Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / gadget / s3c-hsotg.c
1 /* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30
31 #include <mach/map.h>
32
33 #include <plat/regs-usb-hsotg-phy.h>
34 #include <plat/regs-usb-hsotg.h>
35 #include <mach/regs-sys.h>
36 #include <plat/udc-hs.h>
37 #include <plat/cpu.h>
38
39 #define DMA_ADDR_INVALID (~((dma_addr_t)0))
40
41 /* EP0_MPS_LIMIT
42 *
43 * Unfortunately there seems to be a limit of the amount of data that can
44 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
45 * packets (which practically means 1 packet and 63 bytes of data) when the
46 * MPS is set to 64.
47 *
48 * This means if we are wanting to move >127 bytes of data, we need to
49 * split the transactions up, but just doing one packet at a time does
50 * not work (this may be an implicit DATA0 PID on first packet of the
51 * transaction) and doing 2 packets is outside the controller's limits.
52 *
53 * If we try to lower the MPS size for EP0, then no transfers work properly
54 * for EP0, and the system will fail basic enumeration. As no cause for this
55 * has currently been found, we cannot support any large IN transfers for
56 * EP0.
57 */
58 #define EP0_MPS_LIMIT 64
59
60 struct s3c_hsotg;
61 struct s3c_hsotg_req;
62
63 /**
64 * struct s3c_hsotg_ep - driver endpoint definition.
65 * @ep: The gadget layer representation of the endpoint.
66 * @name: The driver generated name for the endpoint.
67 * @queue: Queue of requests for this endpoint.
68 * @parent: Reference back to the parent device structure.
69 * @req: The current request that the endpoint is processing. This is
70 * used to indicate an request has been loaded onto the endpoint
71 * and has yet to be completed (maybe due to data move, or simply
72 * awaiting an ack from the core all the data has been completed).
73 * @debugfs: File entry for debugfs file for this endpoint.
74 * @lock: State lock to protect contents of endpoint.
75 * @dir_in: Set to true if this endpoint is of the IN direction, which
76 * means that it is sending data to the Host.
77 * @index: The index for the endpoint registers.
78 * @name: The name array passed to the USB core.
79 * @halted: Set if the endpoint has been halted.
80 * @periodic: Set if this is a periodic ep, such as Interrupt
81 * @sent_zlp: Set if we've sent a zero-length packet.
82 * @total_data: The total number of data bytes done.
83 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
84 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
85 * @last_load: The offset of data for the last start of request.
86 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
87 *
88 * This is the driver's state for each registered enpoint, allowing it
89 * to keep track of transactions that need doing. Each endpoint has a
90 * lock to protect the state, to try and avoid using an overall lock
91 * for the host controller as much as possible.
92 *
93 * For periodic IN endpoints, we have fifo_size and fifo_load to try
94 * and keep track of the amount of data in the periodic FIFO for each
95 * of these as we don't have a status register that tells us how much
96 * is in each of them. (note, this may actually be useless information
97 * as in shared-fifo mode periodic in acts like a single-frame packet
98 * buffer than a fifo)
99 */
100 struct s3c_hsotg_ep {
101 struct usb_ep ep;
102 struct list_head queue;
103 struct s3c_hsotg *parent;
104 struct s3c_hsotg_req *req;
105 struct dentry *debugfs;
106
107 spinlock_t lock;
108
109 unsigned long total_data;
110 unsigned int size_loaded;
111 unsigned int last_load;
112 unsigned int fifo_load;
113 unsigned short fifo_size;
114
115 unsigned char dir_in;
116 unsigned char index;
117
118 unsigned int halted:1;
119 unsigned int periodic:1;
120 unsigned int sent_zlp:1;
121
122 char name[10];
123 };
124
125 #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
126
127 /**
128 * struct s3c_hsotg - driver state.
129 * @dev: The parent device supplied to the probe function
130 * @driver: USB gadget driver
131 * @plat: The platform specific configuration data.
132 * @regs: The memory area mapped for accessing registers.
133 * @regs_res: The resource that was allocated when claiming register space.
134 * @irq: The IRQ number we are using
135 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
136 * @debug_root: root directrory for debugfs.
137 * @debug_file: main status file for debugfs.
138 * @debug_fifo: FIFO status file for debugfs.
139 * @ep0_reply: Request used for ep0 reply.
140 * @ep0_buff: Buffer for EP0 reply data, if needed.
141 * @ctrl_buff: Buffer for EP0 control requests.
142 * @ctrl_req: Request for EP0 control packets.
143 * @eps: The endpoints being supplied to the gadget framework
144 */
145 struct s3c_hsotg {
146 struct device *dev;
147 struct usb_gadget_driver *driver;
148 struct s3c_hsotg_plat *plat;
149
150 void __iomem *regs;
151 struct resource *regs_res;
152 int irq;
153 struct clk *clk;
154
155 unsigned int dedicated_fifos:1;
156
157 struct dentry *debug_root;
158 struct dentry *debug_file;
159 struct dentry *debug_fifo;
160
161 struct usb_request *ep0_reply;
162 struct usb_request *ctrl_req;
163 u8 ep0_buff[8];
164 u8 ctrl_buff[8];
165
166 struct usb_gadget gadget;
167 struct s3c_hsotg_ep eps[];
168 };
169
170 /**
171 * struct s3c_hsotg_req - data transfer request
172 * @req: The USB gadget request
173 * @queue: The list of requests for the endpoint this is queued for.
174 * @in_progress: Has already had size/packets written to core
175 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
176 */
177 struct s3c_hsotg_req {
178 struct usb_request req;
179 struct list_head queue;
180 unsigned char in_progress;
181 unsigned char mapped;
182 };
183
184 /* conversion functions */
185 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
186 {
187 return container_of(req, struct s3c_hsotg_req, req);
188 }
189
190 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
191 {
192 return container_of(ep, struct s3c_hsotg_ep, ep);
193 }
194
195 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
196 {
197 return container_of(gadget, struct s3c_hsotg, gadget);
198 }
199
200 static inline void __orr32(void __iomem *ptr, u32 val)
201 {
202 writel(readl(ptr) | val, ptr);
203 }
204
205 static inline void __bic32(void __iomem *ptr, u32 val)
206 {
207 writel(readl(ptr) & ~val, ptr);
208 }
209
210 /* forward decleration of functions */
211 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
212
213 /**
214 * using_dma - return the DMA status of the driver.
215 * @hsotg: The driver state.
216 *
217 * Return true if we're using DMA.
218 *
219 * Currently, we have the DMA support code worked into everywhere
220 * that needs it, but the AMBA DMA implementation in the hardware can
221 * only DMA from 32bit aligned addresses. This means that gadgets such
222 * as the CDC Ethernet cannot work as they often pass packets which are
223 * not 32bit aligned.
224 *
225 * Unfortunately the choice to use DMA or not is global to the controller
226 * and seems to be only settable when the controller is being put through
227 * a core reset. This means we either need to fix the gadgets to take
228 * account of DMA alignment, or add bounce buffers (yuerk).
229 *
230 * Until this issue is sorted out, we always return 'false'.
231 */
232 static inline bool using_dma(struct s3c_hsotg *hsotg)
233 {
234 return false; /* support is not complete */
235 }
236
237 /**
238 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
239 * @hsotg: The device state
240 * @ints: A bitmask of the interrupts to enable
241 */
242 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
243 {
244 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
245 u32 new_gsintmsk;
246
247 new_gsintmsk = gsintmsk | ints;
248
249 if (new_gsintmsk != gsintmsk) {
250 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
251 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
252 }
253 }
254
255 /**
256 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
257 * @hsotg: The device state
258 * @ints: A bitmask of the interrupts to enable
259 */
260 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
261 {
262 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
263 u32 new_gsintmsk;
264
265 new_gsintmsk = gsintmsk & ~ints;
266
267 if (new_gsintmsk != gsintmsk)
268 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
269 }
270
271 /**
272 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
273 * @hsotg: The device state
274 * @ep: The endpoint index
275 * @dir_in: True if direction is in.
276 * @en: The enable value, true to enable
277 *
278 * Set or clear the mask for an individual endpoint's interrupt
279 * request.
280 */
281 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
282 unsigned int ep, unsigned int dir_in,
283 unsigned int en)
284 {
285 unsigned long flags;
286 u32 bit = 1 << ep;
287 u32 daint;
288
289 if (!dir_in)
290 bit <<= 16;
291
292 local_irq_save(flags);
293 daint = readl(hsotg->regs + S3C_DAINTMSK);
294 if (en)
295 daint |= bit;
296 else
297 daint &= ~bit;
298 writel(daint, hsotg->regs + S3C_DAINTMSK);
299 local_irq_restore(flags);
300 }
301
302 /**
303 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
304 * @hsotg: The device instance.
305 */
306 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
307 {
308 unsigned int ep;
309 unsigned int addr;
310 unsigned int size;
311 int timeout;
312 u32 val;
313
314 /* the ryu 2.6.24 release ahs
315 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
316 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
317 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
318 hsotg->regs + S3C_GNPTXFSIZ);
319 */
320
321 /* set FIFO sizes to 2048/1024 */
322
323 writel(2048, hsotg->regs + S3C_GRXFSIZ);
324 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
325 S3C_GNPTXFSIZ_NPTxFDep(1024),
326 hsotg->regs + S3C_GNPTXFSIZ);
327
328 /* arange all the rest of the TX FIFOs, as some versions of this
329 * block have overlapping default addresses. This also ensures
330 * that if the settings have been changed, then they are set to
331 * known values. */
332
333 /* start at the end of the GNPTXFSIZ, rounded up */
334 addr = 2048 + 1024;
335 size = 768;
336
337 /* currently we allocate TX FIFOs for all possible endpoints,
338 * and assume that they are all the same size. */
339
340 for (ep = 0; ep <= 15; ep++) {
341 val = addr;
342 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
343 addr += size;
344
345 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
346 }
347
348 /* according to p428 of the design guide, we need to ensure that
349 * all fifos are flushed before continuing */
350
351 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
352 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
353
354 /* wait until the fifos are both flushed */
355 timeout = 100;
356 while (1) {
357 val = readl(hsotg->regs + S3C_GRSTCTL);
358
359 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
360 break;
361
362 if (--timeout == 0) {
363 dev_err(hsotg->dev,
364 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
365 __func__, val);
366 }
367
368 udelay(1);
369 }
370
371 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
372 }
373
374 /**
375 * @ep: USB endpoint to allocate request for.
376 * @flags: Allocation flags
377 *
378 * Allocate a new USB request structure appropriate for the specified endpoint
379 */
380 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
381 gfp_t flags)
382 {
383 struct s3c_hsotg_req *req;
384
385 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
386 if (!req)
387 return NULL;
388
389 INIT_LIST_HEAD(&req->queue);
390
391 req->req.dma = DMA_ADDR_INVALID;
392 return &req->req;
393 }
394
395 /**
396 * is_ep_periodic - return true if the endpoint is in periodic mode.
397 * @hs_ep: The endpoint to query.
398 *
399 * Returns true if the endpoint is in periodic mode, meaning it is being
400 * used for an Interrupt or ISO transfer.
401 */
402 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
403 {
404 return hs_ep->periodic;
405 }
406
407 /**
408 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 * @hsotg: The device state.
410 * @hs_ep: The endpoint for the request
411 * @hs_req: The request being processed.
412 *
413 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
414 * of a request to ensure the buffer is ready for access by the caller.
415 */
416 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
417 struct s3c_hsotg_ep *hs_ep,
418 struct s3c_hsotg_req *hs_req)
419 {
420 struct usb_request *req = &hs_req->req;
421 enum dma_data_direction dir;
422
423 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
424
425 /* ignore this if we're not moving any data */
426 if (hs_req->req.length == 0)
427 return;
428
429 if (hs_req->mapped) {
430 /* we mapped this, so unmap and remove the dma */
431
432 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
433
434 req->dma = DMA_ADDR_INVALID;
435 hs_req->mapped = 0;
436 } else {
437 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
438 }
439 }
440
441 /**
442 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
443 * @hsotg: The controller state.
444 * @hs_ep: The endpoint we're going to write for.
445 * @hs_req: The request to write data for.
446 *
447 * This is called when the TxFIFO has some space in it to hold a new
448 * transmission and we have something to give it. The actual setup of
449 * the data size is done elsewhere, so all we have to do is to actually
450 * write the data.
451 *
452 * The return value is zero if there is more space (or nothing was done)
453 * otherwise -ENOSPC is returned if the FIFO space was used up.
454 *
455 * This routine is only needed for PIO
456 */
457 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
458 struct s3c_hsotg_ep *hs_ep,
459 struct s3c_hsotg_req *hs_req)
460 {
461 bool periodic = is_ep_periodic(hs_ep);
462 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
463 int buf_pos = hs_req->req.actual;
464 int to_write = hs_ep->size_loaded;
465 void *data;
466 int can_write;
467 int pkt_round;
468
469 to_write -= (buf_pos - hs_ep->last_load);
470
471 /* if there's nothing to write, get out early */
472 if (to_write == 0)
473 return 0;
474
475 if (periodic && !hsotg->dedicated_fifos) {
476 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
477 int size_left;
478 int size_done;
479
480 /* work out how much data was loaded so we can calculate
481 * how much data is left in the fifo. */
482
483 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
484
485 /* if shared fifo, we cannot write anything until the
486 * previous data has been completely sent.
487 */
488 if (hs_ep->fifo_load != 0) {
489 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
490 return -ENOSPC;
491 }
492
493 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
494 __func__, size_left,
495 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
496
497 /* how much of the data has moved */
498 size_done = hs_ep->size_loaded - size_left;
499
500 /* how much data is left in the fifo */
501 can_write = hs_ep->fifo_load - size_done;
502 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
503 __func__, can_write);
504
505 can_write = hs_ep->fifo_size - can_write;
506 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
507 __func__, can_write);
508
509 if (can_write <= 0) {
510 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
511 return -ENOSPC;
512 }
513 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
514 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
515
516 can_write &= 0xffff;
517 can_write *= 4;
518 } else {
519 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
520 dev_dbg(hsotg->dev,
521 "%s: no queue slots available (0x%08x)\n",
522 __func__, gnptxsts);
523
524 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
525 return -ENOSPC;
526 }
527
528 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
529 can_write *= 4; /* fifo size is in 32bit quantities. */
530 }
531
532 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
533 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
534
535 /* limit to 512 bytes of data, it seems at least on the non-periodic
536 * FIFO, requests of >512 cause the endpoint to get stuck with a
537 * fragment of the end of the transfer in it.
538 */
539 if (can_write > 512)
540 can_write = 512;
541
542 /* limit the write to one max-packet size worth of data, but allow
543 * the transfer to return that it did not run out of fifo space
544 * doing it. */
545 if (to_write > hs_ep->ep.maxpacket) {
546 to_write = hs_ep->ep.maxpacket;
547
548 s3c_hsotg_en_gsint(hsotg,
549 periodic ? S3C_GINTSTS_PTxFEmp :
550 S3C_GINTSTS_NPTxFEmp);
551 }
552
553 /* see if we can write data */
554
555 if (to_write > can_write) {
556 to_write = can_write;
557 pkt_round = to_write % hs_ep->ep.maxpacket;
558
559 /* Not sure, but we probably shouldn't be writing partial
560 * packets into the FIFO, so round the write down to an
561 * exact number of packets.
562 *
563 * Note, we do not currently check to see if we can ever
564 * write a full packet or not to the FIFO.
565 */
566
567 if (pkt_round)
568 to_write -= pkt_round;
569
570 /* enable correct FIFO interrupt to alert us when there
571 * is more room left. */
572
573 s3c_hsotg_en_gsint(hsotg,
574 periodic ? S3C_GINTSTS_PTxFEmp :
575 S3C_GINTSTS_NPTxFEmp);
576 }
577
578 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
579 to_write, hs_req->req.length, can_write, buf_pos);
580
581 if (to_write <= 0)
582 return -ENOSPC;
583
584 hs_req->req.actual = buf_pos + to_write;
585 hs_ep->total_data += to_write;
586
587 if (periodic)
588 hs_ep->fifo_load += to_write;
589
590 to_write = DIV_ROUND_UP(to_write, 4);
591 data = hs_req->req.buf + buf_pos;
592
593 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
594
595 return (to_write >= can_write) ? -ENOSPC : 0;
596 }
597
598 /**
599 * get_ep_limit - get the maximum data legnth for this endpoint
600 * @hs_ep: The endpoint
601 *
602 * Return the maximum data that can be queued in one go on a given endpoint
603 * so that transfers that are too long can be split.
604 */
605 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
606 {
607 int index = hs_ep->index;
608 unsigned maxsize;
609 unsigned maxpkt;
610
611 if (index != 0) {
612 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
613 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
614 } else {
615 maxsize = 64+64;
616 if (hs_ep->dir_in) {
617 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
618 } else {
619 maxpkt = 2;
620 }
621 }
622
623 /* we made the constant loading easier above by using +1 */
624 maxpkt--;
625 maxsize--;
626
627 /* constrain by packet count if maxpkts*pktsize is greater
628 * than the length register size. */
629
630 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
631 maxsize = maxpkt * hs_ep->ep.maxpacket;
632
633 return maxsize;
634 }
635
636 /**
637 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
638 * @hsotg: The controller state.
639 * @hs_ep: The endpoint to process a request for
640 * @hs_req: The request to start.
641 * @continuing: True if we are doing more for the current request.
642 *
643 * Start the given request running by setting the endpoint registers
644 * appropriately, and writing any data to the FIFOs.
645 */
646 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
647 struct s3c_hsotg_ep *hs_ep,
648 struct s3c_hsotg_req *hs_req,
649 bool continuing)
650 {
651 struct usb_request *ureq = &hs_req->req;
652 int index = hs_ep->index;
653 int dir_in = hs_ep->dir_in;
654 u32 epctrl_reg;
655 u32 epsize_reg;
656 u32 epsize;
657 u32 ctrl;
658 unsigned length;
659 unsigned packets;
660 unsigned maxreq;
661
662 if (index != 0) {
663 if (hs_ep->req && !continuing) {
664 dev_err(hsotg->dev, "%s: active request\n", __func__);
665 WARN_ON(1);
666 return;
667 } else if (hs_ep->req != hs_req && continuing) {
668 dev_err(hsotg->dev,
669 "%s: continue different req\n", __func__);
670 WARN_ON(1);
671 return;
672 }
673 }
674
675 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
676 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
677
678 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
679 __func__, readl(hsotg->regs + epctrl_reg), index,
680 hs_ep->dir_in ? "in" : "out");
681
682 length = ureq->length - ureq->actual;
683
684 if (0)
685 dev_dbg(hsotg->dev,
686 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
687 ureq->buf, length, ureq->dma,
688 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
689
690 maxreq = get_ep_limit(hs_ep);
691 if (length > maxreq) {
692 int round = maxreq % hs_ep->ep.maxpacket;
693
694 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
695 __func__, length, maxreq, round);
696
697 /* round down to multiple of packets */
698 if (round)
699 maxreq -= round;
700
701 length = maxreq;
702 }
703
704 if (length)
705 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
706 else
707 packets = 1; /* send one packet if length is zero. */
708
709 if (dir_in && index != 0)
710 epsize = S3C_DxEPTSIZ_MC(1);
711 else
712 epsize = 0;
713
714 if (index != 0 && ureq->zero) {
715 /* test for the packets being exactly right for the
716 * transfer */
717
718 if (length == (packets * hs_ep->ep.maxpacket))
719 packets++;
720 }
721
722 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
723 epsize |= S3C_DxEPTSIZ_XferSize(length);
724
725 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
726 __func__, packets, length, ureq->length, epsize, epsize_reg);
727
728 /* store the request as the current one we're doing */
729 hs_ep->req = hs_req;
730
731 /* write size / packets */
732 writel(epsize, hsotg->regs + epsize_reg);
733
734 ctrl = readl(hsotg->regs + epctrl_reg);
735
736 if (ctrl & S3C_DxEPCTL_Stall) {
737 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
738
739 /* not sure what we can do here, if it is EP0 then we should
740 * get this cleared once the endpoint has transmitted the
741 * STALL packet, otherwise it needs to be cleared by the
742 * host.
743 */
744 }
745
746 if (using_dma(hsotg)) {
747 unsigned int dma_reg;
748
749 /* write DMA address to control register, buffer already
750 * synced by s3c_hsotg_ep_queue(). */
751
752 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
753 writel(ureq->dma, hsotg->regs + dma_reg);
754
755 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
756 __func__, ureq->dma, dma_reg);
757 }
758
759 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
760 ctrl |= S3C_DxEPCTL_USBActEp;
761 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
762
763 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
764 writel(ctrl, hsotg->regs + epctrl_reg);
765
766 /* set these, it seems that DMA support increments past the end
767 * of the packet buffer so we need to calculate the length from
768 * this information. */
769 hs_ep->size_loaded = length;
770 hs_ep->last_load = ureq->actual;
771
772 if (dir_in && !using_dma(hsotg)) {
773 /* set these anyway, we may need them for non-periodic in */
774 hs_ep->fifo_load = 0;
775
776 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
777 }
778
779 /* clear the INTknTXFEmpMsk when we start request, more as a aide
780 * to debugging to see what is going on. */
781 if (dir_in)
782 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
783 hsotg->regs + S3C_DIEPINT(index));
784
785 /* Note, trying to clear the NAK here causes problems with transmit
786 * on the S3C6400 ending up with the TXFIFO becoming full. */
787
788 /* check ep is enabled */
789 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
790 dev_warn(hsotg->dev,
791 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
792 index, readl(hsotg->regs + epctrl_reg));
793
794 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
795 __func__, readl(hsotg->regs + epctrl_reg));
796 }
797
798 /**
799 * s3c_hsotg_map_dma - map the DMA memory being used for the request
800 * @hsotg: The device state.
801 * @hs_ep: The endpoint the request is on.
802 * @req: The request being processed.
803 *
804 * We've been asked to queue a request, so ensure that the memory buffer
805 * is correctly setup for DMA. If we've been passed an extant DMA address
806 * then ensure the buffer has been synced to memory. If our buffer has no
807 * DMA memory, then we map the memory and mark our request to allow us to
808 * cleanup on completion.
809 */
810 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
811 struct s3c_hsotg_ep *hs_ep,
812 struct usb_request *req)
813 {
814 enum dma_data_direction dir;
815 struct s3c_hsotg_req *hs_req = our_req(req);
816
817 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
818
819 /* if the length is zero, ignore the DMA data */
820 if (hs_req->req.length == 0)
821 return 0;
822
823 if (req->dma == DMA_ADDR_INVALID) {
824 dma_addr_t dma;
825
826 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
827
828 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
829 goto dma_error;
830
831 if (dma & 3) {
832 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
833 __func__);
834
835 dma_unmap_single(hsotg->dev, dma, req->length, dir);
836 return -EINVAL;
837 }
838
839 hs_req->mapped = 1;
840 req->dma = dma;
841 } else {
842 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
843 hs_req->mapped = 0;
844 }
845
846 return 0;
847
848 dma_error:
849 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
850 __func__, req->buf, req->length);
851
852 return -EIO;
853 }
854
855 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
856 gfp_t gfp_flags)
857 {
858 struct s3c_hsotg_req *hs_req = our_req(req);
859 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860 struct s3c_hsotg *hs = hs_ep->parent;
861 unsigned long irqflags;
862 bool first;
863
864 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
865 ep->name, req, req->length, req->buf, req->no_interrupt,
866 req->zero, req->short_not_ok);
867
868 /* initialise status of the request */
869 INIT_LIST_HEAD(&hs_req->queue);
870 req->actual = 0;
871 req->status = -EINPROGRESS;
872
873 /* if we're using DMA, sync the buffers as necessary */
874 if (using_dma(hs)) {
875 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
876 if (ret)
877 return ret;
878 }
879
880 spin_lock_irqsave(&hs_ep->lock, irqflags);
881
882 first = list_empty(&hs_ep->queue);
883 list_add_tail(&hs_req->queue, &hs_ep->queue);
884
885 if (first)
886 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
887
888 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
889
890 return 0;
891 }
892
893 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
894 struct usb_request *req)
895 {
896 struct s3c_hsotg_req *hs_req = our_req(req);
897
898 kfree(hs_req);
899 }
900
901 /**
902 * s3c_hsotg_complete_oursetup - setup completion callback
903 * @ep: The endpoint the request was on.
904 * @req: The request completed.
905 *
906 * Called on completion of any requests the driver itself
907 * submitted that need cleaning up.
908 */
909 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
910 struct usb_request *req)
911 {
912 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
913 struct s3c_hsotg *hsotg = hs_ep->parent;
914
915 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
916
917 s3c_hsotg_ep_free_request(ep, req);
918 }
919
920 /**
921 * ep_from_windex - convert control wIndex value to endpoint
922 * @hsotg: The driver state.
923 * @windex: The control request wIndex field (in host order).
924 *
925 * Convert the given wIndex into a pointer to an driver endpoint
926 * structure, or return NULL if it is not a valid endpoint.
927 */
928 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
929 u32 windex)
930 {
931 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
932 int dir = (windex & USB_DIR_IN) ? 1 : 0;
933 int idx = windex & 0x7F;
934
935 if (windex >= 0x100)
936 return NULL;
937
938 if (idx > S3C_HSOTG_EPS)
939 return NULL;
940
941 if (idx && ep->dir_in != dir)
942 return NULL;
943
944 return ep;
945 }
946
947 /**
948 * s3c_hsotg_send_reply - send reply to control request
949 * @hsotg: The device state
950 * @ep: Endpoint 0
951 * @buff: Buffer for request
952 * @length: Length of reply.
953 *
954 * Create a request and queue it on the given endpoint. This is useful as
955 * an internal method of sending replies to certain control requests, etc.
956 */
957 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
958 struct s3c_hsotg_ep *ep,
959 void *buff,
960 int length)
961 {
962 struct usb_request *req;
963 int ret;
964
965 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
966
967 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
968 hsotg->ep0_reply = req;
969 if (!req) {
970 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
971 return -ENOMEM;
972 }
973
974 req->buf = hsotg->ep0_buff;
975 req->length = length;
976 req->zero = 1; /* always do zero-length final transfer */
977 req->complete = s3c_hsotg_complete_oursetup;
978
979 if (length)
980 memcpy(req->buf, buff, length);
981 else
982 ep->sent_zlp = 1;
983
984 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
985 if (ret) {
986 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
987 return ret;
988 }
989
990 return 0;
991 }
992
993 /**
994 * s3c_hsotg_process_req_status - process request GET_STATUS
995 * @hsotg: The device state
996 * @ctrl: USB control request
997 */
998 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
999 struct usb_ctrlrequest *ctrl)
1000 {
1001 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1002 struct s3c_hsotg_ep *ep;
1003 __le16 reply;
1004 int ret;
1005
1006 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1007
1008 if (!ep0->dir_in) {
1009 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1010 return -EINVAL;
1011 }
1012
1013 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1014 case USB_RECIP_DEVICE:
1015 reply = cpu_to_le16(0); /* bit 0 => self powered,
1016 * bit 1 => remote wakeup */
1017 break;
1018
1019 case USB_RECIP_INTERFACE:
1020 /* currently, the data result should be zero */
1021 reply = cpu_to_le16(0);
1022 break;
1023
1024 case USB_RECIP_ENDPOINT:
1025 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1026 if (!ep)
1027 return -ENOENT;
1028
1029 reply = cpu_to_le16(ep->halted ? 1 : 0);
1030 break;
1031
1032 default:
1033 return 0;
1034 }
1035
1036 if (le16_to_cpu(ctrl->wLength) != 2)
1037 return -EINVAL;
1038
1039 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1040 if (ret) {
1041 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1042 return ret;
1043 }
1044
1045 return 1;
1046 }
1047
1048 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1049
1050 /**
1051 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1052 * @hsotg: The device state
1053 * @ctrl: USB control request
1054 */
1055 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1056 struct usb_ctrlrequest *ctrl)
1057 {
1058 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1059 struct s3c_hsotg_ep *ep;
1060
1061 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1062 __func__, set ? "SET" : "CLEAR");
1063
1064 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1065 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1066 if (!ep) {
1067 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1068 __func__, le16_to_cpu(ctrl->wIndex));
1069 return -ENOENT;
1070 }
1071
1072 switch (le16_to_cpu(ctrl->wValue)) {
1073 case USB_ENDPOINT_HALT:
1074 s3c_hsotg_ep_sethalt(&ep->ep, set);
1075 break;
1076
1077 default:
1078 return -ENOENT;
1079 }
1080 } else
1081 return -ENOENT; /* currently only deal with endpoint */
1082
1083 return 1;
1084 }
1085
1086 /**
1087 * s3c_hsotg_process_control - process a control request
1088 * @hsotg: The device state
1089 * @ctrl: The control request received
1090 *
1091 * The controller has received the SETUP phase of a control request, and
1092 * needs to work out what to do next (and whether to pass it on to the
1093 * gadget driver).
1094 */
1095 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1096 struct usb_ctrlrequest *ctrl)
1097 {
1098 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1099 int ret = 0;
1100 u32 dcfg;
1101
1102 ep0->sent_zlp = 0;
1103
1104 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1105 ctrl->bRequest, ctrl->bRequestType,
1106 ctrl->wValue, ctrl->wLength);
1107
1108 /* record the direction of the request, for later use when enquing
1109 * packets onto EP0. */
1110
1111 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1112 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1113
1114 /* if we've no data with this request, then the last part of the
1115 * transaction is going to implicitly be IN. */
1116 if (ctrl->wLength == 0)
1117 ep0->dir_in = 1;
1118
1119 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1120 switch (ctrl->bRequest) {
1121 case USB_REQ_SET_ADDRESS:
1122 dcfg = readl(hsotg->regs + S3C_DCFG);
1123 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1124 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1125 writel(dcfg, hsotg->regs + S3C_DCFG);
1126
1127 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1128
1129 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1130 return;
1131
1132 case USB_REQ_GET_STATUS:
1133 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1134 break;
1135
1136 case USB_REQ_CLEAR_FEATURE:
1137 case USB_REQ_SET_FEATURE:
1138 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1139 break;
1140 }
1141 }
1142
1143 /* as a fallback, try delivering it to the driver to deal with */
1144
1145 if (ret == 0 && hsotg->driver) {
1146 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1147 if (ret < 0)
1148 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1149 }
1150
1151 if (ret > 0) {
1152 if (!ep0->dir_in) {
1153 /* need to generate zlp in reply or take data */
1154 /* todo - deal with any data we might be sent? */
1155 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1156 }
1157 }
1158
1159 /* the request is either unhandlable, or is not formatted correctly
1160 * so respond with a STALL for the status stage to indicate failure.
1161 */
1162
1163 if (ret < 0) {
1164 u32 reg;
1165 u32 ctrl;
1166
1167 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1168 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1169
1170 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1171 * taken effect, so no need to clear later. */
1172
1173 ctrl = readl(hsotg->regs + reg);
1174 ctrl |= S3C_DxEPCTL_Stall;
1175 ctrl |= S3C_DxEPCTL_CNAK;
1176 writel(ctrl, hsotg->regs + reg);
1177
1178 dev_dbg(hsotg->dev,
1179 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1180 ctrl, reg, readl(hsotg->regs + reg));
1181
1182 /* don't believe we need to anything more to get the EP
1183 * to reply with a STALL packet */
1184 }
1185 }
1186
1187 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1188
1189 /**
1190 * s3c_hsotg_complete_setup - completion of a setup transfer
1191 * @ep: The endpoint the request was on.
1192 * @req: The request completed.
1193 *
1194 * Called on completion of any requests the driver itself submitted for
1195 * EP0 setup packets
1196 */
1197 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1198 struct usb_request *req)
1199 {
1200 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1201 struct s3c_hsotg *hsotg = hs_ep->parent;
1202
1203 if (req->status < 0) {
1204 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1205 return;
1206 }
1207
1208 if (req->actual == 0)
1209 s3c_hsotg_enqueue_setup(hsotg);
1210 else
1211 s3c_hsotg_process_control(hsotg, req->buf);
1212 }
1213
1214 /**
1215 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1216 * @hsotg: The device state.
1217 *
1218 * Enqueue a request on EP0 if necessary to received any SETUP packets
1219 * received from the host.
1220 */
1221 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1222 {
1223 struct usb_request *req = hsotg->ctrl_req;
1224 struct s3c_hsotg_req *hs_req = our_req(req);
1225 int ret;
1226
1227 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1228
1229 req->zero = 0;
1230 req->length = 8;
1231 req->buf = hsotg->ctrl_buff;
1232 req->complete = s3c_hsotg_complete_setup;
1233
1234 if (!list_empty(&hs_req->queue)) {
1235 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1236 return;
1237 }
1238
1239 hsotg->eps[0].dir_in = 0;
1240
1241 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1242 if (ret < 0) {
1243 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1244 /* Don't think there's much we can do other than watch the
1245 * driver fail. */
1246 }
1247 }
1248
1249 /**
1250 * get_ep_head - return the first request on the endpoint
1251 * @hs_ep: The controller endpoint to get
1252 *
1253 * Get the first request on the endpoint.
1254 */
1255 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1256 {
1257 if (list_empty(&hs_ep->queue))
1258 return NULL;
1259
1260 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1261 }
1262
1263 /**
1264 * s3c_hsotg_complete_request - complete a request given to us
1265 * @hsotg: The device state.
1266 * @hs_ep: The endpoint the request was on.
1267 * @hs_req: The request to complete.
1268 * @result: The result code (0 => Ok, otherwise errno)
1269 *
1270 * The given request has finished, so call the necessary completion
1271 * if it has one and then look to see if we can start a new request
1272 * on the endpoint.
1273 *
1274 * Note, expects the ep to already be locked as appropriate.
1275 */
1276 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1277 struct s3c_hsotg_ep *hs_ep,
1278 struct s3c_hsotg_req *hs_req,
1279 int result)
1280 {
1281 bool restart;
1282
1283 if (!hs_req) {
1284 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1285 return;
1286 }
1287
1288 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1289 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1290
1291 /* only replace the status if we've not already set an error
1292 * from a previous transaction */
1293
1294 if (hs_req->req.status == -EINPROGRESS)
1295 hs_req->req.status = result;
1296
1297 hs_ep->req = NULL;
1298 list_del_init(&hs_req->queue);
1299
1300 if (using_dma(hsotg))
1301 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1302
1303 /* call the complete request with the locks off, just in case the
1304 * request tries to queue more work for this endpoint. */
1305
1306 if (hs_req->req.complete) {
1307 spin_unlock(&hs_ep->lock);
1308 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1309 spin_lock(&hs_ep->lock);
1310 }
1311
1312 /* Look to see if there is anything else to do. Note, the completion
1313 * of the previous request may have caused a new request to be started
1314 * so be careful when doing this. */
1315
1316 if (!hs_ep->req && result >= 0) {
1317 restart = !list_empty(&hs_ep->queue);
1318 if (restart) {
1319 hs_req = get_ep_head(hs_ep);
1320 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1321 }
1322 }
1323 }
1324
1325 /**
1326 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1327 * @hsotg: The device state.
1328 * @hs_ep: The endpoint the request was on.
1329 * @hs_req: The request to complete.
1330 * @result: The result code (0 => Ok, otherwise errno)
1331 *
1332 * See s3c_hsotg_complete_request(), but called with the endpoint's
1333 * lock held.
1334 */
1335 static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1336 struct s3c_hsotg_ep *hs_ep,
1337 struct s3c_hsotg_req *hs_req,
1338 int result)
1339 {
1340 unsigned long flags;
1341
1342 spin_lock_irqsave(&hs_ep->lock, flags);
1343 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1344 spin_unlock_irqrestore(&hs_ep->lock, flags);
1345 }
1346
1347 /**
1348 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1349 * @hsotg: The device state.
1350 * @ep_idx: The endpoint index for the data
1351 * @size: The size of data in the fifo, in bytes
1352 *
1353 * The FIFO status shows there is data to read from the FIFO for a given
1354 * endpoint, so sort out whether we need to read the data into a request
1355 * that has been made for that endpoint.
1356 */
1357 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1358 {
1359 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1360 struct s3c_hsotg_req *hs_req = hs_ep->req;
1361 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1362 int to_read;
1363 int max_req;
1364 int read_ptr;
1365
1366 if (!hs_req) {
1367 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1368 int ptr;
1369
1370 dev_warn(hsotg->dev,
1371 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1372 __func__, size, ep_idx, epctl);
1373
1374 /* dump the data from the FIFO, we've nothing we can do */
1375 for (ptr = 0; ptr < size; ptr += 4)
1376 (void)readl(fifo);
1377
1378 return;
1379 }
1380
1381 spin_lock(&hs_ep->lock);
1382
1383 to_read = size;
1384 read_ptr = hs_req->req.actual;
1385 max_req = hs_req->req.length - read_ptr;
1386
1387 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1388 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1389
1390 if (to_read > max_req) {
1391 /* more data appeared than we where willing
1392 * to deal with in this request.
1393 */
1394
1395 /* currently we don't deal this */
1396 WARN_ON_ONCE(1);
1397 }
1398
1399 hs_ep->total_data += to_read;
1400 hs_req->req.actual += to_read;
1401 to_read = DIV_ROUND_UP(to_read, 4);
1402
1403 /* note, we might over-write the buffer end by 3 bytes depending on
1404 * alignment of the data. */
1405 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1406
1407 spin_unlock(&hs_ep->lock);
1408 }
1409
1410 /**
1411 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1412 * @hsotg: The device instance
1413 * @req: The request currently on this endpoint
1414 *
1415 * Generate a zero-length IN packet request for terminating a SETUP
1416 * transaction.
1417 *
1418 * Note, since we don't write any data to the TxFIFO, then it is
1419 * currently believed that we do not need to wait for any space in
1420 * the TxFIFO.
1421 */
1422 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1423 struct s3c_hsotg_req *req)
1424 {
1425 u32 ctrl;
1426
1427 if (!req) {
1428 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1429 return;
1430 }
1431
1432 if (req->req.length == 0) {
1433 hsotg->eps[0].sent_zlp = 1;
1434 s3c_hsotg_enqueue_setup(hsotg);
1435 return;
1436 }
1437
1438 hsotg->eps[0].dir_in = 1;
1439 hsotg->eps[0].sent_zlp = 1;
1440
1441 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1442
1443 /* issue a zero-sized packet to terminate this */
1444 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1445 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1446
1447 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1448 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1449 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1450 ctrl |= S3C_DxEPCTL_USBActEp;
1451 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1452 }
1453
1454 /**
1455 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1456 * @hsotg: The device instance
1457 * @epnum: The endpoint received from
1458 * @was_setup: Set if processing a SetupDone event.
1459 *
1460 * The RXFIFO has delivered an OutDone event, which means that the data
1461 * transfer for an OUT endpoint has been completed, either by a short
1462 * packet or by the finish of a transfer.
1463 */
1464 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1465 int epnum, bool was_setup)
1466 {
1467 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1468 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1469 struct s3c_hsotg_req *hs_req = hs_ep->req;
1470 struct usb_request *req = &hs_req->req;
1471 unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1472 int result = 0;
1473
1474 if (!hs_req) {
1475 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1476 return;
1477 }
1478
1479 if (using_dma(hsotg)) {
1480 unsigned size_done;
1481
1482 /* Calculate the size of the transfer by checking how much
1483 * is left in the endpoint size register and then working it
1484 * out from the amount we loaded for the transfer.
1485 *
1486 * We need to do this as DMA pointers are always 32bit aligned
1487 * so may overshoot/undershoot the transfer.
1488 */
1489
1490 size_done = hs_ep->size_loaded - size_left;
1491 size_done += hs_ep->last_load;
1492
1493 req->actual = size_done;
1494 }
1495
1496 /* if there is more request to do, schedule new transfer */
1497 if (req->actual < req->length && size_left == 0) {
1498 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1499 return;
1500 }
1501
1502 if (req->actual < req->length && req->short_not_ok) {
1503 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1504 __func__, req->actual, req->length);
1505
1506 /* todo - what should we return here? there's no one else
1507 * even bothering to check the status. */
1508 }
1509
1510 if (epnum == 0) {
1511 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1512 s3c_hsotg_send_zlp(hsotg, hs_req);
1513 }
1514
1515 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1516 }
1517
1518 /**
1519 * s3c_hsotg_read_frameno - read current frame number
1520 * @hsotg: The device instance
1521 *
1522 * Return the current frame number
1523 */
1524 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1525 {
1526 u32 dsts;
1527
1528 dsts = readl(hsotg->regs + S3C_DSTS);
1529 dsts &= S3C_DSTS_SOFFN_MASK;
1530 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1531
1532 return dsts;
1533 }
1534
1535 /**
1536 * s3c_hsotg_handle_rx - RX FIFO has data
1537 * @hsotg: The device instance
1538 *
1539 * The IRQ handler has detected that the RX FIFO has some data in it
1540 * that requires processing, so find out what is in there and do the
1541 * appropriate read.
1542 *
1543 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1544 * chunks, so if you have x packets received on an endpoint you'll get x
1545 * FIFO events delivered, each with a packet's worth of data in it.
1546 *
1547 * When using DMA, we should not be processing events from the RXFIFO
1548 * as the actual data should be sent to the memory directly and we turn
1549 * on the completion interrupts to get notifications of transfer completion.
1550 */
1551 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1552 {
1553 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1554 u32 epnum, status, size;
1555
1556 WARN_ON(using_dma(hsotg));
1557
1558 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1559 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1560
1561 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1562 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1563
1564 if (1)
1565 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1566 __func__, grxstsr, size, epnum);
1567
1568 #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1569
1570 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1571 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1572 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1573 break;
1574
1575 case __status(S3C_GRXSTS_PktSts_OutDone):
1576 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1577 s3c_hsotg_read_frameno(hsotg));
1578
1579 if (!using_dma(hsotg))
1580 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1581 break;
1582
1583 case __status(S3C_GRXSTS_PktSts_SetupDone):
1584 dev_dbg(hsotg->dev,
1585 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1586 s3c_hsotg_read_frameno(hsotg),
1587 readl(hsotg->regs + S3C_DOEPCTL(0)));
1588
1589 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1590 break;
1591
1592 case __status(S3C_GRXSTS_PktSts_OutRX):
1593 s3c_hsotg_rx_data(hsotg, epnum, size);
1594 break;
1595
1596 case __status(S3C_GRXSTS_PktSts_SetupRX):
1597 dev_dbg(hsotg->dev,
1598 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1599 s3c_hsotg_read_frameno(hsotg),
1600 readl(hsotg->regs + S3C_DOEPCTL(0)));
1601
1602 s3c_hsotg_rx_data(hsotg, epnum, size);
1603 break;
1604
1605 default:
1606 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1607 __func__, grxstsr);
1608
1609 s3c_hsotg_dump(hsotg);
1610 break;
1611 }
1612 }
1613
1614 /**
1615 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1616 * @mps: The maximum packet size in bytes.
1617 */
1618 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1619 {
1620 switch (mps) {
1621 case 64:
1622 return S3C_D0EPCTL_MPS_64;
1623 case 32:
1624 return S3C_D0EPCTL_MPS_32;
1625 case 16:
1626 return S3C_D0EPCTL_MPS_16;
1627 case 8:
1628 return S3C_D0EPCTL_MPS_8;
1629 }
1630
1631 /* bad max packet size, warn and return invalid result */
1632 WARN_ON(1);
1633 return (u32)-1;
1634 }
1635
1636 /**
1637 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1638 * @hsotg: The driver state.
1639 * @ep: The index number of the endpoint
1640 * @mps: The maximum packet size in bytes
1641 *
1642 * Configure the maximum packet size for the given endpoint, updating
1643 * the hardware control registers to reflect this.
1644 */
1645 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1646 unsigned int ep, unsigned int mps)
1647 {
1648 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1649 void __iomem *regs = hsotg->regs;
1650 u32 mpsval;
1651 u32 reg;
1652
1653 if (ep == 0) {
1654 /* EP0 is a special case */
1655 mpsval = s3c_hsotg_ep0_mps(mps);
1656 if (mpsval > 3)
1657 goto bad_mps;
1658 } else {
1659 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1660 goto bad_mps;
1661
1662 mpsval = mps;
1663 }
1664
1665 hs_ep->ep.maxpacket = mps;
1666
1667 /* update both the in and out endpoint controldir_ registers, even
1668 * if one of the directions may not be in use. */
1669
1670 reg = readl(regs + S3C_DIEPCTL(ep));
1671 reg &= ~S3C_DxEPCTL_MPS_MASK;
1672 reg |= mpsval;
1673 writel(reg, regs + S3C_DIEPCTL(ep));
1674
1675 reg = readl(regs + S3C_DOEPCTL(ep));
1676 reg &= ~S3C_DxEPCTL_MPS_MASK;
1677 reg |= mpsval;
1678 writel(reg, regs + S3C_DOEPCTL(ep));
1679
1680 return;
1681
1682 bad_mps:
1683 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1684 }
1685
1686
1687 /**
1688 * s3c_hsotg_trytx - check to see if anything needs transmitting
1689 * @hsotg: The driver state
1690 * @hs_ep: The driver endpoint to check.
1691 *
1692 * Check to see if there is a request that has data to send, and if so
1693 * make an attempt to write data into the FIFO.
1694 */
1695 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1696 struct s3c_hsotg_ep *hs_ep)
1697 {
1698 struct s3c_hsotg_req *hs_req = hs_ep->req;
1699
1700 if (!hs_ep->dir_in || !hs_req)
1701 return 0;
1702
1703 if (hs_req->req.actual < hs_req->req.length) {
1704 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1705 hs_ep->index);
1706 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1707 }
1708
1709 return 0;
1710 }
1711
1712 /**
1713 * s3c_hsotg_complete_in - complete IN transfer
1714 * @hsotg: The device state.
1715 * @hs_ep: The endpoint that has just completed.
1716 *
1717 * An IN transfer has been completed, update the transfer's state and then
1718 * call the relevant completion routines.
1719 */
1720 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1721 struct s3c_hsotg_ep *hs_ep)
1722 {
1723 struct s3c_hsotg_req *hs_req = hs_ep->req;
1724 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1725 int size_left, size_done;
1726
1727 if (!hs_req) {
1728 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1729 return;
1730 }
1731
1732 /* Calculate the size of the transfer by checking how much is left
1733 * in the endpoint size register and then working it out from
1734 * the amount we loaded for the transfer.
1735 *
1736 * We do this even for DMA, as the transfer may have incremented
1737 * past the end of the buffer (DMA transfers are always 32bit
1738 * aligned).
1739 */
1740
1741 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1742
1743 size_done = hs_ep->size_loaded - size_left;
1744 size_done += hs_ep->last_load;
1745
1746 if (hs_req->req.actual != size_done)
1747 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1748 __func__, hs_req->req.actual, size_done);
1749
1750 hs_req->req.actual = size_done;
1751
1752 /* if we did all of the transfer, and there is more data left
1753 * around, then try restarting the rest of the request */
1754
1755 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1756 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1757 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1758 } else
1759 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1760 }
1761
1762 /**
1763 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1764 * @hsotg: The driver state
1765 * @idx: The index for the endpoint (0..15)
1766 * @dir_in: Set if this is an IN endpoint
1767 *
1768 * Process and clear any interrupt pending for an individual endpoint
1769 */
1770 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1771 int dir_in)
1772 {
1773 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1774 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1775 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1776 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1777 u32 ints;
1778 u32 clear = 0;
1779
1780 ints = readl(hsotg->regs + epint_reg);
1781
1782 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1783 __func__, idx, dir_in ? "in" : "out", ints);
1784
1785 if (ints & S3C_DxEPINT_XferCompl) {
1786 dev_dbg(hsotg->dev,
1787 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1788 __func__, readl(hsotg->regs + epctl_reg),
1789 readl(hsotg->regs + epsiz_reg));
1790
1791 /* we get OutDone from the FIFO, so we only need to look
1792 * at completing IN requests here */
1793 if (dir_in) {
1794 s3c_hsotg_complete_in(hsotg, hs_ep);
1795
1796 if (idx == 0 && !hs_ep->req)
1797 s3c_hsotg_enqueue_setup(hsotg);
1798 } else if (using_dma(hsotg)) {
1799 /* We're using DMA, we need to fire an OutDone here
1800 * as we ignore the RXFIFO. */
1801
1802 s3c_hsotg_handle_outdone(hsotg, idx, false);
1803 }
1804
1805 clear |= S3C_DxEPINT_XferCompl;
1806 }
1807
1808 if (ints & S3C_DxEPINT_EPDisbld) {
1809 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1810 clear |= S3C_DxEPINT_EPDisbld;
1811 }
1812
1813 if (ints & S3C_DxEPINT_AHBErr) {
1814 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1815 clear |= S3C_DxEPINT_AHBErr;
1816 }
1817
1818 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1819 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1820
1821 if (using_dma(hsotg) && idx == 0) {
1822 /* this is the notification we've received a
1823 * setup packet. In non-DMA mode we'd get this
1824 * from the RXFIFO, instead we need to process
1825 * the setup here. */
1826
1827 if (dir_in)
1828 WARN_ON_ONCE(1);
1829 else
1830 s3c_hsotg_handle_outdone(hsotg, 0, true);
1831 }
1832
1833 clear |= S3C_DxEPINT_Setup;
1834 }
1835
1836 if (ints & S3C_DxEPINT_Back2BackSetup) {
1837 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1838 clear |= S3C_DxEPINT_Back2BackSetup;
1839 }
1840
1841 if (dir_in) {
1842 /* not sure if this is important, but we'll clear it anyway
1843 */
1844 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1845 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1846 __func__, idx);
1847 clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1848 }
1849
1850 /* this probably means something bad is happening */
1851 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1852 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1853 __func__, idx);
1854 clear |= S3C_DIEPMSK_INTknEPMisMsk;
1855 }
1856
1857 /* FIFO has space or is empty (see GAHBCFG) */
1858 if (hsotg->dedicated_fifos &&
1859 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1860 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1861 __func__, idx);
1862 s3c_hsotg_trytx(hsotg, hs_ep);
1863 clear |= S3C_DIEPMSK_TxFIFOEmpty;
1864 }
1865 }
1866
1867 writel(clear, hsotg->regs + epint_reg);
1868 }
1869
1870 /**
1871 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1872 * @hsotg: The device state.
1873 *
1874 * Handle updating the device settings after the enumeration phase has
1875 * been completed.
1876 */
1877 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1878 {
1879 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1880 int ep0_mps = 0, ep_mps;
1881
1882 /* This should signal the finish of the enumeration phase
1883 * of the USB handshaking, so we should now know what rate
1884 * we connected at. */
1885
1886 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1887
1888 /* note, since we're limited by the size of transfer on EP0, and
1889 * it seems IN transfers must be a even number of packets we do
1890 * not advertise a 64byte MPS on EP0. */
1891
1892 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1893 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1894 case S3C_DSTS_EnumSpd_FS:
1895 case S3C_DSTS_EnumSpd_FS48:
1896 hsotg->gadget.speed = USB_SPEED_FULL;
1897 dev_info(hsotg->dev, "new device is full-speed\n");
1898
1899 ep0_mps = EP0_MPS_LIMIT;
1900 ep_mps = 64;
1901 break;
1902
1903 case S3C_DSTS_EnumSpd_HS:
1904 dev_info(hsotg->dev, "new device is high-speed\n");
1905 hsotg->gadget.speed = USB_SPEED_HIGH;
1906
1907 ep0_mps = EP0_MPS_LIMIT;
1908 ep_mps = 512;
1909 break;
1910
1911 case S3C_DSTS_EnumSpd_LS:
1912 hsotg->gadget.speed = USB_SPEED_LOW;
1913 dev_info(hsotg->dev, "new device is low-speed\n");
1914
1915 /* note, we don't actually support LS in this driver at the
1916 * moment, and the documentation seems to imply that it isn't
1917 * supported by the PHYs on some of the devices.
1918 */
1919 break;
1920 }
1921
1922 /* we should now know the maximum packet size for an
1923 * endpoint, so set the endpoints to a default value. */
1924
1925 if (ep0_mps) {
1926 int i;
1927 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1928 for (i = 1; i < S3C_HSOTG_EPS; i++)
1929 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1930 }
1931
1932 /* ensure after enumeration our EP0 is active */
1933
1934 s3c_hsotg_enqueue_setup(hsotg);
1935
1936 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1937 readl(hsotg->regs + S3C_DIEPCTL0),
1938 readl(hsotg->regs + S3C_DOEPCTL0));
1939 }
1940
1941 /**
1942 * kill_all_requests - remove all requests from the endpoint's queue
1943 * @hsotg: The device state.
1944 * @ep: The endpoint the requests may be on.
1945 * @result: The result code to use.
1946 * @force: Force removal of any current requests
1947 *
1948 * Go through the requests on the given endpoint and mark them
1949 * completed with the given result code.
1950 */
1951 static void kill_all_requests(struct s3c_hsotg *hsotg,
1952 struct s3c_hsotg_ep *ep,
1953 int result, bool force)
1954 {
1955 struct s3c_hsotg_req *req, *treq;
1956 unsigned long flags;
1957
1958 spin_lock_irqsave(&ep->lock, flags);
1959
1960 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1961 /* currently, we can't do much about an already
1962 * running request on an in endpoint */
1963
1964 if (ep->req == req && ep->dir_in && !force)
1965 continue;
1966
1967 s3c_hsotg_complete_request(hsotg, ep, req,
1968 result);
1969 }
1970
1971 spin_unlock_irqrestore(&ep->lock, flags);
1972 }
1973
1974 #define call_gadget(_hs, _entry) \
1975 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1976 (_hs)->driver && (_hs)->driver->_entry) \
1977 (_hs)->driver->_entry(&(_hs)->gadget);
1978
1979 /**
1980 * s3c_hsotg_disconnect_irq - disconnect irq service
1981 * @hsotg: The device state.
1982 *
1983 * A disconnect IRQ has been received, meaning that the host has
1984 * lost contact with the bus. Remove all current transactions
1985 * and signal the gadget driver that this has happened.
1986 */
1987 static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1988 {
1989 unsigned ep;
1990
1991 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1992 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1993
1994 call_gadget(hsotg, disconnect);
1995 }
1996
1997 /**
1998 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1999 * @hsotg: The device state:
2000 * @periodic: True if this is a periodic FIFO interrupt
2001 */
2002 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2003 {
2004 struct s3c_hsotg_ep *ep;
2005 int epno, ret;
2006
2007 /* look through for any more data to transmit */
2008
2009 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
2010 ep = &hsotg->eps[epno];
2011
2012 if (!ep->dir_in)
2013 continue;
2014
2015 if ((periodic && !ep->periodic) ||
2016 (!periodic && ep->periodic))
2017 continue;
2018
2019 ret = s3c_hsotg_trytx(hsotg, ep);
2020 if (ret < 0)
2021 break;
2022 }
2023 }
2024
2025 static struct s3c_hsotg *our_hsotg;
2026
2027 /* IRQ flags which will trigger a retry around the IRQ loop */
2028 #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2029 S3C_GINTSTS_PTxFEmp | \
2030 S3C_GINTSTS_RxFLvl)
2031
2032 /**
2033 * s3c_hsotg_irq - handle device interrupt
2034 * @irq: The IRQ number triggered
2035 * @pw: The pw value when registered the handler.
2036 */
2037 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2038 {
2039 struct s3c_hsotg *hsotg = pw;
2040 int retry_count = 8;
2041 u32 gintsts;
2042 u32 gintmsk;
2043
2044 irq_retry:
2045 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2046 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2047
2048 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2049 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2050
2051 gintsts &= gintmsk;
2052
2053 if (gintsts & S3C_GINTSTS_OTGInt) {
2054 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2055
2056 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2057
2058 writel(otgint, hsotg->regs + S3C_GOTGINT);
2059 writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
2060 }
2061
2062 if (gintsts & S3C_GINTSTS_DisconnInt) {
2063 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2064 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2065
2066 s3c_hsotg_disconnect_irq(hsotg);
2067 }
2068
2069 if (gintsts & S3C_GINTSTS_SessReqInt) {
2070 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2071 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2072 }
2073
2074 if (gintsts & S3C_GINTSTS_EnumDone) {
2075 s3c_hsotg_irq_enumdone(hsotg);
2076 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
2077 }
2078
2079 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2080 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2081 readl(hsotg->regs + S3C_DSTS),
2082 readl(hsotg->regs + S3C_GOTGCTL));
2083
2084 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2085 }
2086
2087 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2088 u32 daint = readl(hsotg->regs + S3C_DAINT);
2089 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2090 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2091 int ep;
2092
2093 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2094
2095 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2096 if (daint_out & 1)
2097 s3c_hsotg_epint(hsotg, ep, 0);
2098 }
2099
2100 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2101 if (daint_in & 1)
2102 s3c_hsotg_epint(hsotg, ep, 1);
2103 }
2104
2105 writel(daint, hsotg->regs + S3C_DAINT);
2106 writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2107 hsotg->regs + S3C_GINTSTS);
2108 }
2109
2110 if (gintsts & S3C_GINTSTS_USBRst) {
2111 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2112 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2113 readl(hsotg->regs + S3C_GNPTXSTS));
2114
2115 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2116
2117 /* it seems after a reset we can end up with a situation
2118 * where the TXFIFO still has data in it... the docs
2119 * suggest resetting all the fifos, so use the init_fifo
2120 * code to relayout and flush the fifos.
2121 */
2122
2123 s3c_hsotg_init_fifo(hsotg);
2124
2125 s3c_hsotg_enqueue_setup(hsotg);
2126
2127 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2128 }
2129
2130 /* check both FIFOs */
2131
2132 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2133 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2134
2135 /* Disable the interrupt to stop it happening again
2136 * unless one of these endpoint routines decides that
2137 * it needs re-enabling */
2138
2139 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2140 s3c_hsotg_irq_fifoempty(hsotg, false);
2141
2142 writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2143 }
2144
2145 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2146 dev_dbg(hsotg->dev, "PTxFEmp\n");
2147
2148 /* See note in S3C_GINTSTS_NPTxFEmp */
2149
2150 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2151 s3c_hsotg_irq_fifoempty(hsotg, true);
2152
2153 writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2154 }
2155
2156 if (gintsts & S3C_GINTSTS_RxFLvl) {
2157 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2158 * we need to retry s3c_hsotg_handle_rx if this is still
2159 * set. */
2160
2161 s3c_hsotg_handle_rx(hsotg);
2162 writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2163 }
2164
2165 if (gintsts & S3C_GINTSTS_ModeMis) {
2166 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2167 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2168 }
2169
2170 if (gintsts & S3C_GINTSTS_USBSusp) {
2171 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2172 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2173
2174 call_gadget(hsotg, suspend);
2175 }
2176
2177 if (gintsts & S3C_GINTSTS_WkUpInt) {
2178 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2179 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2180
2181 call_gadget(hsotg, resume);
2182 }
2183
2184 if (gintsts & S3C_GINTSTS_ErlySusp) {
2185 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2186 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2187 }
2188
2189 /* these next two seem to crop-up occasionally causing the core
2190 * to shutdown the USB transfer, so try clearing them and logging
2191 * the occurrence. */
2192
2193 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2194 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2195
2196 s3c_hsotg_dump(hsotg);
2197
2198 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2199 writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2200 }
2201
2202 if (gintsts & S3C_GINTSTS_GINNakEff) {
2203 dev_info(hsotg->dev, "GINNakEff triggered\n");
2204
2205 s3c_hsotg_dump(hsotg);
2206
2207 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2208 writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2209 }
2210
2211 /* if we've had fifo events, we should try and go around the
2212 * loop again to see if there's any point in returning yet. */
2213
2214 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2215 goto irq_retry;
2216
2217 return IRQ_HANDLED;
2218 }
2219
2220 /**
2221 * s3c_hsotg_ep_enable - enable the given endpoint
2222 * @ep: The USB endpint to configure
2223 * @desc: The USB endpoint descriptor to configure with.
2224 *
2225 * This is called from the USB gadget code's usb_ep_enable().
2226 */
2227 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2228 const struct usb_endpoint_descriptor *desc)
2229 {
2230 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2231 struct s3c_hsotg *hsotg = hs_ep->parent;
2232 unsigned long flags;
2233 int index = hs_ep->index;
2234 u32 epctrl_reg;
2235 u32 epctrl;
2236 u32 mps;
2237 int dir_in;
2238 int ret = 0;
2239
2240 dev_dbg(hsotg->dev,
2241 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2242 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2243 desc->wMaxPacketSize, desc->bInterval);
2244
2245 /* not to be called for EP0 */
2246 WARN_ON(index == 0);
2247
2248 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2249 if (dir_in != hs_ep->dir_in) {
2250 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2251 return -EINVAL;
2252 }
2253
2254 mps = le16_to_cpu(desc->wMaxPacketSize);
2255
2256 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2257
2258 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2259 epctrl = readl(hsotg->regs + epctrl_reg);
2260
2261 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2262 __func__, epctrl, epctrl_reg);
2263
2264 spin_lock_irqsave(&hs_ep->lock, flags);
2265
2266 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2267 epctrl |= S3C_DxEPCTL_MPS(mps);
2268
2269 /* mark the endpoint as active, otherwise the core may ignore
2270 * transactions entirely for this endpoint */
2271 epctrl |= S3C_DxEPCTL_USBActEp;
2272
2273 /* set the NAK status on the endpoint, otherwise we might try and
2274 * do something with data that we've yet got a request to process
2275 * since the RXFIFO will take data for an endpoint even if the
2276 * size register hasn't been set.
2277 */
2278
2279 epctrl |= S3C_DxEPCTL_SNAK;
2280
2281 /* update the endpoint state */
2282 hs_ep->ep.maxpacket = mps;
2283
2284 /* default, set to non-periodic */
2285 hs_ep->periodic = 0;
2286
2287 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2288 case USB_ENDPOINT_XFER_ISOC:
2289 dev_err(hsotg->dev, "no current ISOC support\n");
2290 ret = -EINVAL;
2291 goto out;
2292
2293 case USB_ENDPOINT_XFER_BULK:
2294 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2295 break;
2296
2297 case USB_ENDPOINT_XFER_INT:
2298 if (dir_in) {
2299 /* Allocate our TxFNum by simply using the index
2300 * of the endpoint for the moment. We could do
2301 * something better if the host indicates how
2302 * many FIFOs we are expecting to use. */
2303
2304 hs_ep->periodic = 1;
2305 epctrl |= S3C_DxEPCTL_TxFNum(index);
2306 }
2307
2308 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2309 break;
2310
2311 case USB_ENDPOINT_XFER_CONTROL:
2312 epctrl |= S3C_DxEPCTL_EPType_Control;
2313 break;
2314 }
2315
2316 /* if the hardware has dedicated fifos, we must give each IN EP
2317 * a unique tx-fifo even if it is non-periodic.
2318 */
2319 if (dir_in && hsotg->dedicated_fifos)
2320 epctrl |= S3C_DxEPCTL_TxFNum(index);
2321
2322 /* for non control endpoints, set PID to D0 */
2323 if (index)
2324 epctrl |= S3C_DxEPCTL_SetD0PID;
2325
2326 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2327 __func__, epctrl);
2328
2329 writel(epctrl, hsotg->regs + epctrl_reg);
2330 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2331 __func__, readl(hsotg->regs + epctrl_reg));
2332
2333 /* enable the endpoint interrupt */
2334 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2335
2336 out:
2337 spin_unlock_irqrestore(&hs_ep->lock, flags);
2338 return ret;
2339 }
2340
2341 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2342 {
2343 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2344 struct s3c_hsotg *hsotg = hs_ep->parent;
2345 int dir_in = hs_ep->dir_in;
2346 int index = hs_ep->index;
2347 unsigned long flags;
2348 u32 epctrl_reg;
2349 u32 ctrl;
2350
2351 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2352
2353 if (ep == &hsotg->eps[0].ep) {
2354 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2355 return -EINVAL;
2356 }
2357
2358 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2359
2360 /* terminate all requests with shutdown */
2361 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2362
2363 spin_lock_irqsave(&hs_ep->lock, flags);
2364
2365 ctrl = readl(hsotg->regs + epctrl_reg);
2366 ctrl &= ~S3C_DxEPCTL_EPEna;
2367 ctrl &= ~S3C_DxEPCTL_USBActEp;
2368 ctrl |= S3C_DxEPCTL_SNAK;
2369
2370 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2371 writel(ctrl, hsotg->regs + epctrl_reg);
2372
2373 /* disable endpoint interrupts */
2374 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2375
2376 spin_unlock_irqrestore(&hs_ep->lock, flags);
2377 return 0;
2378 }
2379
2380 /**
2381 * on_list - check request is on the given endpoint
2382 * @ep: The endpoint to check.
2383 * @test: The request to test if it is on the endpoint.
2384 */
2385 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2386 {
2387 struct s3c_hsotg_req *req, *treq;
2388
2389 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2390 if (req == test)
2391 return true;
2392 }
2393
2394 return false;
2395 }
2396
2397 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2398 {
2399 struct s3c_hsotg_req *hs_req = our_req(req);
2400 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2401 struct s3c_hsotg *hs = hs_ep->parent;
2402 unsigned long flags;
2403
2404 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2405
2406 if (hs_req == hs_ep->req) {
2407 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2408 return -EINPROGRESS;
2409 }
2410
2411 spin_lock_irqsave(&hs_ep->lock, flags);
2412
2413 if (!on_list(hs_ep, hs_req)) {
2414 spin_unlock_irqrestore(&hs_ep->lock, flags);
2415 return -EINVAL;
2416 }
2417
2418 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2419 spin_unlock_irqrestore(&hs_ep->lock, flags);
2420
2421 return 0;
2422 }
2423
2424 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2425 {
2426 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2427 struct s3c_hsotg *hs = hs_ep->parent;
2428 int index = hs_ep->index;
2429 unsigned long irqflags;
2430 u32 epreg;
2431 u32 epctl;
2432
2433 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2434
2435 spin_lock_irqsave(&hs_ep->lock, irqflags);
2436
2437 /* write both IN and OUT control registers */
2438
2439 epreg = S3C_DIEPCTL(index);
2440 epctl = readl(hs->regs + epreg);
2441
2442 if (value)
2443 epctl |= S3C_DxEPCTL_Stall;
2444 else
2445 epctl &= ~S3C_DxEPCTL_Stall;
2446
2447 writel(epctl, hs->regs + epreg);
2448
2449 epreg = S3C_DOEPCTL(index);
2450 epctl = readl(hs->regs + epreg);
2451
2452 if (value)
2453 epctl |= S3C_DxEPCTL_Stall;
2454 else
2455 epctl &= ~S3C_DxEPCTL_Stall;
2456
2457 writel(epctl, hs->regs + epreg);
2458
2459 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2460
2461 return 0;
2462 }
2463
2464 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2465 .enable = s3c_hsotg_ep_enable,
2466 .disable = s3c_hsotg_ep_disable,
2467 .alloc_request = s3c_hsotg_ep_alloc_request,
2468 .free_request = s3c_hsotg_ep_free_request,
2469 .queue = s3c_hsotg_ep_queue,
2470 .dequeue = s3c_hsotg_ep_dequeue,
2471 .set_halt = s3c_hsotg_ep_sethalt,
2472 /* note, don't believe we have any call for the fifo routines */
2473 };
2474
2475 /**
2476 * s3c_hsotg_corereset - issue softreset to the core
2477 * @hsotg: The device state
2478 *
2479 * Issue a soft reset to the core, and await the core finishing it.
2480 */
2481 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2482 {
2483 int timeout;
2484 u32 grstctl;
2485
2486 dev_dbg(hsotg->dev, "resetting core\n");
2487
2488 /* issue soft reset */
2489 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2490
2491 timeout = 1000;
2492 do {
2493 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2494 } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2495
2496 if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
2497 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2498 return -EINVAL;
2499 }
2500
2501 timeout = 1000;
2502
2503 while (1) {
2504 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2505
2506 if (timeout-- < 0) {
2507 dev_info(hsotg->dev,
2508 "%s: reset failed, GRSTCTL=%08x\n",
2509 __func__, grstctl);
2510 return -ETIMEDOUT;
2511 }
2512
2513 if (grstctl & S3C_GRSTCTL_CSftRst)
2514 continue;
2515
2516 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2517 continue;
2518
2519 break; /* reset done */
2520 }
2521
2522 dev_dbg(hsotg->dev, "reset successful\n");
2523 return 0;
2524 }
2525
2526 int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2527 int (*bind)(struct usb_gadget *))
2528 {
2529 struct s3c_hsotg *hsotg = our_hsotg;
2530 int ret;
2531
2532 if (!hsotg) {
2533 printk(KERN_ERR "%s: called with no device\n", __func__);
2534 return -ENODEV;
2535 }
2536
2537 if (!driver) {
2538 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2539 return -EINVAL;
2540 }
2541
2542 if (driver->speed != USB_SPEED_HIGH &&
2543 driver->speed != USB_SPEED_FULL) {
2544 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2545 }
2546
2547 if (!bind || !driver->setup) {
2548 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2549 return -EINVAL;
2550 }
2551
2552 WARN_ON(hsotg->driver);
2553
2554 driver->driver.bus = NULL;
2555 hsotg->driver = driver;
2556 hsotg->gadget.dev.driver = &driver->driver;
2557 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2558 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2559
2560 ret = device_add(&hsotg->gadget.dev);
2561 if (ret) {
2562 dev_err(hsotg->dev, "failed to register gadget device\n");
2563 goto err;
2564 }
2565
2566 ret = bind(&hsotg->gadget);
2567 if (ret) {
2568 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2569
2570 hsotg->gadget.dev.driver = NULL;
2571 hsotg->driver = NULL;
2572 goto err;
2573 }
2574
2575 /* we must now enable ep0 ready for host detection and then
2576 * set configuration. */
2577
2578 s3c_hsotg_corereset(hsotg);
2579
2580 /* set the PLL on, remove the HNP/SRP and set the PHY */
2581 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2582 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2583
2584 /* looks like soft-reset changes state of FIFOs */
2585 s3c_hsotg_init_fifo(hsotg);
2586
2587 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2588
2589 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2590
2591 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2592 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2593 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2594 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2595 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2596 S3C_GINTSTS_ErlySusp,
2597 hsotg->regs + S3C_GINTMSK);
2598
2599 if (using_dma(hsotg))
2600 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2601 S3C_GAHBCFG_HBstLen_Incr4,
2602 hsotg->regs + S3C_GAHBCFG);
2603 else
2604 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2605
2606 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2607 * up being flooded with interrupts if the host is polling the
2608 * endpoint to try and read data. */
2609
2610 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2611 S3C_DIEPMSK_INTknEPMisMsk |
2612 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2613 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
2614 hsotg->regs + S3C_DIEPMSK);
2615
2616 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2617 * DMA mode we may need this. */
2618 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2619 S3C_DOEPMSK_EPDisbldMsk |
2620 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2621 S3C_DIEPMSK_TimeOUTMsk) : 0),
2622 hsotg->regs + S3C_DOEPMSK);
2623
2624 writel(0, hsotg->regs + S3C_DAINTMSK);
2625
2626 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2627 readl(hsotg->regs + S3C_DIEPCTL0),
2628 readl(hsotg->regs + S3C_DOEPCTL0));
2629
2630 /* enable in and out endpoint interrupts */
2631 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2632
2633 /* Enable the RXFIFO when in slave mode, as this is how we collect
2634 * the data. In DMA mode, we get events from the FIFO but also
2635 * things we cannot process, so do not use it. */
2636 if (!using_dma(hsotg))
2637 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2638
2639 /* Enable interrupts for EP0 in and out */
2640 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2641 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2642
2643 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2644 udelay(10); /* see openiboot */
2645 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2646
2647 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2648
2649 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2650 writing to the EPCTL register.. */
2651
2652 /* set to read 1 8byte packet */
2653 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2654 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2655
2656 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2657 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2658 S3C_DxEPCTL_USBActEp,
2659 hsotg->regs + S3C_DOEPCTL0);
2660
2661 /* enable, but don't activate EP0in */
2662 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2663 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2664
2665 s3c_hsotg_enqueue_setup(hsotg);
2666
2667 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2668 readl(hsotg->regs + S3C_DIEPCTL0),
2669 readl(hsotg->regs + S3C_DOEPCTL0));
2670
2671 /* clear global NAKs */
2672 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2673 hsotg->regs + S3C_DCTL);
2674
2675 /* must be at-least 3ms to allow bus to see disconnect */
2676 msleep(3);
2677
2678 /* remove the soft-disconnect and let's go */
2679 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2680
2681 /* report to the user, and return */
2682
2683 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2684 return 0;
2685
2686 err:
2687 hsotg->driver = NULL;
2688 hsotg->gadget.dev.driver = NULL;
2689 return ret;
2690 }
2691 EXPORT_SYMBOL(usb_gadget_probe_driver);
2692
2693 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2694 {
2695 struct s3c_hsotg *hsotg = our_hsotg;
2696 int ep;
2697
2698 if (!hsotg)
2699 return -ENODEV;
2700
2701 if (!driver || driver != hsotg->driver || !driver->unbind)
2702 return -EINVAL;
2703
2704 /* all endpoints should be shutdown */
2705 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2706 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2707
2708 call_gadget(hsotg, disconnect);
2709
2710 driver->unbind(&hsotg->gadget);
2711 hsotg->driver = NULL;
2712 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2713
2714 device_del(&hsotg->gadget.dev);
2715
2716 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2717 driver->driver.name);
2718
2719 return 0;
2720 }
2721 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2722
2723 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2724 {
2725 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2726 }
2727
2728 static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2729 .get_frame = s3c_hsotg_gadget_getframe,
2730 };
2731
2732 /**
2733 * s3c_hsotg_initep - initialise a single endpoint
2734 * @hsotg: The device state.
2735 * @hs_ep: The endpoint to be initialised.
2736 * @epnum: The endpoint number
2737 *
2738 * Initialise the given endpoint (as part of the probe and device state
2739 * creation) to give to the gadget driver. Setup the endpoint name, any
2740 * direction information and other state that may be required.
2741 */
2742 static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2743 struct s3c_hsotg_ep *hs_ep,
2744 int epnum)
2745 {
2746 u32 ptxfifo;
2747 char *dir;
2748
2749 if (epnum == 0)
2750 dir = "";
2751 else if ((epnum % 2) == 0) {
2752 dir = "out";
2753 } else {
2754 dir = "in";
2755 hs_ep->dir_in = 1;
2756 }
2757
2758 hs_ep->index = epnum;
2759
2760 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2761
2762 INIT_LIST_HEAD(&hs_ep->queue);
2763 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2764
2765 spin_lock_init(&hs_ep->lock);
2766
2767 /* add to the list of endpoints known by the gadget driver */
2768 if (epnum)
2769 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2770
2771 hs_ep->parent = hsotg;
2772 hs_ep->ep.name = hs_ep->name;
2773 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2774 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2775
2776 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2777 * an OUT endpoint, we may as well do this if in future the
2778 * code is changed to make each endpoint's direction changeable.
2779 */
2780
2781 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2782 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
2783
2784 /* if we're using dma, we need to set the next-endpoint pointer
2785 * to be something valid.
2786 */
2787
2788 if (using_dma(hsotg)) {
2789 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2790 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2791 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2792 }
2793 }
2794
2795 /**
2796 * s3c_hsotg_otgreset - reset the OtG phy block
2797 * @hsotg: The host state.
2798 *
2799 * Power up the phy, set the basic configuration and start the PHY.
2800 */
2801 static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2802 {
2803 struct clk *xusbxti;
2804 u32 pwr, osc;
2805
2806 pwr = readl(S3C_PHYPWR);
2807 pwr &= ~0x19;
2808 writel(pwr, S3C_PHYPWR);
2809 mdelay(1);
2810
2811 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2812
2813 xusbxti = clk_get(hsotg->dev, "xusbxti");
2814 if (xusbxti && !IS_ERR(xusbxti)) {
2815 switch (clk_get_rate(xusbxti)) {
2816 case 12*MHZ:
2817 osc |= S3C_PHYCLK_CLKSEL_12M;
2818 break;
2819 case 24*MHZ:
2820 osc |= S3C_PHYCLK_CLKSEL_24M;
2821 break;
2822 default:
2823 case 48*MHZ:
2824 /* default reference clock */
2825 break;
2826 }
2827 clk_put(xusbxti);
2828 }
2829
2830 writel(osc | 0x10, S3C_PHYCLK);
2831
2832 /* issue a full set of resets to the otg and core */
2833
2834 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2835 udelay(20); /* at-least 10uS */
2836 writel(0, S3C_RSTCON);
2837 }
2838
2839
2840 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2841 {
2842 u32 cfg4;
2843
2844 /* unmask subset of endpoint interrupts */
2845
2846 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2847 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2848 hsotg->regs + S3C_DIEPMSK);
2849
2850 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2851 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2852 hsotg->regs + S3C_DOEPMSK);
2853
2854 writel(0, hsotg->regs + S3C_DAINTMSK);
2855
2856 /* Be in disconnected state until gadget is registered */
2857 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2858
2859 if (0) {
2860 /* post global nak until we're ready */
2861 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2862 hsotg->regs + S3C_DCTL);
2863 }
2864
2865 /* setup fifos */
2866
2867 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2868 readl(hsotg->regs + S3C_GRXFSIZ),
2869 readl(hsotg->regs + S3C_GNPTXFSIZ));
2870
2871 s3c_hsotg_init_fifo(hsotg);
2872
2873 /* set the PLL on, remove the HNP/SRP and set the PHY */
2874 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2875 hsotg->regs + S3C_GUSBCFG);
2876
2877 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2878 hsotg->regs + S3C_GAHBCFG);
2879
2880 /* check hardware configuration */
2881
2882 cfg4 = readl(hsotg->regs + 0x50);
2883 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2884
2885 dev_info(hsotg->dev, "%s fifos\n",
2886 hsotg->dedicated_fifos ? "dedicated" : "shared");
2887 }
2888
2889 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2890 {
2891 struct device *dev = hsotg->dev;
2892 void __iomem *regs = hsotg->regs;
2893 u32 val;
2894 int idx;
2895
2896 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2897 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2898 readl(regs + S3C_DIEPMSK));
2899
2900 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2901 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2902
2903 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2904 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2905
2906 /* show periodic fifo settings */
2907
2908 for (idx = 1; idx <= 15; idx++) {
2909 val = readl(regs + S3C_DPTXFSIZn(idx));
2910 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2911 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2912 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2913 }
2914
2915 for (idx = 0; idx < 15; idx++) {
2916 dev_info(dev,
2917 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2918 readl(regs + S3C_DIEPCTL(idx)),
2919 readl(regs + S3C_DIEPTSIZ(idx)),
2920 readl(regs + S3C_DIEPDMA(idx)));
2921
2922 val = readl(regs + S3C_DOEPCTL(idx));
2923 dev_info(dev,
2924 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2925 idx, readl(regs + S3C_DOEPCTL(idx)),
2926 readl(regs + S3C_DOEPTSIZ(idx)),
2927 readl(regs + S3C_DOEPDMA(idx)));
2928
2929 }
2930
2931 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2932 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2933 }
2934
2935
2936 /**
2937 * state_show - debugfs: show overall driver and device state.
2938 * @seq: The seq file to write to.
2939 * @v: Unused parameter.
2940 *
2941 * This debugfs entry shows the overall state of the hardware and
2942 * some general information about each of the endpoints available
2943 * to the system.
2944 */
2945 static int state_show(struct seq_file *seq, void *v)
2946 {
2947 struct s3c_hsotg *hsotg = seq->private;
2948 void __iomem *regs = hsotg->regs;
2949 int idx;
2950
2951 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2952 readl(regs + S3C_DCFG),
2953 readl(regs + S3C_DCTL),
2954 readl(regs + S3C_DSTS));
2955
2956 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2957 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2958
2959 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2960 readl(regs + S3C_GINTMSK),
2961 readl(regs + S3C_GINTSTS));
2962
2963 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2964 readl(regs + S3C_DAINTMSK),
2965 readl(regs + S3C_DAINT));
2966
2967 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2968 readl(regs + S3C_GNPTXSTS),
2969 readl(regs + S3C_GRXSTSR));
2970
2971 seq_printf(seq, "\nEndpoint status:\n");
2972
2973 for (idx = 0; idx < 15; idx++) {
2974 u32 in, out;
2975
2976 in = readl(regs + S3C_DIEPCTL(idx));
2977 out = readl(regs + S3C_DOEPCTL(idx));
2978
2979 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2980 idx, in, out);
2981
2982 in = readl(regs + S3C_DIEPTSIZ(idx));
2983 out = readl(regs + S3C_DOEPTSIZ(idx));
2984
2985 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2986 in, out);
2987
2988 seq_printf(seq, "\n");
2989 }
2990
2991 return 0;
2992 }
2993
2994 static int state_open(struct inode *inode, struct file *file)
2995 {
2996 return single_open(file, state_show, inode->i_private);
2997 }
2998
2999 static const struct file_operations state_fops = {
3000 .owner = THIS_MODULE,
3001 .open = state_open,
3002 .read = seq_read,
3003 .llseek = seq_lseek,
3004 .release = single_release,
3005 };
3006
3007 /**
3008 * fifo_show - debugfs: show the fifo information
3009 * @seq: The seq_file to write data to.
3010 * @v: Unused parameter.
3011 *
3012 * Show the FIFO information for the overall fifo and all the
3013 * periodic transmission FIFOs.
3014 */
3015 static int fifo_show(struct seq_file *seq, void *v)
3016 {
3017 struct s3c_hsotg *hsotg = seq->private;
3018 void __iomem *regs = hsotg->regs;
3019 u32 val;
3020 int idx;
3021
3022 seq_printf(seq, "Non-periodic FIFOs:\n");
3023 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3024
3025 val = readl(regs + S3C_GNPTXFSIZ);
3026 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3027 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3028 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3029
3030 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3031
3032 for (idx = 1; idx <= 15; idx++) {
3033 val = readl(regs + S3C_DPTXFSIZn(idx));
3034
3035 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3036 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3037 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3038 }
3039
3040 return 0;
3041 }
3042
3043 static int fifo_open(struct inode *inode, struct file *file)
3044 {
3045 return single_open(file, fifo_show, inode->i_private);
3046 }
3047
3048 static const struct file_operations fifo_fops = {
3049 .owner = THIS_MODULE,
3050 .open = fifo_open,
3051 .read = seq_read,
3052 .llseek = seq_lseek,
3053 .release = single_release,
3054 };
3055
3056
3057 static const char *decode_direction(int is_in)
3058 {
3059 return is_in ? "in" : "out";
3060 }
3061
3062 /**
3063 * ep_show - debugfs: show the state of an endpoint.
3064 * @seq: The seq_file to write data to.
3065 * @v: Unused parameter.
3066 *
3067 * This debugfs entry shows the state of the given endpoint (one is
3068 * registered for each available).
3069 */
3070 static int ep_show(struct seq_file *seq, void *v)
3071 {
3072 struct s3c_hsotg_ep *ep = seq->private;
3073 struct s3c_hsotg *hsotg = ep->parent;
3074 struct s3c_hsotg_req *req;
3075 void __iomem *regs = hsotg->regs;
3076 int index = ep->index;
3077 int show_limit = 15;
3078 unsigned long flags;
3079
3080 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3081 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3082
3083 /* first show the register state */
3084
3085 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3086 readl(regs + S3C_DIEPCTL(index)),
3087 readl(regs + S3C_DOEPCTL(index)));
3088
3089 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3090 readl(regs + S3C_DIEPDMA(index)),
3091 readl(regs + S3C_DOEPDMA(index)));
3092
3093 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3094 readl(regs + S3C_DIEPINT(index)),
3095 readl(regs + S3C_DOEPINT(index)));
3096
3097 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3098 readl(regs + S3C_DIEPTSIZ(index)),
3099 readl(regs + S3C_DOEPTSIZ(index)));
3100
3101 seq_printf(seq, "\n");
3102 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3103 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3104
3105 seq_printf(seq, "request list (%p,%p):\n",
3106 ep->queue.next, ep->queue.prev);
3107
3108 spin_lock_irqsave(&ep->lock, flags);
3109
3110 list_for_each_entry(req, &ep->queue, queue) {
3111 if (--show_limit < 0) {
3112 seq_printf(seq, "not showing more requests...\n");
3113 break;
3114 }
3115
3116 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3117 req == ep->req ? '*' : ' ',
3118 req, req->req.length, req->req.buf);
3119 seq_printf(seq, "%d done, res %d\n",
3120 req->req.actual, req->req.status);
3121 }
3122
3123 spin_unlock_irqrestore(&ep->lock, flags);
3124
3125 return 0;
3126 }
3127
3128 static int ep_open(struct inode *inode, struct file *file)
3129 {
3130 return single_open(file, ep_show, inode->i_private);
3131 }
3132
3133 static const struct file_operations ep_fops = {
3134 .owner = THIS_MODULE,
3135 .open = ep_open,
3136 .read = seq_read,
3137 .llseek = seq_lseek,
3138 .release = single_release,
3139 };
3140
3141 /**
3142 * s3c_hsotg_create_debug - create debugfs directory and files
3143 * @hsotg: The driver state
3144 *
3145 * Create the debugfs files to allow the user to get information
3146 * about the state of the system. The directory name is created
3147 * with the same name as the device itself, in case we end up
3148 * with multiple blocks in future systems.
3149 */
3150 static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3151 {
3152 struct dentry *root;
3153 unsigned epidx;
3154
3155 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3156 hsotg->debug_root = root;
3157 if (IS_ERR(root)) {
3158 dev_err(hsotg->dev, "cannot create debug root\n");
3159 return;
3160 }
3161
3162 /* create general state file */
3163
3164 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3165 hsotg, &state_fops);
3166
3167 if (IS_ERR(hsotg->debug_file))
3168 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3169
3170 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3171 hsotg, &fifo_fops);
3172
3173 if (IS_ERR(hsotg->debug_fifo))
3174 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3175
3176 /* create one file for each endpoint */
3177
3178 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3179 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3180
3181 ep->debugfs = debugfs_create_file(ep->name, 0444,
3182 root, ep, &ep_fops);
3183
3184 if (IS_ERR(ep->debugfs))
3185 dev_err(hsotg->dev, "failed to create %s debug file\n",
3186 ep->name);
3187 }
3188 }
3189
3190 /**
3191 * s3c_hsotg_delete_debug - cleanup debugfs entries
3192 * @hsotg: The driver state
3193 *
3194 * Cleanup (remove) the debugfs files for use on module exit.
3195 */
3196 static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3197 {
3198 unsigned epidx;
3199
3200 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3201 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3202 debugfs_remove(ep->debugfs);
3203 }
3204
3205 debugfs_remove(hsotg->debug_file);
3206 debugfs_remove(hsotg->debug_fifo);
3207 debugfs_remove(hsotg->debug_root);
3208 }
3209
3210 /**
3211 * s3c_hsotg_gate - set the hardware gate for the block
3212 * @pdev: The device we bound to
3213 * @on: On or off.
3214 *
3215 * Set the hardware gate setting into the block. If we end up on
3216 * something other than an S3C64XX, then we might need to change this
3217 * to using a platform data callback, or some other mechanism.
3218 */
3219 static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3220 {
3221 unsigned long flags;
3222 u32 others;
3223
3224 local_irq_save(flags);
3225
3226 others = __raw_readl(S3C64XX_OTHERS);
3227 if (on)
3228 others |= S3C64XX_OTHERS_USBMASK;
3229 else
3230 others &= ~S3C64XX_OTHERS_USBMASK;
3231 __raw_writel(others, S3C64XX_OTHERS);
3232
3233 local_irq_restore(flags);
3234 }
3235
3236 static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3237
3238 static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3239 {
3240 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3241 struct device *dev = &pdev->dev;
3242 struct s3c_hsotg *hsotg;
3243 struct resource *res;
3244 int epnum;
3245 int ret;
3246
3247 if (!plat)
3248 plat = &s3c_hsotg_default_pdata;
3249
3250 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3251 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3252 GFP_KERNEL);
3253 if (!hsotg) {
3254 dev_err(dev, "cannot get memory\n");
3255 return -ENOMEM;
3256 }
3257
3258 hsotg->dev = dev;
3259 hsotg->plat = plat;
3260
3261 hsotg->clk = clk_get(&pdev->dev, "otg");
3262 if (IS_ERR(hsotg->clk)) {
3263 dev_err(dev, "cannot get otg clock\n");
3264 ret = -EINVAL;
3265 goto err_mem;
3266 }
3267
3268 platform_set_drvdata(pdev, hsotg);
3269
3270 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3271 if (!res) {
3272 dev_err(dev, "cannot find register resource 0\n");
3273 ret = -EINVAL;
3274 goto err_clk;
3275 }
3276
3277 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3278 dev_name(dev));
3279 if (!hsotg->regs_res) {
3280 dev_err(dev, "cannot reserve registers\n");
3281 ret = -ENOENT;
3282 goto err_clk;
3283 }
3284
3285 hsotg->regs = ioremap(res->start, resource_size(res));
3286 if (!hsotg->regs) {
3287 dev_err(dev, "cannot map registers\n");
3288 ret = -ENXIO;
3289 goto err_regs_res;
3290 }
3291
3292 ret = platform_get_irq(pdev, 0);
3293 if (ret < 0) {
3294 dev_err(dev, "cannot find IRQ\n");
3295 goto err_regs;
3296 }
3297
3298 hsotg->irq = ret;
3299
3300 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3301 if (ret < 0) {
3302 dev_err(dev, "cannot claim IRQ\n");
3303 goto err_regs;
3304 }
3305
3306 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3307
3308 device_initialize(&hsotg->gadget.dev);
3309
3310 dev_set_name(&hsotg->gadget.dev, "gadget");
3311
3312 hsotg->gadget.is_dualspeed = 1;
3313 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3314 hsotg->gadget.name = dev_name(dev);
3315
3316 hsotg->gadget.dev.parent = dev;
3317 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3318
3319 /* setup endpoint information */
3320
3321 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3322 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3323
3324 /* allocate EP0 request */
3325
3326 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3327 GFP_KERNEL);
3328 if (!hsotg->ctrl_req) {
3329 dev_err(dev, "failed to allocate ctrl req\n");
3330 goto err_regs;
3331 }
3332
3333 /* reset the system */
3334
3335 clk_enable(hsotg->clk);
3336
3337 s3c_hsotg_gate(pdev, true);
3338
3339 s3c_hsotg_otgreset(hsotg);
3340 s3c_hsotg_corereset(hsotg);
3341 s3c_hsotg_init(hsotg);
3342
3343 /* initialise the endpoints now the core has been initialised */
3344 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3345 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3346
3347 s3c_hsotg_create_debug(hsotg);
3348
3349 s3c_hsotg_dump(hsotg);
3350
3351 our_hsotg = hsotg;
3352 return 0;
3353
3354 err_regs:
3355 iounmap(hsotg->regs);
3356
3357 err_regs_res:
3358 release_resource(hsotg->regs_res);
3359 kfree(hsotg->regs_res);
3360 err_clk:
3361 clk_put(hsotg->clk);
3362 err_mem:
3363 kfree(hsotg);
3364 return ret;
3365 }
3366
3367 static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3368 {
3369 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3370
3371 s3c_hsotg_delete_debug(hsotg);
3372
3373 usb_gadget_unregister_driver(hsotg->driver);
3374
3375 free_irq(hsotg->irq, hsotg);
3376 iounmap(hsotg->regs);
3377
3378 release_resource(hsotg->regs_res);
3379 kfree(hsotg->regs_res);
3380
3381 s3c_hsotg_gate(pdev, false);
3382
3383 clk_disable(hsotg->clk);
3384 clk_put(hsotg->clk);
3385
3386 kfree(hsotg);
3387 return 0;
3388 }
3389
3390 #if 1
3391 #define s3c_hsotg_suspend NULL
3392 #define s3c_hsotg_resume NULL
3393 #endif
3394
3395 static struct platform_driver s3c_hsotg_driver = {
3396 .driver = {
3397 .name = "s3c-hsotg",
3398 .owner = THIS_MODULE,
3399 },
3400 .probe = s3c_hsotg_probe,
3401 .remove = __devexit_p(s3c_hsotg_remove),
3402 .suspend = s3c_hsotg_suspend,
3403 .resume = s3c_hsotg_resume,
3404 };
3405
3406 static int __init s3c_hsotg_modinit(void)
3407 {
3408 return platform_driver_register(&s3c_hsotg_driver);
3409 }
3410
3411 static void __exit s3c_hsotg_modexit(void)
3412 {
3413 platform_driver_unregister(&s3c_hsotg_driver);
3414 }
3415
3416 module_init(s3c_hsotg_modinit);
3417 module_exit(s3c_hsotg_modexit);
3418
3419 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3420 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3421 MODULE_LICENSE("GPL");
3422 MODULE_ALIAS("platform:s3c-hsotg");