include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / gadget / u_serial.c
1 /*
2 * u_serial.c - utilities for USB gadget "serial port"/TTY support
3 *
4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
5 * Copyright (C) 2008 David Brownell
6 * Copyright (C) 2008 by Nokia Corporation
7 *
8 * This code also borrows from usbserial.c, which is
9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com)
11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
12 *
13 * This software is distributed under the terms of the GNU General
14 * Public License ("GPL") as published by the Free Software Foundation,
15 * either version 2 of that License or (at your option) any later version.
16 */
17
18 /* #define VERBOSE_DEBUG */
19
20 #include <linux/kernel.h>
21 #include <linux/interrupt.h>
22 #include <linux/device.h>
23 #include <linux/delay.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/slab.h>
27
28 #include "u_serial.h"
29
30
31 /*
32 * This component encapsulates the TTY layer glue needed to provide basic
33 * "serial port" functionality through the USB gadget stack. Each such
34 * port is exposed through a /dev/ttyGS* node.
35 *
36 * After initialization (gserial_setup), these TTY port devices stay
37 * available until they are removed (gserial_cleanup). Each one may be
38 * connected to a USB function (gserial_connect), or disconnected (with
39 * gserial_disconnect) when the USB host issues a config change event.
40 * Data can only flow when the port is connected to the host.
41 *
42 * A given TTY port can be made available in multiple configurations.
43 * For example, each one might expose a ttyGS0 node which provides a
44 * login application. In one case that might use CDC ACM interface 0,
45 * while another configuration might use interface 3 for that. The
46 * work to handle that (including descriptor management) is not part
47 * of this component.
48 *
49 * Configurations may expose more than one TTY port. For example, if
50 * ttyGS0 provides login service, then ttyGS1 might provide dialer access
51 * for a telephone or fax link. And ttyGS2 might be something that just
52 * needs a simple byte stream interface for some messaging protocol that
53 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
54 */
55
56 #define PREFIX "ttyGS"
57
58 /*
59 * gserial is the lifecycle interface, used by USB functions
60 * gs_port is the I/O nexus, used by the tty driver
61 * tty_struct links to the tty/filesystem framework
62 *
63 * gserial <---> gs_port ... links will be null when the USB link is
64 * inactive; managed by gserial_{connect,disconnect}(). each gserial
65 * instance can wrap its own USB control protocol.
66 * gserial->ioport == usb_ep->driver_data ... gs_port
67 * gs_port->port_usb ... gserial
68 *
69 * gs_port <---> tty_struct ... links will be null when the TTY file
70 * isn't opened; managed by gs_open()/gs_close()
71 * gserial->port_tty ... tty_struct
72 * tty_struct->driver_data ... gserial
73 */
74
75 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
76 * next layer of buffering. For TX that's a circular buffer; for RX
77 * consider it a NOP. A third layer is provided by the TTY code.
78 */
79 #define QUEUE_SIZE 16
80 #define WRITE_BUF_SIZE 8192 /* TX only */
81
82 /* circular buffer */
83 struct gs_buf {
84 unsigned buf_size;
85 char *buf_buf;
86 char *buf_get;
87 char *buf_put;
88 };
89
90 /*
91 * The port structure holds info for each port, one for each minor number
92 * (and thus for each /dev/ node).
93 */
94 struct gs_port {
95 spinlock_t port_lock; /* guard port_* access */
96
97 struct gserial *port_usb;
98 struct tty_struct *port_tty;
99
100 unsigned open_count;
101 bool openclose; /* open/close in progress */
102 u8 port_num;
103
104 wait_queue_head_t close_wait; /* wait for last close */
105
106 struct list_head read_pool;
107 struct list_head read_queue;
108 unsigned n_read;
109 struct tasklet_struct push;
110
111 struct list_head write_pool;
112 struct gs_buf port_write_buf;
113 wait_queue_head_t drain_wait; /* wait while writes drain */
114
115 /* REVISIT this state ... */
116 struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */
117 };
118
119 /* increase N_PORTS if you need more */
120 #define N_PORTS 4
121 static struct portmaster {
122 struct mutex lock; /* protect open/close */
123 struct gs_port *port;
124 } ports[N_PORTS];
125 static unsigned n_ports;
126
127 #define GS_CLOSE_TIMEOUT 15 /* seconds */
128
129
130
131 #ifdef VERBOSE_DEBUG
132 #define pr_vdebug(fmt, arg...) \
133 pr_debug(fmt, ##arg)
134 #else
135 #define pr_vdebug(fmt, arg...) \
136 ({ if (0) pr_debug(fmt, ##arg); })
137 #endif
138
139 /*-------------------------------------------------------------------------*/
140
141 /* Circular Buffer */
142
143 /*
144 * gs_buf_alloc
145 *
146 * Allocate a circular buffer and all associated memory.
147 */
148 static int gs_buf_alloc(struct gs_buf *gb, unsigned size)
149 {
150 gb->buf_buf = kmalloc(size, GFP_KERNEL);
151 if (gb->buf_buf == NULL)
152 return -ENOMEM;
153
154 gb->buf_size = size;
155 gb->buf_put = gb->buf_buf;
156 gb->buf_get = gb->buf_buf;
157
158 return 0;
159 }
160
161 /*
162 * gs_buf_free
163 *
164 * Free the buffer and all associated memory.
165 */
166 static void gs_buf_free(struct gs_buf *gb)
167 {
168 kfree(gb->buf_buf);
169 gb->buf_buf = NULL;
170 }
171
172 /*
173 * gs_buf_clear
174 *
175 * Clear out all data in the circular buffer.
176 */
177 static void gs_buf_clear(struct gs_buf *gb)
178 {
179 gb->buf_get = gb->buf_put;
180 /* equivalent to a get of all data available */
181 }
182
183 /*
184 * gs_buf_data_avail
185 *
186 * Return the number of bytes of data written into the circular
187 * buffer.
188 */
189 static unsigned gs_buf_data_avail(struct gs_buf *gb)
190 {
191 return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size;
192 }
193
194 /*
195 * gs_buf_space_avail
196 *
197 * Return the number of bytes of space available in the circular
198 * buffer.
199 */
200 static unsigned gs_buf_space_avail(struct gs_buf *gb)
201 {
202 return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size;
203 }
204
205 /*
206 * gs_buf_put
207 *
208 * Copy data data from a user buffer and put it into the circular buffer.
209 * Restrict to the amount of space available.
210 *
211 * Return the number of bytes copied.
212 */
213 static unsigned
214 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count)
215 {
216 unsigned len;
217
218 len = gs_buf_space_avail(gb);
219 if (count > len)
220 count = len;
221
222 if (count == 0)
223 return 0;
224
225 len = gb->buf_buf + gb->buf_size - gb->buf_put;
226 if (count > len) {
227 memcpy(gb->buf_put, buf, len);
228 memcpy(gb->buf_buf, buf+len, count - len);
229 gb->buf_put = gb->buf_buf + count - len;
230 } else {
231 memcpy(gb->buf_put, buf, count);
232 if (count < len)
233 gb->buf_put += count;
234 else /* count == len */
235 gb->buf_put = gb->buf_buf;
236 }
237
238 return count;
239 }
240
241 /*
242 * gs_buf_get
243 *
244 * Get data from the circular buffer and copy to the given buffer.
245 * Restrict to the amount of data available.
246 *
247 * Return the number of bytes copied.
248 */
249 static unsigned
250 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count)
251 {
252 unsigned len;
253
254 len = gs_buf_data_avail(gb);
255 if (count > len)
256 count = len;
257
258 if (count == 0)
259 return 0;
260
261 len = gb->buf_buf + gb->buf_size - gb->buf_get;
262 if (count > len) {
263 memcpy(buf, gb->buf_get, len);
264 memcpy(buf+len, gb->buf_buf, count - len);
265 gb->buf_get = gb->buf_buf + count - len;
266 } else {
267 memcpy(buf, gb->buf_get, count);
268 if (count < len)
269 gb->buf_get += count;
270 else /* count == len */
271 gb->buf_get = gb->buf_buf;
272 }
273
274 return count;
275 }
276
277 /*-------------------------------------------------------------------------*/
278
279 /* I/O glue between TTY (upper) and USB function (lower) driver layers */
280
281 /*
282 * gs_alloc_req
283 *
284 * Allocate a usb_request and its buffer. Returns a pointer to the
285 * usb_request or NULL if there is an error.
286 */
287 struct usb_request *
288 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags)
289 {
290 struct usb_request *req;
291
292 req = usb_ep_alloc_request(ep, kmalloc_flags);
293
294 if (req != NULL) {
295 req->length = len;
296 req->buf = kmalloc(len, kmalloc_flags);
297 if (req->buf == NULL) {
298 usb_ep_free_request(ep, req);
299 return NULL;
300 }
301 }
302
303 return req;
304 }
305
306 /*
307 * gs_free_req
308 *
309 * Free a usb_request and its buffer.
310 */
311 void gs_free_req(struct usb_ep *ep, struct usb_request *req)
312 {
313 kfree(req->buf);
314 usb_ep_free_request(ep, req);
315 }
316
317 /*
318 * gs_send_packet
319 *
320 * If there is data to send, a packet is built in the given
321 * buffer and the size is returned. If there is no data to
322 * send, 0 is returned.
323 *
324 * Called with port_lock held.
325 */
326 static unsigned
327 gs_send_packet(struct gs_port *port, char *packet, unsigned size)
328 {
329 unsigned len;
330
331 len = gs_buf_data_avail(&port->port_write_buf);
332 if (len < size)
333 size = len;
334 if (size != 0)
335 size = gs_buf_get(&port->port_write_buf, packet, size);
336 return size;
337 }
338
339 /*
340 * gs_start_tx
341 *
342 * This function finds available write requests, calls
343 * gs_send_packet to fill these packets with data, and
344 * continues until either there are no more write requests
345 * available or no more data to send. This function is
346 * run whenever data arrives or write requests are available.
347 *
348 * Context: caller owns port_lock; port_usb is non-null.
349 */
350 static int gs_start_tx(struct gs_port *port)
351 /*
352 __releases(&port->port_lock)
353 __acquires(&port->port_lock)
354 */
355 {
356 struct list_head *pool = &port->write_pool;
357 struct usb_ep *in = port->port_usb->in;
358 int status = 0;
359 bool do_tty_wake = false;
360
361 while (!list_empty(pool)) {
362 struct usb_request *req;
363 int len;
364
365 req = list_entry(pool->next, struct usb_request, list);
366 len = gs_send_packet(port, req->buf, in->maxpacket);
367 if (len == 0) {
368 wake_up_interruptible(&port->drain_wait);
369 break;
370 }
371 do_tty_wake = true;
372
373 req->length = len;
374 list_del(&req->list);
375 req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0);
376
377 pr_vdebug(PREFIX "%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n",
378 port->port_num, len, *((u8 *)req->buf),
379 *((u8 *)req->buf+1), *((u8 *)req->buf+2));
380
381 /* Drop lock while we call out of driver; completions
382 * could be issued while we do so. Disconnection may
383 * happen too; maybe immediately before we queue this!
384 *
385 * NOTE that we may keep sending data for a while after
386 * the TTY closed (dev->ioport->port_tty is NULL).
387 */
388 spin_unlock(&port->port_lock);
389 status = usb_ep_queue(in, req, GFP_ATOMIC);
390 spin_lock(&port->port_lock);
391
392 if (status) {
393 pr_debug("%s: %s %s err %d\n",
394 __func__, "queue", in->name, status);
395 list_add(&req->list, pool);
396 break;
397 }
398
399 /* abort immediately after disconnect */
400 if (!port->port_usb)
401 break;
402 }
403
404 if (do_tty_wake && port->port_tty)
405 tty_wakeup(port->port_tty);
406 return status;
407 }
408
409 /*
410 * Context: caller owns port_lock, and port_usb is set
411 */
412 static unsigned gs_start_rx(struct gs_port *port)
413 /*
414 __releases(&port->port_lock)
415 __acquires(&port->port_lock)
416 */
417 {
418 struct list_head *pool = &port->read_pool;
419 struct usb_ep *out = port->port_usb->out;
420 unsigned started = 0;
421
422 while (!list_empty(pool)) {
423 struct usb_request *req;
424 int status;
425 struct tty_struct *tty;
426
427 /* no more rx if closed */
428 tty = port->port_tty;
429 if (!tty)
430 break;
431
432 req = list_entry(pool->next, struct usb_request, list);
433 list_del(&req->list);
434 req->length = out->maxpacket;
435
436 /* drop lock while we call out; the controller driver
437 * may need to call us back (e.g. for disconnect)
438 */
439 spin_unlock(&port->port_lock);
440 status = usb_ep_queue(out, req, GFP_ATOMIC);
441 spin_lock(&port->port_lock);
442
443 if (status) {
444 pr_debug("%s: %s %s err %d\n",
445 __func__, "queue", out->name, status);
446 list_add(&req->list, pool);
447 break;
448 }
449 started++;
450
451 /* abort immediately after disconnect */
452 if (!port->port_usb)
453 break;
454 }
455 return started;
456 }
457
458 /*
459 * RX tasklet takes data out of the RX queue and hands it up to the TTY
460 * layer until it refuses to take any more data (or is throttled back).
461 * Then it issues reads for any further data.
462 *
463 * If the RX queue becomes full enough that no usb_request is queued,
464 * the OUT endpoint may begin NAKing as soon as its FIFO fills up.
465 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two)
466 * can be buffered before the TTY layer's buffers (currently 64 KB).
467 */
468 static void gs_rx_push(unsigned long _port)
469 {
470 struct gs_port *port = (void *)_port;
471 struct tty_struct *tty;
472 struct list_head *queue = &port->read_queue;
473 bool disconnect = false;
474 bool do_push = false;
475
476 /* hand any queued data to the tty */
477 spin_lock_irq(&port->port_lock);
478 tty = port->port_tty;
479 while (!list_empty(queue)) {
480 struct usb_request *req;
481
482 req = list_first_entry(queue, struct usb_request, list);
483
484 /* discard data if tty was closed */
485 if (!tty)
486 goto recycle;
487
488 /* leave data queued if tty was rx throttled */
489 if (test_bit(TTY_THROTTLED, &tty->flags))
490 break;
491
492 switch (req->status) {
493 case -ESHUTDOWN:
494 disconnect = true;
495 pr_vdebug(PREFIX "%d: shutdown\n", port->port_num);
496 break;
497
498 default:
499 /* presumably a transient fault */
500 pr_warning(PREFIX "%d: unexpected RX status %d\n",
501 port->port_num, req->status);
502 /* FALLTHROUGH */
503 case 0:
504 /* normal completion */
505 break;
506 }
507
508 /* push data to (open) tty */
509 if (req->actual) {
510 char *packet = req->buf;
511 unsigned size = req->actual;
512 unsigned n;
513 int count;
514
515 /* we may have pushed part of this packet already... */
516 n = port->n_read;
517 if (n) {
518 packet += n;
519 size -= n;
520 }
521
522 count = tty_insert_flip_string(tty, packet, size);
523 if (count)
524 do_push = true;
525 if (count != size) {
526 /* stop pushing; TTY layer can't handle more */
527 port->n_read += count;
528 pr_vdebug(PREFIX "%d: rx block %d/%d\n",
529 port->port_num,
530 count, req->actual);
531 break;
532 }
533 port->n_read = 0;
534 }
535 recycle:
536 list_move(&req->list, &port->read_pool);
537 }
538
539 /* Push from tty to ldisc; this is immediate with low_latency, and
540 * may trigger callbacks to this driver ... so drop the spinlock.
541 */
542 if (tty && do_push) {
543 spin_unlock_irq(&port->port_lock);
544 tty_flip_buffer_push(tty);
545 wake_up_interruptible(&tty->read_wait);
546 spin_lock_irq(&port->port_lock);
547
548 /* tty may have been closed */
549 tty = port->port_tty;
550 }
551
552
553 /* We want our data queue to become empty ASAP, keeping data
554 * in the tty and ldisc (not here). If we couldn't push any
555 * this time around, there may be trouble unless there's an
556 * implicit tty_unthrottle() call on its way...
557 *
558 * REVISIT we should probably add a timer to keep the tasklet
559 * from starving ... but it's not clear that case ever happens.
560 */
561 if (!list_empty(queue) && tty) {
562 if (!test_bit(TTY_THROTTLED, &tty->flags)) {
563 if (do_push)
564 tasklet_schedule(&port->push);
565 else
566 pr_warning(PREFIX "%d: RX not scheduled?\n",
567 port->port_num);
568 }
569 }
570
571 /* If we're still connected, refill the USB RX queue. */
572 if (!disconnect && port->port_usb)
573 gs_start_rx(port);
574
575 spin_unlock_irq(&port->port_lock);
576 }
577
578 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req)
579 {
580 struct gs_port *port = ep->driver_data;
581
582 /* Queue all received data until the tty layer is ready for it. */
583 spin_lock(&port->port_lock);
584 list_add_tail(&req->list, &port->read_queue);
585 tasklet_schedule(&port->push);
586 spin_unlock(&port->port_lock);
587 }
588
589 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req)
590 {
591 struct gs_port *port = ep->driver_data;
592
593 spin_lock(&port->port_lock);
594 list_add(&req->list, &port->write_pool);
595
596 switch (req->status) {
597 default:
598 /* presumably a transient fault */
599 pr_warning("%s: unexpected %s status %d\n",
600 __func__, ep->name, req->status);
601 /* FALL THROUGH */
602 case 0:
603 /* normal completion */
604 gs_start_tx(port);
605 break;
606
607 case -ESHUTDOWN:
608 /* disconnect */
609 pr_vdebug("%s: %s shutdown\n", __func__, ep->name);
610 break;
611 }
612
613 spin_unlock(&port->port_lock);
614 }
615
616 static void gs_free_requests(struct usb_ep *ep, struct list_head *head)
617 {
618 struct usb_request *req;
619
620 while (!list_empty(head)) {
621 req = list_entry(head->next, struct usb_request, list);
622 list_del(&req->list);
623 gs_free_req(ep, req);
624 }
625 }
626
627 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head,
628 void (*fn)(struct usb_ep *, struct usb_request *))
629 {
630 int i;
631 struct usb_request *req;
632
633 /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't
634 * do quite that many this time, don't fail ... we just won't
635 * be as speedy as we might otherwise be.
636 */
637 for (i = 0; i < QUEUE_SIZE; i++) {
638 req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC);
639 if (!req)
640 return list_empty(head) ? -ENOMEM : 0;
641 req->complete = fn;
642 list_add_tail(&req->list, head);
643 }
644 return 0;
645 }
646
647 /**
648 * gs_start_io - start USB I/O streams
649 * @dev: encapsulates endpoints to use
650 * Context: holding port_lock; port_tty and port_usb are non-null
651 *
652 * We only start I/O when something is connected to both sides of
653 * this port. If nothing is listening on the host side, we may
654 * be pointlessly filling up our TX buffers and FIFO.
655 */
656 static int gs_start_io(struct gs_port *port)
657 {
658 struct list_head *head = &port->read_pool;
659 struct usb_ep *ep = port->port_usb->out;
660 int status;
661 unsigned started;
662
663 /* Allocate RX and TX I/O buffers. We can't easily do this much
664 * earlier (with GFP_KERNEL) because the requests are coupled to
665 * endpoints, as are the packet sizes we'll be using. Different
666 * configurations may use different endpoints with a given port;
667 * and high speed vs full speed changes packet sizes too.
668 */
669 status = gs_alloc_requests(ep, head, gs_read_complete);
670 if (status)
671 return status;
672
673 status = gs_alloc_requests(port->port_usb->in, &port->write_pool,
674 gs_write_complete);
675 if (status) {
676 gs_free_requests(ep, head);
677 return status;
678 }
679
680 /* queue read requests */
681 port->n_read = 0;
682 started = gs_start_rx(port);
683
684 /* unblock any pending writes into our circular buffer */
685 if (started) {
686 tty_wakeup(port->port_tty);
687 } else {
688 gs_free_requests(ep, head);
689 gs_free_requests(port->port_usb->in, &port->write_pool);
690 status = -EIO;
691 }
692
693 return status;
694 }
695
696 /*-------------------------------------------------------------------------*/
697
698 /* TTY Driver */
699
700 /*
701 * gs_open sets up the link between a gs_port and its associated TTY.
702 * That link is broken *only* by TTY close(), and all driver methods
703 * know that.
704 */
705 static int gs_open(struct tty_struct *tty, struct file *file)
706 {
707 int port_num = tty->index;
708 struct gs_port *port;
709 int status;
710
711 if (port_num < 0 || port_num >= n_ports)
712 return -ENXIO;
713
714 do {
715 mutex_lock(&ports[port_num].lock);
716 port = ports[port_num].port;
717 if (!port)
718 status = -ENODEV;
719 else {
720 spin_lock_irq(&port->port_lock);
721
722 /* already open? Great. */
723 if (port->open_count) {
724 status = 0;
725 port->open_count++;
726
727 /* currently opening/closing? wait ... */
728 } else if (port->openclose) {
729 status = -EBUSY;
730
731 /* ... else we do the work */
732 } else {
733 status = -EAGAIN;
734 port->openclose = true;
735 }
736 spin_unlock_irq(&port->port_lock);
737 }
738 mutex_unlock(&ports[port_num].lock);
739
740 switch (status) {
741 default:
742 /* fully handled */
743 return status;
744 case -EAGAIN:
745 /* must do the work */
746 break;
747 case -EBUSY:
748 /* wait for EAGAIN task to finish */
749 msleep(1);
750 /* REVISIT could have a waitchannel here, if
751 * concurrent open performance is important
752 */
753 break;
754 }
755 } while (status != -EAGAIN);
756
757 /* Do the "real open" */
758 spin_lock_irq(&port->port_lock);
759
760 /* allocate circular buffer on first open */
761 if (port->port_write_buf.buf_buf == NULL) {
762
763 spin_unlock_irq(&port->port_lock);
764 status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE);
765 spin_lock_irq(&port->port_lock);
766
767 if (status) {
768 pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n",
769 port->port_num, tty, file);
770 port->openclose = false;
771 goto exit_unlock_port;
772 }
773 }
774
775 /* REVISIT if REMOVED (ports[].port NULL), abort the open
776 * to let rmmod work faster (but this way isn't wrong).
777 */
778
779 /* REVISIT maybe wait for "carrier detect" */
780
781 tty->driver_data = port;
782 port->port_tty = tty;
783
784 port->open_count = 1;
785 port->openclose = false;
786
787 /* low_latency means ldiscs work in tasklet context, without
788 * needing a workqueue schedule ... easier to keep up.
789 */
790 tty->low_latency = 1;
791
792 /* if connected, start the I/O stream */
793 if (port->port_usb) {
794 struct gserial *gser = port->port_usb;
795
796 pr_debug("gs_open: start ttyGS%d\n", port->port_num);
797 gs_start_io(port);
798
799 if (gser->connect)
800 gser->connect(gser);
801 }
802
803 pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file);
804
805 status = 0;
806
807 exit_unlock_port:
808 spin_unlock_irq(&port->port_lock);
809 return status;
810 }
811
812 static int gs_writes_finished(struct gs_port *p)
813 {
814 int cond;
815
816 /* return true on disconnect or empty buffer */
817 spin_lock_irq(&p->port_lock);
818 cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf);
819 spin_unlock_irq(&p->port_lock);
820
821 return cond;
822 }
823
824 static void gs_close(struct tty_struct *tty, struct file *file)
825 {
826 struct gs_port *port = tty->driver_data;
827 struct gserial *gser;
828
829 spin_lock_irq(&port->port_lock);
830
831 if (port->open_count != 1) {
832 if (port->open_count == 0)
833 WARN_ON(1);
834 else
835 --port->open_count;
836 goto exit;
837 }
838
839 pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file);
840
841 /* mark port as closing but in use; we can drop port lock
842 * and sleep if necessary
843 */
844 port->openclose = true;
845 port->open_count = 0;
846
847 gser = port->port_usb;
848 if (gser && gser->disconnect)
849 gser->disconnect(gser);
850
851 /* wait for circular write buffer to drain, disconnect, or at
852 * most GS_CLOSE_TIMEOUT seconds; then discard the rest
853 */
854 if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) {
855 spin_unlock_irq(&port->port_lock);
856 wait_event_interruptible_timeout(port->drain_wait,
857 gs_writes_finished(port),
858 GS_CLOSE_TIMEOUT * HZ);
859 spin_lock_irq(&port->port_lock);
860 gser = port->port_usb;
861 }
862
863 /* Iff we're disconnected, there can be no I/O in flight so it's
864 * ok to free the circular buffer; else just scrub it. And don't
865 * let the push tasklet fire again until we're re-opened.
866 */
867 if (gser == NULL)
868 gs_buf_free(&port->port_write_buf);
869 else
870 gs_buf_clear(&port->port_write_buf);
871
872 tty->driver_data = NULL;
873 port->port_tty = NULL;
874
875 port->openclose = false;
876
877 pr_debug("gs_close: ttyGS%d (%p,%p) done!\n",
878 port->port_num, tty, file);
879
880 wake_up_interruptible(&port->close_wait);
881 exit:
882 spin_unlock_irq(&port->port_lock);
883 }
884
885 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
886 {
887 struct gs_port *port = tty->driver_data;
888 unsigned long flags;
889 int status;
890
891 pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n",
892 port->port_num, tty, count);
893
894 spin_lock_irqsave(&port->port_lock, flags);
895 if (count)
896 count = gs_buf_put(&port->port_write_buf, buf, count);
897 /* treat count == 0 as flush_chars() */
898 if (port->port_usb)
899 status = gs_start_tx(port);
900 spin_unlock_irqrestore(&port->port_lock, flags);
901
902 return count;
903 }
904
905 static int gs_put_char(struct tty_struct *tty, unsigned char ch)
906 {
907 struct gs_port *port = tty->driver_data;
908 unsigned long flags;
909 int status;
910
911 pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %p\n",
912 port->port_num, tty, ch, __builtin_return_address(0));
913
914 spin_lock_irqsave(&port->port_lock, flags);
915 status = gs_buf_put(&port->port_write_buf, &ch, 1);
916 spin_unlock_irqrestore(&port->port_lock, flags);
917
918 return status;
919 }
920
921 static void gs_flush_chars(struct tty_struct *tty)
922 {
923 struct gs_port *port = tty->driver_data;
924 unsigned long flags;
925
926 pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
927
928 spin_lock_irqsave(&port->port_lock, flags);
929 if (port->port_usb)
930 gs_start_tx(port);
931 spin_unlock_irqrestore(&port->port_lock, flags);
932 }
933
934 static int gs_write_room(struct tty_struct *tty)
935 {
936 struct gs_port *port = tty->driver_data;
937 unsigned long flags;
938 int room = 0;
939
940 spin_lock_irqsave(&port->port_lock, flags);
941 if (port->port_usb)
942 room = gs_buf_space_avail(&port->port_write_buf);
943 spin_unlock_irqrestore(&port->port_lock, flags);
944
945 pr_vdebug("gs_write_room: (%d,%p) room=%d\n",
946 port->port_num, tty, room);
947
948 return room;
949 }
950
951 static int gs_chars_in_buffer(struct tty_struct *tty)
952 {
953 struct gs_port *port = tty->driver_data;
954 unsigned long flags;
955 int chars = 0;
956
957 spin_lock_irqsave(&port->port_lock, flags);
958 chars = gs_buf_data_avail(&port->port_write_buf);
959 spin_unlock_irqrestore(&port->port_lock, flags);
960
961 pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
962 port->port_num, tty, chars);
963
964 return chars;
965 }
966
967 /* undo side effects of setting TTY_THROTTLED */
968 static void gs_unthrottle(struct tty_struct *tty)
969 {
970 struct gs_port *port = tty->driver_data;
971 unsigned long flags;
972
973 spin_lock_irqsave(&port->port_lock, flags);
974 if (port->port_usb) {
975 /* Kickstart read queue processing. We don't do xon/xoff,
976 * rts/cts, or other handshaking with the host, but if the
977 * read queue backs up enough we'll be NAKing OUT packets.
978 */
979 tasklet_schedule(&port->push);
980 pr_vdebug(PREFIX "%d: unthrottle\n", port->port_num);
981 }
982 spin_unlock_irqrestore(&port->port_lock, flags);
983 }
984
985 static int gs_break_ctl(struct tty_struct *tty, int duration)
986 {
987 struct gs_port *port = tty->driver_data;
988 int status = 0;
989 struct gserial *gser;
990
991 pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n",
992 port->port_num, duration);
993
994 spin_lock_irq(&port->port_lock);
995 gser = port->port_usb;
996 if (gser && gser->send_break)
997 status = gser->send_break(gser, duration);
998 spin_unlock_irq(&port->port_lock);
999
1000 return status;
1001 }
1002
1003 static const struct tty_operations gs_tty_ops = {
1004 .open = gs_open,
1005 .close = gs_close,
1006 .write = gs_write,
1007 .put_char = gs_put_char,
1008 .flush_chars = gs_flush_chars,
1009 .write_room = gs_write_room,
1010 .chars_in_buffer = gs_chars_in_buffer,
1011 .unthrottle = gs_unthrottle,
1012 .break_ctl = gs_break_ctl,
1013 };
1014
1015 /*-------------------------------------------------------------------------*/
1016
1017 static struct tty_driver *gs_tty_driver;
1018
1019 static int __init
1020 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding)
1021 {
1022 struct gs_port *port;
1023
1024 port = kzalloc(sizeof(struct gs_port), GFP_KERNEL);
1025 if (port == NULL)
1026 return -ENOMEM;
1027
1028 spin_lock_init(&port->port_lock);
1029 init_waitqueue_head(&port->close_wait);
1030 init_waitqueue_head(&port->drain_wait);
1031
1032 tasklet_init(&port->push, gs_rx_push, (unsigned long) port);
1033
1034 INIT_LIST_HEAD(&port->read_pool);
1035 INIT_LIST_HEAD(&port->read_queue);
1036 INIT_LIST_HEAD(&port->write_pool);
1037
1038 port->port_num = port_num;
1039 port->port_line_coding = *coding;
1040
1041 ports[port_num].port = port;
1042
1043 return 0;
1044 }
1045
1046 /**
1047 * gserial_setup - initialize TTY driver for one or more ports
1048 * @g: gadget to associate with these ports
1049 * @count: how many ports to support
1050 * Context: may sleep
1051 *
1052 * The TTY stack needs to know in advance how many devices it should
1053 * plan to manage. Use this call to set up the ports you will be
1054 * exporting through USB. Later, connect them to functions based
1055 * on what configuration is activated by the USB host; and disconnect
1056 * them as appropriate.
1057 *
1058 * An example would be a two-configuration device in which both
1059 * configurations expose port 0, but through different functions.
1060 * One configuration could even expose port 1 while the other
1061 * one doesn't.
1062 *
1063 * Returns negative errno or zero.
1064 */
1065 int __init gserial_setup(struct usb_gadget *g, unsigned count)
1066 {
1067 unsigned i;
1068 struct usb_cdc_line_coding coding;
1069 int status;
1070
1071 if (count == 0 || count > N_PORTS)
1072 return -EINVAL;
1073
1074 gs_tty_driver = alloc_tty_driver(count);
1075 if (!gs_tty_driver)
1076 return -ENOMEM;
1077
1078 gs_tty_driver->owner = THIS_MODULE;
1079 gs_tty_driver->driver_name = "g_serial";
1080 gs_tty_driver->name = PREFIX;
1081 /* uses dynamically assigned dev_t values */
1082
1083 gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1084 gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1085 gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1086 gs_tty_driver->init_termios = tty_std_termios;
1087
1088 /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
1089 * MS-Windows. Otherwise, most of these flags shouldn't affect
1090 * anything unless we were to actually hook up to a serial line.
1091 */
1092 gs_tty_driver->init_termios.c_cflag =
1093 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1094 gs_tty_driver->init_termios.c_ispeed = 9600;
1095 gs_tty_driver->init_termios.c_ospeed = 9600;
1096
1097 coding.dwDTERate = cpu_to_le32(9600);
1098 coding.bCharFormat = 8;
1099 coding.bParityType = USB_CDC_NO_PARITY;
1100 coding.bDataBits = USB_CDC_1_STOP_BITS;
1101
1102 tty_set_operations(gs_tty_driver, &gs_tty_ops);
1103
1104 /* make devices be openable */
1105 for (i = 0; i < count; i++) {
1106 mutex_init(&ports[i].lock);
1107 status = gs_port_alloc(i, &coding);
1108 if (status) {
1109 count = i;
1110 goto fail;
1111 }
1112 }
1113 n_ports = count;
1114
1115 /* export the driver ... */
1116 status = tty_register_driver(gs_tty_driver);
1117 if (status) {
1118 pr_err("%s: cannot register, err %d\n",
1119 __func__, status);
1120 goto fail;
1121 }
1122
1123 /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
1124 for (i = 0; i < count; i++) {
1125 struct device *tty_dev;
1126
1127 tty_dev = tty_register_device(gs_tty_driver, i, &g->dev);
1128 if (IS_ERR(tty_dev))
1129 pr_warning("%s: no classdev for port %d, err %ld\n",
1130 __func__, i, PTR_ERR(tty_dev));
1131 }
1132
1133 pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
1134 count, (count == 1) ? "" : "s");
1135
1136 return status;
1137 fail:
1138 while (count--)
1139 kfree(ports[count].port);
1140 put_tty_driver(gs_tty_driver);
1141 gs_tty_driver = NULL;
1142 return status;
1143 }
1144
1145 static int gs_closed(struct gs_port *port)
1146 {
1147 int cond;
1148
1149 spin_lock_irq(&port->port_lock);
1150 cond = (port->open_count == 0) && !port->openclose;
1151 spin_unlock_irq(&port->port_lock);
1152 return cond;
1153 }
1154
1155 /**
1156 * gserial_cleanup - remove TTY-over-USB driver and devices
1157 * Context: may sleep
1158 *
1159 * This is called to free all resources allocated by @gserial_setup().
1160 * Accordingly, it may need to wait until some open /dev/ files have
1161 * closed.
1162 *
1163 * The caller must have issued @gserial_disconnect() for any ports
1164 * that had previously been connected, so that there is never any
1165 * I/O pending when it's called.
1166 */
1167 void gserial_cleanup(void)
1168 {
1169 unsigned i;
1170 struct gs_port *port;
1171
1172 if (!gs_tty_driver)
1173 return;
1174
1175 /* start sysfs and /dev/ttyGS* node removal */
1176 for (i = 0; i < n_ports; i++)
1177 tty_unregister_device(gs_tty_driver, i);
1178
1179 for (i = 0; i < n_ports; i++) {
1180 /* prevent new opens */
1181 mutex_lock(&ports[i].lock);
1182 port = ports[i].port;
1183 ports[i].port = NULL;
1184 mutex_unlock(&ports[i].lock);
1185
1186 tasklet_kill(&port->push);
1187
1188 /* wait for old opens to finish */
1189 wait_event(port->close_wait, gs_closed(port));
1190
1191 WARN_ON(port->port_usb != NULL);
1192
1193 kfree(port);
1194 }
1195 n_ports = 0;
1196
1197 tty_unregister_driver(gs_tty_driver);
1198 gs_tty_driver = NULL;
1199
1200 pr_debug("%s: cleaned up ttyGS* support\n", __func__);
1201 }
1202
1203 /**
1204 * gserial_connect - notify TTY I/O glue that USB link is active
1205 * @gser: the function, set up with endpoints and descriptors
1206 * @port_num: which port is active
1207 * Context: any (usually from irq)
1208 *
1209 * This is called activate endpoints and let the TTY layer know that
1210 * the connection is active ... not unlike "carrier detect". It won't
1211 * necessarily start I/O queues; unless the TTY is held open by any
1212 * task, there would be no point. However, the endpoints will be
1213 * activated so the USB host can perform I/O, subject to basic USB
1214 * hardware flow control.
1215 *
1216 * Caller needs to have set up the endpoints and USB function in @dev
1217 * before calling this, as well as the appropriate (speed-specific)
1218 * endpoint descriptors, and also have set up the TTY driver by calling
1219 * @gserial_setup().
1220 *
1221 * Returns negative errno or zero.
1222 * On success, ep->driver_data will be overwritten.
1223 */
1224 int gserial_connect(struct gserial *gser, u8 port_num)
1225 {
1226 struct gs_port *port;
1227 unsigned long flags;
1228 int status;
1229
1230 if (!gs_tty_driver || port_num >= n_ports)
1231 return -ENXIO;
1232
1233 /* we "know" gserial_cleanup() hasn't been called */
1234 port = ports[port_num].port;
1235
1236 /* activate the endpoints */
1237 status = usb_ep_enable(gser->in, gser->in_desc);
1238 if (status < 0)
1239 return status;
1240 gser->in->driver_data = port;
1241
1242 status = usb_ep_enable(gser->out, gser->out_desc);
1243 if (status < 0)
1244 goto fail_out;
1245 gser->out->driver_data = port;
1246
1247 /* then tell the tty glue that I/O can work */
1248 spin_lock_irqsave(&port->port_lock, flags);
1249 gser->ioport = port;
1250 port->port_usb = gser;
1251
1252 /* REVISIT unclear how best to handle this state...
1253 * we don't really couple it with the Linux TTY.
1254 */
1255 gser->port_line_coding = port->port_line_coding;
1256
1257 /* REVISIT if waiting on "carrier detect", signal. */
1258
1259 /* if it's already open, start I/O ... and notify the serial
1260 * protocol about open/close status (connect/disconnect).
1261 */
1262 if (port->open_count) {
1263 pr_debug("gserial_connect: start ttyGS%d\n", port->port_num);
1264 gs_start_io(port);
1265 if (gser->connect)
1266 gser->connect(gser);
1267 } else {
1268 if (gser->disconnect)
1269 gser->disconnect(gser);
1270 }
1271
1272 spin_unlock_irqrestore(&port->port_lock, flags);
1273
1274 return status;
1275
1276 fail_out:
1277 usb_ep_disable(gser->in);
1278 gser->in->driver_data = NULL;
1279 return status;
1280 }
1281
1282 /**
1283 * gserial_disconnect - notify TTY I/O glue that USB link is inactive
1284 * @gser: the function, on which gserial_connect() was called
1285 * Context: any (usually from irq)
1286 *
1287 * This is called to deactivate endpoints and let the TTY layer know
1288 * that the connection went inactive ... not unlike "hangup".
1289 *
1290 * On return, the state is as if gserial_connect() had never been called;
1291 * there is no active USB I/O on these endpoints.
1292 */
1293 void gserial_disconnect(struct gserial *gser)
1294 {
1295 struct gs_port *port = gser->ioport;
1296 unsigned long flags;
1297
1298 if (!port)
1299 return;
1300
1301 /* tell the TTY glue not to do I/O here any more */
1302 spin_lock_irqsave(&port->port_lock, flags);
1303
1304 /* REVISIT as above: how best to track this? */
1305 port->port_line_coding = gser->port_line_coding;
1306
1307 port->port_usb = NULL;
1308 gser->ioport = NULL;
1309 if (port->open_count > 0 || port->openclose) {
1310 wake_up_interruptible(&port->drain_wait);
1311 if (port->port_tty)
1312 tty_hangup(port->port_tty);
1313 }
1314 spin_unlock_irqrestore(&port->port_lock, flags);
1315
1316 /* disable endpoints, aborting down any active I/O */
1317 usb_ep_disable(gser->out);
1318 gser->out->driver_data = NULL;
1319
1320 usb_ep_disable(gser->in);
1321 gser->in->driver_data = NULL;
1322
1323 /* finally, free any unused/unusable I/O buffers */
1324 spin_lock_irqsave(&port->port_lock, flags);
1325 if (port->open_count == 0 && !port->openclose)
1326 gs_buf_free(&port->port_write_buf);
1327 gs_free_requests(gser->out, &port->read_pool);
1328 gs_free_requests(gser->out, &port->read_queue);
1329 gs_free_requests(gser->in, &port->write_pool);
1330 spin_unlock_irqrestore(&port->port_lock, flags);
1331 }