:
980 BUG();
981 }
982 return EP_INTERVAL(interval);
983 }
984
985 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
986 * High speed endpoint descriptors can define "the number of additional
987 * transaction opportunities per microframe", but that goes in the Max Burst
988 * endpoint context field.
989 */
990 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
991 struct usb_host_endpoint *ep)
992 {
993 if (udev->speed != USB_SPEED_SUPER ||
994 !usb_endpoint_xfer_isoc(&ep->desc))
995 return 0;
996 return ep->ss_ep_comp.bmAttributes;
997 }
998
999 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1000 struct usb_host_endpoint *ep)
1001 {
1002 int in;
1003 u32 type;
1004
1005 in = usb_endpoint_dir_in(&ep->desc);
1006 if (usb_endpoint_xfer_control(&ep->desc)) {
1007 type = EP_TYPE(CTRL_EP);
1008 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1009 if (in)
1010 type = EP_TYPE(BULK_IN_EP);
1011 else
1012 type = EP_TYPE(BULK_OUT_EP);
1013 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1014 if (in)
1015 type = EP_TYPE(ISOC_IN_EP);
1016 else
1017 type = EP_TYPE(ISOC_OUT_EP);
1018 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1019 if (in)
1020 type = EP_TYPE(INT_IN_EP);
1021 else
1022 type = EP_TYPE(INT_OUT_EP);
1023 } else {
1024 BUG();
1025 }
1026 return type;
1027 }
1028
1029 /* Return the maximum endpoint service interval time (ESIT) payload.
1030 * Basically, this is the maxpacket size, multiplied by the burst size
1031 * and mult size.
1032 */
1033 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1034 struct usb_device *udev,
1035 struct usb_host_endpoint *ep)
1036 {
1037 int max_burst;
1038 int max_packet;
1039
1040 /* Only applies for interrupt or isochronous endpoints */
1041 if (usb_endpoint_xfer_control(&ep->desc) ||
1042 usb_endpoint_xfer_bulk(&ep->desc))
1043 return 0;
1044
1045 if (udev->speed == USB_SPEED_SUPER)
1046 return ep->ss_ep_comp.wBytesPerInterval;
1047
1048 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1049 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1050 /* A 0 in max burst means 1 transfer per ESIT */
1051 return max_packet * (max_burst + 1);
1052 }
1053
1054 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1055 * Drivers will have to call usb_alloc_streams() to do that.
1056 */
1057 int xhci_endpoint_init(struct xhci_hcd *xhci,
1058 struct xhci_virt_device *virt_dev,
1059 struct usb_device *udev,
1060 struct usb_host_endpoint *ep,
1061 gfp_t mem_flags)
1062 {
1063 unsigned int ep_index;
1064 struct xhci_ep_ctx *ep_ctx;
1065 struct xhci_ring *ep_ring;
1066 unsigned int max_packet;
1067 unsigned int max_burst;
1068 u32 max_esit_payload;
1069
1070 ep_index = xhci_get_endpoint_index(&ep->desc);
1071 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1072
1073 /* Set up the endpoint ring */
1074 /*
1075 * Isochronous endpoint ring needs bigger size because one isoc URB
1076 * carries multiple packets and it will insert multiple tds to the
1077 * ring.
1078 * This should be replaced with dynamic ring resizing in the future.
1079 */
1080 if (usb_endpoint_xfer_isoc(&ep->desc))
1081 virt_dev->eps[ep_index].new_ring =
1082 xhci_ring_alloc(xhci, 8, true, mem_flags);
1083 else
1084 virt_dev->eps[ep_index].new_ring =
1085 xhci_ring_alloc(xhci, 1, true, mem_flags);
1086 if (!virt_dev->eps[ep_index].new_ring) {
1087 /* Attempt to use the ring cache */
1088 if (virt_dev->num_rings_cached == 0)
1089 return -ENOMEM;
1090 virt_dev->eps[ep_index].new_ring =
1091 virt_dev->ring_cache[virt_dev->num_rings_cached];
1092 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1093 virt_dev->num_rings_cached--;
1094 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1095 }
1096 virt_dev->eps[ep_index].skip = false;
1097 ep_ring = virt_dev->eps[ep_index].new_ring;
1098 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1099
1100 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1101 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1102
1103 /* FIXME dig Mult and streams info out of ep companion desc */
1104
1105 /* Allow 3 retries for everything but isoc;
1106 * error count = 0 means infinite retries.
1107 */
1108 if (!usb_endpoint_xfer_isoc(&ep->desc))
1109 ep_ctx->ep_info2 = ERROR_COUNT(3);
1110 else
1111 ep_ctx->ep_info2 = ERROR_COUNT(1);
1112
1113 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1114
1115 /* Set the max packet size and max burst */
1116 switch (udev->speed) {
1117 case USB_SPEED_SUPER:
1118 max_packet = ep->desc.wMaxPacketSize;
1119 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1120 /* dig out max burst from ep companion desc */
1121 max_packet = ep->ss_ep_comp.bMaxBurst;
1122 if (!max_packet)
1123 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1124 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1125 break;
1126 case USB_SPEED_HIGH:
1127 /* bits 11:12 specify the number of additional transaction
1128 * opportunities per microframe (USB 2.0, section 9.6.6)
1129 */
1130 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1131 usb_endpoint_xfer_int(&ep->desc)) {
1132 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1133 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1134 }
1135 /* Fall through */
1136 case USB_SPEED_FULL:
1137 case USB_SPEED_LOW:
1138 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1139 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1140 break;
1141 default:
1142 BUG();
1143 }
1144 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1145 ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1146
1147 /*
1148 * XXX no idea how to calculate the average TRB buffer length for bulk
1149 * endpoints, as the driver gives us no clue how big each scatter gather
1150 * list entry (or buffer) is going to be.
1151 *
1152 * For isochronous and interrupt endpoints, we set it to the max
1153 * available, until we have new API in the USB core to allow drivers to
1154 * declare how much bandwidth they actually need.
1155 *
1156 * Normally, it would be calculated by taking the total of the buffer
1157 * lengths in the TD and then dividing by the number of TRBs in a TD,
1158 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1159 * use Event Data TRBs, and we don't chain in a link TRB on short
1160 * transfers, we're basically dividing by 1.
1161 */
1162 ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1163
1164 /* FIXME Debug endpoint context */
1165 return 0;
1166 }
1167
1168 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1169 struct xhci_virt_device *virt_dev,
1170 struct usb_host_endpoint *ep)
1171 {
1172 unsigned int ep_index;
1173 struct xhci_ep_ctx *ep_ctx;
1174
1175 ep_index = xhci_get_endpoint_index(&ep->desc);
1176 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1177
1178 ep_ctx->ep_info = 0;
1179 ep_ctx->ep_info2 = 0;
1180 ep_ctx->deq = 0;
1181 ep_ctx->tx_info = 0;
1182 /* Don't free the endpoint ring until the set interface or configuration
1183 * request succeeds.
1184 */
1185 }
1186
1187 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1188 * Useful when you want to change one particular aspect of the endpoint and then
1189 * issue a configure endpoint command.
1190 */
1191 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1192 struct xhci_container_ctx *in_ctx,
1193 struct xhci_container_ctx *out_ctx,
1194 unsigned int ep_index)
1195 {
1196 struct xhci_ep_ctx *out_ep_ctx;
1197 struct xhci_ep_ctx *in_ep_ctx;
1198
1199 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1201
1202 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1203 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1204 in_ep_ctx->deq = out_ep_ctx->deq;
1205 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1206 }
1207
1208 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1209 * Useful when you want to change one particular aspect of the endpoint and then
1210 * issue a configure endpoint command. Only the context entries field matters,
1211 * but we'll copy the whole thing anyway.
1212 */
1213 void xhci_slot_copy(struct xhci_hcd *xhci,
1214 struct xhci_container_ctx *in_ctx,
1215 struct xhci_container_ctx *out_ctx)
1216 {
1217 struct xhci_slot_ctx *in_slot_ctx;
1218 struct xhci_slot_ctx *out_slot_ctx;
1219
1220 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1221 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1222
1223 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1224 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1225 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1226 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1227 }
1228
1229 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1230 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1231 {
1232 int i;
1233 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1234 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1235
1236 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1237
1238 if (!num_sp)
1239 return 0;
1240
1241 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1242 if (!xhci->scratchpad)
1243 goto fail_sp;
1244
1245 xhci->scratchpad->sp_array =
1246 pci_alloc_consistent(to_pci_dev(dev),
1247 num_sp * sizeof(u64),
1248 &xhci->scratchpad->sp_dma);
1249 if (!xhci->scratchpad->sp_array)
1250 goto fail_sp2;
1251
1252 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1253 if (!xhci->scratchpad->sp_buffers)
1254 goto fail_sp3;
1255
1256 xhci->scratchpad->sp_dma_buffers =
1257 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1258
1259 if (!xhci->scratchpad->sp_dma_buffers)
1260 goto fail_sp4;
1261
1262 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1263 for (i = 0; i < num_sp; i++) {
1264 dma_addr_t dma;
1265 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1266 xhci->page_size, &dma);
1267 if (!buf)
1268 goto fail_sp5;
1269
1270 xhci->scratchpad->sp_array[i] = dma;
1271 xhci->scratchpad->sp_buffers[i] = buf;
1272 xhci->scratchpad->sp_dma_buffers[i] = dma;
1273 }
1274
1275 return 0;
1276
1277 fail_sp5:
1278 for (i = i - 1; i >= 0; i--) {
1279 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1280 xhci->scratchpad->sp_buffers[i],
1281 xhci->scratchpad->sp_dma_buffers[i]);
1282 }
1283 kfree(xhci->scratchpad->sp_dma_buffers);
1284
1285 fail_sp4:
1286 kfree(xhci->scratchpad->sp_buffers);
1287
1288 fail_sp3:
1289 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1290 xhci->scratchpad->sp_array,
1291 xhci->scratchpad->sp_dma);
1292
1293 fail_sp2:
1294 kfree(xhci->scratchpad);
1295 xhci->scratchpad = NULL;
1296
1297 fail_sp:
1298 return -ENOMEM;
1299 }
1300
1301 static void scratchpad_free(struct xhci_hcd *xhci)
1302 {
1303 int num_sp;
1304 int i;
1305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1306
1307 if (!xhci->scratchpad)
1308 return;
1309
1310 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1311
1312 for (i = 0; i < num_sp; i++) {
1313 pci_free_consistent(pdev, xhci->page_size,
1314 xhci->scratchpad->sp_buffers[i],
1315 xhci->scratchpad->sp_dma_buffers[i]);
1316 }
1317 kfree(xhci->scratchpad->sp_dma_buffers);
1318 kfree(xhci->scratchpad->sp_buffers);
1319 pci_free_consistent(pdev, num_sp * sizeof(u64),
1320 xhci->scratchpad->sp_array,
1321 xhci->scratchpad->sp_dma);
1322 kfree(xhci->scratchpad);
1323 xhci->scratchpad = NULL;
1324 }
1325
1326 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1327 bool allocate_in_ctx, bool allocate_completion,
1328 gfp_t mem_flags)
1329 {
1330 struct xhci_command *command;
1331
1332 command = kzalloc(sizeof(*command), mem_flags);
1333 if (!command)
1334 return NULL;
1335
1336 if (allocate_in_ctx) {
1337 command->in_ctx =
1338 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1339 mem_flags);
1340 if (!command->in_ctx) {
1341 kfree(command);
1342 return NULL;
1343 }
1344 }
1345
1346 if (allocate_completion) {
1347 command->completion =
1348 kzalloc(sizeof(struct completion), mem_flags);
1349 if (!command->completion) {
1350 xhci_free_container_ctx(xhci, command->in_ctx);
1351 kfree(command);
1352 return NULL;
1353 }
1354 init_completion(command->completion);
1355 }
1356
1357 command->status = 0;
1358 INIT_LIST_HEAD(&command->cmd_list);
1359 return command;
1360 }
1361
1362 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1363 {
1364 int last;
1365
1366 if (!urb_priv)
1367 return;
1368
1369 last = urb_priv->length - 1;
1370 if (last >= 0) {
1371 int i;
1372 for (i = 0; i <= last; i++)
1373 kfree(urb_priv->td[i]);
1374 }
1375 kfree(urb_priv);
1376 }
1377
1378 void xhci_free_command(struct xhci_hcd *xhci,
1379 struct xhci_command *command)
1380 {
1381 xhci_free_container_ctx(xhci,
1382 command->in_ctx);
1383 kfree(command->completion);
1384 kfree(command);
1385 }
1386
1387 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1388 {
1389 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1390 int size;
1391 int i;
1392
1393 /* Free the Event Ring Segment Table and the actual Event Ring */
1394 if (xhci->ir_set) {
1395 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1396 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1397 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1398 }
1399 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1400 if (xhci->erst.entries)
1401 pci_free_consistent(pdev, size,
1402 xhci->erst.entries, xhci->erst.erst_dma_addr);
1403 xhci->erst.entries = NULL;
1404 xhci_dbg(xhci, "Freed ERST\n");
1405 if (xhci->event_ring)
1406 xhci_ring_free(xhci, xhci->event_ring);
1407 xhci->event_ring = NULL;
1408 xhci_dbg(xhci, "Freed event ring\n");
1409
1410 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1411 if (xhci->cmd_ring)
1412 xhci_ring_free(xhci, xhci->cmd_ring);
1413 xhci->cmd_ring = NULL;
1414 xhci_dbg(xhci, "Freed command ring\n");
1415
1416 for (i = 1; i < MAX_HC_SLOTS; ++i)
1417 xhci_free_virt_device(xhci, i);
1418
1419 if (xhci->segment_pool)
1420 dma_pool_destroy(xhci->segment_pool);
1421 xhci->segment_pool = NULL;
1422 xhci_dbg(xhci, "Freed segment pool\n");
1423
1424 if (xhci->device_pool)
1425 dma_pool_destroy(xhci->device_pool);
1426 xhci->device_pool = NULL;
1427 xhci_dbg(xhci, "Freed device context pool\n");
1428
1429 if (xhci->small_streams_pool)
1430 dma_pool_destroy(xhci->small_streams_pool);
1431 xhci->small_streams_pool = NULL;
1432 xhci_dbg(xhci, "Freed small stream array pool\n");
1433
1434 if (xhci->medium_streams_pool)
1435 dma_pool_destroy(xhci->medium_streams_pool);
1436 xhci->medium_streams_pool = NULL;
1437 xhci_dbg(xhci, "Freed medium stream array pool\n");
1438
1439 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1440 if (xhci->dcbaa)
1441 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1442 xhci->dcbaa, xhci->dcbaa->dma);
1443 xhci->dcbaa = NULL;
1444
1445 scratchpad_free(xhci);
1446 xhci->page_size = 0;
1447 xhci->page_shift = 0;
1448 xhci->bus_suspended = 0;
1449 }
1450
1451 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1452 struct xhci_segment *input_seg,
1453 union xhci_trb *start_trb,
1454 union xhci_trb *end_trb,
1455 dma_addr_t input_dma,
1456 struct xhci_segment *result_seg,
1457 char *test_name, int test_number)
1458 {
1459 unsigned long long start_dma;
1460 unsigned long long end_dma;
1461 struct xhci_segment *seg;
1462
1463 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1464 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1465
1466 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1467 if (seg != result_seg) {
1468 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1469 test_name, test_number);
1470 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1471 "input DMA 0x%llx\n",
1472 input_seg,
1473 (unsigned long long) input_dma);
1474 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1475 "ending TRB %p (0x%llx DMA)\n",
1476 start_trb, start_dma,
1477 end_trb, end_dma);
1478 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1479 result_seg, seg);
1480 return -1;
1481 }
1482 return 0;
1483 }
1484
1485 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1486 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1487 {
1488 struct {
1489 dma_addr_t input_dma;
1490 struct xhci_segment *result_seg;
1491 } simple_test_vector [] = {
1492 /* A zeroed DMA field should fail */
1493 { 0, NULL },
1494 /* One TRB before the ring start should fail */
1495 { xhci->event_ring->first_seg->dma - 16, NULL },
1496 /* One byte before the ring start should fail */
1497 { xhci->event_ring->first_seg->dma - 1, NULL },
1498 /* Starting TRB should succeed */
1499 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1500 /* Ending TRB should succeed */
1501 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1502 xhci->event_ring->first_seg },
1503 /* One byte after the ring end should fail */
1504 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1505 /* One TRB after the ring end should fail */
1506 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1507 /* An address of all ones should fail */
1508 { (dma_addr_t) (~0), NULL },
1509 };
1510 struct {
1511 struct xhci_segment *input_seg;
1512 union xhci_trb *start_trb;
1513 union xhci_trb *end_trb;
1514 dma_addr_t input_dma;
1515 struct xhci_segment *result_seg;
1516 } complex_test_vector [] = {
1517 /* Test feeding a valid DMA address from a different ring */
1518 { .input_seg = xhci->event_ring->first_seg,
1519 .start_trb = xhci->event_ring->first_seg->trbs,
1520 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1521 .input_dma = xhci->cmd_ring->first_seg->dma,
1522 .result_seg = NULL,
1523 },
1524 /* Test feeding a valid end TRB from a different ring */
1525 { .input_seg = xhci->event_ring->first_seg,
1526 .start_trb = xhci->event_ring->first_seg->trbs,
1527 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1528 .input_dma = xhci->cmd_ring->first_seg->dma,
1529 .result_seg = NULL,
1530 },
1531 /* Test feeding a valid start and end TRB from a different ring */
1532 { .input_seg = xhci->event_ring->first_seg,
1533 .start_trb = xhci->cmd_ring->first_seg->trbs,
1534 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1535 .input_dma = xhci->cmd_ring->first_seg->dma,
1536 .result_seg = NULL,
1537 },
1538 /* TRB in this ring, but after this TD */
1539 { .input_seg = xhci->event_ring->first_seg,
1540 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1541 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1542 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1543 .result_seg = NULL,
1544 },
1545 /* TRB in this ring, but before this TD */
1546 { .input_seg = xhci->event_ring->first_seg,
1547 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1548 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1549 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1550 .result_seg = NULL,
1551 },
1552 /* TRB in this ring, but after this wrapped TD */
1553 { .input_seg = xhci->event_ring->first_seg,
1554 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1555 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1556 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1557 .result_seg = NULL,
1558 },
1559 /* TRB in this ring, but before this wrapped TD */
1560 { .input_seg = xhci->event_ring->first_seg,
1561 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1562 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1563 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1564 .result_seg = NULL,
1565 },
1566 /* TRB not in this ring, and we have a wrapped TD */
1567 { .input_seg = xhci->event_ring->first_seg,
1568 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1569 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1570 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1571 .result_seg = NULL,
1572 },
1573 };
1574
1575 unsigned int num_tests;
1576 int i, ret;
1577
1578 num_tests = ARRAY_SIZE(simple_test_vector);
1579 for (i = 0; i < num_tests; i++) {
1580 ret = xhci_test_trb_in_td(xhci,
1581 xhci->event_ring->first_seg,
1582 xhci->event_ring->first_seg->trbs,
1583 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1584 simple_test_vector[i].input_dma,
1585 simple_test_vector[i].result_seg,
1586 "Simple", i);
1587 if (ret < 0)
1588 return ret;
1589 }
1590
1591 num_tests = ARRAY_SIZE(complex_test_vector);
1592 for (i = 0; i < num_tests; i++) {
1593 ret = xhci_test_trb_in_td(xhci,
1594 complex_test_vector[i].input_seg,
1595 complex_test_vector[i].start_trb,
1596 complex_test_vector[i].end_trb,
1597 complex_test_vector[i].input_dma,
1598 complex_test_vector[i].result_seg,
1599 "Complex", i);
1600 if (ret < 0)
1601 return ret;
1602 }
1603 xhci_dbg(xhci, "TRB math tests passed.\n");
1604 return 0;
1605 }
1606
1607 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1608 {
1609 u64 temp;
1610 dma_addr_t deq;
1611
1612 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1613 xhci->event_ring->dequeue);
1614 if (deq == 0 && !in_interrupt())
1615 xhci_warn(xhci, "WARN something wrong with SW event ring "
1616 "dequeue ptr.\n");
1617 /* Update HC event ring dequeue pointer */
1618 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1619 temp &= ERST_PTR_MASK;
1620 /* Don't clear the EHB bit (which is RW1C) because
1621 * there might be more events to service.
1622 */
1623 temp &= ~ERST_EHB;
1624 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1625 "preserving EHB bit\n");
1626 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1627 &xhci->ir_set->erst_dequeue);
1628 }
1629
1630
1631 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1632 {
1633 dma_addr_t dma;
1634 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1635 unsigned int val, val2;
1636 u64 val_64;
1637 struct xhci_segment *seg;
1638 u32 page_size;
1639 int i;
1640
1641 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1642 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1643 for (i = 0; i < 16; i++) {
1644 if ((0x1 & page_size) != 0)
1645 break;
1646 page_size = page_size >> 1;
1647 }
1648 if (i < 16)
1649 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1650 else
1651 xhci_warn(xhci, "WARN: no supported page size\n");
1652 /* Use 4K pages, since that's common and the minimum the HC supports */
1653 xhci->page_shift = 12;
1654 xhci->page_size = 1 << xhci->page_shift;
1655 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1656
1657 /*
1658 * Program the Number of Device Slots Enabled field in the CONFIG
1659 * register with the max value of slots the HC can handle.
1660 */
1661 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1662 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1663 (unsigned int) val);
1664 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1665 val |= (val2 & ~HCS_SLOTS_MASK);
1666 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1667 (unsigned int) val);
1668 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1669
1670 /*
1671 * Section 5.4.8 - doorbell array must be
1672 * "physically contiguous and 64-byte (cache line) aligned".
1673 */
1674 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1675 sizeof(*xhci->dcbaa), &dma);
1676 if (!xhci->dcbaa)
1677 goto fail;
1678 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1679 xhci->dcbaa->dma = dma;
1680 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1681 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1682 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1683
1684 /*
1685 * Initialize the ring segment pool. The ring must be a contiguous
1686 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1687 * however, the command ring segment needs 64-byte aligned segments,
1688 * so we pick the greater alignment need.
1689 */
1690 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1691 SEGMENT_SIZE, 64, xhci->page_size);
1692
1693 /* See Table 46 and Note on Figure 55 */
1694 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1695 2112, 64, xhci->page_size);
1696 if (!xhci->segment_pool || !xhci->device_pool)
1697 goto fail;
1698
1699 /* Linear stream context arrays don't have any boundary restrictions,
1700 * and only need to be 16-byte aligned.
1701 */
1702 xhci->small_streams_pool =
1703 dma_pool_create("xHCI 256 byte stream ctx arrays",
1704 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1705 xhci->medium_streams_pool =
1706 dma_pool_create("xHCI 1KB stream ctx arrays",
1707 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1708 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1709 * will be allocated with pci_alloc_consistent()
1710 */
1711
1712 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1713 goto fail;
1714
1715 /* Set up the command ring to have one segments for now. */
1716 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1717 if (!xhci->cmd_ring)
1718 goto fail;
1719 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1720 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1721 (unsigned long long)xhci->cmd_ring->first_seg->dma);
1722
1723 /* Set the address in the Command Ring Control register */
1724 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1725 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1726 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1727 xhci->cmd_ring->cycle_state;
1728 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1729 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1730 xhci_dbg_cmd_ptrs(xhci);
1731
1732 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1733 val &= DBOFF_MASK;
1734 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1735 " from cap regs base addr\n", val);
1736 xhci->dba = (void *) xhci->cap_regs + val;
1737 xhci_dbg_regs(xhci);
1738 xhci_print_run_regs(xhci);
1739 /* Set ir_set to interrupt register set 0 */
1740 xhci->ir_set = (void *) xhci->run_regs->ir_set;
1741
1742 /*
1743 * Event ring setup: Allocate a normal ring, but also setup
1744 * the event ring segment table (ERST). Section 4.9.3.
1745 */
1746 xhci_dbg(xhci, "// Allocating event ring\n");
1747 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1748 if (!xhci->event_ring)
1749 goto fail;
1750 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1751 goto fail;
1752
1753 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1754 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1755 if (!xhci->erst.entries)
1756 goto fail;
1757 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1758 (unsigned long long)dma);
1759
1760 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1761 xhci->erst.num_entries = ERST_NUM_SEGS;
1762 xhci->erst.erst_dma_addr = dma;
1763 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1764 xhci->erst.num_entries,
1765 xhci->erst.entries,
1766 (unsigned long long)xhci->erst.erst_dma_addr);
1767
1768 /* set ring base address and size for each segment table entry */
1769 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1770 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1771 entry->seg_addr = seg->dma;
1772 entry->seg_size = TRBS_PER_SEGMENT;
1773 entry->rsvd = 0;
1774 seg = seg->next;
1775 }
1776
1777 /* set ERST count with the number of entries in the segment table */
1778 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1779 val &= ERST_SIZE_MASK;
1780 val |= ERST_NUM_SEGS;
1781 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1782 val);
1783 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1784
1785 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1786 /* set the segment table base address */
1787 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1788 (unsigned long long)xhci->erst.erst_dma_addr);
1789 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1790 val_64 &= ERST_PTR_MASK;
1791 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1792 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1793
1794 /* Set the event ring dequeue address */
1795 xhci_set_hc_event_deq(xhci);
1796 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1797 xhci_print_ir_set(xhci, xhci->ir_set, 0);
1798
1799 /*
1800 * XXX: Might need to set the Interrupter Moderation Register to
1801 * something other than the default (~1ms minimum between interrupts).
1802 * See section 5.5.1.2.
1803 */
1804 init_completion(&xhci->addr_dev);
1805 for (i = 0; i < MAX_HC_SLOTS; ++i)
1806 xhci->devs[i] = NULL;
1807 for (i = 0; i < MAX_HC_PORTS; ++i)
1808 xhci->resume_done[i] = 0;
1809
1810 if (scratchpad_alloc(xhci, flags))
1811 goto fail;
1812
1813 return 0;
1814
1815 fail:
1816 xhci_warn(xhci, "Couldn't initialize memory\n");
1817 xhci_mem_cleanup(xhci);
1818 return -ENOMEM;
1819 }