procfs: new helper - PDE_DATA(inode)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / gadget / lpc32xx_udc.c
1 /*
2 * USB Gadget driver for LPC32xx
3 *
4 * Authors:
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Mike James
7 * Roland Stigge <stigge@antcom.de>
8 *
9 * Copyright (C) 2006 Philips Semiconductors
10 * Copyright (C) 2009 NXP Semiconductors
11 * Copyright (C) 2012 Roland Stigge
12 *
13 * Note: This driver is based on original work done by Mike James for
14 * the LPC3180.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/delay.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/errno.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/interrupt.h>
41 #include <linux/proc_fs.h>
42 #include <linux/clk.h>
43 #include <linux/usb/ch9.h>
44 #include <linux/usb/gadget.h>
45 #include <linux/i2c.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/dmapool.h>
50 #include <linux/workqueue.h>
51 #include <linux/of.h>
52 #include <linux/usb/isp1301.h>
53
54 #include <asm/byteorder.h>
55 #include <mach/hardware.h>
56 #include <linux/io.h>
57 #include <asm/irq.h>
58 #include <asm/system.h>
59
60 #include <mach/platform.h>
61 #include <mach/irqs.h>
62 #include <mach/board.h>
63 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
64 #include <linux/debugfs.h>
65 #include <linux/seq_file.h>
66 #endif
67
68 /*
69 * USB device configuration structure
70 */
71 typedef void (*usc_chg_event)(int);
72 struct lpc32xx_usbd_cfg {
73 int vbus_drv_pol; /* 0=active low drive for VBUS via ISP1301 */
74 usc_chg_event conn_chgb; /* Connection change event (optional) */
75 usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
76 usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
77 };
78
79 /*
80 * controller driver data structures
81 */
82
83 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
84 #define NUM_ENDPOINTS 16
85
86 /*
87 * IRQ indices make reading the code a little easier
88 */
89 #define IRQ_USB_LP 0
90 #define IRQ_USB_HP 1
91 #define IRQ_USB_DEVDMA 2
92 #define IRQ_USB_ATX 3
93
94 #define EP_OUT 0 /* RX (from host) */
95 #define EP_IN 1 /* TX (to host) */
96
97 /* Returns the interrupt mask for the selected hardware endpoint */
98 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
99
100 #define EP_INT_TYPE 0
101 #define EP_ISO_TYPE 1
102 #define EP_BLK_TYPE 2
103 #define EP_CTL_TYPE 3
104
105 /* EP0 states */
106 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
107 #define DATA_IN 1 /* Expect dev->host transfer */
108 #define DATA_OUT 2 /* Expect host->dev transfer */
109
110 /* DD (DMA Descriptor) structure, requires word alignment, this is already
111 * defined in the LPC32XX USB device header file, but this version is slightly
112 * modified to tag some work data with each DMA descriptor. */
113 struct lpc32xx_usbd_dd_gad {
114 u32 dd_next_phy;
115 u32 dd_setup;
116 u32 dd_buffer_addr;
117 u32 dd_status;
118 u32 dd_iso_ps_mem_addr;
119 u32 this_dma;
120 u32 iso_status[6]; /* 5 spare */
121 u32 dd_next_v;
122 };
123
124 /*
125 * Logical endpoint structure
126 */
127 struct lpc32xx_ep {
128 struct usb_ep ep;
129 struct list_head queue;
130 struct lpc32xx_udc *udc;
131
132 u32 hwep_num_base; /* Physical hardware EP */
133 u32 hwep_num; /* Maps to hardware endpoint */
134 u32 maxpacket;
135 u32 lep;
136
137 bool is_in;
138 bool req_pending;
139 u32 eptype;
140
141 u32 totalints;
142
143 bool wedge;
144 };
145
146 /*
147 * Common UDC structure
148 */
149 struct lpc32xx_udc {
150 struct usb_gadget gadget;
151 struct usb_gadget_driver *driver;
152 struct platform_device *pdev;
153 struct device *dev;
154 struct dentry *pde;
155 spinlock_t lock;
156 struct i2c_client *isp1301_i2c_client;
157
158 /* Board and device specific */
159 struct lpc32xx_usbd_cfg *board;
160 u32 io_p_start;
161 u32 io_p_size;
162 void __iomem *udp_baseaddr;
163 int udp_irq[4];
164 struct clk *usb_pll_clk;
165 struct clk *usb_slv_clk;
166 struct clk *usb_otg_clk;
167
168 /* DMA support */
169 u32 *udca_v_base;
170 u32 udca_p_base;
171 struct dma_pool *dd_cache;
172
173 /* Common EP and control data */
174 u32 enabled_devints;
175 u32 enabled_hwepints;
176 u32 dev_status;
177 u32 realized_eps;
178
179 /* VBUS detection, pullup, and power flags */
180 u8 vbus;
181 u8 last_vbus;
182 int pullup;
183 int poweron;
184
185 /* Work queues related to I2C support */
186 struct work_struct pullup_job;
187 struct work_struct vbus_job;
188 struct work_struct power_job;
189
190 /* USB device peripheral - various */
191 struct lpc32xx_ep ep[NUM_ENDPOINTS];
192 bool enabled;
193 bool clocked;
194 bool suspended;
195 bool selfpowered;
196 int ep0state;
197 atomic_t enabled_ep_cnt;
198 wait_queue_head_t ep_disable_wait_queue;
199 };
200
201 /*
202 * Endpoint request
203 */
204 struct lpc32xx_request {
205 struct usb_request req;
206 struct list_head queue;
207 struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
208 bool mapped;
209 bool send_zlp;
210 };
211
212 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
213 {
214 return container_of(g, struct lpc32xx_udc, gadget);
215 }
216
217 #define ep_dbg(epp, fmt, arg...) \
218 dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
219 #define ep_err(epp, fmt, arg...) \
220 dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
221 #define ep_info(epp, fmt, arg...) \
222 dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
223 #define ep_warn(epp, fmt, arg...) \
224 dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
225
226 #define UDCA_BUFF_SIZE (128)
227
228 /* TODO: When the clock framework is introduced in LPC32xx, IO_ADDRESS will
229 * be replaced with an inremap()ed pointer
230 * */
231 #define USB_CTRL IO_ADDRESS(LPC32XX_CLK_PM_BASE + 0x64)
232
233 /* USB_CTRL bit defines */
234 #define USB_SLAVE_HCLK_EN (1 << 24)
235 #define USB_HOST_NEED_CLK_EN (1 << 21)
236 #define USB_DEV_NEED_CLK_EN (1 << 22)
237
238 /**********************************************************************
239 * USB device controller register offsets
240 **********************************************************************/
241
242 #define USBD_DEVINTST(x) ((x) + 0x200)
243 #define USBD_DEVINTEN(x) ((x) + 0x204)
244 #define USBD_DEVINTCLR(x) ((x) + 0x208)
245 #define USBD_DEVINTSET(x) ((x) + 0x20C)
246 #define USBD_CMDCODE(x) ((x) + 0x210)
247 #define USBD_CMDDATA(x) ((x) + 0x214)
248 #define USBD_RXDATA(x) ((x) + 0x218)
249 #define USBD_TXDATA(x) ((x) + 0x21C)
250 #define USBD_RXPLEN(x) ((x) + 0x220)
251 #define USBD_TXPLEN(x) ((x) + 0x224)
252 #define USBD_CTRL(x) ((x) + 0x228)
253 #define USBD_DEVINTPRI(x) ((x) + 0x22C)
254 #define USBD_EPINTST(x) ((x) + 0x230)
255 #define USBD_EPINTEN(x) ((x) + 0x234)
256 #define USBD_EPINTCLR(x) ((x) + 0x238)
257 #define USBD_EPINTSET(x) ((x) + 0x23C)
258 #define USBD_EPINTPRI(x) ((x) + 0x240)
259 #define USBD_REEP(x) ((x) + 0x244)
260 #define USBD_EPIND(x) ((x) + 0x248)
261 #define USBD_EPMAXPSIZE(x) ((x) + 0x24C)
262 /* DMA support registers only below */
263 /* Set, clear, or get enabled state of the DMA request status. If
264 * enabled, an IN or OUT token will start a DMA transfer for the EP */
265 #define USBD_DMARST(x) ((x) + 0x250)
266 #define USBD_DMARCLR(x) ((x) + 0x254)
267 #define USBD_DMARSET(x) ((x) + 0x258)
268 /* DMA UDCA head pointer */
269 #define USBD_UDCAH(x) ((x) + 0x280)
270 /* EP DMA status, enable, and disable. This is used to specifically
271 * enabled or disable DMA for a specific EP */
272 #define USBD_EPDMAST(x) ((x) + 0x284)
273 #define USBD_EPDMAEN(x) ((x) + 0x288)
274 #define USBD_EPDMADIS(x) ((x) + 0x28C)
275 /* DMA master interrupts enable and pending interrupts */
276 #define USBD_DMAINTST(x) ((x) + 0x290)
277 #define USBD_DMAINTEN(x) ((x) + 0x294)
278 /* DMA end of transfer interrupt enable, disable, status */
279 #define USBD_EOTINTST(x) ((x) + 0x2A0)
280 #define USBD_EOTINTCLR(x) ((x) + 0x2A4)
281 #define USBD_EOTINTSET(x) ((x) + 0x2A8)
282 /* New DD request interrupt enable, disable, status */
283 #define USBD_NDDRTINTST(x) ((x) + 0x2AC)
284 #define USBD_NDDRTINTCLR(x) ((x) + 0x2B0)
285 #define USBD_NDDRTINTSET(x) ((x) + 0x2B4)
286 /* DMA error interrupt enable, disable, status */
287 #define USBD_SYSERRTINTST(x) ((x) + 0x2B8)
288 #define USBD_SYSERRTINTCLR(x) ((x) + 0x2BC)
289 #define USBD_SYSERRTINTSET(x) ((x) + 0x2C0)
290
291 /**********************************************************************
292 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
293 * USBD_DEVINTPRI register definitions
294 **********************************************************************/
295 #define USBD_ERR_INT (1 << 9)
296 #define USBD_EP_RLZED (1 << 8)
297 #define USBD_TXENDPKT (1 << 7)
298 #define USBD_RXENDPKT (1 << 6)
299 #define USBD_CDFULL (1 << 5)
300 #define USBD_CCEMPTY (1 << 4)
301 #define USBD_DEV_STAT (1 << 3)
302 #define USBD_EP_SLOW (1 << 2)
303 #define USBD_EP_FAST (1 << 1)
304 #define USBD_FRAME (1 << 0)
305
306 /**********************************************************************
307 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
308 * USBD_EPINTPRI register definitions
309 **********************************************************************/
310 /* End point selection macro (RX) */
311 #define USBD_RX_EP_SEL(e) (1 << ((e) << 1))
312
313 /* End point selection macro (TX) */
314 #define USBD_TX_EP_SEL(e) (1 << (((e) << 1) + 1))
315
316 /**********************************************************************
317 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
318 * USBD_EPDMAEN/USBD_EPDMADIS/
319 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
320 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
321 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
322 * register definitions
323 **********************************************************************/
324 /* Endpoint selection macro */
325 #define USBD_EP_SEL(e) (1 << (e))
326
327 /**********************************************************************
328 * SBD_DMAINTST/USBD_DMAINTEN
329 **********************************************************************/
330 #define USBD_SYS_ERR_INT (1 << 2)
331 #define USBD_NEW_DD_INT (1 << 1)
332 #define USBD_EOT_INT (1 << 0)
333
334 /**********************************************************************
335 * USBD_RXPLEN register definitions
336 **********************************************************************/
337 #define USBD_PKT_RDY (1 << 11)
338 #define USBD_DV (1 << 10)
339 #define USBD_PK_LEN_MASK 0x3FF
340
341 /**********************************************************************
342 * USBD_CTRL register definitions
343 **********************************************************************/
344 #define USBD_LOG_ENDPOINT(e) ((e) << 2)
345 #define USBD_WR_EN (1 << 1)
346 #define USBD_RD_EN (1 << 0)
347
348 /**********************************************************************
349 * USBD_CMDCODE register definitions
350 **********************************************************************/
351 #define USBD_CMD_CODE(c) ((c) << 16)
352 #define USBD_CMD_PHASE(p) ((p) << 8)
353
354 /**********************************************************************
355 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
356 **********************************************************************/
357 #define USBD_DMAEP(e) (1 << (e))
358
359 /* DD (DMA Descriptor) structure, requires word alignment */
360 struct lpc32xx_usbd_dd {
361 u32 *dd_next;
362 u32 dd_setup;
363 u32 dd_buffer_addr;
364 u32 dd_status;
365 u32 dd_iso_ps_mem_addr;
366 };
367
368 /* dd_setup bit defines */
369 #define DD_SETUP_ATLE_DMA_MODE 0x01
370 #define DD_SETUP_NEXT_DD_VALID 0x04
371 #define DD_SETUP_ISO_EP 0x10
372 #define DD_SETUP_PACKETLEN(n) (((n) & 0x7FF) << 5)
373 #define DD_SETUP_DMALENBYTES(n) (((n) & 0xFFFF) << 16)
374
375 /* dd_status bit defines */
376 #define DD_STATUS_DD_RETIRED 0x01
377 #define DD_STATUS_STS_MASK 0x1E
378 #define DD_STATUS_STS_NS 0x00 /* Not serviced */
379 #define DD_STATUS_STS_BS 0x02 /* Being serviced */
380 #define DD_STATUS_STS_NC 0x04 /* Normal completion */
381 #define DD_STATUS_STS_DUR 0x06 /* Data underrun (short packet) */
382 #define DD_STATUS_STS_DOR 0x08 /* Data overrun */
383 #define DD_STATUS_STS_SE 0x12 /* System error */
384 #define DD_STATUS_PKT_VAL 0x20 /* Packet valid */
385 #define DD_STATUS_LSB_EX 0x40 /* LS byte extracted (ATLE) */
386 #define DD_STATUS_MSB_EX 0x80 /* MS byte extracted (ATLE) */
387 #define DD_STATUS_MLEN(n) (((n) >> 8) & 0x3F)
388 #define DD_STATUS_CURDMACNT(n) (((n) >> 16) & 0xFFFF)
389
390 /*
391 *
392 * Protocol engine bits below
393 *
394 */
395 /* Device Interrupt Bit Definitions */
396 #define FRAME_INT 0x00000001
397 #define EP_FAST_INT 0x00000002
398 #define EP_SLOW_INT 0x00000004
399 #define DEV_STAT_INT 0x00000008
400 #define CCEMTY_INT 0x00000010
401 #define CDFULL_INT 0x00000020
402 #define RxENDPKT_INT 0x00000040
403 #define TxENDPKT_INT 0x00000080
404 #define EP_RLZED_INT 0x00000100
405 #define ERR_INT 0x00000200
406
407 /* Rx & Tx Packet Length Definitions */
408 #define PKT_LNGTH_MASK 0x000003FF
409 #define PKT_DV 0x00000400
410 #define PKT_RDY 0x00000800
411
412 /* USB Control Definitions */
413 #define CTRL_RD_EN 0x00000001
414 #define CTRL_WR_EN 0x00000002
415
416 /* Command Codes */
417 #define CMD_SET_ADDR 0x00D00500
418 #define CMD_CFG_DEV 0x00D80500
419 #define CMD_SET_MODE 0x00F30500
420 #define CMD_RD_FRAME 0x00F50500
421 #define DAT_RD_FRAME 0x00F50200
422 #define CMD_RD_TEST 0x00FD0500
423 #define DAT_RD_TEST 0x00FD0200
424 #define CMD_SET_DEV_STAT 0x00FE0500
425 #define CMD_GET_DEV_STAT 0x00FE0500
426 #define DAT_GET_DEV_STAT 0x00FE0200
427 #define CMD_GET_ERR_CODE 0x00FF0500
428 #define DAT_GET_ERR_CODE 0x00FF0200
429 #define CMD_RD_ERR_STAT 0x00FB0500
430 #define DAT_RD_ERR_STAT 0x00FB0200
431 #define DAT_WR_BYTE(x) (0x00000100 | ((x) << 16))
432 #define CMD_SEL_EP(x) (0x00000500 | ((x) << 16))
433 #define DAT_SEL_EP(x) (0x00000200 | ((x) << 16))
434 #define CMD_SEL_EP_CLRI(x) (0x00400500 | ((x) << 16))
435 #define DAT_SEL_EP_CLRI(x) (0x00400200 | ((x) << 16))
436 #define CMD_SET_EP_STAT(x) (0x00400500 | ((x) << 16))
437 #define CMD_CLR_BUF 0x00F20500
438 #define DAT_CLR_BUF 0x00F20200
439 #define CMD_VALID_BUF 0x00FA0500
440
441 /* Device Address Register Definitions */
442 #define DEV_ADDR_MASK 0x7F
443 #define DEV_EN 0x80
444
445 /* Device Configure Register Definitions */
446 #define CONF_DVICE 0x01
447
448 /* Device Mode Register Definitions */
449 #define AP_CLK 0x01
450 #define INAK_CI 0x02
451 #define INAK_CO 0x04
452 #define INAK_II 0x08
453 #define INAK_IO 0x10
454 #define INAK_BI 0x20
455 #define INAK_BO 0x40
456
457 /* Device Status Register Definitions */
458 #define DEV_CON 0x01
459 #define DEV_CON_CH 0x02
460 #define DEV_SUS 0x04
461 #define DEV_SUS_CH 0x08
462 #define DEV_RST 0x10
463
464 /* Error Code Register Definitions */
465 #define ERR_EC_MASK 0x0F
466 #define ERR_EA 0x10
467
468 /* Error Status Register Definitions */
469 #define ERR_PID 0x01
470 #define ERR_UEPKT 0x02
471 #define ERR_DCRC 0x04
472 #define ERR_TIMOUT 0x08
473 #define ERR_EOP 0x10
474 #define ERR_B_OVRN 0x20
475 #define ERR_BTSTF 0x40
476 #define ERR_TGL 0x80
477
478 /* Endpoint Select Register Definitions */
479 #define EP_SEL_F 0x01
480 #define EP_SEL_ST 0x02
481 #define EP_SEL_STP 0x04
482 #define EP_SEL_PO 0x08
483 #define EP_SEL_EPN 0x10
484 #define EP_SEL_B_1_FULL 0x20
485 #define EP_SEL_B_2_FULL 0x40
486
487 /* Endpoint Status Register Definitions */
488 #define EP_STAT_ST 0x01
489 #define EP_STAT_DA 0x20
490 #define EP_STAT_RF_MO 0x40
491 #define EP_STAT_CND_ST 0x80
492
493 /* Clear Buffer Register Definitions */
494 #define CLR_BUF_PO 0x01
495
496 /* DMA Interrupt Bit Definitions */
497 #define EOT_INT 0x01
498 #define NDD_REQ_INT 0x02
499 #define SYS_ERR_INT 0x04
500
501 #define DRIVER_VERSION "1.03"
502 static const char driver_name[] = "lpc32xx_udc";
503
504 /*
505 *
506 * proc interface support
507 *
508 */
509 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
510 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
511 static const char debug_filename[] = "driver/udc";
512
513 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
514 {
515 struct lpc32xx_request *req;
516
517 seq_printf(s, "\n");
518 seq_printf(s, "%12s, maxpacket %4d %3s",
519 ep->ep.name, ep->ep.maxpacket,
520 ep->is_in ? "in" : "out");
521 seq_printf(s, " type %4s", epnames[ep->eptype]);
522 seq_printf(s, " ints: %12d", ep->totalints);
523
524 if (list_empty(&ep->queue))
525 seq_printf(s, "\t(queue empty)\n");
526 else {
527 list_for_each_entry(req, &ep->queue, queue) {
528 u32 length = req->req.actual;
529
530 seq_printf(s, "\treq %p len %d/%d buf %p\n",
531 &req->req, length,
532 req->req.length, req->req.buf);
533 }
534 }
535 }
536
537 static int proc_udc_show(struct seq_file *s, void *unused)
538 {
539 struct lpc32xx_udc *udc = s->private;
540 struct lpc32xx_ep *ep;
541 unsigned long flags;
542
543 seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
544
545 spin_lock_irqsave(&udc->lock, flags);
546
547 seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
548 udc->vbus ? "present" : "off",
549 udc->enabled ? (udc->vbus ? "active" : "enabled") :
550 "disabled",
551 udc->selfpowered ? "self" : "VBUS",
552 udc->suspended ? ", suspended" : "",
553 udc->driver ? udc->driver->driver.name : "(none)");
554
555 if (udc->enabled && udc->vbus) {
556 proc_ep_show(s, &udc->ep[0]);
557 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
558 proc_ep_show(s, ep);
559 }
560
561 spin_unlock_irqrestore(&udc->lock, flags);
562
563 return 0;
564 }
565
566 static int proc_udc_open(struct inode *inode, struct file *file)
567 {
568 return single_open(file, proc_udc_show, PDE_DATA(inode));
569 }
570
571 static const struct file_operations proc_ops = {
572 .owner = THIS_MODULE,
573 .open = proc_udc_open,
574 .read = seq_read,
575 .llseek = seq_lseek,
576 .release = single_release,
577 };
578
579 static void create_debug_file(struct lpc32xx_udc *udc)
580 {
581 udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
582 }
583
584 static void remove_debug_file(struct lpc32xx_udc *udc)
585 {
586 if (udc->pde)
587 debugfs_remove(udc->pde);
588 }
589
590 #else
591 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
592 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
593 #endif
594
595 /* Primary initialization sequence for the ISP1301 transceiver */
596 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
597 {
598 /* LPC32XX only supports DAT_SE0 USB mode */
599 /* This sequence is important */
600
601 /* Disable transparent UART mode first */
602 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
603 (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
604 MC1_UART_EN);
605
606 /* Set full speed and SE0 mode */
607 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
608 (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
609 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
610 ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
611
612 /*
613 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
614 */
615 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
616 (ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
617 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
618 ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
619
620 /* Driver VBUS_DRV high or low depending on board setup */
621 if (udc->board->vbus_drv_pol != 0)
622 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
623 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
624 else
625 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
626 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
627 OTG1_VBUS_DRV);
628
629 /* Bi-directional mode with suspend control
630 * Enable both pulldowns for now - the pullup will be enable when VBUS
631 * is detected */
632 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
633 (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
634 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
635 ISP1301_I2C_OTG_CONTROL_1,
636 (0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
637
638 /* Discharge VBUS (just in case) */
639 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
640 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
641 msleep(1);
642 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
643 (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
644 OTG1_VBUS_DISCHRG);
645
646 /* Clear and enable VBUS high edge interrupt */
647 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
648 ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
649 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
650 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
651 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
652 ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
653 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
654 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
655 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
656 ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
657
658 /* Enable usb_need_clk clock after transceiver is initialized */
659 writel((readl(USB_CTRL) | USB_DEV_NEED_CLK_EN), USB_CTRL);
660
661 dev_info(udc->dev, "ISP1301 Vendor ID : 0x%04x\n",
662 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
663 dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
664 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
665 dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
666 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
667 }
668
669 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
670 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
671 {
672 if (udc->pullup)
673 /* Enable pullup for bus signalling */
674 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
675 ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
676 else
677 /* Enable pullup for bus signalling */
678 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
679 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
680 OTG1_DP_PULLUP);
681 }
682
683 static void pullup_work(struct work_struct *work)
684 {
685 struct lpc32xx_udc *udc =
686 container_of(work, struct lpc32xx_udc, pullup_job);
687
688 isp1301_pullup_set(udc);
689 }
690
691 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
692 int block)
693 {
694 if (en_pullup == udc->pullup)
695 return;
696
697 udc->pullup = en_pullup;
698 if (block)
699 isp1301_pullup_set(udc);
700 else
701 /* defer slow i2c pull up setting */
702 schedule_work(&udc->pullup_job);
703 }
704
705 #ifdef CONFIG_PM
706 /* Powers up or down the ISP1301 transceiver */
707 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
708 {
709 if (enable != 0)
710 /* Power up ISP1301 - this ISP1301 will automatically wakeup
711 when VBUS is detected */
712 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
713 ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
714 MC2_GLOBAL_PWR_DN);
715 else
716 /* Power down ISP1301 */
717 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
718 ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
719 }
720
721 static void power_work(struct work_struct *work)
722 {
723 struct lpc32xx_udc *udc =
724 container_of(work, struct lpc32xx_udc, power_job);
725
726 isp1301_set_powerstate(udc, udc->poweron);
727 }
728 #endif
729
730 /*
731 *
732 * USB protocol engine command/data read/write helper functions
733 *
734 */
735 /* Issues a single command to the USB device state machine */
736 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
737 {
738 u32 pass = 0;
739 int to;
740
741 /* EP may lock on CLRI if this read isn't done */
742 u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
743 (void) tmp;
744
745 while (pass == 0) {
746 writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
747
748 /* Write command code */
749 writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
750 to = 10000;
751 while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
752 USBD_CCEMPTY) == 0) && (to > 0)) {
753 to--;
754 }
755
756 if (to > 0)
757 pass = 1;
758
759 cpu_relax();
760 }
761 }
762
763 /* Issues 2 commands (or command and data) to the USB device state machine */
764 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
765 u32 data)
766 {
767 udc_protocol_cmd_w(udc, cmd);
768 udc_protocol_cmd_w(udc, data);
769 }
770
771 /* Issues a single command to the USB device state machine and reads
772 * response data */
773 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
774 {
775 u32 tmp;
776 int to = 1000;
777
778 /* Write a command and read data from the protocol engine */
779 writel((USBD_CDFULL | USBD_CCEMPTY),
780 USBD_DEVINTCLR(udc->udp_baseaddr));
781
782 /* Write command code */
783 udc_protocol_cmd_w(udc, cmd);
784
785 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
786 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
787 && (to > 0))
788 to--;
789 if (!to)
790 dev_dbg(udc->dev,
791 "Protocol engine didn't receive response (CDFULL)\n");
792
793 return readl(USBD_CMDDATA(udc->udp_baseaddr));
794 }
795
796 /*
797 *
798 * USB device interrupt mask support functions
799 *
800 */
801 /* Enable one or more USB device interrupts */
802 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
803 {
804 udc->enabled_devints |= devmask;
805 writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
806 }
807
808 /* Disable one or more USB device interrupts */
809 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
810 {
811 udc->enabled_devints &= ~mask;
812 writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
813 }
814
815 /* Clear one or more USB device interrupts */
816 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
817 {
818 writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
819 }
820
821 /*
822 *
823 * Endpoint interrupt disable/enable functions
824 *
825 */
826 /* Enable one or more USB endpoint interrupts */
827 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
828 {
829 udc->enabled_hwepints |= (1 << hwep);
830 writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
831 }
832
833 /* Disable one or more USB endpoint interrupts */
834 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
835 {
836 udc->enabled_hwepints &= ~(1 << hwep);
837 writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
838 }
839
840 /* Clear one or more USB endpoint interrupts */
841 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
842 {
843 writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
844 }
845
846 /* Enable DMA for the HW channel */
847 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
848 {
849 writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
850 }
851
852 /* Disable DMA for the HW channel */
853 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
854 {
855 writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
856 }
857
858 /*
859 *
860 * Endpoint realize/unrealize functions
861 *
862 */
863 /* Before an endpoint can be used, it needs to be realized
864 * in the USB protocol engine - this realizes the endpoint.
865 * The interrupt (FIFO or DMA) is not enabled with this function */
866 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
867 u32 maxpacket)
868 {
869 int to = 1000;
870
871 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
872 writel(hwep, USBD_EPIND(udc->udp_baseaddr));
873 udc->realized_eps |= (1 << hwep);
874 writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
875 writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
876
877 /* Wait until endpoint is realized in hardware */
878 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
879 USBD_EP_RLZED)) && (to > 0))
880 to--;
881 if (!to)
882 dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
883
884 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
885 }
886
887 /* Unrealize an EP */
888 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
889 {
890 udc->realized_eps &= ~(1 << hwep);
891 writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
892 }
893
894 /*
895 *
896 * Endpoint support functions
897 *
898 */
899 /* Select and clear endpoint interrupt */
900 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
901 {
902 udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
903 return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
904 }
905
906 /* Disables the endpoint in the USB protocol engine */
907 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
908 {
909 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
910 DAT_WR_BYTE(EP_STAT_DA));
911 }
912
913 /* Stalls the endpoint - endpoint will return STALL */
914 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
915 {
916 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
917 DAT_WR_BYTE(EP_STAT_ST));
918 }
919
920 /* Clear stall or reset endpoint */
921 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
922 {
923 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
924 DAT_WR_BYTE(0));
925 }
926
927 /* Select an endpoint for endpoint status, clear, validate */
928 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
929 {
930 udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
931 }
932
933 /*
934 *
935 * Endpoint buffer management functions
936 *
937 */
938 /* Clear the current endpoint's buffer */
939 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
940 {
941 udc_select_hwep(udc, hwep);
942 udc_protocol_cmd_w(udc, CMD_CLR_BUF);
943 }
944
945 /* Validate the current endpoint's buffer */
946 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
947 {
948 udc_select_hwep(udc, hwep);
949 udc_protocol_cmd_w(udc, CMD_VALID_BUF);
950 }
951
952 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
953 {
954 /* Clear EP interrupt */
955 uda_clear_hwepint(udc, hwep);
956 return udc_selep_clrint(udc, hwep);
957 }
958
959 /*
960 *
961 * USB EP DMA support
962 *
963 */
964 /* Allocate a DMA Descriptor */
965 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
966 {
967 dma_addr_t dma;
968 struct lpc32xx_usbd_dd_gad *dd;
969
970 dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
971 udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
972 if (dd)
973 dd->this_dma = dma;
974
975 return dd;
976 }
977
978 /* Free a DMA Descriptor */
979 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
980 {
981 dma_pool_free(udc->dd_cache, dd, dd->this_dma);
982 }
983
984 /*
985 *
986 * USB setup and shutdown functions
987 *
988 */
989 /* Enables or disables most of the USB system clocks when low power mode is
990 * needed. Clocks are typically started on a connection event, and disabled
991 * when a cable is disconnected */
992 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
993 {
994 if (enable != 0) {
995 if (udc->clocked)
996 return;
997
998 udc->clocked = 1;
999
1000 /* 48MHz PLL up */
1001 clk_enable(udc->usb_pll_clk);
1002
1003 /* Enable the USB device clock */
1004 writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN,
1005 USB_CTRL);
1006
1007 clk_enable(udc->usb_otg_clk);
1008 } else {
1009 if (!udc->clocked)
1010 return;
1011
1012 udc->clocked = 0;
1013
1014 /* Never disable the USB_HCLK during normal operation */
1015
1016 /* 48MHz PLL dpwn */
1017 clk_disable(udc->usb_pll_clk);
1018
1019 /* Disable the USB device clock */
1020 writel(readl(USB_CTRL) & ~USB_DEV_NEED_CLK_EN,
1021 USB_CTRL);
1022
1023 clk_disable(udc->usb_otg_clk);
1024 }
1025 }
1026
1027 /* Set/reset USB device address */
1028 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
1029 {
1030 /* Address will be latched at the end of the status phase, or
1031 latched immediately if function is called twice */
1032 udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
1033 DAT_WR_BYTE(DEV_EN | addr));
1034 }
1035
1036 /* Setup up a IN request for DMA transfer - this consists of determining the
1037 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1038 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1039 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1040 {
1041 struct lpc32xx_request *req;
1042 u32 hwep = ep->hwep_num;
1043
1044 ep->req_pending = 1;
1045
1046 /* There will always be a request waiting here */
1047 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1048
1049 /* Place the DD Descriptor into the UDCA */
1050 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1051
1052 /* Enable DMA and interrupt for the HW EP */
1053 udc_ep_dma_enable(udc, hwep);
1054
1055 /* Clear ZLP if last packet is not of MAXP size */
1056 if (req->req.length % ep->ep.maxpacket)
1057 req->send_zlp = 0;
1058
1059 return 0;
1060 }
1061
1062 /* Setup up a OUT request for DMA transfer - this consists of determining the
1063 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1064 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1065 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1066 {
1067 struct lpc32xx_request *req;
1068 u32 hwep = ep->hwep_num;
1069
1070 ep->req_pending = 1;
1071
1072 /* There will always be a request waiting here */
1073 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1074
1075 /* Place the DD Descriptor into the UDCA */
1076 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1077
1078 /* Enable DMA and interrupt for the HW EP */
1079 udc_ep_dma_enable(udc, hwep);
1080 return 0;
1081 }
1082
1083 static void udc_disable(struct lpc32xx_udc *udc)
1084 {
1085 u32 i;
1086
1087 /* Disable device */
1088 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1089 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1090
1091 /* Disable all device interrupts (including EP0) */
1092 uda_disable_devint(udc, 0x3FF);
1093
1094 /* Disable and reset all endpoint interrupts */
1095 for (i = 0; i < 32; i++) {
1096 uda_disable_hwepint(udc, i);
1097 uda_clear_hwepint(udc, i);
1098 udc_disable_hwep(udc, i);
1099 udc_unrealize_hwep(udc, i);
1100 udc->udca_v_base[i] = 0;
1101
1102 /* Disable and clear all interrupts and DMA */
1103 udc_ep_dma_disable(udc, i);
1104 writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1105 writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1106 writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1107 writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1108 }
1109
1110 /* Disable DMA interrupts */
1111 writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1112
1113 writel(0, USBD_UDCAH(udc->udp_baseaddr));
1114 }
1115
1116 static void udc_enable(struct lpc32xx_udc *udc)
1117 {
1118 u32 i;
1119 struct lpc32xx_ep *ep = &udc->ep[0];
1120
1121 /* Start with known state */
1122 udc_disable(udc);
1123
1124 /* Enable device */
1125 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1126
1127 /* EP interrupts on high priority, FRAME interrupt on low priority */
1128 writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1129 writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1130
1131 /* Clear any pending device interrupts */
1132 writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1133
1134 /* Setup UDCA - not yet used (DMA) */
1135 writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1136
1137 /* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1138 for (i = 0; i <= 1; i++) {
1139 udc_realize_hwep(udc, i, ep->ep.maxpacket);
1140 uda_enable_hwepint(udc, i);
1141 udc_select_hwep(udc, i);
1142 udc_clrstall_hwep(udc, i);
1143 udc_clr_buffer_hwep(udc, i);
1144 }
1145
1146 /* Device interrupt setup */
1147 uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1148 USBD_EP_FAST));
1149 uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1150 USBD_EP_FAST));
1151
1152 /* Set device address to 0 - called twice to force a latch in the USB
1153 engine without the need of a setup packet status closure */
1154 udc_set_address(udc, 0);
1155 udc_set_address(udc, 0);
1156
1157 /* Enable master DMA interrupts */
1158 writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1159 USBD_DMAINTEN(udc->udp_baseaddr));
1160
1161 udc->dev_status = 0;
1162 }
1163
1164 /*
1165 *
1166 * USB device board specific events handled via callbacks
1167 *
1168 */
1169 /* Connection change event - notify board function of change */
1170 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1171 {
1172 /* Just notify of a connection change event (optional) */
1173 if (udc->board->conn_chgb != NULL)
1174 udc->board->conn_chgb(conn);
1175 }
1176
1177 /* Suspend/resume event - notify board function of change */
1178 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1179 {
1180 /* Just notify of a Suspend/resume change event (optional) */
1181 if (udc->board->susp_chgb != NULL)
1182 udc->board->susp_chgb(conn);
1183
1184 if (conn)
1185 udc->suspended = 0;
1186 else
1187 udc->suspended = 1;
1188 }
1189
1190 /* Remote wakeup enable/disable - notify board function of change */
1191 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1192 {
1193 if (udc->board->rmwk_chgb != NULL)
1194 udc->board->rmwk_chgb(udc->dev_status &
1195 (1 << USB_DEVICE_REMOTE_WAKEUP));
1196 }
1197
1198 /* Reads data from FIFO, adjusts for alignment and data size */
1199 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1200 {
1201 int n, i, bl;
1202 u16 *p16;
1203 u32 *p32, tmp, cbytes;
1204
1205 /* Use optimal data transfer method based on source address and size */
1206 switch (((u32) data) & 0x3) {
1207 case 0: /* 32-bit aligned */
1208 p32 = (u32 *) data;
1209 cbytes = (bytes & ~0x3);
1210
1211 /* Copy 32-bit aligned data first */
1212 for (n = 0; n < cbytes; n += 4)
1213 *p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1214
1215 /* Handle any remaining bytes */
1216 bl = bytes - cbytes;
1217 if (bl) {
1218 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1219 for (n = 0; n < bl; n++)
1220 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1221
1222 }
1223 break;
1224
1225 case 1: /* 8-bit aligned */
1226 case 3:
1227 /* Each byte has to be handled independently */
1228 for (n = 0; n < bytes; n += 4) {
1229 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1230
1231 bl = bytes - n;
1232 if (bl > 3)
1233 bl = 3;
1234
1235 for (i = 0; i < bl; i++)
1236 data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1237 }
1238 break;
1239
1240 case 2: /* 16-bit aligned */
1241 p16 = (u16 *) data;
1242 cbytes = (bytes & ~0x3);
1243
1244 /* Copy 32-bit sized objects first with 16-bit alignment */
1245 for (n = 0; n < cbytes; n += 4) {
1246 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1247 *p16++ = (u16)(tmp & 0xFFFF);
1248 *p16++ = (u16)((tmp >> 16) & 0xFFFF);
1249 }
1250
1251 /* Handle any remaining bytes */
1252 bl = bytes - cbytes;
1253 if (bl) {
1254 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1255 for (n = 0; n < bl; n++)
1256 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1257 }
1258 break;
1259 }
1260 }
1261
1262 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1263 * as EP0) that don't use DMA. This function should only be called if a packet
1264 * is known to be ready to read for the endpoint. Note that the endpoint must
1265 * be selected in the protocol engine prior to this call. */
1266 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1267 u32 bytes)
1268 {
1269 u32 tmpv;
1270 int to = 1000;
1271 u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1272
1273 /* Setup read of endpoint */
1274 writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1275
1276 /* Wait until packet is ready */
1277 while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1278 PKT_RDY) == 0) && (to > 0))
1279 to--;
1280 if (!to)
1281 dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1282
1283 /* Mask out count */
1284 tmp = tmpv & PKT_LNGTH_MASK;
1285 if (bytes < tmp)
1286 tmp = bytes;
1287
1288 if ((tmp > 0) && (data != NULL))
1289 udc_pop_fifo(udc, (u8 *) data, tmp);
1290
1291 writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1292
1293 /* Clear the buffer */
1294 udc_clr_buffer_hwep(udc, hwep);
1295
1296 return tmp;
1297 }
1298
1299 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1300 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1301 {
1302 int n, i, bl;
1303 u16 *p16;
1304 u32 *p32, tmp, cbytes;
1305
1306 /* Use optimal data transfer method based on source address and size */
1307 switch (((u32) data) & 0x3) {
1308 case 0: /* 32-bit aligned */
1309 p32 = (u32 *) data;
1310 cbytes = (bytes & ~0x3);
1311
1312 /* Copy 32-bit aligned data first */
1313 for (n = 0; n < cbytes; n += 4)
1314 writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1315
1316 /* Handle any remaining bytes */
1317 bl = bytes - cbytes;
1318 if (bl) {
1319 tmp = 0;
1320 for (n = 0; n < bl; n++)
1321 tmp |= data[cbytes + n] << (n * 8);
1322
1323 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1324 }
1325 break;
1326
1327 case 1: /* 8-bit aligned */
1328 case 3:
1329 /* Each byte has to be handled independently */
1330 for (n = 0; n < bytes; n += 4) {
1331 bl = bytes - n;
1332 if (bl > 4)
1333 bl = 4;
1334
1335 tmp = 0;
1336 for (i = 0; i < bl; i++)
1337 tmp |= data[n + i] << (i * 8);
1338
1339 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1340 }
1341 break;
1342
1343 case 2: /* 16-bit aligned */
1344 p16 = (u16 *) data;
1345 cbytes = (bytes & ~0x3);
1346
1347 /* Copy 32-bit aligned data first */
1348 for (n = 0; n < cbytes; n += 4) {
1349 tmp = *p16++ & 0xFFFF;
1350 tmp |= (*p16++ & 0xFFFF) << 16;
1351 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1352 }
1353
1354 /* Handle any remaining bytes */
1355 bl = bytes - cbytes;
1356 if (bl) {
1357 tmp = 0;
1358 for (n = 0; n < bl; n++)
1359 tmp |= data[cbytes + n] << (n * 8);
1360
1361 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1362 }
1363 break;
1364 }
1365 }
1366
1367 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1368 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1369 * protocol engine prior to this call. */
1370 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1371 u32 bytes)
1372 {
1373 u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1374
1375 if ((bytes > 0) && (data == NULL))
1376 return;
1377
1378 /* Setup write of endpoint */
1379 writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1380
1381 writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1382
1383 /* Need at least 1 byte to trigger TX */
1384 if (bytes == 0)
1385 writel(0, USBD_TXDATA(udc->udp_baseaddr));
1386 else
1387 udc_stuff_fifo(udc, (u8 *) data, bytes);
1388
1389 writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1390
1391 udc_val_buffer_hwep(udc, hwep);
1392 }
1393
1394 /* USB device reset - resets USB to a default state with just EP0
1395 enabled */
1396 static void uda_usb_reset(struct lpc32xx_udc *udc)
1397 {
1398 u32 i = 0;
1399 /* Re-init device controller and EP0 */
1400 udc_enable(udc);
1401 udc->gadget.speed = USB_SPEED_FULL;
1402
1403 for (i = 1; i < NUM_ENDPOINTS; i++) {
1404 struct lpc32xx_ep *ep = &udc->ep[i];
1405 ep->req_pending = 0;
1406 }
1407 }
1408
1409 /* Send a ZLP on EP0 */
1410 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1411 {
1412 udc_write_hwep(udc, EP_IN, NULL, 0);
1413 }
1414
1415 /* Get current frame number */
1416 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1417 {
1418 u16 flo, fhi;
1419
1420 udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1421 flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1422 fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1423
1424 return (fhi << 8) | flo;
1425 }
1426
1427 /* Set the device as configured - enables all endpoints */
1428 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1429 {
1430 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1431 }
1432
1433 /* Set the device as unconfigured - disables all endpoints */
1434 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1435 {
1436 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1437 }
1438
1439 /* reinit == restore initial software state */
1440 static void udc_reinit(struct lpc32xx_udc *udc)
1441 {
1442 u32 i;
1443
1444 INIT_LIST_HEAD(&udc->gadget.ep_list);
1445 INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1446
1447 for (i = 0; i < NUM_ENDPOINTS; i++) {
1448 struct lpc32xx_ep *ep = &udc->ep[i];
1449
1450 if (i != 0)
1451 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1452 ep->ep.maxpacket = ep->maxpacket;
1453 INIT_LIST_HEAD(&ep->queue);
1454 ep->req_pending = 0;
1455 }
1456
1457 udc->ep0state = WAIT_FOR_SETUP;
1458 }
1459
1460 /* Must be called with lock */
1461 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1462 {
1463 struct lpc32xx_udc *udc = ep->udc;
1464
1465 list_del_init(&req->queue);
1466 if (req->req.status == -EINPROGRESS)
1467 req->req.status = status;
1468 else
1469 status = req->req.status;
1470
1471 if (ep->lep) {
1472 enum dma_data_direction direction;
1473
1474 if (ep->is_in)
1475 direction = DMA_TO_DEVICE;
1476 else
1477 direction = DMA_FROM_DEVICE;
1478
1479 if (req->mapped) {
1480 dma_unmap_single(ep->udc->gadget.dev.parent,
1481 req->req.dma, req->req.length,
1482 direction);
1483 req->req.dma = 0;
1484 req->mapped = 0;
1485 } else
1486 dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
1487 req->req.dma, req->req.length,
1488 direction);
1489
1490 /* Free DDs */
1491 udc_dd_free(udc, req->dd_desc_ptr);
1492 }
1493
1494 if (status && status != -ESHUTDOWN)
1495 ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1496
1497 ep->req_pending = 0;
1498 spin_unlock(&udc->lock);
1499 req->req.complete(&ep->ep, &req->req);
1500 spin_lock(&udc->lock);
1501 }
1502
1503 /* Must be called with lock */
1504 static void nuke(struct lpc32xx_ep *ep, int status)
1505 {
1506 struct lpc32xx_request *req;
1507
1508 while (!list_empty(&ep->queue)) {
1509 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1510 done(ep, req, status);
1511 }
1512
1513 if (status == -ESHUTDOWN) {
1514 uda_disable_hwepint(ep->udc, ep->hwep_num);
1515 udc_disable_hwep(ep->udc, ep->hwep_num);
1516 }
1517 }
1518
1519 /* IN endpoint 0 transfer */
1520 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1521 {
1522 struct lpc32xx_request *req;
1523 struct lpc32xx_ep *ep0 = &udc->ep[0];
1524 u32 tsend, ts = 0;
1525
1526 if (list_empty(&ep0->queue))
1527 /* Nothing to send */
1528 return 0;
1529 else
1530 req = list_entry(ep0->queue.next, struct lpc32xx_request,
1531 queue);
1532
1533 tsend = ts = req->req.length - req->req.actual;
1534 if (ts == 0) {
1535 /* Send a ZLP */
1536 udc_ep0_send_zlp(udc);
1537 done(ep0, req, 0);
1538 return 1;
1539 } else if (ts > ep0->ep.maxpacket)
1540 ts = ep0->ep.maxpacket; /* Just send what we can */
1541
1542 /* Write data to the EP0 FIFO and start transfer */
1543 udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1544
1545 /* Increment data pointer */
1546 req->req.actual += ts;
1547
1548 if (tsend >= ep0->ep.maxpacket)
1549 return 0; /* Stay in data transfer state */
1550
1551 /* Transfer request is complete */
1552 udc->ep0state = WAIT_FOR_SETUP;
1553 done(ep0, req, 0);
1554 return 1;
1555 }
1556
1557 /* OUT endpoint 0 transfer */
1558 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1559 {
1560 struct lpc32xx_request *req;
1561 struct lpc32xx_ep *ep0 = &udc->ep[0];
1562 u32 tr, bufferspace;
1563
1564 if (list_empty(&ep0->queue))
1565 return 0;
1566 else
1567 req = list_entry(ep0->queue.next, struct lpc32xx_request,
1568 queue);
1569
1570 if (req) {
1571 if (req->req.length == 0) {
1572 /* Just dequeue request */
1573 done(ep0, req, 0);
1574 udc->ep0state = WAIT_FOR_SETUP;
1575 return 1;
1576 }
1577
1578 /* Get data from FIFO */
1579 bufferspace = req->req.length - req->req.actual;
1580 if (bufferspace > ep0->ep.maxpacket)
1581 bufferspace = ep0->ep.maxpacket;
1582
1583 /* Copy data to buffer */
1584 prefetchw(req->req.buf + req->req.actual);
1585 tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1586 bufferspace);
1587 req->req.actual += bufferspace;
1588
1589 if (tr < ep0->ep.maxpacket) {
1590 /* This is the last packet */
1591 done(ep0, req, 0);
1592 udc->ep0state = WAIT_FOR_SETUP;
1593 return 1;
1594 }
1595 }
1596
1597 return 0;
1598 }
1599
1600 /* Must be called with lock */
1601 static void stop_activity(struct lpc32xx_udc *udc)
1602 {
1603 struct usb_gadget_driver *driver = udc->driver;
1604 int i;
1605
1606 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1607 driver = NULL;
1608
1609 udc->gadget.speed = USB_SPEED_UNKNOWN;
1610 udc->suspended = 0;
1611
1612 for (i = 0; i < NUM_ENDPOINTS; i++) {
1613 struct lpc32xx_ep *ep = &udc->ep[i];
1614 nuke(ep, -ESHUTDOWN);
1615 }
1616 if (driver) {
1617 spin_unlock(&udc->lock);
1618 driver->disconnect(&udc->gadget);
1619 spin_lock(&udc->lock);
1620 }
1621
1622 isp1301_pullup_enable(udc, 0, 0);
1623 udc_disable(udc);
1624 udc_reinit(udc);
1625 }
1626
1627 /*
1628 * Activate or kill host pullup
1629 * Can be called with or without lock
1630 */
1631 static void pullup(struct lpc32xx_udc *udc, int is_on)
1632 {
1633 if (!udc->clocked)
1634 return;
1635
1636 if (!udc->enabled || !udc->vbus)
1637 is_on = 0;
1638
1639 if (is_on != udc->pullup)
1640 isp1301_pullup_enable(udc, is_on, 0);
1641 }
1642
1643 /* Must be called without lock */
1644 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1645 {
1646 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1647 struct lpc32xx_udc *udc = ep->udc;
1648 unsigned long flags;
1649
1650 if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1651 return -EINVAL;
1652 spin_lock_irqsave(&udc->lock, flags);
1653
1654 nuke(ep, -ESHUTDOWN);
1655
1656 /* Clear all DMA statuses for this EP */
1657 udc_ep_dma_disable(udc, ep->hwep_num);
1658 writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1659 writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1660 writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1661 writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1662
1663 /* Remove the DD pointer in the UDCA */
1664 udc->udca_v_base[ep->hwep_num] = 0;
1665
1666 /* Disable and reset endpoint and interrupt */
1667 uda_clear_hwepint(udc, ep->hwep_num);
1668 udc_unrealize_hwep(udc, ep->hwep_num);
1669
1670 ep->hwep_num = 0;
1671
1672 spin_unlock_irqrestore(&udc->lock, flags);
1673
1674 atomic_dec(&udc->enabled_ep_cnt);
1675 wake_up(&udc->ep_disable_wait_queue);
1676
1677 return 0;
1678 }
1679
1680 /* Must be called without lock */
1681 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1682 const struct usb_endpoint_descriptor *desc)
1683 {
1684 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1685 struct lpc32xx_udc *udc = ep->udc;
1686 u16 maxpacket;
1687 u32 tmp;
1688 unsigned long flags;
1689
1690 /* Verify EP data */
1691 if ((!_ep) || (!ep) || (!desc) ||
1692 (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1693 dev_dbg(udc->dev, "bad ep or descriptor\n");
1694 return -EINVAL;
1695 }
1696 maxpacket = usb_endpoint_maxp(desc);
1697 if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1698 dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1699 return -EINVAL;
1700 }
1701
1702 /* Don't touch EP0 */
1703 if (ep->hwep_num_base == 0) {
1704 dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1705 return -EINVAL;
1706 }
1707
1708 /* Is driver ready? */
1709 if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1710 dev_dbg(udc->dev, "bogus device state\n");
1711 return -ESHUTDOWN;
1712 }
1713
1714 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1715 switch (tmp) {
1716 case USB_ENDPOINT_XFER_CONTROL:
1717 return -EINVAL;
1718
1719 case USB_ENDPOINT_XFER_INT:
1720 if (maxpacket > ep->maxpacket) {
1721 dev_dbg(udc->dev,
1722 "Bad INT endpoint maxpacket %d\n", maxpacket);
1723 return -EINVAL;
1724 }
1725 break;
1726
1727 case USB_ENDPOINT_XFER_BULK:
1728 switch (maxpacket) {
1729 case 8:
1730 case 16:
1731 case 32:
1732 case 64:
1733 break;
1734
1735 default:
1736 dev_dbg(udc->dev,
1737 "Bad BULK endpoint maxpacket %d\n", maxpacket);
1738 return -EINVAL;
1739 }
1740 break;
1741
1742 case USB_ENDPOINT_XFER_ISOC:
1743 break;
1744 }
1745 spin_lock_irqsave(&udc->lock, flags);
1746
1747 /* Initialize endpoint to match the selected descriptor */
1748 ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1749 ep->ep.maxpacket = maxpacket;
1750
1751 /* Map hardware endpoint from base and direction */
1752 if (ep->is_in)
1753 /* IN endpoints are offset 1 from the OUT endpoint */
1754 ep->hwep_num = ep->hwep_num_base + EP_IN;
1755 else
1756 ep->hwep_num = ep->hwep_num_base;
1757
1758 ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1759 ep->hwep_num, maxpacket, (ep->is_in == 1));
1760
1761 /* Realize the endpoint, interrupt is enabled later when
1762 * buffers are queued, IN EPs will NAK until buffers are ready */
1763 udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1764 udc_clr_buffer_hwep(udc, ep->hwep_num);
1765 uda_disable_hwepint(udc, ep->hwep_num);
1766 udc_clrstall_hwep(udc, ep->hwep_num);
1767
1768 /* Clear all DMA statuses for this EP */
1769 udc_ep_dma_disable(udc, ep->hwep_num);
1770 writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1771 writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1772 writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1773 writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1774
1775 spin_unlock_irqrestore(&udc->lock, flags);
1776
1777 atomic_inc(&udc->enabled_ep_cnt);
1778 return 0;
1779 }
1780
1781 /*
1782 * Allocate a USB request list
1783 * Can be called with or without lock
1784 */
1785 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1786 gfp_t gfp_flags)
1787 {
1788 struct lpc32xx_request *req;
1789
1790 req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1791 if (!req)
1792 return NULL;
1793
1794 INIT_LIST_HEAD(&req->queue);
1795 return &req->req;
1796 }
1797
1798 /*
1799 * De-allocate a USB request list
1800 * Can be called with or without lock
1801 */
1802 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1803 struct usb_request *_req)
1804 {
1805 struct lpc32xx_request *req;
1806
1807 req = container_of(_req, struct lpc32xx_request, req);
1808 BUG_ON(!list_empty(&req->queue));
1809 kfree(req);
1810 }
1811
1812 /* Must be called without lock */
1813 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1814 struct usb_request *_req, gfp_t gfp_flags)
1815 {
1816 struct lpc32xx_request *req;
1817 struct lpc32xx_ep *ep;
1818 struct lpc32xx_udc *udc;
1819 unsigned long flags;
1820 int status = 0;
1821
1822 req = container_of(_req, struct lpc32xx_request, req);
1823 ep = container_of(_ep, struct lpc32xx_ep, ep);
1824
1825 if (!_req || !_req->complete || !_req->buf ||
1826 !list_empty(&req->queue))
1827 return -EINVAL;
1828
1829 udc = ep->udc;
1830
1831 if (!_ep) {
1832 dev_dbg(udc->dev, "invalid ep\n");
1833 return -EINVAL;
1834 }
1835
1836
1837 if ((!udc) || (!udc->driver) ||
1838 (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1839 dev_dbg(udc->dev, "invalid device\n");
1840 return -EINVAL;
1841 }
1842
1843 if (ep->lep) {
1844 enum dma_data_direction direction;
1845 struct lpc32xx_usbd_dd_gad *dd;
1846
1847 /* Map DMA pointer */
1848 if (ep->is_in)
1849 direction = DMA_TO_DEVICE;
1850 else
1851 direction = DMA_FROM_DEVICE;
1852
1853 if (req->req.dma == 0) {
1854 req->req.dma = dma_map_single(
1855 ep->udc->gadget.dev.parent,
1856 req->req.buf, req->req.length, direction);
1857 req->mapped = 1;
1858 } else {
1859 dma_sync_single_for_device(
1860 ep->udc->gadget.dev.parent, req->req.dma,
1861 req->req.length, direction);
1862 req->mapped = 0;
1863 }
1864
1865 /* For the request, build a list of DDs */
1866 dd = udc_dd_alloc(udc);
1867 if (!dd) {
1868 /* Error allocating DD */
1869 return -ENOMEM;
1870 }
1871 req->dd_desc_ptr = dd;
1872
1873 /* Setup the DMA descriptor */
1874 dd->dd_next_phy = dd->dd_next_v = 0;
1875 dd->dd_buffer_addr = req->req.dma;
1876 dd->dd_status = 0;
1877
1878 /* Special handling for ISO EPs */
1879 if (ep->eptype == EP_ISO_TYPE) {
1880 dd->dd_setup = DD_SETUP_ISO_EP |
1881 DD_SETUP_PACKETLEN(0) |
1882 DD_SETUP_DMALENBYTES(1);
1883 dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1884 if (ep->is_in)
1885 dd->iso_status[0] = req->req.length;
1886 else
1887 dd->iso_status[0] = 0;
1888 } else
1889 dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1890 DD_SETUP_DMALENBYTES(req->req.length);
1891 }
1892
1893 ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1894 _req, _req->length, _req->buf, ep->is_in, _req->zero);
1895
1896 spin_lock_irqsave(&udc->lock, flags);
1897
1898 _req->status = -EINPROGRESS;
1899 _req->actual = 0;
1900 req->send_zlp = _req->zero;
1901
1902 /* Kickstart empty queues */
1903 if (list_empty(&ep->queue)) {
1904 list_add_tail(&req->queue, &ep->queue);
1905
1906 if (ep->hwep_num_base == 0) {
1907 /* Handle expected data direction */
1908 if (ep->is_in) {
1909 /* IN packet to host */
1910 udc->ep0state = DATA_IN;
1911 status = udc_ep0_in_req(udc);
1912 } else {
1913 /* OUT packet from host */
1914 udc->ep0state = DATA_OUT;
1915 status = udc_ep0_out_req(udc);
1916 }
1917 } else if (ep->is_in) {
1918 /* IN packet to host and kick off transfer */
1919 if (!ep->req_pending)
1920 udc_ep_in_req_dma(udc, ep);
1921 } else
1922 /* OUT packet from host and kick off list */
1923 if (!ep->req_pending)
1924 udc_ep_out_req_dma(udc, ep);
1925 } else
1926 list_add_tail(&req->queue, &ep->queue);
1927
1928 spin_unlock_irqrestore(&udc->lock, flags);
1929
1930 return (status < 0) ? status : 0;
1931 }
1932
1933 /* Must be called without lock */
1934 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1935 {
1936 struct lpc32xx_ep *ep;
1937 struct lpc32xx_request *req;
1938 unsigned long flags;
1939
1940 ep = container_of(_ep, struct lpc32xx_ep, ep);
1941 if (!_ep || ep->hwep_num_base == 0)
1942 return -EINVAL;
1943
1944 spin_lock_irqsave(&ep->udc->lock, flags);
1945
1946 /* make sure it's actually queued on this endpoint */
1947 list_for_each_entry(req, &ep->queue, queue) {
1948 if (&req->req == _req)
1949 break;
1950 }
1951 if (&req->req != _req) {
1952 spin_unlock_irqrestore(&ep->udc->lock, flags);
1953 return -EINVAL;
1954 }
1955
1956 done(ep, req, -ECONNRESET);
1957
1958 spin_unlock_irqrestore(&ep->udc->lock, flags);
1959
1960 return 0;
1961 }
1962
1963 /* Must be called without lock */
1964 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1965 {
1966 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1967 struct lpc32xx_udc *udc = ep->udc;
1968 unsigned long flags;
1969
1970 if ((!ep) || (ep->hwep_num <= 1))
1971 return -EINVAL;
1972
1973 /* Don't halt an IN EP */
1974 if (ep->is_in)
1975 return -EAGAIN;
1976
1977 spin_lock_irqsave(&udc->lock, flags);
1978
1979 if (value == 1) {
1980 /* stall */
1981 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1982 DAT_WR_BYTE(EP_STAT_ST));
1983 } else {
1984 /* End stall */
1985 ep->wedge = 0;
1986 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1987 DAT_WR_BYTE(0));
1988 }
1989
1990 spin_unlock_irqrestore(&udc->lock, flags);
1991
1992 return 0;
1993 }
1994
1995 /* set the halt feature and ignores clear requests */
1996 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1997 {
1998 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1999
2000 if (!_ep || !ep->udc)
2001 return -EINVAL;
2002
2003 ep->wedge = 1;
2004
2005 return usb_ep_set_halt(_ep);
2006 }
2007
2008 static const struct usb_ep_ops lpc32xx_ep_ops = {
2009 .enable = lpc32xx_ep_enable,
2010 .disable = lpc32xx_ep_disable,
2011 .alloc_request = lpc32xx_ep_alloc_request,
2012 .free_request = lpc32xx_ep_free_request,
2013 .queue = lpc32xx_ep_queue,
2014 .dequeue = lpc32xx_ep_dequeue,
2015 .set_halt = lpc32xx_ep_set_halt,
2016 .set_wedge = lpc32xx_ep_set_wedge,
2017 };
2018
2019 /* Send a ZLP on a non-0 IN EP */
2020 void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2021 {
2022 /* Clear EP status */
2023 udc_clearep_getsts(udc, ep->hwep_num);
2024
2025 /* Send ZLP via FIFO mechanism */
2026 udc_write_hwep(udc, ep->hwep_num, NULL, 0);
2027 }
2028
2029 /*
2030 * Handle EP completion for ZLP
2031 * This function will only be called when a delayed ZLP needs to be sent out
2032 * after a DMA transfer has filled both buffers.
2033 */
2034 void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2035 {
2036 u32 epstatus;
2037 struct lpc32xx_request *req;
2038
2039 if (ep->hwep_num <= 0)
2040 return;
2041
2042 uda_clear_hwepint(udc, ep->hwep_num);
2043
2044 /* If this interrupt isn't enabled, return now */
2045 if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
2046 return;
2047
2048 /* Get endpoint status */
2049 epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2050
2051 /*
2052 * This should never happen, but protect against writing to the
2053 * buffer when full.
2054 */
2055 if (epstatus & EP_SEL_F)
2056 return;
2057
2058 if (ep->is_in) {
2059 udc_send_in_zlp(udc, ep);
2060 uda_disable_hwepint(udc, ep->hwep_num);
2061 } else
2062 return;
2063
2064 /* If there isn't a request waiting, something went wrong */
2065 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2066 if (req) {
2067 done(ep, req, 0);
2068
2069 /* Start another request if ready */
2070 if (!list_empty(&ep->queue)) {
2071 if (ep->is_in)
2072 udc_ep_in_req_dma(udc, ep);
2073 else
2074 udc_ep_out_req_dma(udc, ep);
2075 } else
2076 ep->req_pending = 0;
2077 }
2078 }
2079
2080
2081 /* DMA end of transfer completion */
2082 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2083 {
2084 u32 status, epstatus;
2085 struct lpc32xx_request *req;
2086 struct lpc32xx_usbd_dd_gad *dd;
2087
2088 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2089 ep->totalints++;
2090 #endif
2091
2092 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2093 if (!req) {
2094 ep_err(ep, "DMA interrupt on no req!\n");
2095 return;
2096 }
2097 dd = req->dd_desc_ptr;
2098
2099 /* DMA descriptor should always be retired for this call */
2100 if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2101 ep_warn(ep, "DMA descriptor did not retire\n");
2102
2103 /* Disable DMA */
2104 udc_ep_dma_disable(udc, ep->hwep_num);
2105 writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2106 writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2107
2108 /* System error? */
2109 if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2110 (1 << ep->hwep_num)) {
2111 writel((1 << ep->hwep_num),
2112 USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2113 ep_err(ep, "AHB critical error!\n");
2114 ep->req_pending = 0;
2115
2116 /* The error could have occurred on a packet of a multipacket
2117 * transfer, so recovering the transfer is not possible. Close
2118 * the request with an error */
2119 done(ep, req, -ECONNABORTED);
2120 return;
2121 }
2122
2123 /* Handle the current DD's status */
2124 status = dd->dd_status;
2125 switch (status & DD_STATUS_STS_MASK) {
2126 case DD_STATUS_STS_NS:
2127 /* DD not serviced? This shouldn't happen! */
2128 ep->req_pending = 0;
2129 ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2130 status);
2131
2132 done(ep, req, -ECONNABORTED);
2133 return;
2134
2135 case DD_STATUS_STS_BS:
2136 /* Interrupt only fires on EOT - This shouldn't happen! */
2137 ep->req_pending = 0;
2138 ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2139 status);
2140 done(ep, req, -ECONNABORTED);
2141 return;
2142
2143 case DD_STATUS_STS_NC:
2144 case DD_STATUS_STS_DUR:
2145 /* Really just a short packet, not an underrun */
2146 /* This is a good status and what we expect */
2147 break;
2148
2149 default:
2150 /* Data overrun, system error, or unknown */
2151 ep->req_pending = 0;
2152 ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2153 status);
2154 done(ep, req, -ECONNABORTED);
2155 return;
2156 }
2157
2158 /* ISO endpoints are handled differently */
2159 if (ep->eptype == EP_ISO_TYPE) {
2160 if (ep->is_in)
2161 req->req.actual = req->req.length;
2162 else
2163 req->req.actual = dd->iso_status[0] & 0xFFFF;
2164 } else
2165 req->req.actual += DD_STATUS_CURDMACNT(status);
2166
2167 /* Send a ZLP if necessary. This will be done for non-int
2168 * packets which have a size that is a divisor of MAXP */
2169 if (req->send_zlp) {
2170 /*
2171 * If at least 1 buffer is available, send the ZLP now.
2172 * Otherwise, the ZLP send needs to be deferred until a
2173 * buffer is available.
2174 */
2175 if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2176 udc_clearep_getsts(udc, ep->hwep_num);
2177 uda_enable_hwepint(udc, ep->hwep_num);
2178 epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2179
2180 /* Let the EP interrupt handle the ZLP */
2181 return;
2182 } else
2183 udc_send_in_zlp(udc, ep);
2184 }
2185
2186 /* Transfer request is complete */
2187 done(ep, req, 0);
2188
2189 /* Start another request if ready */
2190 udc_clearep_getsts(udc, ep->hwep_num);
2191 if (!list_empty((&ep->queue))) {
2192 if (ep->is_in)
2193 udc_ep_in_req_dma(udc, ep);
2194 else
2195 udc_ep_out_req_dma(udc, ep);
2196 } else
2197 ep->req_pending = 0;
2198
2199 }
2200
2201 /*
2202 *
2203 * Endpoint 0 functions
2204 *
2205 */
2206 static void udc_handle_dev(struct lpc32xx_udc *udc)
2207 {
2208 u32 tmp;
2209
2210 udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2211 tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2212
2213 if (tmp & DEV_RST)
2214 uda_usb_reset(udc);
2215 else if (tmp & DEV_CON_CH)
2216 uda_power_event(udc, (tmp & DEV_CON));
2217 else if (tmp & DEV_SUS_CH) {
2218 if (tmp & DEV_SUS) {
2219 if (udc->vbus == 0)
2220 stop_activity(udc);
2221 else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2222 udc->driver) {
2223 /* Power down transceiver */
2224 udc->poweron = 0;
2225 schedule_work(&udc->pullup_job);
2226 uda_resm_susp_event(udc, 1);
2227 }
2228 } else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2229 udc->driver && udc->vbus) {
2230 uda_resm_susp_event(udc, 0);
2231 /* Power up transceiver */
2232 udc->poweron = 1;
2233 schedule_work(&udc->pullup_job);
2234 }
2235 }
2236 }
2237
2238 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2239 {
2240 struct lpc32xx_ep *ep;
2241 u32 ep0buff = 0, tmp;
2242
2243 switch (reqtype & USB_RECIP_MASK) {
2244 case USB_RECIP_INTERFACE:
2245 break; /* Not supported */
2246
2247 case USB_RECIP_DEVICE:
2248 ep0buff = (udc->selfpowered << USB_DEVICE_SELF_POWERED);
2249 if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2250 ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2251 break;
2252
2253 case USB_RECIP_ENDPOINT:
2254 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2255 ep = &udc->ep[tmp];
2256 if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2257 return -EOPNOTSUPP;
2258
2259 if (wIndex & USB_DIR_IN) {
2260 if (!ep->is_in)
2261 return -EOPNOTSUPP; /* Something's wrong */
2262 } else if (ep->is_in)
2263 return -EOPNOTSUPP; /* Not an IN endpoint */
2264
2265 /* Get status of the endpoint */
2266 udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2267 tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2268
2269 if (tmp & EP_SEL_ST)
2270 ep0buff = (1 << USB_ENDPOINT_HALT);
2271 else
2272 ep0buff = 0;
2273 break;
2274
2275 default:
2276 break;
2277 }
2278
2279 /* Return data */
2280 udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2281
2282 return 0;
2283 }
2284
2285 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2286 {
2287 struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2288 struct usb_ctrlrequest ctrlpkt;
2289 int i, bytes;
2290 u16 wIndex, wValue, wLength, reqtype, req, tmp;
2291
2292 /* Nuke previous transfers */
2293 nuke(ep0, -EPROTO);
2294
2295 /* Get setup packet */
2296 bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2297 if (bytes != 8) {
2298 ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2299 bytes);
2300 return;
2301 }
2302
2303 /* Native endianness */
2304 wIndex = le16_to_cpu(ctrlpkt.wIndex);
2305 wValue = le16_to_cpu(ctrlpkt.wValue);
2306 wLength = le16_to_cpu(ctrlpkt.wLength);
2307 reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2308
2309 /* Set direction of EP0 */
2310 if (likely(reqtype & USB_DIR_IN))
2311 ep0->is_in = 1;
2312 else
2313 ep0->is_in = 0;
2314
2315 /* Handle SETUP packet */
2316 req = le16_to_cpu(ctrlpkt.bRequest);
2317 switch (req) {
2318 case USB_REQ_CLEAR_FEATURE:
2319 case USB_REQ_SET_FEATURE:
2320 switch (reqtype) {
2321 case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2322 if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2323 goto stall; /* Nothing else handled */
2324
2325 /* Tell board about event */
2326 if (req == USB_REQ_CLEAR_FEATURE)
2327 udc->dev_status &=
2328 ~(1 << USB_DEVICE_REMOTE_WAKEUP);
2329 else
2330 udc->dev_status |=
2331 (1 << USB_DEVICE_REMOTE_WAKEUP);
2332 uda_remwkp_cgh(udc);
2333 goto zlp_send;
2334
2335 case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2336 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2337 if ((wValue != USB_ENDPOINT_HALT) ||
2338 (tmp >= NUM_ENDPOINTS))
2339 break;
2340
2341 /* Find hardware endpoint from logical endpoint */
2342 ep = &udc->ep[tmp];
2343 tmp = ep->hwep_num;
2344 if (tmp == 0)
2345 break;
2346
2347 if (req == USB_REQ_SET_FEATURE)
2348 udc_stall_hwep(udc, tmp);
2349 else if (!ep->wedge)
2350 udc_clrstall_hwep(udc, tmp);
2351
2352 goto zlp_send;
2353
2354 default:
2355 break;
2356 }
2357
2358
2359 case USB_REQ_SET_ADDRESS:
2360 if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2361 udc_set_address(udc, wValue);
2362 goto zlp_send;
2363 }
2364 break;
2365
2366 case USB_REQ_GET_STATUS:
2367 udc_get_status(udc, reqtype, wIndex);
2368 return;
2369
2370 default:
2371 break; /* Let GadgetFS handle the descriptor instead */
2372 }
2373
2374 if (likely(udc->driver)) {
2375 /* device-2-host (IN) or no data setup command, process
2376 * immediately */
2377 spin_unlock(&udc->lock);
2378 i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2379
2380 spin_lock(&udc->lock);
2381 if (req == USB_REQ_SET_CONFIGURATION) {
2382 /* Configuration is set after endpoints are realized */
2383 if (wValue) {
2384 /* Set configuration */
2385 udc_set_device_configured(udc);
2386
2387 udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2388 DAT_WR_BYTE(AP_CLK |
2389 INAK_BI | INAK_II));
2390 } else {
2391 /* Clear configuration */
2392 udc_set_device_unconfigured(udc);
2393
2394 /* Disable NAK interrupts */
2395 udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2396 DAT_WR_BYTE(AP_CLK));
2397 }
2398 }
2399
2400 if (i < 0) {
2401 /* setup processing failed, force stall */
2402 dev_dbg(udc->dev,
2403 "req %02x.%02x protocol STALL; stat %d\n",
2404 reqtype, req, i);
2405 udc->ep0state = WAIT_FOR_SETUP;
2406 goto stall;
2407 }
2408 }
2409
2410 if (!ep0->is_in)
2411 udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2412
2413 return;
2414
2415 stall:
2416 udc_stall_hwep(udc, EP_IN);
2417 return;
2418
2419 zlp_send:
2420 udc_ep0_send_zlp(udc);
2421 return;
2422 }
2423
2424 /* IN endpoint 0 transfer */
2425 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2426 {
2427 struct lpc32xx_ep *ep0 = &udc->ep[0];
2428 u32 epstatus;
2429
2430 /* Clear EP interrupt */
2431 epstatus = udc_clearep_getsts(udc, EP_IN);
2432
2433 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2434 ep0->totalints++;
2435 #endif
2436
2437 /* Stalled? Clear stall and reset buffers */
2438 if (epstatus & EP_SEL_ST) {
2439 udc_clrstall_hwep(udc, EP_IN);
2440 nuke(ep0, -ECONNABORTED);
2441 udc->ep0state = WAIT_FOR_SETUP;
2442 return;
2443 }
2444
2445 /* Is a buffer available? */
2446 if (!(epstatus & EP_SEL_F)) {
2447 /* Handle based on current state */
2448 if (udc->ep0state == DATA_IN)
2449 udc_ep0_in_req(udc);
2450 else {
2451 /* Unknown state for EP0 oe end of DATA IN phase */
2452 nuke(ep0, -ECONNABORTED);
2453 udc->ep0state = WAIT_FOR_SETUP;
2454 }
2455 }
2456 }
2457
2458 /* OUT endpoint 0 transfer */
2459 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2460 {
2461 struct lpc32xx_ep *ep0 = &udc->ep[0];
2462 u32 epstatus;
2463
2464 /* Clear EP interrupt */
2465 epstatus = udc_clearep_getsts(udc, EP_OUT);
2466
2467
2468 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2469 ep0->totalints++;
2470 #endif
2471
2472 /* Stalled? */
2473 if (epstatus & EP_SEL_ST) {
2474 udc_clrstall_hwep(udc, EP_OUT);
2475 nuke(ep0, -ECONNABORTED);
2476 udc->ep0state = WAIT_FOR_SETUP;
2477 return;
2478 }
2479
2480 /* A NAK may occur if a packet couldn't be received yet */
2481 if (epstatus & EP_SEL_EPN)
2482 return;
2483 /* Setup packet incoming? */
2484 if (epstatus & EP_SEL_STP) {
2485 nuke(ep0, 0);
2486 udc->ep0state = WAIT_FOR_SETUP;
2487 }
2488
2489 /* Data available? */
2490 if (epstatus & EP_SEL_F)
2491 /* Handle based on current state */
2492 switch (udc->ep0state) {
2493 case WAIT_FOR_SETUP:
2494 udc_handle_ep0_setup(udc);
2495 break;
2496
2497 case DATA_OUT:
2498 udc_ep0_out_req(udc);
2499 break;
2500
2501 default:
2502 /* Unknown state for EP0 */
2503 nuke(ep0, -ECONNABORTED);
2504 udc->ep0state = WAIT_FOR_SETUP;
2505 }
2506 }
2507
2508 /* Must be called without lock */
2509 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2510 {
2511 int frame;
2512 unsigned long flags;
2513 struct lpc32xx_udc *udc = to_udc(gadget);
2514
2515 if (!udc->clocked)
2516 return -EINVAL;
2517
2518 spin_lock_irqsave(&udc->lock, flags);
2519
2520 frame = (int) udc_get_current_frame(udc);
2521
2522 spin_unlock_irqrestore(&udc->lock, flags);
2523
2524 return frame;
2525 }
2526
2527 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2528 {
2529 return -ENOTSUPP;
2530 }
2531
2532 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2533 {
2534 struct lpc32xx_udc *udc = to_udc(gadget);
2535
2536 /* Always self-powered */
2537 udc->selfpowered = (is_on != 0);
2538
2539 return 0;
2540 }
2541
2542 /*
2543 * vbus is here! turn everything on that's ready
2544 * Must be called without lock
2545 */
2546 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2547 {
2548 unsigned long flags;
2549 struct lpc32xx_udc *udc = to_udc(gadget);
2550
2551 spin_lock_irqsave(&udc->lock, flags);
2552
2553 /* Doesn't need lock */
2554 if (udc->driver) {
2555 udc_clk_set(udc, 1);
2556 udc_enable(udc);
2557 pullup(udc, is_active);
2558 } else {
2559 stop_activity(udc);
2560 pullup(udc, 0);
2561
2562 spin_unlock_irqrestore(&udc->lock, flags);
2563 /*
2564 * Wait for all the endpoints to disable,
2565 * before disabling clocks. Don't wait if
2566 * endpoints are not enabled.
2567 */
2568 if (atomic_read(&udc->enabled_ep_cnt))
2569 wait_event_interruptible(udc->ep_disable_wait_queue,
2570 (atomic_read(&udc->enabled_ep_cnt) == 0));
2571
2572 spin_lock_irqsave(&udc->lock, flags);
2573
2574 udc_clk_set(udc, 0);
2575 }
2576
2577 spin_unlock_irqrestore(&udc->lock, flags);
2578
2579 return 0;
2580 }
2581
2582 /* Can be called with or without lock */
2583 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2584 {
2585 struct lpc32xx_udc *udc = to_udc(gadget);
2586
2587 /* Doesn't need lock */
2588 pullup(udc, is_on);
2589
2590 return 0;
2591 }
2592
2593 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2594 static int lpc32xx_stop(struct usb_gadget *, struct usb_gadget_driver *);
2595
2596 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2597 .get_frame = lpc32xx_get_frame,
2598 .wakeup = lpc32xx_wakeup,
2599 .set_selfpowered = lpc32xx_set_selfpowered,
2600 .vbus_session = lpc32xx_vbus_session,
2601 .pullup = lpc32xx_pullup,
2602 .udc_start = lpc32xx_start,
2603 .udc_stop = lpc32xx_stop,
2604 };
2605
2606 static void nop_release(struct device *dev)
2607 {
2608 /* nothing to free */
2609 }
2610
2611 static const struct lpc32xx_udc controller_template = {
2612 .gadget = {
2613 .ops = &lpc32xx_udc_ops,
2614 .name = driver_name,
2615 .dev = {
2616 .init_name = "gadget",
2617 .release = nop_release,
2618 }
2619 },
2620 .ep[0] = {
2621 .ep = {
2622 .name = "ep0",
2623 .ops = &lpc32xx_ep_ops,
2624 },
2625 .maxpacket = 64,
2626 .hwep_num_base = 0,
2627 .hwep_num = 0, /* Can be 0 or 1, has special handling */
2628 .lep = 0,
2629 .eptype = EP_CTL_TYPE,
2630 },
2631 .ep[1] = {
2632 .ep = {
2633 .name = "ep1-int",
2634 .ops = &lpc32xx_ep_ops,
2635 },
2636 .maxpacket = 64,
2637 .hwep_num_base = 2,
2638 .hwep_num = 0, /* 2 or 3, will be set later */
2639 .lep = 1,
2640 .eptype = EP_INT_TYPE,
2641 },
2642 .ep[2] = {
2643 .ep = {
2644 .name = "ep2-bulk",
2645 .ops = &lpc32xx_ep_ops,
2646 },
2647 .maxpacket = 64,
2648 .hwep_num_base = 4,
2649 .hwep_num = 0, /* 4 or 5, will be set later */
2650 .lep = 2,
2651 .eptype = EP_BLK_TYPE,
2652 },
2653 .ep[3] = {
2654 .ep = {
2655 .name = "ep3-iso",
2656 .ops = &lpc32xx_ep_ops,
2657 },
2658 .maxpacket = 1023,
2659 .hwep_num_base = 6,
2660 .hwep_num = 0, /* 6 or 7, will be set later */
2661 .lep = 3,
2662 .eptype = EP_ISO_TYPE,
2663 },
2664 .ep[4] = {
2665 .ep = {
2666 .name = "ep4-int",
2667 .ops = &lpc32xx_ep_ops,
2668 },
2669 .maxpacket = 64,
2670 .hwep_num_base = 8,
2671 .hwep_num = 0, /* 8 or 9, will be set later */
2672 .lep = 4,
2673 .eptype = EP_INT_TYPE,
2674 },
2675 .ep[5] = {
2676 .ep = {
2677 .name = "ep5-bulk",
2678 .ops = &lpc32xx_ep_ops,
2679 },
2680 .maxpacket = 64,
2681 .hwep_num_base = 10,
2682 .hwep_num = 0, /* 10 or 11, will be set later */
2683 .lep = 5,
2684 .eptype = EP_BLK_TYPE,
2685 },
2686 .ep[6] = {
2687 .ep = {
2688 .name = "ep6-iso",
2689 .ops = &lpc32xx_ep_ops,
2690 },
2691 .maxpacket = 1023,
2692 .hwep_num_base = 12,
2693 .hwep_num = 0, /* 12 or 13, will be set later */
2694 .lep = 6,
2695 .eptype = EP_ISO_TYPE,
2696 },
2697 .ep[7] = {
2698 .ep = {
2699 .name = "ep7-int",
2700 .ops = &lpc32xx_ep_ops,
2701 },
2702 .maxpacket = 64,
2703 .hwep_num_base = 14,
2704 .hwep_num = 0,
2705 .lep = 7,
2706 .eptype = EP_INT_TYPE,
2707 },
2708 .ep[8] = {
2709 .ep = {
2710 .name = "ep8-bulk",
2711 .ops = &lpc32xx_ep_ops,
2712 },
2713 .maxpacket = 64,
2714 .hwep_num_base = 16,
2715 .hwep_num = 0,
2716 .lep = 8,
2717 .eptype = EP_BLK_TYPE,
2718 },
2719 .ep[9] = {
2720 .ep = {
2721 .name = "ep9-iso",
2722 .ops = &lpc32xx_ep_ops,
2723 },
2724 .maxpacket = 1023,
2725 .hwep_num_base = 18,
2726 .hwep_num = 0,
2727 .lep = 9,
2728 .eptype = EP_ISO_TYPE,
2729 },
2730 .ep[10] = {
2731 .ep = {
2732 .name = "ep10-int",
2733 .ops = &lpc32xx_ep_ops,
2734 },
2735 .maxpacket = 64,
2736 .hwep_num_base = 20,
2737 .hwep_num = 0,
2738 .lep = 10,
2739 .eptype = EP_INT_TYPE,
2740 },
2741 .ep[11] = {
2742 .ep = {
2743 .name = "ep11-bulk",
2744 .ops = &lpc32xx_ep_ops,
2745 },
2746 .maxpacket = 64,
2747 .hwep_num_base = 22,
2748 .hwep_num = 0,
2749 .lep = 11,
2750 .eptype = EP_BLK_TYPE,
2751 },
2752 .ep[12] = {
2753 .ep = {
2754 .name = "ep12-iso",
2755 .ops = &lpc32xx_ep_ops,
2756 },
2757 .maxpacket = 1023,
2758 .hwep_num_base = 24,
2759 .hwep_num = 0,
2760 .lep = 12,
2761 .eptype = EP_ISO_TYPE,
2762 },
2763 .ep[13] = {
2764 .ep = {
2765 .name = "ep13-int",
2766 .ops = &lpc32xx_ep_ops,
2767 },
2768 .maxpacket = 64,
2769 .hwep_num_base = 26,
2770 .hwep_num = 0,
2771 .lep = 13,
2772 .eptype = EP_INT_TYPE,
2773 },
2774 .ep[14] = {
2775 .ep = {
2776 .name = "ep14-bulk",
2777 .ops = &lpc32xx_ep_ops,
2778 },
2779 .maxpacket = 64,
2780 .hwep_num_base = 28,
2781 .hwep_num = 0,
2782 .lep = 14,
2783 .eptype = EP_BLK_TYPE,
2784 },
2785 .ep[15] = {
2786 .ep = {
2787 .name = "ep15-bulk",
2788 .ops = &lpc32xx_ep_ops,
2789 },
2790 .maxpacket = 1023,
2791 .hwep_num_base = 30,
2792 .hwep_num = 0,
2793 .lep = 15,
2794 .eptype = EP_BLK_TYPE,
2795 },
2796 };
2797
2798 /* ISO and status interrupts */
2799 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2800 {
2801 u32 tmp, devstat;
2802 struct lpc32xx_udc *udc = _udc;
2803
2804 spin_lock(&udc->lock);
2805
2806 /* Read the device status register */
2807 devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2808
2809 devstat &= ~USBD_EP_FAST;
2810 writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2811 devstat = devstat & udc->enabled_devints;
2812
2813 /* Device specific handling needed? */
2814 if (devstat & USBD_DEV_STAT)
2815 udc_handle_dev(udc);
2816
2817 /* Start of frame? (devstat & FRAME_INT):
2818 * The frame interrupt isn't really needed for ISO support,
2819 * as the driver will queue the necessary packets */
2820
2821 /* Error? */
2822 if (devstat & ERR_INT) {
2823 /* All types of errors, from cable removal during transfer to
2824 * misc protocol and bit errors. These are mostly for just info,
2825 * as the USB hardware will work around these. If these errors
2826 * happen alot, something is wrong. */
2827 udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2828 tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2829 dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2830 }
2831
2832 spin_unlock(&udc->lock);
2833
2834 return IRQ_HANDLED;
2835 }
2836
2837 /* EP interrupts */
2838 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2839 {
2840 u32 tmp;
2841 struct lpc32xx_udc *udc = _udc;
2842
2843 spin_lock(&udc->lock);
2844
2845 /* Read the device status register */
2846 writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2847
2848 /* Endpoints */
2849 tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2850
2851 /* Special handling for EP0 */
2852 if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2853 /* Handle EP0 IN */
2854 if (tmp & (EP_MASK_SEL(0, EP_IN)))
2855 udc_handle_ep0_in(udc);
2856
2857 /* Handle EP0 OUT */
2858 if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2859 udc_handle_ep0_out(udc);
2860 }
2861
2862 /* All other EPs */
2863 if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2864 int i;
2865
2866 /* Handle other EP interrupts */
2867 for (i = 1; i < NUM_ENDPOINTS; i++) {
2868 if (tmp & (1 << udc->ep[i].hwep_num))
2869 udc_handle_eps(udc, &udc->ep[i]);
2870 }
2871 }
2872
2873 spin_unlock(&udc->lock);
2874
2875 return IRQ_HANDLED;
2876 }
2877
2878 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2879 {
2880 struct lpc32xx_udc *udc = _udc;
2881
2882 int i;
2883 u32 tmp;
2884
2885 spin_lock(&udc->lock);
2886
2887 /* Handle EP DMA EOT interrupts */
2888 tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2889 (readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2890 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2891 readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2892 for (i = 1; i < NUM_ENDPOINTS; i++) {
2893 if (tmp & (1 << udc->ep[i].hwep_num))
2894 udc_handle_dma_ep(udc, &udc->ep[i]);
2895 }
2896
2897 spin_unlock(&udc->lock);
2898
2899 return IRQ_HANDLED;
2900 }
2901
2902 /*
2903 *
2904 * VBUS detection, pullup handler, and Gadget cable state notification
2905 *
2906 */
2907 static void vbus_work(struct work_struct *work)
2908 {
2909 u8 value;
2910 struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2911 vbus_job);
2912
2913 if (udc->enabled != 0) {
2914 /* Discharge VBUS real quick */
2915 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2916 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2917
2918 /* Give VBUS some time (100mS) to discharge */
2919 msleep(100);
2920
2921 /* Disable VBUS discharge resistor */
2922 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2923 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2924 OTG1_VBUS_DISCHRG);
2925
2926 /* Clear interrupt */
2927 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2928 ISP1301_I2C_INTERRUPT_LATCH |
2929 ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2930
2931 /* Get the VBUS status from the transceiver */
2932 value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2933 ISP1301_I2C_INTERRUPT_SOURCE);
2934
2935 /* VBUS on or off? */
2936 if (value & INT_SESS_VLD)
2937 udc->vbus = 1;
2938 else
2939 udc->vbus = 0;
2940
2941 /* VBUS changed? */
2942 if (udc->last_vbus != udc->vbus) {
2943 udc->last_vbus = udc->vbus;
2944 lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2945 }
2946 }
2947
2948 /* Re-enable after completion */
2949 enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2950 }
2951
2952 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2953 {
2954 struct lpc32xx_udc *udc = _udc;
2955
2956 /* Defer handling of VBUS IRQ to work queue */
2957 disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2958 schedule_work(&udc->vbus_job);
2959
2960 return IRQ_HANDLED;
2961 }
2962
2963 static int lpc32xx_start(struct usb_gadget *gadget,
2964 struct usb_gadget_driver *driver)
2965 {
2966 struct lpc32xx_udc *udc = to_udc(gadget);
2967 int i;
2968
2969 if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2970 dev_err(udc->dev, "bad parameter.\n");
2971 return -EINVAL;
2972 }
2973
2974 if (udc->driver) {
2975 dev_err(udc->dev, "UDC already has a gadget driver\n");
2976 return -EBUSY;
2977 }
2978
2979 udc->driver = driver;
2980 udc->gadget.dev.driver = &driver->driver;
2981 udc->gadget.dev.of_node = udc->dev->of_node;
2982 udc->enabled = 1;
2983 udc->selfpowered = 1;
2984 udc->vbus = 0;
2985
2986 /* Force VBUS process once to check for cable insertion */
2987 udc->last_vbus = udc->vbus = 0;
2988 schedule_work(&udc->vbus_job);
2989
2990 /* Do not re-enable ATX IRQ (3) */
2991 for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2992 enable_irq(udc->udp_irq[i]);
2993
2994 return 0;
2995 }
2996
2997 static int lpc32xx_stop(struct usb_gadget *gadget,
2998 struct usb_gadget_driver *driver)
2999 {
3000 int i;
3001 struct lpc32xx_udc *udc = to_udc(gadget);
3002
3003 if (!driver || driver != udc->driver)
3004 return -EINVAL;
3005
3006 for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3007 disable_irq(udc->udp_irq[i]);
3008
3009 if (udc->clocked) {
3010 spin_lock(&udc->lock);
3011 stop_activity(udc);
3012 spin_unlock(&udc->lock);
3013
3014 /*
3015 * Wait for all the endpoints to disable,
3016 * before disabling clocks. Don't wait if
3017 * endpoints are not enabled.
3018 */
3019 if (atomic_read(&udc->enabled_ep_cnt))
3020 wait_event_interruptible(udc->ep_disable_wait_queue,
3021 (atomic_read(&udc->enabled_ep_cnt) == 0));
3022
3023 spin_lock(&udc->lock);
3024 udc_clk_set(udc, 0);
3025 spin_unlock(&udc->lock);
3026 }
3027
3028 udc->enabled = 0;
3029 udc->gadget.dev.driver = NULL;
3030 udc->driver = NULL;
3031
3032 return 0;
3033 }
3034
3035 static void lpc32xx_udc_shutdown(struct platform_device *dev)
3036 {
3037 /* Force disconnect on reboot */
3038 struct lpc32xx_udc *udc = platform_get_drvdata(dev);
3039
3040 pullup(udc, 0);
3041 }
3042
3043 /*
3044 * Callbacks to be overridden by options passed via OF (TODO)
3045 */
3046
3047 static void lpc32xx_usbd_conn_chg(int conn)
3048 {
3049 /* Do nothing, it might be nice to enable an LED
3050 * based on conn state being !0 */
3051 }
3052
3053 static void lpc32xx_usbd_susp_chg(int susp)
3054 {
3055 /* Device suspend if susp != 0 */
3056 }
3057
3058 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
3059 {
3060 /* Enable or disable USB remote wakeup */
3061 }
3062
3063 struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
3064 .vbus_drv_pol = 0,
3065 .conn_chgb = &lpc32xx_usbd_conn_chg,
3066 .susp_chgb = &lpc32xx_usbd_susp_chg,
3067 .rmwk_chgb = &lpc32xx_rmwkup_chg,
3068 };
3069
3070
3071 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3072
3073 static int __init lpc32xx_udc_probe(struct platform_device *pdev)
3074 {
3075 struct device *dev = &pdev->dev;
3076 struct lpc32xx_udc *udc;
3077 int retval, i;
3078 struct resource *res;
3079 dma_addr_t dma_handle;
3080 struct device_node *isp1301_node;
3081
3082 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
3083 if (!udc)
3084 return -ENOMEM;
3085
3086 memcpy(udc, &controller_template, sizeof(*udc));
3087 for (i = 0; i <= 15; i++)
3088 udc->ep[i].udc = udc;
3089 udc->gadget.ep0 = &udc->ep[0].ep;
3090
3091 /* init software state */
3092 udc->gadget.dev.parent = dev;
3093 udc->pdev = pdev;
3094 udc->dev = &pdev->dev;
3095 udc->enabled = 0;
3096
3097 if (pdev->dev.of_node) {
3098 isp1301_node = of_parse_phandle(pdev->dev.of_node,
3099 "transceiver", 0);
3100 } else {
3101 isp1301_node = NULL;
3102 }
3103
3104 udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3105 if (!udc->isp1301_i2c_client) {
3106 retval = -EPROBE_DEFER;
3107 goto phy_fail;
3108 }
3109
3110 dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3111 udc->isp1301_i2c_client->addr);
3112
3113 pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3114 pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
3115
3116 udc->board = &lpc32xx_usbddata;
3117
3118 /*
3119 * Resources are mapped as follows:
3120 * IORESOURCE_MEM, base address and size of USB space
3121 * IORESOURCE_IRQ, USB device low priority interrupt number
3122 * IORESOURCE_IRQ, USB device high priority interrupt number
3123 * IORESOURCE_IRQ, USB device interrupt number
3124 * IORESOURCE_IRQ, USB transceiver interrupt number
3125 */
3126 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3127 if (!res) {
3128 retval = -ENXIO;
3129 goto resource_fail;
3130 }
3131
3132 spin_lock_init(&udc->lock);
3133
3134 /* Get IRQs */
3135 for (i = 0; i < 4; i++) {
3136 udc->udp_irq[i] = platform_get_irq(pdev, i);
3137 if (udc->udp_irq[i] < 0) {
3138 dev_err(udc->dev,
3139 "irq resource %d not available!\n", i);
3140 retval = udc->udp_irq[i];
3141 goto irq_fail;
3142 }
3143 }
3144
3145 udc->io_p_start = res->start;
3146 udc->io_p_size = resource_size(res);
3147 if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3148 dev_err(udc->dev, "someone's using UDC memory\n");
3149 retval = -EBUSY;
3150 goto request_mem_region_fail;
3151 }
3152
3153 udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3154 if (!udc->udp_baseaddr) {
3155 retval = -ENOMEM;
3156 dev_err(udc->dev, "IO map failure\n");
3157 goto io_map_fail;
3158 }
3159
3160 /* Enable AHB slave USB clock, needed for further USB clock control */
3161 writel(USB_SLAVE_HCLK_EN | (1 << 19), USB_CTRL);
3162
3163 /* Get required clocks */
3164 udc->usb_pll_clk = clk_get(&pdev->dev, "ck_pll5");
3165 if (IS_ERR(udc->usb_pll_clk)) {
3166 dev_err(udc->dev, "failed to acquire USB PLL\n");
3167 retval = PTR_ERR(udc->usb_pll_clk);
3168 goto pll_get_fail;
3169 }
3170 udc->usb_slv_clk = clk_get(&pdev->dev, "ck_usbd");
3171 if (IS_ERR(udc->usb_slv_clk)) {
3172 dev_err(udc->dev, "failed to acquire USB device clock\n");
3173 retval = PTR_ERR(udc->usb_slv_clk);
3174 goto usb_clk_get_fail;
3175 }
3176 udc->usb_otg_clk = clk_get(&pdev->dev, "ck_usb_otg");
3177 if (IS_ERR(udc->usb_otg_clk)) {
3178 dev_err(udc->dev, "failed to acquire USB otg clock\n");
3179 retval = PTR_ERR(udc->usb_otg_clk);
3180 goto usb_otg_clk_get_fail;
3181 }
3182
3183 /* Setup PLL clock to 48MHz */
3184 retval = clk_enable(udc->usb_pll_clk);
3185 if (retval < 0) {
3186 dev_err(udc->dev, "failed to start USB PLL\n");
3187 goto pll_enable_fail;
3188 }
3189
3190 retval = clk_set_rate(udc->usb_pll_clk, 48000);
3191 if (retval < 0) {
3192 dev_err(udc->dev, "failed to set USB clock rate\n");
3193 goto pll_set_fail;
3194 }
3195
3196 writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN, USB_CTRL);
3197
3198 /* Enable USB device clock */
3199 retval = clk_enable(udc->usb_slv_clk);
3200 if (retval < 0) {
3201 dev_err(udc->dev, "failed to start USB device clock\n");
3202 goto usb_clk_enable_fail;
3203 }
3204
3205 /* Enable USB OTG clock */
3206 retval = clk_enable(udc->usb_otg_clk);
3207 if (retval < 0) {
3208 dev_err(udc->dev, "failed to start USB otg clock\n");
3209 goto usb_otg_clk_enable_fail;
3210 }
3211
3212 /* Setup deferred workqueue data */
3213 udc->poweron = udc->pullup = 0;
3214 INIT_WORK(&udc->pullup_job, pullup_work);
3215 INIT_WORK(&udc->vbus_job, vbus_work);
3216 #ifdef CONFIG_PM
3217 INIT_WORK(&udc->power_job, power_work);
3218 #endif
3219
3220 /* All clocks are now on */
3221 udc->clocked = 1;
3222
3223 isp1301_udc_configure(udc);
3224 /* Allocate memory for the UDCA */
3225 udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3226 &dma_handle,
3227 (GFP_KERNEL | GFP_DMA));
3228 if (!udc->udca_v_base) {
3229 dev_err(udc->dev, "error getting UDCA region\n");
3230 retval = -ENOMEM;
3231 goto i2c_fail;
3232 }
3233 udc->udca_p_base = dma_handle;
3234 dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3235 UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3236
3237 /* Setup the DD DMA memory pool */
3238 udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3239 sizeof(struct lpc32xx_usbd_dd_gad),
3240 sizeof(u32), 0);
3241 if (!udc->dd_cache) {
3242 dev_err(udc->dev, "error getting DD DMA region\n");
3243 retval = -ENOMEM;
3244 goto dma_alloc_fail;
3245 }
3246
3247 /* Clear USB peripheral and initialize gadget endpoints */
3248 udc_disable(udc);
3249 udc_reinit(udc);
3250
3251 retval = device_register(&udc->gadget.dev);
3252 if (retval < 0) {
3253 dev_err(udc->dev, "Device registration failure\n");
3254 goto dev_register_fail;
3255 }
3256
3257 /* Request IRQs - low and high priority USB device IRQs are routed to
3258 * the same handler, while the DMA interrupt is routed elsewhere */
3259 retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3260 0, "udc_lp", udc);
3261 if (retval < 0) {
3262 dev_err(udc->dev, "LP request irq %d failed\n",
3263 udc->udp_irq[IRQ_USB_LP]);
3264 goto irq_lp_fail;
3265 }
3266 retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3267 0, "udc_hp", udc);
3268 if (retval < 0) {
3269 dev_err(udc->dev, "HP request irq %d failed\n",
3270 udc->udp_irq[IRQ_USB_HP]);
3271 goto irq_hp_fail;
3272 }
3273
3274 retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3275 lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3276 if (retval < 0) {
3277 dev_err(udc->dev, "DEV request irq %d failed\n",
3278 udc->udp_irq[IRQ_USB_DEVDMA]);
3279 goto irq_dev_fail;
3280 }
3281
3282 /* The transceiver interrupt is used for VBUS detection and will
3283 kick off the VBUS handler function */
3284 retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3285 0, "udc_otg", udc);
3286 if (retval < 0) {
3287 dev_err(udc->dev, "VBUS request irq %d failed\n",
3288 udc->udp_irq[IRQ_USB_ATX]);
3289 goto irq_xcvr_fail;
3290 }
3291
3292 /* Initialize wait queue */
3293 init_waitqueue_head(&udc->ep_disable_wait_queue);
3294 atomic_set(&udc->enabled_ep_cnt, 0);
3295
3296 /* Keep all IRQs disabled until GadgetFS starts up */
3297 for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3298 disable_irq(udc->udp_irq[i]);
3299
3300 retval = usb_add_gadget_udc(dev, &udc->gadget);
3301 if (retval < 0)
3302 goto add_gadget_fail;
3303
3304 dev_set_drvdata(dev, udc);
3305 device_init_wakeup(dev, 1);
3306 create_debug_file(udc);
3307
3308 /* Disable clocks for now */
3309 udc_clk_set(udc, 0);
3310
3311 dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3312 return 0;
3313
3314 add_gadget_fail:
3315 free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3316 irq_xcvr_fail:
3317 free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3318 irq_dev_fail:
3319 free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3320 irq_hp_fail:
3321 free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3322 irq_lp_fail:
3323 device_unregister(&udc->gadget.dev);
3324 dev_register_fail:
3325 dma_pool_destroy(udc->dd_cache);
3326 dma_alloc_fail:
3327 dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3328 udc->udca_v_base, udc->udca_p_base);
3329 i2c_fail:
3330 clk_disable(udc->usb_otg_clk);
3331 usb_otg_clk_enable_fail:
3332 clk_disable(udc->usb_slv_clk);
3333 usb_clk_enable_fail:
3334 pll_set_fail:
3335 clk_disable(udc->usb_pll_clk);
3336 pll_enable_fail:
3337 clk_put(udc->usb_slv_clk);
3338 usb_otg_clk_get_fail:
3339 clk_put(udc->usb_otg_clk);
3340 usb_clk_get_fail:
3341 clk_put(udc->usb_pll_clk);
3342 pll_get_fail:
3343 iounmap(udc->udp_baseaddr);
3344 io_map_fail:
3345 release_mem_region(udc->io_p_start, udc->io_p_size);
3346 dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3347 request_mem_region_fail:
3348 irq_fail:
3349 resource_fail:
3350 phy_fail:
3351 kfree(udc);
3352 return retval;
3353 }
3354
3355 static int lpc32xx_udc_remove(struct platform_device *pdev)
3356 {
3357 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3358
3359 usb_del_gadget_udc(&udc->gadget);
3360 if (udc->driver)
3361 return -EBUSY;
3362
3363 udc_clk_set(udc, 1);
3364 udc_disable(udc);
3365 pullup(udc, 0);
3366
3367 free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3368
3369 device_init_wakeup(&pdev->dev, 0);
3370 remove_debug_file(udc);
3371
3372 dma_pool_destroy(udc->dd_cache);
3373 dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3374 udc->udca_v_base, udc->udca_p_base);
3375 free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3376 free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3377 free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3378
3379 device_unregister(&udc->gadget.dev);
3380
3381 clk_disable(udc->usb_otg_clk);
3382 clk_put(udc->usb_otg_clk);
3383 clk_disable(udc->usb_slv_clk);
3384 clk_put(udc->usb_slv_clk);
3385 clk_disable(udc->usb_pll_clk);
3386 clk_put(udc->usb_pll_clk);
3387 iounmap(udc->udp_baseaddr);
3388 release_mem_region(udc->io_p_start, udc->io_p_size);
3389 kfree(udc);
3390
3391 return 0;
3392 }
3393
3394 #ifdef CONFIG_PM
3395 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3396 {
3397 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3398
3399 if (udc->clocked) {
3400 /* Power down ISP */
3401 udc->poweron = 0;
3402 isp1301_set_powerstate(udc, 0);
3403
3404 /* Disable clocking */
3405 udc_clk_set(udc, 0);
3406
3407 /* Keep clock flag on, so we know to re-enable clocks
3408 on resume */
3409 udc->clocked = 1;
3410
3411 /* Kill global USB clock */
3412 clk_disable(udc->usb_slv_clk);
3413 }
3414
3415 return 0;
3416 }
3417
3418 static int lpc32xx_udc_resume(struct platform_device *pdev)
3419 {
3420 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3421
3422 if (udc->clocked) {
3423 /* Enable global USB clock */
3424 clk_enable(udc->usb_slv_clk);
3425
3426 /* Enable clocking */
3427 udc_clk_set(udc, 1);
3428
3429 /* ISP back to normal power mode */
3430 udc->poweron = 1;
3431 isp1301_set_powerstate(udc, 1);
3432 }
3433
3434 return 0;
3435 }
3436 #else
3437 #define lpc32xx_udc_suspend NULL
3438 #define lpc32xx_udc_resume NULL
3439 #endif
3440
3441 #ifdef CONFIG_OF
3442 static struct of_device_id lpc32xx_udc_of_match[] = {
3443 { .compatible = "nxp,lpc3220-udc", },
3444 { },
3445 };
3446 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3447 #endif
3448
3449 static struct platform_driver lpc32xx_udc_driver = {
3450 .remove = lpc32xx_udc_remove,
3451 .shutdown = lpc32xx_udc_shutdown,
3452 .suspend = lpc32xx_udc_suspend,
3453 .resume = lpc32xx_udc_resume,
3454 .driver = {
3455 .name = (char *) driver_name,
3456 .owner = THIS_MODULE,
3457 .of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3458 },
3459 };
3460
3461 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3462
3463 MODULE_DESCRIPTION("LPC32XX udc driver");
3464 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3465 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3466 MODULE_LICENSE("GPL");
3467 MODULE_ALIAS("platform:lpc32xx_udc");