Merge branches 'acpi_pad', 'acpica', 'apei-bugzilla-43282', 'battery', 'cpuidle-coupl...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / gadget / s3c-hsudc.c
1 /* linux/drivers/usb/gadget/s3c-hsudc.c
2 *
3 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com/
5 *
6 * S3C24XX USB 2.0 High-speed USB controller gadget driver
7 *
8 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
9 * Each endpoint can be configured as either in or out endpoint. Endpoints
10 * can be configured for Bulk or Interrupt transfer mode.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/otg.h>
30 #include <linux/prefetch.h>
31 #include <linux/platform_data/s3c-hsudc.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/pm_runtime.h>
34
35 #include <mach/regs-s3c2443-clock.h>
36
37 #define S3C_HSUDC_REG(x) (x)
38
39 /* Non-Indexed Registers */
40 #define S3C_IR S3C_HSUDC_REG(0x00) /* Index Register */
41 #define S3C_EIR S3C_HSUDC_REG(0x04) /* EP Intr Status */
42 #define S3C_EIR_EP0 (1<<0)
43 #define S3C_EIER S3C_HSUDC_REG(0x08) /* EP Intr Enable */
44 #define S3C_FAR S3C_HSUDC_REG(0x0c) /* Gadget Address */
45 #define S3C_FNR S3C_HSUDC_REG(0x10) /* Frame Number */
46 #define S3C_EDR S3C_HSUDC_REG(0x14) /* EP Direction */
47 #define S3C_TR S3C_HSUDC_REG(0x18) /* Test Register */
48 #define S3C_SSR S3C_HSUDC_REG(0x1c) /* System Status */
49 #define S3C_SSR_DTZIEN_EN (0xff8f)
50 #define S3C_SSR_ERR (0xff80)
51 #define S3C_SSR_VBUSON (1 << 8)
52 #define S3C_SSR_HSP (1 << 4)
53 #define S3C_SSR_SDE (1 << 3)
54 #define S3C_SSR_RESUME (1 << 2)
55 #define S3C_SSR_SUSPEND (1 << 1)
56 #define S3C_SSR_RESET (1 << 0)
57 #define S3C_SCR S3C_HSUDC_REG(0x20) /* System Control */
58 #define S3C_SCR_DTZIEN_EN (1 << 14)
59 #define S3C_SCR_RRD_EN (1 << 5)
60 #define S3C_SCR_SUS_EN (1 << 1)
61 #define S3C_SCR_RST_EN (1 << 0)
62 #define S3C_EP0SR S3C_HSUDC_REG(0x24) /* EP0 Status */
63 #define S3C_EP0SR_EP0_LWO (1 << 6)
64 #define S3C_EP0SR_STALL (1 << 4)
65 #define S3C_EP0SR_TX_SUCCESS (1 << 1)
66 #define S3C_EP0SR_RX_SUCCESS (1 << 0)
67 #define S3C_EP0CR S3C_HSUDC_REG(0x28) /* EP0 Control */
68 #define S3C_BR(_x) S3C_HSUDC_REG(0x60 + (_x * 4))
69
70 /* Indexed Registers */
71 #define S3C_ESR S3C_HSUDC_REG(0x2c) /* EPn Status */
72 #define S3C_ESR_FLUSH (1 << 6)
73 #define S3C_ESR_STALL (1 << 5)
74 #define S3C_ESR_LWO (1 << 4)
75 #define S3C_ESR_PSIF_ONE (1 << 2)
76 #define S3C_ESR_PSIF_TWO (2 << 2)
77 #define S3C_ESR_TX_SUCCESS (1 << 1)
78 #define S3C_ESR_RX_SUCCESS (1 << 0)
79 #define S3C_ECR S3C_HSUDC_REG(0x30) /* EPn Control */
80 #define S3C_ECR_DUEN (1 << 7)
81 #define S3C_ECR_FLUSH (1 << 6)
82 #define S3C_ECR_STALL (1 << 1)
83 #define S3C_ECR_IEMS (1 << 0)
84 #define S3C_BRCR S3C_HSUDC_REG(0x34) /* Read Count */
85 #define S3C_BWCR S3C_HSUDC_REG(0x38) /* Write Count */
86 #define S3C_MPR S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
87
88 #define WAIT_FOR_SETUP (0)
89 #define DATA_STATE_XMIT (1)
90 #define DATA_STATE_RECV (2)
91
92 static const char * const s3c_hsudc_supply_names[] = {
93 "vdda", /* analog phy supply, 3.3V */
94 "vddi", /* digital phy supply, 1.2V */
95 "vddosc", /* oscillator supply, 1.8V - 3.3V */
96 };
97
98 /**
99 * struct s3c_hsudc_ep - Endpoint representation used by driver.
100 * @ep: USB gadget layer representation of device endpoint.
101 * @name: Endpoint name (as required by ep autoconfiguration).
102 * @dev: Reference to the device controller to which this EP belongs.
103 * @desc: Endpoint descriptor obtained from the gadget driver.
104 * @queue: Transfer request queue for the endpoint.
105 * @stopped: Maintains state of endpoint, set if EP is halted.
106 * @bEndpointAddress: EP address (including direction bit).
107 * @fifo: Base address of EP FIFO.
108 */
109 struct s3c_hsudc_ep {
110 struct usb_ep ep;
111 char name[20];
112 struct s3c_hsudc *dev;
113 struct list_head queue;
114 u8 stopped;
115 u8 wedge;
116 u8 bEndpointAddress;
117 void __iomem *fifo;
118 };
119
120 /**
121 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
122 * @req: Reference to USB gadget transfer request.
123 * @queue: Used for inserting this request to the endpoint request queue.
124 */
125 struct s3c_hsudc_req {
126 struct usb_request req;
127 struct list_head queue;
128 };
129
130 /**
131 * struct s3c_hsudc - Driver's abstraction of the device controller.
132 * @gadget: Instance of usb_gadget which is referenced by gadget driver.
133 * @driver: Reference to currenty active gadget driver.
134 * @dev: The device reference used by probe function.
135 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
136 * @regs: Remapped base address of controller's register space.
137 * @mem_rsrc: Device memory resource used for remapping device register space.
138 * irq: IRQ number used by the controller.
139 * uclk: Reference to the controller clock.
140 * ep0state: Current state of EP0.
141 * ep: List of endpoints supported by the controller.
142 */
143 struct s3c_hsudc {
144 struct usb_gadget gadget;
145 struct usb_gadget_driver *driver;
146 struct device *dev;
147 struct s3c24xx_hsudc_platdata *pd;
148 struct usb_phy *transceiver;
149 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
150 spinlock_t lock;
151 void __iomem *regs;
152 struct resource *mem_rsrc;
153 int irq;
154 struct clk *uclk;
155 int ep0state;
156 struct s3c_hsudc_ep ep[];
157 };
158
159 #define ep_maxpacket(_ep) ((_ep)->ep.maxpacket)
160 #define ep_is_in(_ep) ((_ep)->bEndpointAddress & USB_DIR_IN)
161 #define ep_index(_ep) ((_ep)->bEndpointAddress & \
162 USB_ENDPOINT_NUMBER_MASK)
163
164 static const char driver_name[] = "s3c-udc";
165 static const char ep0name[] = "ep0-control";
166
167 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
168 {
169 return container_of(req, struct s3c_hsudc_req, req);
170 }
171
172 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
173 {
174 return container_of(ep, struct s3c_hsudc_ep, ep);
175 }
176
177 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
178 {
179 return container_of(gadget, struct s3c_hsudc, gadget);
180 }
181
182 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
183 {
184 ep_addr &= USB_ENDPOINT_NUMBER_MASK;
185 writel(ep_addr, hsudc->regs + S3C_IR);
186 }
187
188 static inline void __orr32(void __iomem *ptr, u32 val)
189 {
190 writel(readl(ptr) | val, ptr);
191 }
192
193 static void s3c_hsudc_init_phy(void)
194 {
195 u32 cfg;
196
197 cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
198 writel(cfg, S3C2443_PWRCFG);
199
200 cfg = readl(S3C2443_URSTCON);
201 cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
202 writel(cfg, S3C2443_URSTCON);
203 mdelay(1);
204
205 cfg = readl(S3C2443_URSTCON);
206 cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
207 writel(cfg, S3C2443_URSTCON);
208
209 cfg = readl(S3C2443_PHYCTRL);
210 cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
211 cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
212 writel(cfg, S3C2443_PHYCTRL);
213
214 cfg = readl(S3C2443_PHYPWR);
215 cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
216 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
217 S3C2443_PHYPWR_ANALOG_PD);
218 cfg |= S3C2443_PHYPWR_COMMON_ON;
219 writel(cfg, S3C2443_PHYPWR);
220
221 cfg = readl(S3C2443_UCLKCON);
222 cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
223 S3C2443_UCLKCON_TCLKEN);
224 writel(cfg, S3C2443_UCLKCON);
225 }
226
227 static void s3c_hsudc_uninit_phy(void)
228 {
229 u32 cfg;
230
231 cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
232 writel(cfg, S3C2443_PWRCFG);
233
234 writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
235
236 cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
237 writel(cfg, S3C2443_UCLKCON);
238 }
239
240 /**
241 * s3c_hsudc_complete_request - Complete a transfer request.
242 * @hsep: Endpoint to which the request belongs.
243 * @hsreq: Transfer request to be completed.
244 * @status: Transfer completion status for the transfer request.
245 */
246 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
247 struct s3c_hsudc_req *hsreq, int status)
248 {
249 unsigned int stopped = hsep->stopped;
250 struct s3c_hsudc *hsudc = hsep->dev;
251
252 list_del_init(&hsreq->queue);
253 hsreq->req.status = status;
254
255 if (!ep_index(hsep)) {
256 hsudc->ep0state = WAIT_FOR_SETUP;
257 hsep->bEndpointAddress &= ~USB_DIR_IN;
258 }
259
260 hsep->stopped = 1;
261 spin_unlock(&hsudc->lock);
262 if (hsreq->req.complete != NULL)
263 hsreq->req.complete(&hsep->ep, &hsreq->req);
264 spin_lock(&hsudc->lock);
265 hsep->stopped = stopped;
266 }
267
268 /**
269 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
270 * @hsep: Endpoint for which queued requests have to be terminated.
271 * @status: Transfer completion status for the transfer request.
272 */
273 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
274 {
275 struct s3c_hsudc_req *hsreq;
276
277 while (!list_empty(&hsep->queue)) {
278 hsreq = list_entry(hsep->queue.next,
279 struct s3c_hsudc_req, queue);
280 s3c_hsudc_complete_request(hsep, hsreq, status);
281 }
282 }
283
284 /**
285 * s3c_hsudc_stop_activity - Stop activity on all endpoints.
286 * @hsudc: Device controller for which EP activity is to be stopped.
287 * @driver: Reference to the gadget driver which is currently active.
288 *
289 * All the endpoints are stopped and any pending transfer requests if any on
290 * the endpoint are terminated.
291 */
292 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
293 {
294 struct s3c_hsudc_ep *hsep;
295 int epnum;
296
297 hsudc->gadget.speed = USB_SPEED_UNKNOWN;
298
299 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
300 hsep = &hsudc->ep[epnum];
301 hsep->stopped = 1;
302 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
303 }
304 }
305
306 /**
307 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
308 * @hsudc: Device controller from which setup packet is to be read.
309 * @buf: The buffer into which the setup packet is read.
310 *
311 * The setup packet received in the EP0 fifo is read and stored into a
312 * given buffer address.
313 */
314
315 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
316 {
317 int count;
318
319 count = readl(hsudc->regs + S3C_BRCR);
320 while (count--)
321 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
322
323 writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
324 }
325
326 /**
327 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
328 * @hsep: Endpoint to which the data is to be written.
329 * @hsreq: Transfer request from which the next chunk of data is written.
330 *
331 * Write the next chunk of data from a transfer request to the endpoint FIFO.
332 * If the transfer request completes, 1 is returned, otherwise 0 is returned.
333 */
334 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
335 struct s3c_hsudc_req *hsreq)
336 {
337 u16 *buf;
338 u32 max = ep_maxpacket(hsep);
339 u32 count, length;
340 bool is_last;
341 void __iomem *fifo = hsep->fifo;
342
343 buf = hsreq->req.buf + hsreq->req.actual;
344 prefetch(buf);
345
346 length = hsreq->req.length - hsreq->req.actual;
347 length = min(length, max);
348 hsreq->req.actual += length;
349
350 writel(length, hsep->dev->regs + S3C_BWCR);
351 for (count = 0; count < length; count += 2)
352 writel(*buf++, fifo);
353
354 if (count != max) {
355 is_last = true;
356 } else {
357 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
358 is_last = false;
359 else
360 is_last = true;
361 }
362
363 if (is_last) {
364 s3c_hsudc_complete_request(hsep, hsreq, 0);
365 return 1;
366 }
367
368 return 0;
369 }
370
371 /**
372 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
373 * @hsep: Endpoint from which the data is to be read.
374 * @hsreq: Transfer request to which the next chunk of data read is written.
375 *
376 * Read the next chunk of data from the endpoint FIFO and a write it to the
377 * transfer request buffer. If the transfer request completes, 1 is returned,
378 * otherwise 0 is returned.
379 */
380 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
381 struct s3c_hsudc_req *hsreq)
382 {
383 struct s3c_hsudc *hsudc = hsep->dev;
384 u32 csr, offset;
385 u16 *buf, word;
386 u32 buflen, rcnt, rlen;
387 void __iomem *fifo = hsep->fifo;
388 u32 is_short = 0;
389
390 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
391 csr = readl(hsudc->regs + offset);
392 if (!(csr & S3C_ESR_RX_SUCCESS))
393 return -EINVAL;
394
395 buf = hsreq->req.buf + hsreq->req.actual;
396 prefetchw(buf);
397 buflen = hsreq->req.length - hsreq->req.actual;
398
399 rcnt = readl(hsudc->regs + S3C_BRCR);
400 rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
401
402 hsreq->req.actual += min(rlen, buflen);
403 is_short = (rlen < hsep->ep.maxpacket);
404
405 while (rcnt-- != 0) {
406 word = (u16)readl(fifo);
407 if (buflen) {
408 *buf++ = word;
409 buflen--;
410 } else {
411 hsreq->req.status = -EOVERFLOW;
412 }
413 }
414
415 writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
416
417 if (is_short || hsreq->req.actual == hsreq->req.length) {
418 s3c_hsudc_complete_request(hsep, hsreq, 0);
419 return 1;
420 }
421
422 return 0;
423 }
424
425 /**
426 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
427 * @hsudc - Device controller for which the interrupt is to be handled.
428 * @ep_idx - Endpoint number on which an interrupt is pending.
429 *
430 * Handles interrupt for a in-endpoint. The interrupts that are handled are
431 * stall and data transmit complete interrupt.
432 */
433 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
434 {
435 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
436 struct s3c_hsudc_req *hsreq;
437 u32 csr;
438
439 csr = readl((u32)hsudc->regs + S3C_ESR);
440 if (csr & S3C_ESR_STALL) {
441 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
442 return;
443 }
444
445 if (csr & S3C_ESR_TX_SUCCESS) {
446 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
447 if (list_empty(&hsep->queue))
448 return;
449
450 hsreq = list_entry(hsep->queue.next,
451 struct s3c_hsudc_req, queue);
452 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
453 (csr & S3C_ESR_PSIF_TWO))
454 s3c_hsudc_write_fifo(hsep, hsreq);
455 }
456 }
457
458 /**
459 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
460 * @hsudc - Device controller for which the interrupt is to be handled.
461 * @ep_idx - Endpoint number on which an interrupt is pending.
462 *
463 * Handles interrupt for a out-endpoint. The interrupts that are handled are
464 * stall, flush and data ready interrupt.
465 */
466 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
467 {
468 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
469 struct s3c_hsudc_req *hsreq;
470 u32 csr;
471
472 csr = readl((u32)hsudc->regs + S3C_ESR);
473 if (csr & S3C_ESR_STALL) {
474 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
475 return;
476 }
477
478 if (csr & S3C_ESR_FLUSH) {
479 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
480 return;
481 }
482
483 if (csr & S3C_ESR_RX_SUCCESS) {
484 if (list_empty(&hsep->queue))
485 return;
486
487 hsreq = list_entry(hsep->queue.next,
488 struct s3c_hsudc_req, queue);
489 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
490 (csr & S3C_ESR_PSIF_TWO))
491 s3c_hsudc_read_fifo(hsep, hsreq);
492 }
493 }
494
495 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
496 * @_ep: Endpoint on which halt has to be set or cleared.
497 * @value: 1 for setting halt on endpoint, 0 to clear halt.
498 *
499 * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
500 * If halt is cleared, for in-endpoints, if there are any pending
501 * transfer requests, transfers are started.
502 */
503 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
504 {
505 struct s3c_hsudc_ep *hsep = our_ep(_ep);
506 struct s3c_hsudc *hsudc = hsep->dev;
507 struct s3c_hsudc_req *hsreq;
508 unsigned long irqflags;
509 u32 ecr;
510 u32 offset;
511
512 if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
513 return -EAGAIN;
514
515 spin_lock_irqsave(&hsudc->lock, irqflags);
516 set_index(hsudc, ep_index(hsep));
517 offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
518 ecr = readl(hsudc->regs + offset);
519
520 if (value) {
521 ecr |= S3C_ECR_STALL;
522 if (ep_index(hsep))
523 ecr |= S3C_ECR_FLUSH;
524 hsep->stopped = 1;
525 } else {
526 ecr &= ~S3C_ECR_STALL;
527 hsep->stopped = hsep->wedge = 0;
528 }
529 writel(ecr, hsudc->regs + offset);
530
531 if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
532 hsreq = list_entry(hsep->queue.next,
533 struct s3c_hsudc_req, queue);
534 if (hsreq)
535 s3c_hsudc_write_fifo(hsep, hsreq);
536 }
537
538 spin_unlock_irqrestore(&hsudc->lock, irqflags);
539 return 0;
540 }
541
542 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
543 * @_ep: Endpoint on which wedge has to be set.
544 *
545 * Sets the halt feature with the clear requests ignored.
546 */
547 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
548 {
549 struct s3c_hsudc_ep *hsep = our_ep(_ep);
550
551 if (!hsep)
552 return -EINVAL;
553
554 hsep->wedge = 1;
555 return usb_ep_set_halt(_ep);
556 }
557
558 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
559 * @_ep: Device controller on which the set/clear feature needs to be handled.
560 * @ctrl: Control request as received on the endpoint 0.
561 *
562 * Handle set feature or clear feature control requests on the control endpoint.
563 */
564 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
565 struct usb_ctrlrequest *ctrl)
566 {
567 struct s3c_hsudc_ep *hsep;
568 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
569 u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
570
571 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
572 hsep = &hsudc->ep[ep_num];
573 switch (le16_to_cpu(ctrl->wValue)) {
574 case USB_ENDPOINT_HALT:
575 if (set || (!set && !hsep->wedge))
576 s3c_hsudc_set_halt(&hsep->ep, set);
577 return 0;
578 }
579 }
580
581 return -ENOENT;
582 }
583
584 /**
585 * s3c_hsudc_process_req_status - Handle get status control request.
586 * @hsudc: Device controller on which get status request has be handled.
587 * @ctrl: Control request as received on the endpoint 0.
588 *
589 * Handle get status control request received on control endpoint.
590 */
591 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
592 struct usb_ctrlrequest *ctrl)
593 {
594 struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
595 struct s3c_hsudc_req hsreq;
596 struct s3c_hsudc_ep *hsep;
597 __le16 reply;
598 u8 epnum;
599
600 switch (ctrl->bRequestType & USB_RECIP_MASK) {
601 case USB_RECIP_DEVICE:
602 reply = cpu_to_le16(0);
603 break;
604
605 case USB_RECIP_INTERFACE:
606 reply = cpu_to_le16(0);
607 break;
608
609 case USB_RECIP_ENDPOINT:
610 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
611 hsep = &hsudc->ep[epnum];
612 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
613 break;
614 }
615
616 INIT_LIST_HEAD(&hsreq.queue);
617 hsreq.req.length = 2;
618 hsreq.req.buf = &reply;
619 hsreq.req.actual = 0;
620 hsreq.req.complete = NULL;
621 s3c_hsudc_write_fifo(hsep0, &hsreq);
622 }
623
624 /**
625 * s3c_hsudc_process_setup - Process control request received on endpoint 0.
626 * @hsudc: Device controller on which control request has been received.
627 *
628 * Read the control request received on endpoint 0, decode it and handle
629 * the request.
630 */
631 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
632 {
633 struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
634 struct usb_ctrlrequest ctrl = {0};
635 int ret;
636
637 s3c_hsudc_nuke_ep(hsep, -EPROTO);
638 s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
639
640 if (ctrl.bRequestType & USB_DIR_IN) {
641 hsep->bEndpointAddress |= USB_DIR_IN;
642 hsudc->ep0state = DATA_STATE_XMIT;
643 } else {
644 hsep->bEndpointAddress &= ~USB_DIR_IN;
645 hsudc->ep0state = DATA_STATE_RECV;
646 }
647
648 switch (ctrl.bRequest) {
649 case USB_REQ_SET_ADDRESS:
650 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
651 break;
652 hsudc->ep0state = WAIT_FOR_SETUP;
653 return;
654
655 case USB_REQ_GET_STATUS:
656 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
657 break;
658 s3c_hsudc_process_req_status(hsudc, &ctrl);
659 return;
660
661 case USB_REQ_SET_FEATURE:
662 case USB_REQ_CLEAR_FEATURE:
663 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
664 break;
665 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
666 hsudc->ep0state = WAIT_FOR_SETUP;
667 return;
668 }
669
670 if (hsudc->driver) {
671 spin_unlock(&hsudc->lock);
672 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
673 spin_lock(&hsudc->lock);
674
675 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
676 hsep->bEndpointAddress &= ~USB_DIR_IN;
677 hsudc->ep0state = WAIT_FOR_SETUP;
678 }
679
680 if (ret < 0) {
681 dev_err(hsudc->dev, "setup failed, returned %d\n",
682 ret);
683 s3c_hsudc_set_halt(&hsep->ep, 1);
684 hsudc->ep0state = WAIT_FOR_SETUP;
685 hsep->bEndpointAddress &= ~USB_DIR_IN;
686 }
687 }
688 }
689
690 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
691 * @hsudc: Device controller on which endpoint 0 interrupt has occured.
692 *
693 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
694 * when a stall handshake is sent to host or data is sent/received on
695 * endpoint 0.
696 */
697 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
698 {
699 struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
700 struct s3c_hsudc_req *hsreq;
701 u32 csr = readl(hsudc->regs + S3C_EP0SR);
702 u32 ecr;
703
704 if (csr & S3C_EP0SR_STALL) {
705 ecr = readl(hsudc->regs + S3C_EP0CR);
706 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
707 writel(ecr, hsudc->regs + S3C_EP0CR);
708
709 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
710 hsep->stopped = 0;
711
712 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
713 hsudc->ep0state = WAIT_FOR_SETUP;
714 hsep->bEndpointAddress &= ~USB_DIR_IN;
715 return;
716 }
717
718 if (csr & S3C_EP0SR_TX_SUCCESS) {
719 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
720 if (ep_is_in(hsep)) {
721 if (list_empty(&hsep->queue))
722 return;
723
724 hsreq = list_entry(hsep->queue.next,
725 struct s3c_hsudc_req, queue);
726 s3c_hsudc_write_fifo(hsep, hsreq);
727 }
728 }
729
730 if (csr & S3C_EP0SR_RX_SUCCESS) {
731 if (hsudc->ep0state == WAIT_FOR_SETUP)
732 s3c_hsudc_process_setup(hsudc);
733 else {
734 if (!ep_is_in(hsep)) {
735 if (list_empty(&hsep->queue))
736 return;
737 hsreq = list_entry(hsep->queue.next,
738 struct s3c_hsudc_req, queue);
739 s3c_hsudc_read_fifo(hsep, hsreq);
740 }
741 }
742 }
743 }
744
745 /**
746 * s3c_hsudc_ep_enable - Enable a endpoint.
747 * @_ep: The endpoint to be enabled.
748 * @desc: Endpoint descriptor.
749 *
750 * Enables a endpoint when called from the gadget driver. Endpoint stall if
751 * any is cleared, transfer type is configured and endpoint interrupt is
752 * enabled.
753 */
754 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
755 const struct usb_endpoint_descriptor *desc)
756 {
757 struct s3c_hsudc_ep *hsep;
758 struct s3c_hsudc *hsudc;
759 unsigned long flags;
760 u32 ecr = 0;
761
762 hsep = our_ep(_ep);
763 if (!_ep || !desc || _ep->name == ep0name
764 || desc->bDescriptorType != USB_DT_ENDPOINT
765 || hsep->bEndpointAddress != desc->bEndpointAddress
766 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
767 return -EINVAL;
768
769 if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
770 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
771 || !desc->wMaxPacketSize)
772 return -ERANGE;
773
774 hsudc = hsep->dev;
775 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
776 return -ESHUTDOWN;
777
778 spin_lock_irqsave(&hsudc->lock, flags);
779
780 set_index(hsudc, hsep->bEndpointAddress);
781 ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
782 writel(ecr, hsudc->regs + S3C_ECR);
783
784 hsep->stopped = hsep->wedge = 0;
785 hsep->ep.desc = desc;
786 hsep->ep.maxpacket = usb_endpoint_maxp(desc);
787
788 s3c_hsudc_set_halt(_ep, 0);
789 __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
790
791 spin_unlock_irqrestore(&hsudc->lock, flags);
792 return 0;
793 }
794
795 /**
796 * s3c_hsudc_ep_disable - Disable a endpoint.
797 * @_ep: The endpoint to be disabled.
798 * @desc: Endpoint descriptor.
799 *
800 * Disables a endpoint when called from the gadget driver.
801 */
802 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
803 {
804 struct s3c_hsudc_ep *hsep = our_ep(_ep);
805 struct s3c_hsudc *hsudc = hsep->dev;
806 unsigned long flags;
807
808 if (!_ep || !hsep->ep.desc)
809 return -EINVAL;
810
811 spin_lock_irqsave(&hsudc->lock, flags);
812
813 set_index(hsudc, hsep->bEndpointAddress);
814 __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
815
816 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
817
818 hsep->ep.desc = NULL;
819 hsep->stopped = 1;
820
821 spin_unlock_irqrestore(&hsudc->lock, flags);
822 return 0;
823 }
824
825 /**
826 * s3c_hsudc_alloc_request - Allocate a new request.
827 * @_ep: Endpoint for which request is allocated (not used).
828 * @gfp_flags: Flags used for the allocation.
829 *
830 * Allocates a single transfer request structure when called from gadget driver.
831 */
832 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
833 gfp_t gfp_flags)
834 {
835 struct s3c_hsudc_req *hsreq;
836
837 hsreq = kzalloc(sizeof *hsreq, gfp_flags);
838 if (!hsreq)
839 return 0;
840
841 INIT_LIST_HEAD(&hsreq->queue);
842 return &hsreq->req;
843 }
844
845 /**
846 * s3c_hsudc_free_request - Deallocate a request.
847 * @ep: Endpoint for which request is deallocated (not used).
848 * @_req: Request to be deallocated.
849 *
850 * Allocates a single transfer request structure when called from gadget driver.
851 */
852 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
853 {
854 struct s3c_hsudc_req *hsreq;
855
856 hsreq = our_req(_req);
857 WARN_ON(!list_empty(&hsreq->queue));
858 kfree(hsreq);
859 }
860
861 /**
862 * s3c_hsudc_queue - Queue a transfer request for the endpoint.
863 * @_ep: Endpoint for which the request is queued.
864 * @_req: Request to be queued.
865 * @gfp_flags: Not used.
866 *
867 * Start or enqueue a request for a endpoint when called from gadget driver.
868 */
869 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
870 gfp_t gfp_flags)
871 {
872 struct s3c_hsudc_req *hsreq;
873 struct s3c_hsudc_ep *hsep;
874 struct s3c_hsudc *hsudc;
875 unsigned long flags;
876 u32 offset;
877 u32 csr;
878
879 hsreq = our_req(_req);
880 if ((!_req || !_req->complete || !_req->buf ||
881 !list_empty(&hsreq->queue)))
882 return -EINVAL;
883
884 hsep = our_ep(_ep);
885 hsudc = hsep->dev;
886 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
887 return -ESHUTDOWN;
888
889 spin_lock_irqsave(&hsudc->lock, flags);
890 set_index(hsudc, hsep->bEndpointAddress);
891
892 _req->status = -EINPROGRESS;
893 _req->actual = 0;
894
895 if (!ep_index(hsep) && _req->length == 0) {
896 hsudc->ep0state = WAIT_FOR_SETUP;
897 s3c_hsudc_complete_request(hsep, hsreq, 0);
898 spin_unlock_irqrestore(&hsudc->lock, flags);
899 return 0;
900 }
901
902 if (list_empty(&hsep->queue) && !hsep->stopped) {
903 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
904 if (ep_is_in(hsep)) {
905 csr = readl((u32)hsudc->regs + offset);
906 if (!(csr & S3C_ESR_TX_SUCCESS) &&
907 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
908 hsreq = 0;
909 } else {
910 csr = readl((u32)hsudc->regs + offset);
911 if ((csr & S3C_ESR_RX_SUCCESS)
912 && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
913 hsreq = 0;
914 }
915 }
916
917 if (hsreq != 0)
918 list_add_tail(&hsreq->queue, &hsep->queue);
919
920 spin_unlock_irqrestore(&hsudc->lock, flags);
921 return 0;
922 }
923
924 /**
925 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
926 * @_ep: Endpoint from which the request is dequeued.
927 * @_req: Request to be dequeued.
928 *
929 * Dequeue a request from a endpoint when called from gadget driver.
930 */
931 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
932 {
933 struct s3c_hsudc_ep *hsep = our_ep(_ep);
934 struct s3c_hsudc *hsudc = hsep->dev;
935 struct s3c_hsudc_req *hsreq;
936 unsigned long flags;
937
938 hsep = our_ep(_ep);
939 if (!_ep || hsep->ep.name == ep0name)
940 return -EINVAL;
941
942 spin_lock_irqsave(&hsudc->lock, flags);
943
944 list_for_each_entry(hsreq, &hsep->queue, queue) {
945 if (&hsreq->req == _req)
946 break;
947 }
948 if (&hsreq->req != _req) {
949 spin_unlock_irqrestore(&hsudc->lock, flags);
950 return -EINVAL;
951 }
952
953 set_index(hsudc, hsep->bEndpointAddress);
954 s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
955
956 spin_unlock_irqrestore(&hsudc->lock, flags);
957 return 0;
958 }
959
960 static struct usb_ep_ops s3c_hsudc_ep_ops = {
961 .enable = s3c_hsudc_ep_enable,
962 .disable = s3c_hsudc_ep_disable,
963 .alloc_request = s3c_hsudc_alloc_request,
964 .free_request = s3c_hsudc_free_request,
965 .queue = s3c_hsudc_queue,
966 .dequeue = s3c_hsudc_dequeue,
967 .set_halt = s3c_hsudc_set_halt,
968 .set_wedge = s3c_hsudc_set_wedge,
969 };
970
971 /**
972 * s3c_hsudc_initep - Initialize a endpoint to default state.
973 * @hsudc - Reference to the device controller.
974 * @hsep - Endpoint to be initialized.
975 * @epnum - Address to be assigned to the endpoint.
976 *
977 * Initialize a endpoint with default configuration.
978 */
979 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
980 struct s3c_hsudc_ep *hsep, int epnum)
981 {
982 char *dir;
983
984 if ((epnum % 2) == 0) {
985 dir = "out";
986 } else {
987 dir = "in";
988 hsep->bEndpointAddress = USB_DIR_IN;
989 }
990
991 hsep->bEndpointAddress |= epnum;
992 if (epnum)
993 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
994 else
995 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
996
997 INIT_LIST_HEAD(&hsep->queue);
998 INIT_LIST_HEAD(&hsep->ep.ep_list);
999 if (epnum)
1000 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
1001
1002 hsep->dev = hsudc;
1003 hsep->ep.name = hsep->name;
1004 hsep->ep.maxpacket = epnum ? 512 : 64;
1005 hsep->ep.ops = &s3c_hsudc_ep_ops;
1006 hsep->fifo = hsudc->regs + S3C_BR(epnum);
1007 hsep->ep.desc = NULL;
1008 hsep->stopped = 0;
1009 hsep->wedge = 0;
1010
1011 set_index(hsudc, epnum);
1012 writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1013 }
1014
1015 /**
1016 * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1017 * @hsudc: Reference to device controller.
1018 *
1019 * Configures all endpoints to default state.
1020 */
1021 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1022 {
1023 int epnum;
1024
1025 hsudc->ep0state = WAIT_FOR_SETUP;
1026 INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1027 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1028 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1029 }
1030
1031 /**
1032 * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1033 * @hsudc: Reference to device controller.
1034 *
1035 * Reconfigures the device controller registers to a default state.
1036 */
1037 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1038 {
1039 writel(0xAA, hsudc->regs + S3C_EDR);
1040 writel(1, hsudc->regs + S3C_EIER);
1041 writel(0, hsudc->regs + S3C_TR);
1042 writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1043 S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1044 writel(0, hsudc->regs + S3C_EP0CR);
1045
1046 s3c_hsudc_setup_ep(hsudc);
1047 }
1048
1049 /**
1050 * s3c_hsudc_irq - Interrupt handler for device controller.
1051 * @irq: Not used.
1052 * @_dev: Reference to the device controller.
1053 *
1054 * Interrupt handler for the device controller. This handler handles controller
1055 * interrupts and endpoint interrupts.
1056 */
1057 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1058 {
1059 struct s3c_hsudc *hsudc = _dev;
1060 struct s3c_hsudc_ep *hsep;
1061 u32 ep_intr;
1062 u32 sys_status;
1063 u32 ep_idx;
1064
1065 spin_lock(&hsudc->lock);
1066
1067 sys_status = readl(hsudc->regs + S3C_SSR);
1068 ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1069
1070 if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1071 spin_unlock(&hsudc->lock);
1072 return IRQ_HANDLED;
1073 }
1074
1075 if (sys_status) {
1076 if (sys_status & S3C_SSR_VBUSON)
1077 writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1078
1079 if (sys_status & S3C_SSR_ERR)
1080 writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1081
1082 if (sys_status & S3C_SSR_SDE) {
1083 writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1084 hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1085 USB_SPEED_HIGH : USB_SPEED_FULL;
1086 }
1087
1088 if (sys_status & S3C_SSR_SUSPEND) {
1089 writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1090 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1091 && hsudc->driver && hsudc->driver->suspend)
1092 hsudc->driver->suspend(&hsudc->gadget);
1093 }
1094
1095 if (sys_status & S3C_SSR_RESUME) {
1096 writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1097 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1098 && hsudc->driver && hsudc->driver->resume)
1099 hsudc->driver->resume(&hsudc->gadget);
1100 }
1101
1102 if (sys_status & S3C_SSR_RESET) {
1103 writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1104 for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1105 hsep = &hsudc->ep[ep_idx];
1106 hsep->stopped = 1;
1107 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1108 }
1109 s3c_hsudc_reconfig(hsudc);
1110 hsudc->ep0state = WAIT_FOR_SETUP;
1111 }
1112 }
1113
1114 if (ep_intr & S3C_EIR_EP0) {
1115 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1116 set_index(hsudc, 0);
1117 s3c_hsudc_handle_ep0_intr(hsudc);
1118 }
1119
1120 ep_intr >>= 1;
1121 ep_idx = 1;
1122 while (ep_intr) {
1123 if (ep_intr & 1) {
1124 hsep = &hsudc->ep[ep_idx];
1125 set_index(hsudc, ep_idx);
1126 writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1127 if (ep_is_in(hsep))
1128 s3c_hsudc_epin_intr(hsudc, ep_idx);
1129 else
1130 s3c_hsudc_epout_intr(hsudc, ep_idx);
1131 }
1132 ep_intr >>= 1;
1133 ep_idx++;
1134 }
1135
1136 spin_unlock(&hsudc->lock);
1137 return IRQ_HANDLED;
1138 }
1139
1140 static int s3c_hsudc_start(struct usb_gadget *gadget,
1141 struct usb_gadget_driver *driver)
1142 {
1143 struct s3c_hsudc *hsudc = to_hsudc(gadget);
1144 int ret;
1145
1146 if (!driver
1147 || driver->max_speed < USB_SPEED_FULL
1148 || !driver->setup)
1149 return -EINVAL;
1150
1151 if (!hsudc)
1152 return -ENODEV;
1153
1154 if (hsudc->driver)
1155 return -EBUSY;
1156
1157 hsudc->driver = driver;
1158 hsudc->gadget.dev.driver = &driver->driver;
1159
1160 ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1161 hsudc->supplies);
1162 if (ret != 0) {
1163 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1164 goto err_supplies;
1165 }
1166
1167 /* connect to bus through transceiver */
1168 if (hsudc->transceiver) {
1169 ret = otg_set_peripheral(hsudc->transceiver->otg,
1170 &hsudc->gadget);
1171 if (ret) {
1172 dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1173 hsudc->gadget.name);
1174 goto err_otg;
1175 }
1176 }
1177
1178 enable_irq(hsudc->irq);
1179 dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
1180
1181 s3c_hsudc_reconfig(hsudc);
1182
1183 pm_runtime_get_sync(hsudc->dev);
1184
1185 s3c_hsudc_init_phy();
1186 if (hsudc->pd->gpio_init)
1187 hsudc->pd->gpio_init();
1188
1189 return 0;
1190 err_otg:
1191 regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1192 err_supplies:
1193 hsudc->driver = NULL;
1194 hsudc->gadget.dev.driver = NULL;
1195 return ret;
1196 }
1197
1198 static int s3c_hsudc_stop(struct usb_gadget *gadget,
1199 struct usb_gadget_driver *driver)
1200 {
1201 struct s3c_hsudc *hsudc = to_hsudc(gadget);
1202 unsigned long flags;
1203
1204 if (!hsudc)
1205 return -ENODEV;
1206
1207 if (!driver || driver != hsudc->driver)
1208 return -EINVAL;
1209
1210 spin_lock_irqsave(&hsudc->lock, flags);
1211 hsudc->driver = NULL;
1212 hsudc->gadget.dev.driver = NULL;
1213 hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1214 s3c_hsudc_uninit_phy();
1215
1216 pm_runtime_put(hsudc->dev);
1217
1218 if (hsudc->pd->gpio_uninit)
1219 hsudc->pd->gpio_uninit();
1220 s3c_hsudc_stop_activity(hsudc);
1221 spin_unlock_irqrestore(&hsudc->lock, flags);
1222
1223 if (hsudc->transceiver)
1224 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1225
1226 disable_irq(hsudc->irq);
1227
1228 regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1229
1230 dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
1231 driver->driver.name);
1232 return 0;
1233 }
1234
1235 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1236 {
1237 return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1238 }
1239
1240 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1241 {
1242 return s3c_hsudc_read_frameno(to_hsudc(gadget));
1243 }
1244
1245 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1246 {
1247 struct s3c_hsudc *hsudc = to_hsudc(gadget);
1248
1249 if (!hsudc)
1250 return -ENODEV;
1251
1252 if (hsudc->transceiver)
1253 return usb_phy_set_power(hsudc->transceiver, mA);
1254
1255 return -EOPNOTSUPP;
1256 }
1257
1258 static struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1259 .get_frame = s3c_hsudc_gadget_getframe,
1260 .udc_start = s3c_hsudc_start,
1261 .udc_stop = s3c_hsudc_stop,
1262 .vbus_draw = s3c_hsudc_vbus_draw,
1263 };
1264
1265 static int __devinit s3c_hsudc_probe(struct platform_device *pdev)
1266 {
1267 struct device *dev = &pdev->dev;
1268 struct resource *res;
1269 struct s3c_hsudc *hsudc;
1270 struct s3c24xx_hsudc_platdata *pd = pdev->dev.platform_data;
1271 int ret, i;
1272
1273 hsudc = kzalloc(sizeof(struct s3c_hsudc) +
1274 sizeof(struct s3c_hsudc_ep) * pd->epnum,
1275 GFP_KERNEL);
1276 if (!hsudc) {
1277 dev_err(dev, "cannot allocate memory\n");
1278 return -ENOMEM;
1279 }
1280
1281 platform_set_drvdata(pdev, dev);
1282 hsudc->dev = dev;
1283 hsudc->pd = pdev->dev.platform_data;
1284
1285 hsudc->transceiver = usb_get_transceiver();
1286
1287 for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1288 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1289
1290 ret = regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1291 hsudc->supplies);
1292 if (ret != 0) {
1293 dev_err(dev, "failed to request supplies: %d\n", ret);
1294 goto err_supplies;
1295 }
1296
1297 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 if (!res) {
1299 dev_err(dev, "unable to obtain driver resource data\n");
1300 ret = -ENODEV;
1301 goto err_res;
1302 }
1303
1304 hsudc->mem_rsrc = request_mem_region(res->start, resource_size(res),
1305 dev_name(&pdev->dev));
1306 if (!hsudc->mem_rsrc) {
1307 dev_err(dev, "failed to reserve register area\n");
1308 ret = -ENODEV;
1309 goto err_res;
1310 }
1311
1312 hsudc->regs = ioremap(res->start, resource_size(res));
1313 if (!hsudc->regs) {
1314 dev_err(dev, "error mapping device register area\n");
1315 ret = -EBUSY;
1316 goto err_remap;
1317 }
1318
1319 spin_lock_init(&hsudc->lock);
1320
1321 dev_set_name(&hsudc->gadget.dev, "gadget");
1322
1323 hsudc->gadget.max_speed = USB_SPEED_HIGH;
1324 hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1325 hsudc->gadget.name = dev_name(dev);
1326 hsudc->gadget.dev.parent = dev;
1327 hsudc->gadget.dev.dma_mask = dev->dma_mask;
1328 hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1329
1330 hsudc->gadget.is_otg = 0;
1331 hsudc->gadget.is_a_peripheral = 0;
1332 hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1333
1334 s3c_hsudc_setup_ep(hsudc);
1335
1336 ret = platform_get_irq(pdev, 0);
1337 if (ret < 0) {
1338 dev_err(dev, "unable to obtain IRQ number\n");
1339 goto err_irq;
1340 }
1341 hsudc->irq = ret;
1342
1343 ret = request_irq(hsudc->irq, s3c_hsudc_irq, 0, driver_name, hsudc);
1344 if (ret < 0) {
1345 dev_err(dev, "irq request failed\n");
1346 goto err_irq;
1347 }
1348
1349 hsudc->uclk = clk_get(&pdev->dev, "usb-device");
1350 if (IS_ERR(hsudc->uclk)) {
1351 dev_err(dev, "failed to find usb-device clock source\n");
1352 ret = PTR_ERR(hsudc->uclk);
1353 goto err_clk;
1354 }
1355 clk_enable(hsudc->uclk);
1356
1357 local_irq_disable();
1358
1359 disable_irq(hsudc->irq);
1360 local_irq_enable();
1361
1362 ret = device_register(&hsudc->gadget.dev);
1363 if (ret) {
1364 put_device(&hsudc->gadget.dev);
1365 goto err_add_device;
1366 }
1367
1368 ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1369 if (ret)
1370 goto err_add_udc;
1371
1372 pm_runtime_enable(dev);
1373
1374 return 0;
1375 err_add_udc:
1376 device_unregister(&hsudc->gadget.dev);
1377 err_add_device:
1378 clk_disable(hsudc->uclk);
1379 clk_put(hsudc->uclk);
1380 err_clk:
1381 free_irq(hsudc->irq, hsudc);
1382 err_irq:
1383 iounmap(hsudc->regs);
1384
1385 err_remap:
1386 release_mem_region(res->start, resource_size(res));
1387 err_res:
1388 if (hsudc->transceiver)
1389 usb_put_transceiver(hsudc->transceiver);
1390
1391 regulator_bulk_free(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1392 err_supplies:
1393 kfree(hsudc);
1394 return ret;
1395 }
1396
1397 static struct platform_driver s3c_hsudc_driver = {
1398 .driver = {
1399 .owner = THIS_MODULE,
1400 .name = "s3c-hsudc",
1401 },
1402 .probe = s3c_hsudc_probe,
1403 };
1404
1405 module_platform_driver(s3c_hsudc_driver);
1406
1407 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1408 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1409 MODULE_LICENSE("GPL");
1410 MODULE_ALIAS("platform:s3c-hsudc");