import PULS_20180308
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
539 *
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
542 *
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
546 */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
552
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
562 }
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
566 }
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 }
578 read_unlock(&tasklist_lock);
579
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
584 }
585
586 return refs;
587 }
588
589 /**
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
592 *
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
596 *
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
601 *
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_mutex resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
610 */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
618
619 if (!tty)
620 return;
621
622
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
627 }
628 spin_unlock(&redirect_lock);
629
630 tty_lock(tty);
631
632 /* some functions below drop BTM, so we need this bit */
633 set_bit(TTY_HUPPING, &tty->flags);
634
635 /* inuse_filps is protected by the single tty lock,
636 this really needs to change if we want to flush the
637 workqueue with the lock held */
638 check_tty_count(tty, "tty_hangup");
639
640 spin_lock(&tty_files_lock);
641 /* This breaks for file handles being sent over AF_UNIX sockets ? */
642 list_for_each_entry(priv, &tty->tty_files, list) {
643 filp = priv->file;
644 if (filp->f_op->write == redirected_tty_write)
645 cons_filp = filp;
646 if (filp->f_op->write != tty_write)
647 continue;
648 closecount++;
649 __tty_fasync(-1, filp, 0); /* can't block */
650 filp->f_op = &hung_up_tty_fops;
651 }
652 spin_unlock(&tty_files_lock);
653
654 refs = tty_signal_session_leader(tty, exit_session);
655 /* Account for the p->signal references we killed */
656 while (refs--)
657 tty_kref_put(tty);
658
659 /*
660 * it drops BTM and thus races with reopen
661 * we protect the race by TTY_HUPPING
662 */
663 tty_ldisc_hangup(tty);
664
665 spin_lock_irq(&tty->ctrl_lock);
666 clear_bit(TTY_THROTTLED, &tty->flags);
667 clear_bit(TTY_PUSH, &tty->flags);
668 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669 put_pid(tty->session);
670 put_pid(tty->pgrp);
671 tty->session = NULL;
672 tty->pgrp = NULL;
673 tty->ctrl_status = 0;
674 spin_unlock_irq(&tty->ctrl_lock);
675
676 /*
677 * If one of the devices matches a console pointer, we
678 * cannot just call hangup() because that will cause
679 * tty->count and state->count to go out of sync.
680 * So we just call close() the right number of times.
681 */
682 if (cons_filp) {
683 if (tty->ops->close)
684 for (n = 0; n < closecount; n++)
685 tty->ops->close(tty, cons_filp);
686 } else if (tty->ops->hangup)
687 (tty->ops->hangup)(tty);
688 /*
689 * We don't want to have driver/ldisc interactions beyond
690 * the ones we did here. The driver layer expects no
691 * calls after ->hangup() from the ldisc side. However we
692 * can't yet guarantee all that.
693 */
694 set_bit(TTY_HUPPED, &tty->flags);
695 clear_bit(TTY_HUPPING, &tty->flags);
696
697 tty_unlock(tty);
698
699 if (f)
700 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705 struct tty_struct *tty =
706 container_of(work, struct tty_struct, hangup_work);
707
708 __tty_hangup(tty, 0);
709 }
710
711 /**
712 * tty_hangup - trigger a hangup event
713 * @tty: tty to hangup
714 *
715 * A carrier loss (virtual or otherwise) has occurred on this like
716 * schedule a hangup sequence to run after this event.
717 */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722 char buf[64];
723 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725 schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731 * tty_vhangup - process vhangup
732 * @tty: tty to hangup
733 *
734 * The user has asked via system call for the terminal to be hung up.
735 * We do this synchronously so that when the syscall returns the process
736 * is complete. That guarantee is necessary for security reasons.
737 */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742 char buf[64];
743
744 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746 __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753 * tty_vhangup_self - process vhangup for own ctty
754 *
755 * Perform a vhangup on the current controlling tty
756 */
757
758 void tty_vhangup_self(void)
759 {
760 struct tty_struct *tty;
761
762 tty = get_current_tty();
763 if (tty) {
764 tty_vhangup(tty);
765 tty_kref_put(tty);
766 }
767 }
768
769 /**
770 * tty_vhangup_session - hangup session leader exit
771 * @tty: tty to hangup
772 *
773 * The session leader is exiting and hanging up its controlling terminal.
774 * Every process in the foreground process group is signalled SIGHUP.
775 *
776 * We do this synchronously so that when the syscall returns the process
777 * is complete. That guarantee is necessary for security reasons.
778 */
779
780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783 char buf[64];
784
785 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787 __tty_hangup(tty, 1);
788 }
789
790 /**
791 * tty_hung_up_p - was tty hung up
792 * @filp: file pointer of tty
793 *
794 * Return true if the tty has been subject to a vhangup or a carrier
795 * loss
796 */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800 return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807 struct task_struct *p;
808 do_each_pid_task(session, PIDTYPE_SID, p) {
809 proc_clear_tty(p);
810 } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814 * disassociate_ctty - disconnect controlling tty
815 * @on_exit: true if exiting so need to "hang up" the session
816 *
817 * This function is typically called only by the session leader, when
818 * it wants to disassociate itself from its controlling tty.
819 *
820 * It performs the following functions:
821 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
822 * (2) Clears the tty from being controlling the session
823 * (3) Clears the controlling tty for all processes in the
824 * session group.
825 *
826 * The argument on_exit is set to 1 if called when a process is
827 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
828 *
829 * Locking:
830 * BTM is taken for hysterical raisins, and held when
831 * called from no_tty().
832 * tty_mutex is taken to protect tty
833 * ->siglock is taken to protect ->signal/->sighand
834 * tasklist_lock is taken to walk process list for sessions
835 * ->siglock is taken to protect ->signal/->sighand
836 */
837
838 void disassociate_ctty(int on_exit)
839 {
840 struct tty_struct *tty;
841
842 if (!current->signal->leader)
843 return;
844
845 tty = get_current_tty();
846 if (tty) {
847 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848 tty_vhangup_session(tty);
849 } else {
850 struct pid *tty_pgrp = tty_get_pgrp(tty);
851 if (tty_pgrp) {
852 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853 if (!on_exit)
854 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
855 put_pid(tty_pgrp);
856 }
857 }
858 tty_kref_put(tty);
859
860 } else if (on_exit) {
861 struct pid *old_pgrp;
862 spin_lock_irq(&current->sighand->siglock);
863 old_pgrp = current->signal->tty_old_pgrp;
864 current->signal->tty_old_pgrp = NULL;
865 spin_unlock_irq(&current->sighand->siglock);
866 if (old_pgrp) {
867 kill_pgrp(old_pgrp, SIGHUP, on_exit);
868 kill_pgrp(old_pgrp, SIGCONT, on_exit);
869 put_pid(old_pgrp);
870 }
871 return;
872 }
873
874 spin_lock_irq(&current->sighand->siglock);
875 put_pid(current->signal->tty_old_pgrp);
876 current->signal->tty_old_pgrp = NULL;
877 spin_unlock_irq(&current->sighand->siglock);
878
879 tty = get_current_tty();
880 if (tty) {
881 unsigned long flags;
882 spin_lock_irqsave(&tty->ctrl_lock, flags);
883 put_pid(tty->session);
884 put_pid(tty->pgrp);
885 tty->session = NULL;
886 tty->pgrp = NULL;
887 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
888 tty_kref_put(tty);
889 } else {
890 #ifdef TTY_DEBUG_HANGUP
891 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
892 " = NULL", tty);
893 #endif
894 }
895
896 /* Now clear signal->tty under the lock */
897 read_lock(&tasklist_lock);
898 session_clear_tty(task_session(current));
899 read_unlock(&tasklist_lock);
900 }
901
902 /**
903 *
904 * no_tty - Ensure the current process does not have a controlling tty
905 */
906 void no_tty(void)
907 {
908 /* FIXME: Review locking here. The tty_lock never covered any race
909 between a new association and proc_clear_tty but possible we need
910 to protect against this anyway */
911 struct task_struct *tsk = current;
912 disassociate_ctty(0);
913 proc_clear_tty(tsk);
914 }
915
916
917 /**
918 * stop_tty - propagate flow control
919 * @tty: tty to stop
920 *
921 * Perform flow control to the driver. For PTY/TTY pairs we
922 * must also propagate the TIOCKPKT status. May be called
923 * on an already stopped device and will not re-call the driver
924 * method.
925 *
926 * This functionality is used by both the line disciplines for
927 * halting incoming flow and by the driver. It may therefore be
928 * called from any context, may be under the tty atomic_write_lock
929 * but not always.
930 *
931 * Locking:
932 * Uses the tty control lock internally
933 */
934
935 void stop_tty(struct tty_struct *tty)
936 {
937 unsigned long flags;
938 spin_lock_irqsave(&tty->ctrl_lock, flags);
939 if (tty->stopped) {
940 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
941 return;
942 }
943 tty->stopped = 1;
944 if (tty->link && tty->link->packet) {
945 tty->ctrl_status &= ~TIOCPKT_START;
946 tty->ctrl_status |= TIOCPKT_STOP;
947 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
948 }
949 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
950 if (tty->ops->stop)
951 (tty->ops->stop)(tty);
952 }
953
954 EXPORT_SYMBOL(stop_tty);
955
956 /**
957 * start_tty - propagate flow control
958 * @tty: tty to start
959 *
960 * Start a tty that has been stopped if at all possible. Perform
961 * any necessary wakeups and propagate the TIOCPKT status. If this
962 * is the tty was previous stopped and is being started then the
963 * driver start method is invoked and the line discipline woken.
964 *
965 * Locking:
966 * ctrl_lock
967 */
968
969 void start_tty(struct tty_struct *tty)
970 {
971 unsigned long flags;
972 spin_lock_irqsave(&tty->ctrl_lock, flags);
973 if (!tty->stopped || tty->flow_stopped) {
974 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
975 return;
976 }
977 tty->stopped = 0;
978 if (tty->link && tty->link->packet) {
979 tty->ctrl_status &= ~TIOCPKT_STOP;
980 tty->ctrl_status |= TIOCPKT_START;
981 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
982 }
983 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
984 if (tty->ops->start)
985 (tty->ops->start)(tty);
986 /* If we have a running line discipline it may need kicking */
987 tty_wakeup(tty);
988 }
989
990 EXPORT_SYMBOL(start_tty);
991
992 /* We limit tty time update visibility to every 8 seconds or so. */
993 static void tty_update_time(struct timespec *time)
994 {
995 unsigned long sec = get_seconds();
996 if (abs(sec - time->tv_sec) & ~7)
997 time->tv_sec = sec;
998 }
999
1000 /**
1001 * tty_read - read method for tty device files
1002 * @file: pointer to tty file
1003 * @buf: user buffer
1004 * @count: size of user buffer
1005 * @ppos: unused
1006 *
1007 * Perform the read system call function on this terminal device. Checks
1008 * for hung up devices before calling the line discipline method.
1009 *
1010 * Locking:
1011 * Locks the line discipline internally while needed. Multiple
1012 * read calls may be outstanding in parallel.
1013 */
1014
1015 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1016 loff_t *ppos)
1017 {
1018 int i;
1019 struct inode *inode = file_inode(file);
1020 struct tty_struct *tty = file_tty(file);
1021 struct tty_ldisc *ld;
1022
1023 if (tty_paranoia_check(tty, inode, "tty_read"))
1024 return -EIO;
1025 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1026 return -EIO;
1027
1028 /* We want to wait for the line discipline to sort out in this
1029 situation */
1030 ld = tty_ldisc_ref_wait(tty);
1031 if (ld->ops->read)
1032 i = (ld->ops->read)(tty, file, buf, count);
1033 else
1034 i = -EIO;
1035 tty_ldisc_deref(ld);
1036
1037 if (i > 0)
1038 tty_update_time(&inode->i_atime);
1039
1040 return i;
1041 }
1042
1043 void tty_write_unlock(struct tty_struct *tty)
1044 __releases(&tty->atomic_write_lock)
1045 {
1046 mutex_unlock(&tty->atomic_write_lock);
1047 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1048 }
1049
1050 int tty_write_lock(struct tty_struct *tty, int ndelay)
1051 __acquires(&tty->atomic_write_lock)
1052 {
1053 if (!mutex_trylock(&tty->atomic_write_lock)) {
1054 if (ndelay)
1055 return -EAGAIN;
1056 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1057 return -ERESTARTSYS;
1058 }
1059 return 0;
1060 }
1061
1062 /*
1063 * Split writes up in sane blocksizes to avoid
1064 * denial-of-service type attacks
1065 */
1066 static inline ssize_t do_tty_write(
1067 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1068 struct tty_struct *tty,
1069 struct file *file,
1070 const char __user *buf,
1071 size_t count)
1072 {
1073 ssize_t ret, written = 0;
1074 unsigned int chunk;
1075
1076 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1077 if (ret < 0)
1078 return ret;
1079
1080 /*
1081 * We chunk up writes into a temporary buffer. This
1082 * simplifies low-level drivers immensely, since they
1083 * don't have locking issues and user mode accesses.
1084 *
1085 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1086 * big chunk-size..
1087 *
1088 * The default chunk-size is 2kB, because the NTTY
1089 * layer has problems with bigger chunks. It will
1090 * claim to be able to handle more characters than
1091 * it actually does.
1092 *
1093 * FIXME: This can probably go away now except that 64K chunks
1094 * are too likely to fail unless switched to vmalloc...
1095 */
1096 chunk = 2048;
1097 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1098 chunk = 65536;
1099 if (count < chunk)
1100 chunk = count;
1101
1102 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1103 if (tty->write_cnt < chunk) {
1104 unsigned char *buf_chunk;
1105
1106 if (chunk < 1024)
1107 chunk = 1024;
1108
1109 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1110 if (!buf_chunk) {
1111 ret = -ENOMEM;
1112 goto out;
1113 }
1114 kfree(tty->write_buf);
1115 tty->write_cnt = chunk;
1116 tty->write_buf = buf_chunk;
1117 }
1118
1119 /* Do the write .. */
1120 for (;;) {
1121 size_t size = count;
1122 if (size > chunk)
1123 size = chunk;
1124 ret = -EFAULT;
1125 if (copy_from_user(tty->write_buf, buf, size))
1126 break;
1127 ret = write(tty, file, tty->write_buf, size);
1128 if (ret <= 0)
1129 break;
1130 written += ret;
1131 buf += ret;
1132 count -= ret;
1133 if (!count)
1134 break;
1135 ret = -ERESTARTSYS;
1136 if (signal_pending(current))
1137 break;
1138 cond_resched();
1139 }
1140 if (written) {
1141 tty_update_time(&file_inode(file)->i_mtime);
1142 ret = written;
1143 }
1144 out:
1145 tty_write_unlock(tty);
1146 return ret;
1147 }
1148
1149 /**
1150 * tty_write_message - write a message to a certain tty, not just the console.
1151 * @tty: the destination tty_struct
1152 * @msg: the message to write
1153 *
1154 * This is used for messages that need to be redirected to a specific tty.
1155 * We don't put it into the syslog queue right now maybe in the future if
1156 * really needed.
1157 *
1158 * We must still hold the BTM and test the CLOSING flag for the moment.
1159 */
1160
1161 void tty_write_message(struct tty_struct *tty, char *msg)
1162 {
1163 if (tty) {
1164 mutex_lock(&tty->atomic_write_lock);
1165 tty_lock(tty);
1166 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1167 tty_unlock(tty);
1168 tty->ops->write(tty, msg, strlen(msg));
1169 } else
1170 tty_unlock(tty);
1171 tty_write_unlock(tty);
1172 }
1173 return;
1174 }
1175
1176
1177 /**
1178 * tty_write - write method for tty device file
1179 * @file: tty file pointer
1180 * @buf: user data to write
1181 * @count: bytes to write
1182 * @ppos: unused
1183 *
1184 * Write data to a tty device via the line discipline.
1185 *
1186 * Locking:
1187 * Locks the line discipline as required
1188 * Writes to the tty driver are serialized by the atomic_write_lock
1189 * and are then processed in chunks to the device. The line discipline
1190 * write method will not be invoked in parallel for each device.
1191 */
1192
1193 static ssize_t tty_write(struct file *file, const char __user *buf,
1194 size_t count, loff_t *ppos)
1195 {
1196 struct tty_struct *tty = file_tty(file);
1197 struct tty_ldisc *ld;
1198 ssize_t ret;
1199
1200 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1201 return -EIO;
1202 if (!tty || !tty->ops->write ||
1203 (test_bit(TTY_IO_ERROR, &tty->flags)))
1204 return -EIO;
1205 /* Short term debug to catch buggy drivers */
1206 if (tty->ops->write_room == NULL)
1207 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1208 tty->driver->name);
1209 ld = tty_ldisc_ref_wait(tty);
1210 if (!ld->ops->write)
1211 ret = -EIO;
1212 else
1213 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1214 tty_ldisc_deref(ld);
1215 return ret;
1216 }
1217
1218 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1219 size_t count, loff_t *ppos)
1220 {
1221 struct file *p = NULL;
1222
1223 spin_lock(&redirect_lock);
1224 if (redirect)
1225 p = get_file(redirect);
1226 spin_unlock(&redirect_lock);
1227
1228 if (p) {
1229 ssize_t res;
1230 res = vfs_write(p, buf, count, &p->f_pos);
1231 fput(p);
1232 return res;
1233 }
1234 return tty_write(file, buf, count, ppos);
1235 }
1236
1237 static char ptychar[] = "pqrstuvwxyzabcde";
1238
1239 /**
1240 * pty_line_name - generate name for a pty
1241 * @driver: the tty driver in use
1242 * @index: the minor number
1243 * @p: output buffer of at least 6 bytes
1244 *
1245 * Generate a name from a driver reference and write it to the output
1246 * buffer.
1247 *
1248 * Locking: None
1249 */
1250 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1251 {
1252 int i = index + driver->name_base;
1253 /* ->name is initialized to "ttyp", but "tty" is expected */
1254 sprintf(p, "%s%c%x",
1255 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1256 ptychar[i >> 4 & 0xf], i & 0xf);
1257 }
1258
1259 /**
1260 * tty_line_name - generate name for a tty
1261 * @driver: the tty driver in use
1262 * @index: the minor number
1263 * @p: output buffer of at least 7 bytes
1264 *
1265 * Generate a name from a driver reference and write it to the output
1266 * buffer.
1267 *
1268 * Locking: None
1269 */
1270 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1271 {
1272 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1273 return sprintf(p, "%s", driver->name);
1274 else
1275 return sprintf(p, "%s%d", driver->name,
1276 index + driver->name_base);
1277 }
1278
1279 /**
1280 * tty_driver_lookup_tty() - find an existing tty, if any
1281 * @driver: the driver for the tty
1282 * @idx: the minor number
1283 *
1284 * Return the tty, if found or ERR_PTR() otherwise.
1285 *
1286 * Locking: tty_mutex must be held. If tty is found, the mutex must
1287 * be held until the 'fast-open' is also done. Will change once we
1288 * have refcounting in the driver and per driver locking
1289 */
1290 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1291 struct inode *inode, int idx)
1292 {
1293 if (driver->ops->lookup)
1294 return driver->ops->lookup(driver, inode, idx);
1295
1296 return driver->ttys[idx];
1297 }
1298
1299 /**
1300 * tty_init_termios - helper for termios setup
1301 * @tty: the tty to set up
1302 *
1303 * Initialise the termios structures for this tty. Thus runs under
1304 * the tty_mutex currently so we can be relaxed about ordering.
1305 */
1306
1307 int tty_init_termios(struct tty_struct *tty)
1308 {
1309 struct ktermios *tp;
1310 int idx = tty->index;
1311
1312 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1313 tty->termios = tty->driver->init_termios;
1314 else {
1315 /* Check for lazy saved data */
1316 tp = tty->driver->termios[idx];
1317 if (tp != NULL)
1318 tty->termios = *tp;
1319 else
1320 tty->termios = tty->driver->init_termios;
1321 }
1322 /* Compatibility until drivers always set this */
1323 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1324 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1325 return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(tty_init_termios);
1328
1329 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1330 {
1331 int ret = tty_init_termios(tty);
1332 if (ret)
1333 return ret;
1334
1335 tty_driver_kref_get(driver);
1336 tty->count++;
1337 driver->ttys[tty->index] = tty;
1338 return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(tty_standard_install);
1341
1342 /**
1343 * tty_driver_install_tty() - install a tty entry in the driver
1344 * @driver: the driver for the tty
1345 * @tty: the tty
1346 *
1347 * Install a tty object into the driver tables. The tty->index field
1348 * will be set by the time this is called. This method is responsible
1349 * for ensuring any need additional structures are allocated and
1350 * configured.
1351 *
1352 * Locking: tty_mutex for now
1353 */
1354 static int tty_driver_install_tty(struct tty_driver *driver,
1355 struct tty_struct *tty)
1356 {
1357 return driver->ops->install ? driver->ops->install(driver, tty) :
1358 tty_standard_install(driver, tty);
1359 }
1360
1361 /**
1362 * tty_driver_remove_tty() - remove a tty from the driver tables
1363 * @driver: the driver for the tty
1364 * @idx: the minor number
1365 *
1366 * Remvoe a tty object from the driver tables. The tty->index field
1367 * will be set by the time this is called.
1368 *
1369 * Locking: tty_mutex for now
1370 */
1371 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1372 {
1373 if (driver->ops->remove)
1374 driver->ops->remove(driver, tty);
1375 else
1376 driver->ttys[tty->index] = NULL;
1377 }
1378
1379 /*
1380 * tty_reopen() - fast re-open of an open tty
1381 * @tty - the tty to open
1382 *
1383 * Return 0 on success, -errno on error.
1384 *
1385 * Locking: tty_mutex must be held from the time the tty was found
1386 * till this open completes.
1387 */
1388 static int tty_reopen(struct tty_struct *tty)
1389 {
1390 struct tty_driver *driver = tty->driver;
1391
1392 if (test_bit(TTY_CLOSING, &tty->flags) ||
1393 test_bit(TTY_HUPPING, &tty->flags))
1394 return -EIO;
1395
1396 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1397 driver->subtype == PTY_TYPE_MASTER) {
1398 /*
1399 * special case for PTY masters: only one open permitted,
1400 * and the slave side open count is incremented as well.
1401 */
1402 if (tty->count)
1403 return -EIO;
1404
1405 tty->link->count++;
1406 }
1407 tty->count++;
1408
1409 WARN_ON(!tty->ldisc);
1410
1411 return 0;
1412 }
1413
1414 /**
1415 * tty_init_dev - initialise a tty device
1416 * @driver: tty driver we are opening a device on
1417 * @idx: device index
1418 * @ret_tty: returned tty structure
1419 *
1420 * Prepare a tty device. This may not be a "new" clean device but
1421 * could also be an active device. The pty drivers require special
1422 * handling because of this.
1423 *
1424 * Locking:
1425 * The function is called under the tty_mutex, which
1426 * protects us from the tty struct or driver itself going away.
1427 *
1428 * On exit the tty device has the line discipline attached and
1429 * a reference count of 1. If a pair was created for pty/tty use
1430 * and the other was a pty master then it too has a reference count of 1.
1431 *
1432 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1433 * failed open. The new code protects the open with a mutex, so it's
1434 * really quite straightforward. The mutex locking can probably be
1435 * relaxed for the (most common) case of reopening a tty.
1436 */
1437
1438 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1439 {
1440 struct tty_struct *tty;
1441 int retval;
1442
1443 /*
1444 * First time open is complex, especially for PTY devices.
1445 * This code guarantees that either everything succeeds and the
1446 * TTY is ready for operation, or else the table slots are vacated
1447 * and the allocated memory released. (Except that the termios
1448 * and locked termios may be retained.)
1449 */
1450
1451 if (!try_module_get(driver->owner))
1452 return ERR_PTR(-ENODEV);
1453
1454 tty = alloc_tty_struct();
1455 if (!tty) {
1456 retval = -ENOMEM;
1457 goto err_module_put;
1458 }
1459 initialize_tty_struct(tty, driver, idx);
1460
1461 tty_lock(tty);
1462 retval = tty_driver_install_tty(driver, tty);
1463 if (retval < 0)
1464 goto err_deinit_tty;
1465
1466 if (!tty->port)
1467 tty->port = driver->ports[idx];
1468
1469 WARN_RATELIMIT(!tty->port,
1470 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1471 __func__, tty->driver->name);
1472
1473 tty->port->itty = tty;
1474
1475 /*
1476 * Structures all installed ... call the ldisc open routines.
1477 * If we fail here just call release_tty to clean up. No need
1478 * to decrement the use counts, as release_tty doesn't care.
1479 */
1480 retval = tty_ldisc_setup(tty, tty->link);
1481 if (retval)
1482 goto err_release_tty;
1483 /* Return the tty locked so that it cannot vanish under the caller */
1484 return tty;
1485
1486 err_deinit_tty:
1487 tty_unlock(tty);
1488 deinitialize_tty_struct(tty);
1489 free_tty_struct(tty);
1490 err_module_put:
1491 module_put(driver->owner);
1492 return ERR_PTR(retval);
1493
1494 /* call the tty release_tty routine to clean out this slot */
1495 err_release_tty:
1496 tty_unlock(tty);
1497 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1498 "clearing slot %d\n", idx);
1499 release_tty(tty, idx);
1500 return ERR_PTR(retval);
1501 }
1502
1503 void tty_free_termios(struct tty_struct *tty)
1504 {
1505 struct ktermios *tp;
1506 int idx = tty->index;
1507
1508 /* If the port is going to reset then it has no termios to save */
1509 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1510 return;
1511
1512 /* Stash the termios data */
1513 tp = tty->driver->termios[idx];
1514 if (tp == NULL) {
1515 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1516 if (tp == NULL) {
1517 pr_warn("tty: no memory to save termios state.\n");
1518 return;
1519 }
1520 tty->driver->termios[idx] = tp;
1521 }
1522 *tp = tty->termios;
1523 }
1524 EXPORT_SYMBOL(tty_free_termios);
1525
1526 /**
1527 * tty_flush_works - flush all works of a tty
1528 * @tty: tty device to flush works for
1529 *
1530 * Sync flush all works belonging to @tty.
1531 */
1532 static void tty_flush_works(struct tty_struct *tty)
1533 {
1534 flush_work(&tty->SAK_work);
1535 flush_work(&tty->hangup_work);
1536 }
1537
1538 /**
1539 * release_one_tty - release tty structure memory
1540 * @kref: kref of tty we are obliterating
1541 *
1542 * Releases memory associated with a tty structure, and clears out the
1543 * driver table slots. This function is called when a device is no longer
1544 * in use. It also gets called when setup of a device fails.
1545 *
1546 * Locking:
1547 * takes the file list lock internally when working on the list
1548 * of ttys that the driver keeps.
1549 *
1550 * This method gets called from a work queue so that the driver private
1551 * cleanup ops can sleep (needed for USB at least)
1552 */
1553 static void release_one_tty(struct work_struct *work)
1554 {
1555 struct tty_struct *tty =
1556 container_of(work, struct tty_struct, hangup_work);
1557 struct tty_driver *driver = tty->driver;
1558
1559 if (tty->ops->cleanup)
1560 tty->ops->cleanup(tty);
1561
1562 tty->magic = 0;
1563 tty_driver_kref_put(driver);
1564 module_put(driver->owner);
1565
1566 spin_lock(&tty_files_lock);
1567 list_del_init(&tty->tty_files);
1568 spin_unlock(&tty_files_lock);
1569
1570 put_pid(tty->pgrp);
1571 put_pid(tty->session);
1572 free_tty_struct(tty);
1573 }
1574
1575 static void queue_release_one_tty(struct kref *kref)
1576 {
1577 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1578
1579 /* The hangup queue is now free so we can reuse it rather than
1580 waste a chunk of memory for each port */
1581 INIT_WORK(&tty->hangup_work, release_one_tty);
1582 schedule_work(&tty->hangup_work);
1583 }
1584
1585 /**
1586 * tty_kref_put - release a tty kref
1587 * @tty: tty device
1588 *
1589 * Release a reference to a tty device and if need be let the kref
1590 * layer destruct the object for us
1591 */
1592
1593 void tty_kref_put(struct tty_struct *tty)
1594 {
1595 if (tty)
1596 kref_put(&tty->kref, queue_release_one_tty);
1597 }
1598 EXPORT_SYMBOL(tty_kref_put);
1599
1600 /**
1601 * release_tty - release tty structure memory
1602 *
1603 * Release both @tty and a possible linked partner (think pty pair),
1604 * and decrement the refcount of the backing module.
1605 *
1606 * Locking:
1607 * tty_mutex
1608 * takes the file list lock internally when working on the list
1609 * of ttys that the driver keeps.
1610 *
1611 */
1612 static void release_tty(struct tty_struct *tty, int idx)
1613 {
1614 /* This should always be true but check for the moment */
1615 WARN_ON(tty->index != idx);
1616 WARN_ON(!mutex_is_locked(&tty_mutex));
1617 if (tty->ops->shutdown)
1618 tty->ops->shutdown(tty);
1619 tty_free_termios(tty);
1620 tty_driver_remove_tty(tty->driver, tty);
1621 tty->port->itty = NULL;
1622 if (tty->link)
1623 tty->link->port->itty = NULL;
1624 cancel_work_sync(&tty->port->buf.work);
1625
1626 if (tty->link)
1627 tty_kref_put(tty->link);
1628 tty_kref_put(tty);
1629 }
1630
1631 /**
1632 * tty_release_checks - check a tty before real release
1633 * @tty: tty to check
1634 * @o_tty: link of @tty (if any)
1635 * @idx: index of the tty
1636 *
1637 * Performs some paranoid checking before true release of the @tty.
1638 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1639 */
1640 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1641 int idx)
1642 {
1643 #ifdef TTY_PARANOIA_CHECK
1644 if (idx < 0 || idx >= tty->driver->num) {
1645 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1646 __func__, tty->name);
1647 return -1;
1648 }
1649
1650 /* not much to check for devpts */
1651 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1652 return 0;
1653
1654 if (tty != tty->driver->ttys[idx]) {
1655 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1656 __func__, idx, tty->name);
1657 return -1;
1658 }
1659 if (tty->driver->other) {
1660 if (o_tty != tty->driver->other->ttys[idx]) {
1661 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1662 __func__, idx, tty->name);
1663 return -1;
1664 }
1665 if (o_tty->link != tty) {
1666 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1667 return -1;
1668 }
1669 }
1670 #endif
1671 return 0;
1672 }
1673
1674 /**
1675 * tty_release - vfs callback for close
1676 * @inode: inode of tty
1677 * @filp: file pointer for handle to tty
1678 *
1679 * Called the last time each file handle is closed that references
1680 * this tty. There may however be several such references.
1681 *
1682 * Locking:
1683 * Takes bkl. See tty_release_dev
1684 *
1685 * Even releasing the tty structures is a tricky business.. We have
1686 * to be very careful that the structures are all released at the
1687 * same time, as interrupts might otherwise get the wrong pointers.
1688 *
1689 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1690 * lead to double frees or releasing memory still in use.
1691 */
1692
1693 int tty_release(struct inode *inode, struct file *filp)
1694 {
1695 struct tty_struct *tty = file_tty(filp);
1696 struct tty_struct *o_tty;
1697 int pty_master, tty_closing, o_tty_closing, do_sleep;
1698 int idx;
1699 char buf[64];
1700
1701 if (tty_paranoia_check(tty, inode, __func__))
1702 return 0;
1703
1704 tty_lock(tty);
1705 check_tty_count(tty, __func__);
1706
1707 __tty_fasync(-1, filp, 0);
1708
1709 idx = tty->index;
1710 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1711 tty->driver->subtype == PTY_TYPE_MASTER);
1712 /* Review: parallel close */
1713 o_tty = tty->link;
1714
1715 if (tty_release_checks(tty, o_tty, idx)) {
1716 tty_unlock(tty);
1717 return 0;
1718 }
1719
1720 #ifdef TTY_DEBUG_HANGUP
1721 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1722 tty_name(tty, buf), tty->count);
1723 #endif
1724
1725 if (tty->ops->close)
1726 tty->ops->close(tty, filp);
1727
1728 tty_unlock(tty);
1729 /*
1730 * Sanity check: if tty->count is going to zero, there shouldn't be
1731 * any waiters on tty->read_wait or tty->write_wait. We test the
1732 * wait queues and kick everyone out _before_ actually starting to
1733 * close. This ensures that we won't block while releasing the tty
1734 * structure.
1735 *
1736 * The test for the o_tty closing is necessary, since the master and
1737 * slave sides may close in any order. If the slave side closes out
1738 * first, its count will be one, since the master side holds an open.
1739 * Thus this test wouldn't be triggered at the time the slave closes,
1740 * so we do it now.
1741 *
1742 * Note that it's possible for the tty to be opened again while we're
1743 * flushing out waiters. By recalculating the closing flags before
1744 * each iteration we avoid any problems.
1745 */
1746 while (1) {
1747 /* Guard against races with tty->count changes elsewhere and
1748 opens on /dev/tty */
1749
1750 mutex_lock(&tty_mutex);
1751 tty_lock_pair(tty, o_tty);
1752 tty_closing = tty->count <= 1;
1753 o_tty_closing = o_tty &&
1754 (o_tty->count <= (pty_master ? 1 : 0));
1755 do_sleep = 0;
1756
1757 if (tty_closing) {
1758 if (waitqueue_active(&tty->read_wait)) {
1759 wake_up_poll(&tty->read_wait, POLLIN);
1760 do_sleep++;
1761 }
1762 if (waitqueue_active(&tty->write_wait)) {
1763 wake_up_poll(&tty->write_wait, POLLOUT);
1764 do_sleep++;
1765 }
1766 }
1767 if (o_tty_closing) {
1768 if (waitqueue_active(&o_tty->read_wait)) {
1769 wake_up_poll(&o_tty->read_wait, POLLIN);
1770 do_sleep++;
1771 }
1772 if (waitqueue_active(&o_tty->write_wait)) {
1773 wake_up_poll(&o_tty->write_wait, POLLOUT);
1774 do_sleep++;
1775 }
1776 }
1777 if (!do_sleep)
1778 break;
1779
1780 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1781 __func__, tty_name(tty, buf));
1782 tty_unlock_pair(tty, o_tty);
1783 mutex_unlock(&tty_mutex);
1784 schedule();
1785 }
1786
1787 /*
1788 * The closing flags are now consistent with the open counts on
1789 * both sides, and we've completed the last operation that could
1790 * block, so it's safe to proceed with closing.
1791 *
1792 * We must *not* drop the tty_mutex until we ensure that a further
1793 * entry into tty_open can not pick up this tty.
1794 */
1795 if (pty_master) {
1796 if (--o_tty->count < 0) {
1797 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1798 __func__, o_tty->count, tty_name(o_tty, buf));
1799 o_tty->count = 0;
1800 }
1801 }
1802 if (--tty->count < 0) {
1803 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1804 __func__, tty->count, tty_name(tty, buf));
1805 tty->count = 0;
1806 }
1807
1808 /*
1809 * We've decremented tty->count, so we need to remove this file
1810 * descriptor off the tty->tty_files list; this serves two
1811 * purposes:
1812 * - check_tty_count sees the correct number of file descriptors
1813 * associated with this tty.
1814 * - do_tty_hangup no longer sees this file descriptor as
1815 * something that needs to be handled for hangups.
1816 */
1817 tty_del_file(filp);
1818
1819 /*
1820 * Perform some housekeeping before deciding whether to return.
1821 *
1822 * Set the TTY_CLOSING flag if this was the last open. In the
1823 * case of a pty we may have to wait around for the other side
1824 * to close, and TTY_CLOSING makes sure we can't be reopened.
1825 */
1826 if (tty_closing)
1827 set_bit(TTY_CLOSING, &tty->flags);
1828 if (o_tty_closing)
1829 set_bit(TTY_CLOSING, &o_tty->flags);
1830
1831 /*
1832 * If _either_ side is closing, make sure there aren't any
1833 * processes that still think tty or o_tty is their controlling
1834 * tty.
1835 */
1836 if (tty_closing || o_tty_closing) {
1837 read_lock(&tasklist_lock);
1838 session_clear_tty(tty->session);
1839 if (o_tty)
1840 session_clear_tty(o_tty->session);
1841 read_unlock(&tasklist_lock);
1842 }
1843
1844 mutex_unlock(&tty_mutex);
1845 tty_unlock_pair(tty, o_tty);
1846 /* At this point the TTY_CLOSING flag should ensure a dead tty
1847 cannot be re-opened by a racing opener */
1848
1849 /* check whether both sides are closing ... */
1850 if (!tty_closing || (o_tty && !o_tty_closing))
1851 return 0;
1852
1853 #ifdef TTY_DEBUG_HANGUP
1854 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1855 #endif
1856 /*
1857 * Ask the line discipline code to release its structures
1858 */
1859 tty_ldisc_release(tty, o_tty);
1860
1861 /* Wait for pending work before tty destruction commmences */
1862 tty_flush_works(tty);
1863 if (o_tty)
1864 tty_flush_works(o_tty);
1865
1866 #ifdef TTY_DEBUG_HANGUP
1867 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1868 #endif
1869 /*
1870 * The release_tty function takes care of the details of clearing
1871 * the slots and preserving the termios structure. The tty_unlock_pair
1872 * should be safe as we keep a kref while the tty is locked (so the
1873 * unlock never unlocks a freed tty).
1874 */
1875 mutex_lock(&tty_mutex);
1876 release_tty(tty, idx);
1877 mutex_unlock(&tty_mutex);
1878
1879 return 0;
1880 }
1881
1882 /**
1883 * tty_open_current_tty - get tty of current task for open
1884 * @device: device number
1885 * @filp: file pointer to tty
1886 * @return: tty of the current task iff @device is /dev/tty
1887 *
1888 * We cannot return driver and index like for the other nodes because
1889 * devpts will not work then. It expects inodes to be from devpts FS.
1890 *
1891 * We need to move to returning a refcounted object from all the lookup
1892 * paths including this one.
1893 */
1894 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1895 {
1896 struct tty_struct *tty;
1897
1898 if (device != MKDEV(TTYAUX_MAJOR, 0))
1899 return NULL;
1900
1901 tty = get_current_tty();
1902 if (!tty)
1903 return ERR_PTR(-ENXIO);
1904
1905 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1906 /* noctty = 1; */
1907 tty_kref_put(tty);
1908 /* FIXME: we put a reference and return a TTY! */
1909 /* This is only safe because the caller holds tty_mutex */
1910 return tty;
1911 }
1912
1913 /**
1914 * tty_lookup_driver - lookup a tty driver for a given device file
1915 * @device: device number
1916 * @filp: file pointer to tty
1917 * @noctty: set if the device should not become a controlling tty
1918 * @index: index for the device in the @return driver
1919 * @return: driver for this inode (with increased refcount)
1920 *
1921 * If @return is not erroneous, the caller is responsible to decrement the
1922 * refcount by tty_driver_kref_put.
1923 *
1924 * Locking: tty_mutex protects get_tty_driver
1925 */
1926 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1927 int *noctty, int *index)
1928 {
1929 struct tty_driver *driver;
1930
1931 switch (device) {
1932 #ifdef CONFIG_VT
1933 case MKDEV(TTY_MAJOR, 0): {
1934 extern struct tty_driver *console_driver;
1935 driver = tty_driver_kref_get(console_driver);
1936 *index = fg_console;
1937 *noctty = 1;
1938 break;
1939 }
1940 #endif
1941 case MKDEV(TTYAUX_MAJOR, 1): {
1942 struct tty_driver *console_driver = console_device(index);
1943 if (console_driver) {
1944 driver = tty_driver_kref_get(console_driver);
1945 if (driver) {
1946 /* Don't let /dev/console block */
1947 filp->f_flags |= O_NONBLOCK;
1948 *noctty = 1;
1949 break;
1950 }
1951 }
1952 return ERR_PTR(-ENODEV);
1953 }
1954 default:
1955 driver = get_tty_driver(device, index);
1956 if (!driver)
1957 return ERR_PTR(-ENODEV);
1958 break;
1959 }
1960 return driver;
1961 }
1962
1963 /**
1964 * tty_open - open a tty device
1965 * @inode: inode of device file
1966 * @filp: file pointer to tty
1967 *
1968 * tty_open and tty_release keep up the tty count that contains the
1969 * number of opens done on a tty. We cannot use the inode-count, as
1970 * different inodes might point to the same tty.
1971 *
1972 * Open-counting is needed for pty masters, as well as for keeping
1973 * track of serial lines: DTR is dropped when the last close happens.
1974 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1975 *
1976 * The termios state of a pty is reset on first open so that
1977 * settings don't persist across reuse.
1978 *
1979 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1980 * tty->count should protect the rest.
1981 * ->siglock protects ->signal/->sighand
1982 *
1983 * Note: the tty_unlock/lock cases without a ref are only safe due to
1984 * tty_mutex
1985 */
1986
1987 static int tty_open(struct inode *inode, struct file *filp)
1988 {
1989 struct tty_struct *tty;
1990 int noctty, retval;
1991 struct tty_driver *driver = NULL;
1992 int index;
1993 dev_t device = inode->i_rdev;
1994 unsigned saved_flags = filp->f_flags;
1995
1996 nonseekable_open(inode, filp);
1997
1998 retry_open:
1999 retval = tty_alloc_file(filp);
2000 if (retval)
2001 return -ENOMEM;
2002
2003 noctty = filp->f_flags & O_NOCTTY;
2004 index = -1;
2005 retval = 0;
2006
2007 mutex_lock(&tty_mutex);
2008 /* This is protected by the tty_mutex */
2009 tty = tty_open_current_tty(device, filp);
2010 if (IS_ERR(tty)) {
2011 retval = PTR_ERR(tty);
2012 goto err_unlock;
2013 } else if (!tty) {
2014 driver = tty_lookup_driver(device, filp, &noctty, &index);
2015 if (IS_ERR(driver)) {
2016 retval = PTR_ERR(driver);
2017 goto err_unlock;
2018 }
2019
2020 /* check whether we're reopening an existing tty */
2021 tty = tty_driver_lookup_tty(driver, inode, index);
2022 if (IS_ERR(tty)) {
2023 retval = PTR_ERR(tty);
2024 goto err_unlock;
2025 }
2026 }
2027
2028 if (tty) {
2029 tty_lock(tty);
2030 retval = tty_reopen(tty);
2031 if (retval < 0) {
2032 tty_unlock(tty);
2033 tty = ERR_PTR(retval);
2034 }
2035 } else /* Returns with the tty_lock held for now */
2036 tty = tty_init_dev(driver, index);
2037
2038 mutex_unlock(&tty_mutex);
2039 if (driver)
2040 tty_driver_kref_put(driver);
2041 if (IS_ERR(tty)) {
2042 retval = PTR_ERR(tty);
2043 goto err_file;
2044 }
2045
2046 tty_add_file(tty, filp);
2047
2048 check_tty_count(tty, __func__);
2049 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2050 tty->driver->subtype == PTY_TYPE_MASTER)
2051 noctty = 1;
2052 #ifdef TTY_DEBUG_HANGUP
2053 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2054 #endif
2055 if (tty->ops->open)
2056 retval = tty->ops->open(tty, filp);
2057 else
2058 retval = -ENODEV;
2059 filp->f_flags = saved_flags;
2060
2061 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2062 !capable(CAP_SYS_ADMIN))
2063 retval = -EBUSY;
2064
2065 if (retval) {
2066 #ifdef TTY_DEBUG_HANGUP
2067 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2068 retval, tty->name);
2069 #endif
2070 tty_unlock(tty); /* need to call tty_release without BTM */
2071 tty_release(inode, filp);
2072 if (retval != -ERESTARTSYS)
2073 return retval;
2074
2075 if (signal_pending(current))
2076 return retval;
2077
2078 schedule();
2079 /*
2080 * Need to reset f_op in case a hangup happened.
2081 */
2082 if (filp->f_op == &hung_up_tty_fops)
2083 filp->f_op = &tty_fops;
2084 goto retry_open;
2085 }
2086 tty_unlock(tty);
2087
2088
2089 mutex_lock(&tty_mutex);
2090 tty_lock(tty);
2091 spin_lock_irq(&current->sighand->siglock);
2092 if (!noctty &&
2093 current->signal->leader &&
2094 !current->signal->tty &&
2095 tty->session == NULL)
2096 __proc_set_tty(current, tty);
2097 spin_unlock_irq(&current->sighand->siglock);
2098 tty_unlock(tty);
2099 mutex_unlock(&tty_mutex);
2100 return 0;
2101 err_unlock:
2102 mutex_unlock(&tty_mutex);
2103 /* after locks to avoid deadlock */
2104 if (!IS_ERR_OR_NULL(driver))
2105 tty_driver_kref_put(driver);
2106 err_file:
2107 tty_free_file(filp);
2108 return retval;
2109 }
2110
2111
2112
2113 /**
2114 * tty_poll - check tty status
2115 * @filp: file being polled
2116 * @wait: poll wait structures to update
2117 *
2118 * Call the line discipline polling method to obtain the poll
2119 * status of the device.
2120 *
2121 * Locking: locks called line discipline but ldisc poll method
2122 * may be re-entered freely by other callers.
2123 */
2124
2125 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2126 {
2127 struct tty_struct *tty = file_tty(filp);
2128 struct tty_ldisc *ld;
2129 int ret = 0;
2130
2131 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2132 return 0;
2133
2134 ld = tty_ldisc_ref_wait(tty);
2135 if (ld->ops->poll)
2136 ret = (ld->ops->poll)(tty, filp, wait);
2137 tty_ldisc_deref(ld);
2138 return ret;
2139 }
2140
2141 static int __tty_fasync(int fd, struct file *filp, int on)
2142 {
2143 struct tty_struct *tty = file_tty(filp);
2144 unsigned long flags;
2145 int retval = 0;
2146
2147 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2148 goto out;
2149
2150 retval = fasync_helper(fd, filp, on, &tty->fasync);
2151 if (retval <= 0)
2152 goto out;
2153
2154 if (on) {
2155 enum pid_type type;
2156 struct pid *pid;
2157 if (!waitqueue_active(&tty->read_wait))
2158 tty->minimum_to_wake = 1;
2159 spin_lock_irqsave(&tty->ctrl_lock, flags);
2160 if (tty->pgrp) {
2161 pid = tty->pgrp;
2162 type = PIDTYPE_PGID;
2163 } else {
2164 pid = task_pid(current);
2165 type = PIDTYPE_PID;
2166 }
2167 get_pid(pid);
2168 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2169 retval = __f_setown(filp, pid, type, 0);
2170 put_pid(pid);
2171 if (retval)
2172 goto out;
2173 } else {
2174 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2175 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2176 }
2177 retval = 0;
2178 out:
2179 return retval;
2180 }
2181
2182 static int tty_fasync(int fd, struct file *filp, int on)
2183 {
2184 struct tty_struct *tty = file_tty(filp);
2185 int retval;
2186
2187 tty_lock(tty);
2188 retval = __tty_fasync(fd, filp, on);
2189 tty_unlock(tty);
2190
2191 return retval;
2192 }
2193
2194 /**
2195 * tiocsti - fake input character
2196 * @tty: tty to fake input into
2197 * @p: pointer to character
2198 *
2199 * Fake input to a tty device. Does the necessary locking and
2200 * input management.
2201 *
2202 * FIXME: does not honour flow control ??
2203 *
2204 * Locking:
2205 * Called functions take tty_ldiscs_lock
2206 * current->signal->tty check is safe without locks
2207 *
2208 * FIXME: may race normal receive processing
2209 */
2210
2211 static int tiocsti(struct tty_struct *tty, char __user *p)
2212 {
2213 char ch, mbz = 0;
2214 struct tty_ldisc *ld;
2215
2216 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2217 return -EPERM;
2218 if (get_user(ch, p))
2219 return -EFAULT;
2220 tty_audit_tiocsti(tty, ch);
2221 ld = tty_ldisc_ref_wait(tty);
2222 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2223 tty_ldisc_deref(ld);
2224 return 0;
2225 }
2226
2227 /**
2228 * tiocgwinsz - implement window query ioctl
2229 * @tty; tty
2230 * @arg: user buffer for result
2231 *
2232 * Copies the kernel idea of the window size into the user buffer.
2233 *
2234 * Locking: tty->termios_mutex is taken to ensure the winsize data
2235 * is consistent.
2236 */
2237
2238 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2239 {
2240 int err;
2241
2242 mutex_lock(&tty->termios_mutex);
2243 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2244 mutex_unlock(&tty->termios_mutex);
2245
2246 return err ? -EFAULT: 0;
2247 }
2248
2249 /**
2250 * tty_do_resize - resize event
2251 * @tty: tty being resized
2252 * @rows: rows (character)
2253 * @cols: cols (character)
2254 *
2255 * Update the termios variables and send the necessary signals to
2256 * peform a terminal resize correctly
2257 */
2258
2259 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2260 {
2261 struct pid *pgrp;
2262 unsigned long flags;
2263
2264 /* Lock the tty */
2265 mutex_lock(&tty->termios_mutex);
2266 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2267 goto done;
2268 /* Get the PID values and reference them so we can
2269 avoid holding the tty ctrl lock while sending signals */
2270 spin_lock_irqsave(&tty->ctrl_lock, flags);
2271 pgrp = get_pid(tty->pgrp);
2272 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2273
2274 if (pgrp)
2275 kill_pgrp(pgrp, SIGWINCH, 1);
2276 put_pid(pgrp);
2277
2278 tty->winsize = *ws;
2279 done:
2280 mutex_unlock(&tty->termios_mutex);
2281 return 0;
2282 }
2283 EXPORT_SYMBOL(tty_do_resize);
2284
2285 /**
2286 * tiocswinsz - implement window size set ioctl
2287 * @tty; tty side of tty
2288 * @arg: user buffer for result
2289 *
2290 * Copies the user idea of the window size to the kernel. Traditionally
2291 * this is just advisory information but for the Linux console it
2292 * actually has driver level meaning and triggers a VC resize.
2293 *
2294 * Locking:
2295 * Driver dependent. The default do_resize method takes the
2296 * tty termios mutex and ctrl_lock. The console takes its own lock
2297 * then calls into the default method.
2298 */
2299
2300 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2301 {
2302 struct winsize tmp_ws;
2303 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2304 return -EFAULT;
2305
2306 if (tty->ops->resize)
2307 return tty->ops->resize(tty, &tmp_ws);
2308 else
2309 return tty_do_resize(tty, &tmp_ws);
2310 }
2311
2312 /**
2313 * tioccons - allow admin to move logical console
2314 * @file: the file to become console
2315 *
2316 * Allow the administrator to move the redirected console device
2317 *
2318 * Locking: uses redirect_lock to guard the redirect information
2319 */
2320
2321 static int tioccons(struct file *file)
2322 {
2323 if (!capable(CAP_SYS_ADMIN))
2324 return -EPERM;
2325 if (file->f_op->write == redirected_tty_write) {
2326 struct file *f;
2327 spin_lock(&redirect_lock);
2328 f = redirect;
2329 redirect = NULL;
2330 spin_unlock(&redirect_lock);
2331 if (f)
2332 fput(f);
2333 return 0;
2334 }
2335 spin_lock(&redirect_lock);
2336 if (redirect) {
2337 spin_unlock(&redirect_lock);
2338 return -EBUSY;
2339 }
2340 redirect = get_file(file);
2341 spin_unlock(&redirect_lock);
2342 return 0;
2343 }
2344
2345 /**
2346 * fionbio - non blocking ioctl
2347 * @file: file to set blocking value
2348 * @p: user parameter
2349 *
2350 * Historical tty interfaces had a blocking control ioctl before
2351 * the generic functionality existed. This piece of history is preserved
2352 * in the expected tty API of posix OS's.
2353 *
2354 * Locking: none, the open file handle ensures it won't go away.
2355 */
2356
2357 static int fionbio(struct file *file, int __user *p)
2358 {
2359 int nonblock;
2360
2361 if (get_user(nonblock, p))
2362 return -EFAULT;
2363
2364 spin_lock(&file->f_lock);
2365 if (nonblock)
2366 file->f_flags |= O_NONBLOCK;
2367 else
2368 file->f_flags &= ~O_NONBLOCK;
2369 spin_unlock(&file->f_lock);
2370 return 0;
2371 }
2372
2373 /**
2374 * tiocsctty - set controlling tty
2375 * @tty: tty structure
2376 * @arg: user argument
2377 *
2378 * This ioctl is used to manage job control. It permits a session
2379 * leader to set this tty as the controlling tty for the session.
2380 *
2381 * Locking:
2382 * Takes tty_mutex() to protect tty instance
2383 * Takes tasklist_lock internally to walk sessions
2384 * Takes ->siglock() when updating signal->tty
2385 */
2386
2387 static int tiocsctty(struct tty_struct *tty, int arg)
2388 {
2389 int ret = 0;
2390 if (current->signal->leader && (task_session(current) == tty->session))
2391 return ret;
2392
2393 mutex_lock(&tty_mutex);
2394 /*
2395 * The process must be a session leader and
2396 * not have a controlling tty already.
2397 */
2398 if (!current->signal->leader || current->signal->tty) {
2399 ret = -EPERM;
2400 goto unlock;
2401 }
2402
2403 if (tty->session) {
2404 /*
2405 * This tty is already the controlling
2406 * tty for another session group!
2407 */
2408 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2409 /*
2410 * Steal it away
2411 */
2412 read_lock(&tasklist_lock);
2413 session_clear_tty(tty->session);
2414 read_unlock(&tasklist_lock);
2415 } else {
2416 ret = -EPERM;
2417 goto unlock;
2418 }
2419 }
2420 proc_set_tty(current, tty);
2421 unlock:
2422 mutex_unlock(&tty_mutex);
2423 return ret;
2424 }
2425
2426 /**
2427 * tty_get_pgrp - return a ref counted pgrp pid
2428 * @tty: tty to read
2429 *
2430 * Returns a refcounted instance of the pid struct for the process
2431 * group controlling the tty.
2432 */
2433
2434 struct pid *tty_get_pgrp(struct tty_struct *tty)
2435 {
2436 unsigned long flags;
2437 struct pid *pgrp;
2438
2439 spin_lock_irqsave(&tty->ctrl_lock, flags);
2440 pgrp = get_pid(tty->pgrp);
2441 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2442
2443 return pgrp;
2444 }
2445 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2446
2447 /**
2448 * tiocgpgrp - get process group
2449 * @tty: tty passed by user
2450 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2451 * @p: returned pid
2452 *
2453 * Obtain the process group of the tty. If there is no process group
2454 * return an error.
2455 *
2456 * Locking: none. Reference to current->signal->tty is safe.
2457 */
2458
2459 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2460 {
2461 struct pid *pid;
2462 int ret;
2463 /*
2464 * (tty == real_tty) is a cheap way of
2465 * testing if the tty is NOT a master pty.
2466 */
2467 if (tty == real_tty && current->signal->tty != real_tty)
2468 return -ENOTTY;
2469 pid = tty_get_pgrp(real_tty);
2470 ret = put_user(pid_vnr(pid), p);
2471 put_pid(pid);
2472 return ret;
2473 }
2474
2475 /**
2476 * tiocspgrp - attempt to set process group
2477 * @tty: tty passed by user
2478 * @real_tty: tty side device matching tty passed by user
2479 * @p: pid pointer
2480 *
2481 * Set the process group of the tty to the session passed. Only
2482 * permitted where the tty session is our session.
2483 *
2484 * Locking: RCU, ctrl lock
2485 */
2486
2487 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2488 {
2489 struct pid *pgrp;
2490 pid_t pgrp_nr;
2491 int retval = tty_check_change(real_tty);
2492 unsigned long flags;
2493
2494 if (retval == -EIO)
2495 return -ENOTTY;
2496 if (retval)
2497 return retval;
2498 if (!current->signal->tty ||
2499 (current->signal->tty != real_tty) ||
2500 (real_tty->session != task_session(current)))
2501 return -ENOTTY;
2502 if (get_user(pgrp_nr, p))
2503 return -EFAULT;
2504 if (pgrp_nr < 0)
2505 return -EINVAL;
2506 rcu_read_lock();
2507 pgrp = find_vpid(pgrp_nr);
2508 retval = -ESRCH;
2509 if (!pgrp)
2510 goto out_unlock;
2511 retval = -EPERM;
2512 if (session_of_pgrp(pgrp) != task_session(current))
2513 goto out_unlock;
2514 retval = 0;
2515 spin_lock_irqsave(&tty->ctrl_lock, flags);
2516 put_pid(real_tty->pgrp);
2517 real_tty->pgrp = get_pid(pgrp);
2518 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2519 out_unlock:
2520 rcu_read_unlock();
2521 return retval;
2522 }
2523
2524 /**
2525 * tiocgsid - get session id
2526 * @tty: tty passed by user
2527 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2528 * @p: pointer to returned session id
2529 *
2530 * Obtain the session id of the tty. If there is no session
2531 * return an error.
2532 *
2533 * Locking: none. Reference to current->signal->tty is safe.
2534 */
2535
2536 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2537 {
2538 /*
2539 * (tty == real_tty) is a cheap way of
2540 * testing if the tty is NOT a master pty.
2541 */
2542 if (tty == real_tty && current->signal->tty != real_tty)
2543 return -ENOTTY;
2544 if (!real_tty->session)
2545 return -ENOTTY;
2546 return put_user(pid_vnr(real_tty->session), p);
2547 }
2548
2549 /**
2550 * tiocsetd - set line discipline
2551 * @tty: tty device
2552 * @p: pointer to user data
2553 *
2554 * Set the line discipline according to user request.
2555 *
2556 * Locking: see tty_set_ldisc, this function is just a helper
2557 */
2558
2559 static int tiocsetd(struct tty_struct *tty, int __user *p)
2560 {
2561 int ldisc;
2562 int ret;
2563
2564 if (get_user(ldisc, p))
2565 return -EFAULT;
2566
2567 ret = tty_set_ldisc(tty, ldisc);
2568
2569 return ret;
2570 }
2571
2572 /**
2573 * tiocgetd - get line discipline
2574 * @tty: tty device
2575 * @p: pointer to user data
2576 *
2577 * Retrieves the line discipline id directly from the ldisc.
2578 *
2579 * Locking: waits for ldisc reference (in case the line discipline
2580 * is changing or the tty is being hungup)
2581 */
2582
2583 static int tiocgetd(struct tty_struct *tty, int __user *p)
2584 {
2585 struct tty_ldisc *ld;
2586 int ret;
2587
2588 ld = tty_ldisc_ref_wait(tty);
2589 ret = put_user(ld->ops->num, p);
2590 tty_ldisc_deref(ld);
2591 return ret;
2592 }
2593
2594 /**
2595 * send_break - performed time break
2596 * @tty: device to break on
2597 * @duration: timeout in mS
2598 *
2599 * Perform a timed break on hardware that lacks its own driver level
2600 * timed break functionality.
2601 *
2602 * Locking:
2603 * atomic_write_lock serializes
2604 *
2605 */
2606
2607 static int send_break(struct tty_struct *tty, unsigned int duration)
2608 {
2609 int retval;
2610
2611 if (tty->ops->break_ctl == NULL)
2612 return 0;
2613
2614 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2615 retval = tty->ops->break_ctl(tty, duration);
2616 else {
2617 /* Do the work ourselves */
2618 if (tty_write_lock(tty, 0) < 0)
2619 return -EINTR;
2620 retval = tty->ops->break_ctl(tty, -1);
2621 if (retval)
2622 goto out;
2623 if (!signal_pending(current))
2624 msleep_interruptible(duration);
2625 retval = tty->ops->break_ctl(tty, 0);
2626 out:
2627 tty_write_unlock(tty);
2628 if (signal_pending(current))
2629 retval = -EINTR;
2630 }
2631 return retval;
2632 }
2633
2634 /**
2635 * tty_tiocmget - get modem status
2636 * @tty: tty device
2637 * @file: user file pointer
2638 * @p: pointer to result
2639 *
2640 * Obtain the modem status bits from the tty driver if the feature
2641 * is supported. Return -EINVAL if it is not available.
2642 *
2643 * Locking: none (up to the driver)
2644 */
2645
2646 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2647 {
2648 int retval = -EINVAL;
2649
2650 if (tty->ops->tiocmget) {
2651 retval = tty->ops->tiocmget(tty);
2652
2653 if (retval >= 0)
2654 retval = put_user(retval, p);
2655 }
2656 return retval;
2657 }
2658
2659 /**
2660 * tty_tiocmset - set modem status
2661 * @tty: tty device
2662 * @cmd: command - clear bits, set bits or set all
2663 * @p: pointer to desired bits
2664 *
2665 * Set the modem status bits from the tty driver if the feature
2666 * is supported. Return -EINVAL if it is not available.
2667 *
2668 * Locking: none (up to the driver)
2669 */
2670
2671 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2672 unsigned __user *p)
2673 {
2674 int retval;
2675 unsigned int set, clear, val;
2676
2677 if (tty->ops->tiocmset == NULL)
2678 return -EINVAL;
2679
2680 retval = get_user(val, p);
2681 if (retval)
2682 return retval;
2683 set = clear = 0;
2684 switch (cmd) {
2685 case TIOCMBIS:
2686 set = val;
2687 break;
2688 case TIOCMBIC:
2689 clear = val;
2690 break;
2691 case TIOCMSET:
2692 set = val;
2693 clear = ~val;
2694 break;
2695 }
2696 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2697 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2698 return tty->ops->tiocmset(tty, set, clear);
2699 }
2700
2701 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2702 {
2703 int retval = -EINVAL;
2704 struct serial_icounter_struct icount;
2705 memset(&icount, 0, sizeof(icount));
2706 if (tty->ops->get_icount)
2707 retval = tty->ops->get_icount(tty, &icount);
2708 if (retval != 0)
2709 return retval;
2710 if (copy_to_user(arg, &icount, sizeof(icount)))
2711 return -EFAULT;
2712 return 0;
2713 }
2714
2715 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2716 {
2717 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2718 tty->driver->subtype == PTY_TYPE_MASTER)
2719 tty = tty->link;
2720 return tty;
2721 }
2722 EXPORT_SYMBOL(tty_pair_get_tty);
2723
2724 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2725 {
2726 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2727 tty->driver->subtype == PTY_TYPE_MASTER)
2728 return tty;
2729 return tty->link;
2730 }
2731 EXPORT_SYMBOL(tty_pair_get_pty);
2732
2733 /*
2734 * Split this up, as gcc can choke on it otherwise..
2735 */
2736 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2737 {
2738 struct tty_struct *tty = file_tty(file);
2739 struct tty_struct *real_tty;
2740 void __user *p = (void __user *)arg;
2741 int retval;
2742 struct tty_ldisc *ld;
2743
2744 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2745 return -EINVAL;
2746
2747 real_tty = tty_pair_get_tty(tty);
2748
2749 /*
2750 * Factor out some common prep work
2751 */
2752 switch (cmd) {
2753 case TIOCSETD:
2754 case TIOCSBRK:
2755 case TIOCCBRK:
2756 case TCSBRK:
2757 case TCSBRKP:
2758 retval = tty_check_change(tty);
2759 if (retval)
2760 return retval;
2761 if (cmd != TIOCCBRK) {
2762 tty_wait_until_sent(tty, 0);
2763 if (signal_pending(current))
2764 return -EINTR;
2765 }
2766 break;
2767 }
2768
2769 /*
2770 * Now do the stuff.
2771 */
2772 switch (cmd) {
2773 case TIOCSTI:
2774 return tiocsti(tty, p);
2775 case TIOCGWINSZ:
2776 return tiocgwinsz(real_tty, p);
2777 case TIOCSWINSZ:
2778 return tiocswinsz(real_tty, p);
2779 case TIOCCONS:
2780 return real_tty != tty ? -EINVAL : tioccons(file);
2781 case FIONBIO:
2782 return fionbio(file, p);
2783 case TIOCEXCL:
2784 set_bit(TTY_EXCLUSIVE, &tty->flags);
2785 return 0;
2786 case TIOCNXCL:
2787 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2788 return 0;
2789 case TIOCGEXCL:
2790 {
2791 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2792 return put_user(excl, (int __user *)p);
2793 }
2794 case TIOCNOTTY:
2795 if (current->signal->tty != tty)
2796 return -ENOTTY;
2797 no_tty();
2798 return 0;
2799 case TIOCSCTTY:
2800 return tiocsctty(tty, arg);
2801 case TIOCGPGRP:
2802 return tiocgpgrp(tty, real_tty, p);
2803 case TIOCSPGRP:
2804 return tiocspgrp(tty, real_tty, p);
2805 case TIOCGSID:
2806 return tiocgsid(tty, real_tty, p);
2807 case TIOCGETD:
2808 return tiocgetd(tty, p);
2809 case TIOCSETD:
2810 return tiocsetd(tty, p);
2811 case TIOCVHANGUP:
2812 if (!capable(CAP_SYS_ADMIN))
2813 return -EPERM;
2814 tty_vhangup(tty);
2815 return 0;
2816 case TIOCGDEV:
2817 {
2818 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2819 return put_user(ret, (unsigned int __user *)p);
2820 }
2821 /*
2822 * Break handling
2823 */
2824 case TIOCSBRK: /* Turn break on, unconditionally */
2825 if (tty->ops->break_ctl)
2826 return tty->ops->break_ctl(tty, -1);
2827 return 0;
2828 case TIOCCBRK: /* Turn break off, unconditionally */
2829 if (tty->ops->break_ctl)
2830 return tty->ops->break_ctl(tty, 0);
2831 return 0;
2832 case TCSBRK: /* SVID version: non-zero arg --> no break */
2833 /* non-zero arg means wait for all output data
2834 * to be sent (performed above) but don't send break.
2835 * This is used by the tcdrain() termios function.
2836 */
2837 if (!arg)
2838 return send_break(tty, 250);
2839 return 0;
2840 case TCSBRKP: /* support for POSIX tcsendbreak() */
2841 return send_break(tty, arg ? arg*100 : 250);
2842
2843 case TIOCMGET:
2844 return tty_tiocmget(tty, p);
2845 case TIOCMSET:
2846 case TIOCMBIC:
2847 case TIOCMBIS:
2848 return tty_tiocmset(tty, cmd, p);
2849 case TIOCGICOUNT:
2850 retval = tty_tiocgicount(tty, p);
2851 /* For the moment allow fall through to the old method */
2852 if (retval != -EINVAL)
2853 return retval;
2854 break;
2855 case TCFLSH:
2856 switch (arg) {
2857 case TCIFLUSH:
2858 case TCIOFLUSH:
2859 /* flush tty buffer and allow ldisc to process ioctl */
2860 tty_buffer_flush(tty);
2861 break;
2862 }
2863 break;
2864 }
2865 if (tty->ops->ioctl) {
2866 retval = (tty->ops->ioctl)(tty, cmd, arg);
2867 if (retval != -ENOIOCTLCMD)
2868 return retval;
2869 }
2870 ld = tty_ldisc_ref_wait(tty);
2871 retval = -EINVAL;
2872 if (ld->ops->ioctl) {
2873 retval = ld->ops->ioctl(tty, file, cmd, arg);
2874 if (retval == -ENOIOCTLCMD)
2875 retval = -ENOTTY;
2876 }
2877 tty_ldisc_deref(ld);
2878 return retval;
2879 }
2880
2881 #ifdef CONFIG_COMPAT
2882 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2883 unsigned long arg)
2884 {
2885 struct tty_struct *tty = file_tty(file);
2886 struct tty_ldisc *ld;
2887 int retval = -ENOIOCTLCMD;
2888
2889 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2890 return -EINVAL;
2891
2892 if (tty->ops->compat_ioctl) {
2893 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2894 if (retval != -ENOIOCTLCMD)
2895 return retval;
2896 }
2897
2898 ld = tty_ldisc_ref_wait(tty);
2899 if (ld->ops->compat_ioctl)
2900 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2901 else
2902 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2903 tty_ldisc_deref(ld);
2904
2905 return retval;
2906 }
2907 #endif
2908
2909 static int this_tty(const void *t, struct file *file, unsigned fd)
2910 {
2911 if (likely(file->f_op->read != tty_read))
2912 return 0;
2913 return file_tty(file) != t ? 0 : fd + 1;
2914 }
2915
2916 /*
2917 * This implements the "Secure Attention Key" --- the idea is to
2918 * prevent trojan horses by killing all processes associated with this
2919 * tty when the user hits the "Secure Attention Key". Required for
2920 * super-paranoid applications --- see the Orange Book for more details.
2921 *
2922 * This code could be nicer; ideally it should send a HUP, wait a few
2923 * seconds, then send a INT, and then a KILL signal. But you then
2924 * have to coordinate with the init process, since all processes associated
2925 * with the current tty must be dead before the new getty is allowed
2926 * to spawn.
2927 *
2928 * Now, if it would be correct ;-/ The current code has a nasty hole -
2929 * it doesn't catch files in flight. We may send the descriptor to ourselves
2930 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2931 *
2932 * Nasty bug: do_SAK is being called in interrupt context. This can
2933 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2934 */
2935 void __do_SAK(struct tty_struct *tty)
2936 {
2937 #ifdef TTY_SOFT_SAK
2938 tty_hangup(tty);
2939 #else
2940 struct task_struct *g, *p;
2941 struct pid *session;
2942 int i;
2943
2944 if (!tty)
2945 return;
2946 session = tty->session;
2947
2948 tty_ldisc_flush(tty);
2949
2950 tty_driver_flush_buffer(tty);
2951
2952 read_lock(&tasklist_lock);
2953 /* Kill the entire session */
2954 do_each_pid_task(session, PIDTYPE_SID, p) {
2955 printk(KERN_NOTICE "SAK: killed process %d"
2956 " (%s): task_session(p)==tty->session\n",
2957 task_pid_nr(p), p->comm);
2958 send_sig(SIGKILL, p, 1);
2959 } while_each_pid_task(session, PIDTYPE_SID, p);
2960 /* Now kill any processes that happen to have the
2961 * tty open.
2962 */
2963 do_each_thread(g, p) {
2964 if (p->signal->tty == tty) {
2965 printk(KERN_NOTICE "SAK: killed process %d"
2966 " (%s): task_session(p)==tty->session\n",
2967 task_pid_nr(p), p->comm);
2968 send_sig(SIGKILL, p, 1);
2969 continue;
2970 }
2971 task_lock(p);
2972 i = iterate_fd(p->files, 0, this_tty, tty);
2973 if (i != 0) {
2974 printk(KERN_NOTICE "SAK: killed process %d"
2975 " (%s): fd#%d opened to the tty\n",
2976 task_pid_nr(p), p->comm, i - 1);
2977 force_sig(SIGKILL, p);
2978 }
2979 task_unlock(p);
2980 } while_each_thread(g, p);
2981 read_unlock(&tasklist_lock);
2982 #endif
2983 }
2984
2985 static void do_SAK_work(struct work_struct *work)
2986 {
2987 struct tty_struct *tty =
2988 container_of(work, struct tty_struct, SAK_work);
2989 __do_SAK(tty);
2990 }
2991
2992 /*
2993 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2994 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2995 * the values which we write to it will be identical to the values which it
2996 * already has. --akpm
2997 */
2998 void do_SAK(struct tty_struct *tty)
2999 {
3000 if (!tty)
3001 return;
3002 schedule_work(&tty->SAK_work);
3003 }
3004
3005 EXPORT_SYMBOL(do_SAK);
3006
3007 static int dev_match_devt(struct device *dev, const void *data)
3008 {
3009 const dev_t *devt = data;
3010 return dev->devt == *devt;
3011 }
3012
3013 /* Must put_device() after it's unused! */
3014 static struct device *tty_get_device(struct tty_struct *tty)
3015 {
3016 dev_t devt = tty_devnum(tty);
3017 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3018 }
3019
3020
3021 /**
3022 * initialize_tty_struct
3023 * @tty: tty to initialize
3024 *
3025 * This subroutine initializes a tty structure that has been newly
3026 * allocated.
3027 *
3028 * Locking: none - tty in question must not be exposed at this point
3029 */
3030
3031 void initialize_tty_struct(struct tty_struct *tty,
3032 struct tty_driver *driver, int idx)
3033 {
3034 memset(tty, 0, sizeof(struct tty_struct));
3035 kref_init(&tty->kref);
3036 tty->magic = TTY_MAGIC;
3037 tty_ldisc_init(tty);
3038 tty->session = NULL;
3039 tty->pgrp = NULL;
3040 mutex_init(&tty->legacy_mutex);
3041 mutex_init(&tty->termios_mutex);
3042 init_ldsem(&tty->ldisc_sem);
3043 init_waitqueue_head(&tty->write_wait);
3044 init_waitqueue_head(&tty->read_wait);
3045 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3046 mutex_init(&tty->atomic_write_lock);
3047 spin_lock_init(&tty->ctrl_lock);
3048 INIT_LIST_HEAD(&tty->tty_files);
3049 INIT_WORK(&tty->SAK_work, do_SAK_work);
3050
3051 tty->driver = driver;
3052 tty->ops = driver->ops;
3053 tty->index = idx;
3054 tty_line_name(driver, idx, tty->name);
3055 tty->dev = tty_get_device(tty);
3056 }
3057
3058 /**
3059 * deinitialize_tty_struct
3060 * @tty: tty to deinitialize
3061 *
3062 * This subroutine deinitializes a tty structure that has been newly
3063 * allocated but tty_release cannot be called on that yet.
3064 *
3065 * Locking: none - tty in question must not be exposed at this point
3066 */
3067 void deinitialize_tty_struct(struct tty_struct *tty)
3068 {
3069 tty_ldisc_deinit(tty);
3070 }
3071
3072 /**
3073 * tty_put_char - write one character to a tty
3074 * @tty: tty
3075 * @ch: character
3076 *
3077 * Write one byte to the tty using the provided put_char method
3078 * if present. Returns the number of characters successfully output.
3079 *
3080 * Note: the specific put_char operation in the driver layer may go
3081 * away soon. Don't call it directly, use this method
3082 */
3083
3084 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3085 {
3086 if (tty->ops->put_char)
3087 return tty->ops->put_char(tty, ch);
3088 return tty->ops->write(tty, &ch, 1);
3089 }
3090 EXPORT_SYMBOL_GPL(tty_put_char);
3091
3092 struct class *tty_class;
3093
3094 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3095 unsigned int index, unsigned int count)
3096 {
3097 /* init here, since reused cdevs cause crashes */
3098 cdev_init(&driver->cdevs[index], &tty_fops);
3099 driver->cdevs[index].owner = driver->owner;
3100 return cdev_add(&driver->cdevs[index], dev, count);
3101 }
3102
3103 /**
3104 * tty_register_device - register a tty device
3105 * @driver: the tty driver that describes the tty device
3106 * @index: the index in the tty driver for this tty device
3107 * @device: a struct device that is associated with this tty device.
3108 * This field is optional, if there is no known struct device
3109 * for this tty device it can be set to NULL safely.
3110 *
3111 * Returns a pointer to the struct device for this tty device
3112 * (or ERR_PTR(-EFOO) on error).
3113 *
3114 * This call is required to be made to register an individual tty device
3115 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3116 * that bit is not set, this function should not be called by a tty
3117 * driver.
3118 *
3119 * Locking: ??
3120 */
3121
3122 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3123 struct device *device)
3124 {
3125 return tty_register_device_attr(driver, index, device, NULL, NULL);
3126 }
3127 EXPORT_SYMBOL(tty_register_device);
3128
3129 static void tty_device_create_release(struct device *dev)
3130 {
3131 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3132 kfree(dev);
3133 }
3134
3135 /**
3136 * tty_register_device_attr - register a tty device
3137 * @driver: the tty driver that describes the tty device
3138 * @index: the index in the tty driver for this tty device
3139 * @device: a struct device that is associated with this tty device.
3140 * This field is optional, if there is no known struct device
3141 * for this tty device it can be set to NULL safely.
3142 * @drvdata: Driver data to be set to device.
3143 * @attr_grp: Attribute group to be set on device.
3144 *
3145 * Returns a pointer to the struct device for this tty device
3146 * (or ERR_PTR(-EFOO) on error).
3147 *
3148 * This call is required to be made to register an individual tty device
3149 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3150 * that bit is not set, this function should not be called by a tty
3151 * driver.
3152 *
3153 * Locking: ??
3154 */
3155 struct device *tty_register_device_attr(struct tty_driver *driver,
3156 unsigned index, struct device *device,
3157 void *drvdata,
3158 const struct attribute_group **attr_grp)
3159 {
3160 char name[64];
3161 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3162 struct device *dev = NULL;
3163 int retval = -ENODEV;
3164 bool cdev = false;
3165
3166 if (index >= driver->num) {
3167 printk(KERN_ERR "Attempt to register invalid tty line number "
3168 " (%d).\n", index);
3169 return ERR_PTR(-EINVAL);
3170 }
3171
3172 if (driver->type == TTY_DRIVER_TYPE_PTY)
3173 pty_line_name(driver, index, name);
3174 else
3175 tty_line_name(driver, index, name);
3176
3177 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3178 retval = tty_cdev_add(driver, devt, index, 1);
3179 if (retval)
3180 goto error;
3181 cdev = true;
3182 }
3183
3184 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3185 if (!dev) {
3186 retval = -ENOMEM;
3187 goto error;
3188 }
3189
3190 dev->devt = devt;
3191 dev->class = tty_class;
3192 dev->parent = device;
3193 dev->release = tty_device_create_release;
3194 dev_set_name(dev, "%s", name);
3195 dev->groups = attr_grp;
3196 dev_set_drvdata(dev, drvdata);
3197
3198 retval = device_register(dev);
3199 if (retval)
3200 goto error;
3201
3202 return dev;
3203
3204 error:
3205 put_device(dev);
3206 if (cdev)
3207 cdev_del(&driver->cdevs[index]);
3208 return ERR_PTR(retval);
3209 }
3210 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3211
3212 /**
3213 * tty_unregister_device - unregister a tty device
3214 * @driver: the tty driver that describes the tty device
3215 * @index: the index in the tty driver for this tty device
3216 *
3217 * If a tty device is registered with a call to tty_register_device() then
3218 * this function must be called when the tty device is gone.
3219 *
3220 * Locking: ??
3221 */
3222
3223 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3224 {
3225 device_destroy(tty_class,
3226 MKDEV(driver->major, driver->minor_start) + index);
3227 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3228 cdev_del(&driver->cdevs[index]);
3229 }
3230 EXPORT_SYMBOL(tty_unregister_device);
3231
3232 /**
3233 * __tty_alloc_driver -- allocate tty driver
3234 * @lines: count of lines this driver can handle at most
3235 * @owner: module which is repsonsible for this driver
3236 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3237 *
3238 * This should not be called directly, some of the provided macros should be
3239 * used instead. Use IS_ERR and friends on @retval.
3240 */
3241 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3242 unsigned long flags)
3243 {
3244 struct tty_driver *driver;
3245 unsigned int cdevs = 1;
3246 int err;
3247
3248 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3249 return ERR_PTR(-EINVAL);
3250
3251 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3252 if (!driver)
3253 return ERR_PTR(-ENOMEM);
3254
3255 kref_init(&driver->kref);
3256 driver->magic = TTY_DRIVER_MAGIC;
3257 driver->num = lines;
3258 driver->owner = owner;
3259 driver->flags = flags;
3260
3261 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3262 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3263 GFP_KERNEL);
3264 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3265 GFP_KERNEL);
3266 if (!driver->ttys || !driver->termios) {
3267 err = -ENOMEM;
3268 goto err_free_all;
3269 }
3270 }
3271
3272 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3273 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3274 GFP_KERNEL);
3275 if (!driver->ports) {
3276 err = -ENOMEM;
3277 goto err_free_all;
3278 }
3279 cdevs = lines;
3280 }
3281
3282 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3283 if (!driver->cdevs) {
3284 err = -ENOMEM;
3285 goto err_free_all;
3286 }
3287
3288 return driver;
3289 err_free_all:
3290 kfree(driver->ports);
3291 kfree(driver->ttys);
3292 kfree(driver->termios);
3293 kfree(driver);
3294 return ERR_PTR(err);
3295 }
3296 EXPORT_SYMBOL(__tty_alloc_driver);
3297
3298 static void destruct_tty_driver(struct kref *kref)
3299 {
3300 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3301 int i;
3302 struct ktermios *tp;
3303
3304 if (driver->flags & TTY_DRIVER_INSTALLED) {
3305 /*
3306 * Free the termios and termios_locked structures because
3307 * we don't want to get memory leaks when modular tty
3308 * drivers are removed from the kernel.
3309 */
3310 for (i = 0; i < driver->num; i++) {
3311 tp = driver->termios[i];
3312 if (tp) {
3313 driver->termios[i] = NULL;
3314 kfree(tp);
3315 }
3316 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3317 tty_unregister_device(driver, i);
3318 }
3319 proc_tty_unregister_driver(driver);
3320 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3321 cdev_del(&driver->cdevs[0]);
3322 }
3323 kfree(driver->cdevs);
3324 kfree(driver->ports);
3325 kfree(driver->termios);
3326 kfree(driver->ttys);
3327 kfree(driver);
3328 }
3329
3330 void tty_driver_kref_put(struct tty_driver *driver)
3331 {
3332 kref_put(&driver->kref, destruct_tty_driver);
3333 }
3334 EXPORT_SYMBOL(tty_driver_kref_put);
3335
3336 void tty_set_operations(struct tty_driver *driver,
3337 const struct tty_operations *op)
3338 {
3339 driver->ops = op;
3340 };
3341 EXPORT_SYMBOL(tty_set_operations);
3342
3343 void put_tty_driver(struct tty_driver *d)
3344 {
3345 tty_driver_kref_put(d);
3346 }
3347 EXPORT_SYMBOL(put_tty_driver);
3348
3349 /*
3350 * Called by a tty driver to register itself.
3351 */
3352 int tty_register_driver(struct tty_driver *driver)
3353 {
3354 int error;
3355 int i;
3356 dev_t dev;
3357 struct device *d;
3358
3359 if (!driver->major) {
3360 error = alloc_chrdev_region(&dev, driver->minor_start,
3361 driver->num, driver->name);
3362 if (!error) {
3363 driver->major = MAJOR(dev);
3364 driver->minor_start = MINOR(dev);
3365 }
3366 } else {
3367 dev = MKDEV(driver->major, driver->minor_start);
3368 error = register_chrdev_region(dev, driver->num, driver->name);
3369 }
3370 if (error < 0)
3371 goto err;
3372
3373 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3374 error = tty_cdev_add(driver, dev, 0, driver->num);
3375 if (error)
3376 goto err_unreg_char;
3377 }
3378
3379 mutex_lock(&tty_mutex);
3380 list_add(&driver->tty_drivers, &tty_drivers);
3381 mutex_unlock(&tty_mutex);
3382
3383 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3384 for (i = 0; i < driver->num; i++) {
3385 d = tty_register_device(driver, i, NULL);
3386 if (IS_ERR(d)) {
3387 error = PTR_ERR(d);
3388 goto err_unreg_devs;
3389 }
3390 }
3391 }
3392 proc_tty_register_driver(driver);
3393 driver->flags |= TTY_DRIVER_INSTALLED;
3394 return 0;
3395
3396 err_unreg_devs:
3397 for (i--; i >= 0; i--)
3398 tty_unregister_device(driver, i);
3399
3400 mutex_lock(&tty_mutex);
3401 list_del(&driver->tty_drivers);
3402 mutex_unlock(&tty_mutex);
3403
3404 err_unreg_char:
3405 unregister_chrdev_region(dev, driver->num);
3406 err:
3407 return error;
3408 }
3409 EXPORT_SYMBOL(tty_register_driver);
3410
3411 /*
3412 * Called by a tty driver to unregister itself.
3413 */
3414 int tty_unregister_driver(struct tty_driver *driver)
3415 {
3416 #if 0
3417 /* FIXME */
3418 if (driver->refcount)
3419 return -EBUSY;
3420 #endif
3421 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3422 driver->num);
3423 mutex_lock(&tty_mutex);
3424 list_del(&driver->tty_drivers);
3425 mutex_unlock(&tty_mutex);
3426 return 0;
3427 }
3428
3429 EXPORT_SYMBOL(tty_unregister_driver);
3430
3431 dev_t tty_devnum(struct tty_struct *tty)
3432 {
3433 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3434 }
3435 EXPORT_SYMBOL(tty_devnum);
3436
3437 void proc_clear_tty(struct task_struct *p)
3438 {
3439 unsigned long flags;
3440 struct tty_struct *tty;
3441 spin_lock_irqsave(&p->sighand->siglock, flags);
3442 tty = p->signal->tty;
3443 p->signal->tty = NULL;
3444 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3445 tty_kref_put(tty);
3446 }
3447
3448 /* Called under the sighand lock */
3449
3450 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3451 {
3452 if (tty) {
3453 unsigned long flags;
3454 /* We should not have a session or pgrp to put here but.... */
3455 spin_lock_irqsave(&tty->ctrl_lock, flags);
3456 put_pid(tty->session);
3457 put_pid(tty->pgrp);
3458 tty->pgrp = get_pid(task_pgrp(tsk));
3459 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3460 tty->session = get_pid(task_session(tsk));
3461 if (tsk->signal->tty) {
3462 printk(KERN_DEBUG "tty not NULL!!\n");
3463 tty_kref_put(tsk->signal->tty);
3464 }
3465 }
3466 put_pid(tsk->signal->tty_old_pgrp);
3467 tsk->signal->tty = tty_kref_get(tty);
3468 tsk->signal->tty_old_pgrp = NULL;
3469 }
3470
3471 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3472 {
3473 spin_lock_irq(&tsk->sighand->siglock);
3474 __proc_set_tty(tsk, tty);
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476 }
3477
3478 struct tty_struct *get_current_tty(void)
3479 {
3480 struct tty_struct *tty;
3481 unsigned long flags;
3482
3483 spin_lock_irqsave(&current->sighand->siglock, flags);
3484 tty = tty_kref_get(current->signal->tty);
3485 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3486 return tty;
3487 }
3488 EXPORT_SYMBOL_GPL(get_current_tty);
3489
3490 void tty_default_fops(struct file_operations *fops)
3491 {
3492 *fops = tty_fops;
3493 }
3494
3495 /*
3496 * Initialize the console device. This is called *early*, so
3497 * we can't necessarily depend on lots of kernel help here.
3498 * Just do some early initializations, and do the complex setup
3499 * later.
3500 */
3501 void __init console_init(void)
3502 {
3503 initcall_t *call;
3504
3505 /* Setup the default TTY line discipline. */
3506 tty_ldisc_begin();
3507
3508 /*
3509 * set up the console device so that later boot sequences can
3510 * inform about problems etc..
3511 */
3512 call = __con_initcall_start;
3513 while (call < __con_initcall_end) {
3514 (*call)();
3515 call++;
3516 }
3517 }
3518
3519 static char *tty_devnode(struct device *dev, umode_t *mode)
3520 {
3521 if (!mode)
3522 return NULL;
3523 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3524 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3525 *mode = 0666;
3526 return NULL;
3527 }
3528
3529 static int __init tty_class_init(void)
3530 {
3531 tty_class = class_create(THIS_MODULE, "tty");
3532 if (IS_ERR(tty_class))
3533 return PTR_ERR(tty_class);
3534 tty_class->devnode = tty_devnode;
3535 return 0;
3536 }
3537
3538 postcore_initcall(tty_class_init);
3539
3540 /* 3/2004 jmc: why do these devices exist? */
3541 static struct cdev tty_cdev, console_cdev;
3542
3543 static ssize_t show_cons_active(struct device *dev,
3544 struct device_attribute *attr, char *buf)
3545 {
3546 struct console *cs[16];
3547 int i = 0;
3548 struct console *c;
3549 ssize_t count = 0;
3550
3551 console_lock();
3552 for_each_console(c) {
3553 if (!c->device)
3554 continue;
3555 if (!c->write)
3556 continue;
3557 if ((c->flags & CON_ENABLED) == 0)
3558 continue;
3559 cs[i++] = c;
3560 if (i >= ARRAY_SIZE(cs))
3561 break;
3562 }
3563 while (i--) {
3564 int index = cs[i]->index;
3565 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3566
3567 /* don't resolve tty0 as some programs depend on it */
3568 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3569 count += tty_line_name(drv, index, buf + count);
3570 else
3571 count += sprintf(buf + count, "%s%d",
3572 cs[i]->name, cs[i]->index);
3573
3574 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3575 }
3576 console_unlock();
3577
3578 return count;
3579 }
3580 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3581
3582 static struct device *consdev;
3583
3584 void console_sysfs_notify(void)
3585 {
3586 if (consdev)
3587 sysfs_notify(&consdev->kobj, NULL, "active");
3588 }
3589
3590 /*
3591 * Ok, now we can initialize the rest of the tty devices and can count
3592 * on memory allocations, interrupts etc..
3593 */
3594 int __init tty_init(void)
3595 {
3596 cdev_init(&tty_cdev, &tty_fops);
3597 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3598 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3599 panic("Couldn't register /dev/tty driver\n");
3600 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3601
3602 cdev_init(&console_cdev, &console_fops);
3603 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3604 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3605 panic("Couldn't register /dev/console driver\n");
3606 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3607 "console");
3608 if (IS_ERR(consdev))
3609 consdev = NULL;
3610 else
3611 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3612
3613 #ifdef CONFIG_VT
3614 vty_init(&console_fops);
3615 #endif
3616 return 0;
3617 }
3618