drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
539 *
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
542 *
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
546 */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
552
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
562 }
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
566 }
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 }
578 read_unlock(&tasklist_lock);
579
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
584 }
585
586 return refs;
587 }
588
589 /**
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
592 *
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
596 *
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
601 *
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_mutex resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
610 */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
618
619 if (!tty)
620 return;
621
622
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
627 }
628 spin_unlock(&redirect_lock);
629
630 tty_lock(tty);
631
632 /* some functions below drop BTM, so we need this bit */
633 set_bit(TTY_HUPPING, &tty->flags);
634
635 /* inuse_filps is protected by the single tty lock,
636 this really needs to change if we want to flush the
637 workqueue with the lock held */
638 check_tty_count(tty, "tty_hangup");
639
640 spin_lock(&tty_files_lock);
641 /* This breaks for file handles being sent over AF_UNIX sockets ? */
642 list_for_each_entry(priv, &tty->tty_files, list) {
643 filp = priv->file;
644 if (filp->f_op->write == redirected_tty_write)
645 cons_filp = filp;
646 if (filp->f_op->write != tty_write)
647 continue;
648 closecount++;
649 __tty_fasync(-1, filp, 0); /* can't block */
650 filp->f_op = &hung_up_tty_fops;
651 }
652 spin_unlock(&tty_files_lock);
653
654 refs = tty_signal_session_leader(tty, exit_session);
655 /* Account for the p->signal references we killed */
656 while (refs--)
657 tty_kref_put(tty);
658
659 /*
660 * it drops BTM and thus races with reopen
661 * we protect the race by TTY_HUPPING
662 */
663 tty_ldisc_hangup(tty);
664
665 spin_lock_irq(&tty->ctrl_lock);
666 clear_bit(TTY_THROTTLED, &tty->flags);
667 clear_bit(TTY_PUSH, &tty->flags);
668 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669 put_pid(tty->session);
670 put_pid(tty->pgrp);
671 tty->session = NULL;
672 tty->pgrp = NULL;
673 tty->ctrl_status = 0;
674 spin_unlock_irq(&tty->ctrl_lock);
675
676 /*
677 * If one of the devices matches a console pointer, we
678 * cannot just call hangup() because that will cause
679 * tty->count and state->count to go out of sync.
680 * So we just call close() the right number of times.
681 */
682 if (cons_filp) {
683 if (tty->ops->close)
684 for (n = 0; n < closecount; n++)
685 tty->ops->close(tty, cons_filp);
686 } else if (tty->ops->hangup)
687 (tty->ops->hangup)(tty);
688 /*
689 * We don't want to have driver/ldisc interactions beyond
690 * the ones we did here. The driver layer expects no
691 * calls after ->hangup() from the ldisc side. However we
692 * can't yet guarantee all that.
693 */
694 set_bit(TTY_HUPPED, &tty->flags);
695 clear_bit(TTY_HUPPING, &tty->flags);
696
697 tty_unlock(tty);
698
699 if (f)
700 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705 struct tty_struct *tty =
706 container_of(work, struct tty_struct, hangup_work);
707
708 __tty_hangup(tty, 0);
709 }
710
711 /**
712 * tty_hangup - trigger a hangup event
713 * @tty: tty to hangup
714 *
715 * A carrier loss (virtual or otherwise) has occurred on this like
716 * schedule a hangup sequence to run after this event.
717 */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722 char buf[64];
723 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725 schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731 * tty_vhangup - process vhangup
732 * @tty: tty to hangup
733 *
734 * The user has asked via system call for the terminal to be hung up.
735 * We do this synchronously so that when the syscall returns the process
736 * is complete. That guarantee is necessary for security reasons.
737 */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742 char buf[64];
743
744 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746 __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753 * tty_vhangup_self - process vhangup for own ctty
754 *
755 * Perform a vhangup on the current controlling tty
756 */
757
758 void tty_vhangup_self(void)
759 {
760 struct tty_struct *tty;
761
762 tty = get_current_tty();
763 if (tty) {
764 tty_vhangup(tty);
765 tty_kref_put(tty);
766 }
767 }
768
769 /**
770 * tty_vhangup_session - hangup session leader exit
771 * @tty: tty to hangup
772 *
773 * The session leader is exiting and hanging up its controlling terminal.
774 * Every process in the foreground process group is signalled SIGHUP.
775 *
776 * We do this synchronously so that when the syscall returns the process
777 * is complete. That guarantee is necessary for security reasons.
778 */
779
780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783 char buf[64];
784
785 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787 __tty_hangup(tty, 1);
788 }
789
790 /**
791 * tty_hung_up_p - was tty hung up
792 * @filp: file pointer of tty
793 *
794 * Return true if the tty has been subject to a vhangup or a carrier
795 * loss
796 */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800 return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807 struct task_struct *p;
808 do_each_pid_task(session, PIDTYPE_SID, p) {
809 proc_clear_tty(p);
810 } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814 * disassociate_ctty - disconnect controlling tty
815 * @on_exit: true if exiting so need to "hang up" the session
816 *
817 * This function is typically called only by the session leader, when
818 * it wants to disassociate itself from its controlling tty.
819 *
820 * It performs the following functions:
821 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
822 * (2) Clears the tty from being controlling the session
823 * (3) Clears the controlling tty for all processes in the
824 * session group.
825 *
826 * The argument on_exit is set to 1 if called when a process is
827 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
828 *
829 * Locking:
830 * BTM is taken for hysterical raisins, and held when
831 * called from no_tty().
832 * tty_mutex is taken to protect tty
833 * ->siglock is taken to protect ->signal/->sighand
834 * tasklist_lock is taken to walk process list for sessions
835 * ->siglock is taken to protect ->signal/->sighand
836 */
837
838 void disassociate_ctty(int on_exit)
839 {
840 struct tty_struct *tty;
841
842 if (!current->signal->leader)
843 return;
844
845 tty = get_current_tty();
846 if (tty) {
847 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848 tty_vhangup_session(tty);
849 } else {
850 struct pid *tty_pgrp = tty_get_pgrp(tty);
851 if (tty_pgrp) {
852 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853 if (!on_exit)
854 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
855 put_pid(tty_pgrp);
856 }
857 }
858 tty_kref_put(tty);
859
860 } else if (on_exit) {
861 struct pid *old_pgrp;
862 spin_lock_irq(&current->sighand->siglock);
863 old_pgrp = current->signal->tty_old_pgrp;
864 current->signal->tty_old_pgrp = NULL;
865 spin_unlock_irq(&current->sighand->siglock);
866 if (old_pgrp) {
867 kill_pgrp(old_pgrp, SIGHUP, on_exit);
868 kill_pgrp(old_pgrp, SIGCONT, on_exit);
869 put_pid(old_pgrp);
870 }
871 return;
872 }
873
874 spin_lock_irq(&current->sighand->siglock);
875 put_pid(current->signal->tty_old_pgrp);
876 current->signal->tty_old_pgrp = NULL;
877 spin_unlock_irq(&current->sighand->siglock);
878
879 tty = get_current_tty();
880 if (tty) {
881 unsigned long flags;
882 spin_lock_irqsave(&tty->ctrl_lock, flags);
883 put_pid(tty->session);
884 put_pid(tty->pgrp);
885 tty->session = NULL;
886 tty->pgrp = NULL;
887 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
888 tty_kref_put(tty);
889 } else {
890 #ifdef TTY_DEBUG_HANGUP
891 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
892 " = NULL", tty);
893 #endif
894 }
895
896 /* Now clear signal->tty under the lock */
897 read_lock(&tasklist_lock);
898 session_clear_tty(task_session(current));
899 read_unlock(&tasklist_lock);
900 }
901
902 /**
903 *
904 * no_tty - Ensure the current process does not have a controlling tty
905 */
906 void no_tty(void)
907 {
908 /* FIXME: Review locking here. The tty_lock never covered any race
909 between a new association and proc_clear_tty but possible we need
910 to protect against this anyway */
911 struct task_struct *tsk = current;
912 disassociate_ctty(0);
913 proc_clear_tty(tsk);
914 }
915
916
917 /**
918 * stop_tty - propagate flow control
919 * @tty: tty to stop
920 *
921 * Perform flow control to the driver. For PTY/TTY pairs we
922 * must also propagate the TIOCKPKT status. May be called
923 * on an already stopped device and will not re-call the driver
924 * method.
925 *
926 * This functionality is used by both the line disciplines for
927 * halting incoming flow and by the driver. It may therefore be
928 * called from any context, may be under the tty atomic_write_lock
929 * but not always.
930 *
931 * Locking:
932 * Uses the tty control lock internally
933 */
934
935 void stop_tty(struct tty_struct *tty)
936 {
937 unsigned long flags;
938 spin_lock_irqsave(&tty->ctrl_lock, flags);
939 if (tty->stopped) {
940 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
941 return;
942 }
943 tty->stopped = 1;
944 if (tty->link && tty->link->packet) {
945 tty->ctrl_status &= ~TIOCPKT_START;
946 tty->ctrl_status |= TIOCPKT_STOP;
947 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
948 }
949 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
950 if (tty->ops->stop)
951 (tty->ops->stop)(tty);
952 }
953
954 EXPORT_SYMBOL(stop_tty);
955
956 /**
957 * start_tty - propagate flow control
958 * @tty: tty to start
959 *
960 * Start a tty that has been stopped if at all possible. Perform
961 * any necessary wakeups and propagate the TIOCPKT status. If this
962 * is the tty was previous stopped and is being started then the
963 * driver start method is invoked and the line discipline woken.
964 *
965 * Locking:
966 * ctrl_lock
967 */
968
969 void start_tty(struct tty_struct *tty)
970 {
971 unsigned long flags;
972 spin_lock_irqsave(&tty->ctrl_lock, flags);
973 if (!tty->stopped || tty->flow_stopped) {
974 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
975 return;
976 }
977 tty->stopped = 0;
978 if (tty->link && tty->link->packet) {
979 tty->ctrl_status &= ~TIOCPKT_STOP;
980 tty->ctrl_status |= TIOCPKT_START;
981 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
982 }
983 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
984 if (tty->ops->start)
985 (tty->ops->start)(tty);
986 /* If we have a running line discipline it may need kicking */
987 tty_wakeup(tty);
988 }
989
990 EXPORT_SYMBOL(start_tty);
991
992 /* We limit tty time update visibility to every 8 seconds or so. */
993 static void tty_update_time(struct timespec *time)
994 {
995 unsigned long sec = get_seconds();
996 if (abs(sec - time->tv_sec) & ~7)
997 time->tv_sec = sec;
998 }
999
1000 /**
1001 * tty_read - read method for tty device files
1002 * @file: pointer to tty file
1003 * @buf: user buffer
1004 * @count: size of user buffer
1005 * @ppos: unused
1006 *
1007 * Perform the read system call function on this terminal device. Checks
1008 * for hung up devices before calling the line discipline method.
1009 *
1010 * Locking:
1011 * Locks the line discipline internally while needed. Multiple
1012 * read calls may be outstanding in parallel.
1013 */
1014
1015 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1016 loff_t *ppos)
1017 {
1018 int i;
1019 struct inode *inode = file_inode(file);
1020 struct tty_struct *tty = file_tty(file);
1021 struct tty_ldisc *ld;
1022
1023 if (tty_paranoia_check(tty, inode, "tty_read"))
1024 return -EIO;
1025 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1026 return -EIO;
1027
1028 /* We want to wait for the line discipline to sort out in this
1029 situation */
1030 ld = tty_ldisc_ref_wait(tty);
1031 if (ld->ops->read)
1032 i = (ld->ops->read)(tty, file, buf, count);
1033 else
1034 i = -EIO;
1035 tty_ldisc_deref(ld);
1036
1037 if (i > 0)
1038 tty_update_time(&inode->i_atime);
1039
1040 return i;
1041 }
1042
1043 void tty_write_unlock(struct tty_struct *tty)
1044 __releases(&tty->atomic_write_lock)
1045 {
1046 mutex_unlock(&tty->atomic_write_lock);
1047 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1048 }
1049
1050 int tty_write_lock(struct tty_struct *tty, int ndelay)
1051 __acquires(&tty->atomic_write_lock)
1052 {
1053 if (!mutex_trylock(&tty->atomic_write_lock)) {
1054 if (ndelay)
1055 return -EAGAIN;
1056 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1057 return -ERESTARTSYS;
1058 }
1059 return 0;
1060 }
1061
1062 /*
1063 * Split writes up in sane blocksizes to avoid
1064 * denial-of-service type attacks
1065 */
1066 static inline ssize_t do_tty_write(
1067 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1068 struct tty_struct *tty,
1069 struct file *file,
1070 const char __user *buf,
1071 size_t count)
1072 {
1073 ssize_t ret, written = 0;
1074 unsigned int chunk;
1075
1076 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1077 if (ret < 0)
1078 return ret;
1079
1080 /*
1081 * We chunk up writes into a temporary buffer. This
1082 * simplifies low-level drivers immensely, since they
1083 * don't have locking issues and user mode accesses.
1084 *
1085 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1086 * big chunk-size..
1087 *
1088 * The default chunk-size is 2kB, because the NTTY
1089 * layer has problems with bigger chunks. It will
1090 * claim to be able to handle more characters than
1091 * it actually does.
1092 *
1093 * FIXME: This can probably go away now except that 64K chunks
1094 * are too likely to fail unless switched to vmalloc...
1095 */
1096 chunk = 2048;
1097 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1098 chunk = 65536;
1099 if (count < chunk)
1100 chunk = count;
1101
1102 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1103 if (tty->write_cnt < chunk) {
1104 unsigned char *buf_chunk;
1105
1106 if (chunk < 1024)
1107 chunk = 1024;
1108
1109 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1110 if (!buf_chunk) {
1111 ret = -ENOMEM;
1112 goto out;
1113 }
1114 kfree(tty->write_buf);
1115 tty->write_cnt = chunk;
1116 tty->write_buf = buf_chunk;
1117 }
1118
1119 /* Do the write .. */
1120 for (;;) {
1121 size_t size = count;
1122 if (size > chunk)
1123 size = chunk;
1124 ret = -EFAULT;
1125 if (copy_from_user(tty->write_buf, buf, size))
1126 break;
1127 ret = write(tty, file, tty->write_buf, size);
1128 if (ret <= 0)
1129 break;
1130 written += ret;
1131 buf += ret;
1132 count -= ret;
1133 if (!count)
1134 break;
1135 ret = -ERESTARTSYS;
1136 if (signal_pending(current))
1137 break;
1138 cond_resched();
1139 }
1140 if (written) {
1141 tty_update_time(&file_inode(file)->i_mtime);
1142 ret = written;
1143 }
1144 out:
1145 tty_write_unlock(tty);
1146 return ret;
1147 }
1148
1149 /**
1150 * tty_write_message - write a message to a certain tty, not just the console.
1151 * @tty: the destination tty_struct
1152 * @msg: the message to write
1153 *
1154 * This is used for messages that need to be redirected to a specific tty.
1155 * We don't put it into the syslog queue right now maybe in the future if
1156 * really needed.
1157 *
1158 * We must still hold the BTM and test the CLOSING flag for the moment.
1159 */
1160
1161 void tty_write_message(struct tty_struct *tty, char *msg)
1162 {
1163 if (tty) {
1164 mutex_lock(&tty->atomic_write_lock);
1165 tty_lock(tty);
1166 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1167 tty_unlock(tty);
1168 tty->ops->write(tty, msg, strlen(msg));
1169 } else
1170 tty_unlock(tty);
1171 tty_write_unlock(tty);
1172 }
1173 return;
1174 }
1175
1176
1177 /**
1178 * tty_write - write method for tty device file
1179 * @file: tty file pointer
1180 * @buf: user data to write
1181 * @count: bytes to write
1182 * @ppos: unused
1183 *
1184 * Write data to a tty device via the line discipline.
1185 *
1186 * Locking:
1187 * Locks the line discipline as required
1188 * Writes to the tty driver are serialized by the atomic_write_lock
1189 * and are then processed in chunks to the device. The line discipline
1190 * write method will not be invoked in parallel for each device.
1191 */
1192
1193 static ssize_t tty_write(struct file *file, const char __user *buf,
1194 size_t count, loff_t *ppos)
1195 {
1196 struct tty_struct *tty = file_tty(file);
1197 struct tty_ldisc *ld;
1198 ssize_t ret;
1199
1200 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1201 return -EIO;
1202 if (!tty || !tty->ops->write ||
1203 (test_bit(TTY_IO_ERROR, &tty->flags)))
1204 return -EIO;
1205 /* Short term debug to catch buggy drivers */
1206 if (tty->ops->write_room == NULL)
1207 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1208 tty->driver->name);
1209 ld = tty_ldisc_ref_wait(tty);
1210 if (!ld->ops->write)
1211 ret = -EIO;
1212 else
1213 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1214 tty_ldisc_deref(ld);
1215 return ret;
1216 }
1217
1218 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1219 size_t count, loff_t *ppos)
1220 {
1221 struct file *p = NULL;
1222
1223 spin_lock(&redirect_lock);
1224 if (redirect)
1225 p = get_file(redirect);
1226 spin_unlock(&redirect_lock);
1227
1228 if (p) {
1229 ssize_t res;
1230 res = vfs_write(p, buf, count, &p->f_pos);
1231 fput(p);
1232 return res;
1233 }
1234 return tty_write(file, buf, count, ppos);
1235 }
1236
1237 static char ptychar[] = "pqrstuvwxyzabcde";
1238
1239 /**
1240 * pty_line_name - generate name for a pty
1241 * @driver: the tty driver in use
1242 * @index: the minor number
1243 * @p: output buffer of at least 6 bytes
1244 *
1245 * Generate a name from a driver reference and write it to the output
1246 * buffer.
1247 *
1248 * Locking: None
1249 */
1250 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1251 {
1252 int i = index + driver->name_base;
1253 /* ->name is initialized to "ttyp", but "tty" is expected */
1254 sprintf(p, "%s%c%x",
1255 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1256 ptychar[i >> 4 & 0xf], i & 0xf);
1257 }
1258
1259 /**
1260 * tty_line_name - generate name for a tty
1261 * @driver: the tty driver in use
1262 * @index: the minor number
1263 * @p: output buffer of at least 7 bytes
1264 *
1265 * Generate a name from a driver reference and write it to the output
1266 * buffer.
1267 *
1268 * Locking: None
1269 */
1270 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1271 {
1272 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1273 return sprintf(p, "%s", driver->name);
1274 else
1275 return sprintf(p, "%s%d", driver->name,
1276 index + driver->name_base);
1277 }
1278
1279 /**
1280 * tty_driver_lookup_tty() - find an existing tty, if any
1281 * @driver: the driver for the tty
1282 * @idx: the minor number
1283 *
1284 * Return the tty, if found or ERR_PTR() otherwise.
1285 *
1286 * Locking: tty_mutex must be held. If tty is found, the mutex must
1287 * be held until the 'fast-open' is also done. Will change once we
1288 * have refcounting in the driver and per driver locking
1289 */
1290 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1291 struct inode *inode, int idx)
1292 {
1293 if (driver->ops->lookup)
1294 return driver->ops->lookup(driver, inode, idx);
1295
1296 return driver->ttys[idx];
1297 }
1298
1299 /**
1300 * tty_init_termios - helper for termios setup
1301 * @tty: the tty to set up
1302 *
1303 * Initialise the termios structures for this tty. Thus runs under
1304 * the tty_mutex currently so we can be relaxed about ordering.
1305 */
1306
1307 int tty_init_termios(struct tty_struct *tty)
1308 {
1309 struct ktermios *tp;
1310 int idx = tty->index;
1311
1312 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1313 tty->termios = tty->driver->init_termios;
1314 else {
1315 /* Check for lazy saved data */
1316 tp = tty->driver->termios[idx];
1317 if (tp != NULL)
1318 tty->termios = *tp;
1319 else
1320 tty->termios = tty->driver->init_termios;
1321 }
1322 /* Compatibility until drivers always set this */
1323 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1324 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1325 return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(tty_init_termios);
1328
1329 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1330 {
1331 int ret = tty_init_termios(tty);
1332 if (ret)
1333 return ret;
1334
1335 tty_driver_kref_get(driver);
1336 tty->count++;
1337 driver->ttys[tty->index] = tty;
1338 return 0;
1339 }
1340 EXPORT_SYMBOL_GPL(tty_standard_install);
1341
1342 /**
1343 * tty_driver_install_tty() - install a tty entry in the driver
1344 * @driver: the driver for the tty
1345 * @tty: the tty
1346 *
1347 * Install a tty object into the driver tables. The tty->index field
1348 * will be set by the time this is called. This method is responsible
1349 * for ensuring any need additional structures are allocated and
1350 * configured.
1351 *
1352 * Locking: tty_mutex for now
1353 */
1354 static int tty_driver_install_tty(struct tty_driver *driver,
1355 struct tty_struct *tty)
1356 {
1357 return driver->ops->install ? driver->ops->install(driver, tty) :
1358 tty_standard_install(driver, tty);
1359 }
1360
1361 /**
1362 * tty_driver_remove_tty() - remove a tty from the driver tables
1363 * @driver: the driver for the tty
1364 * @idx: the minor number
1365 *
1366 * Remvoe a tty object from the driver tables. The tty->index field
1367 * will be set by the time this is called.
1368 *
1369 * Locking: tty_mutex for now
1370 */
1371 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1372 {
1373 if (driver->ops->remove)
1374 driver->ops->remove(driver, tty);
1375 else
1376 driver->ttys[tty->index] = NULL;
1377 }
1378
1379 /*
1380 * tty_reopen() - fast re-open of an open tty
1381 * @tty - the tty to open
1382 *
1383 * Return 0 on success, -errno on error.
1384 *
1385 * Locking: tty_mutex must be held from the time the tty was found
1386 * till this open completes.
1387 */
1388 static int tty_reopen(struct tty_struct *tty)
1389 {
1390 struct tty_driver *driver = tty->driver;
1391
1392 if (test_bit(TTY_CLOSING, &tty->flags) ||
1393 test_bit(TTY_HUPPING, &tty->flags))
1394 return -EIO;
1395
1396 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1397 driver->subtype == PTY_TYPE_MASTER) {
1398 /*
1399 * special case for PTY masters: only one open permitted,
1400 * and the slave side open count is incremented as well.
1401 */
1402 if (tty->count)
1403 return -EIO;
1404
1405 tty->link->count++;
1406 }
1407 tty->count++;
1408
1409 WARN_ON(!tty->ldisc);
1410
1411 return 0;
1412 }
1413
1414 /**
1415 * tty_init_dev - initialise a tty device
1416 * @driver: tty driver we are opening a device on
1417 * @idx: device index
1418 * @ret_tty: returned tty structure
1419 *
1420 * Prepare a tty device. This may not be a "new" clean device but
1421 * could also be an active device. The pty drivers require special
1422 * handling because of this.
1423 *
1424 * Locking:
1425 * The function is called under the tty_mutex, which
1426 * protects us from the tty struct or driver itself going away.
1427 *
1428 * On exit the tty device has the line discipline attached and
1429 * a reference count of 1. If a pair was created for pty/tty use
1430 * and the other was a pty master then it too has a reference count of 1.
1431 *
1432 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1433 * failed open. The new code protects the open with a mutex, so it's
1434 * really quite straightforward. The mutex locking can probably be
1435 * relaxed for the (most common) case of reopening a tty.
1436 */
1437
1438 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1439 {
1440 struct tty_struct *tty;
1441 int retval;
1442
1443 /*
1444 * First time open is complex, especially for PTY devices.
1445 * This code guarantees that either everything succeeds and the
1446 * TTY is ready for operation, or else the table slots are vacated
1447 * and the allocated memory released. (Except that the termios
1448 * and locked termios may be retained.)
1449 */
1450
1451 if (!try_module_get(driver->owner))
1452 return ERR_PTR(-ENODEV);
1453
1454 tty = alloc_tty_struct();
1455 if (!tty) {
1456 retval = -ENOMEM;
1457 goto err_module_put;
1458 }
1459 initialize_tty_struct(tty, driver, idx);
1460
1461 tty_lock(tty);
1462 retval = tty_driver_install_tty(driver, tty);
1463 if (retval < 0)
1464 goto err_deinit_tty;
1465
1466 if (!tty->port)
1467 tty->port = driver->ports[idx];
1468
1469 WARN_RATELIMIT(!tty->port,
1470 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1471 __func__, tty->driver->name);
1472
1473 tty->port->itty = tty;
1474
1475 /*
1476 * Structures all installed ... call the ldisc open routines.
1477 * If we fail here just call release_tty to clean up. No need
1478 * to decrement the use counts, as release_tty doesn't care.
1479 */
1480 retval = tty_ldisc_setup(tty, tty->link);
1481 if (retval)
1482 goto err_release_tty;
1483 /* Return the tty locked so that it cannot vanish under the caller */
1484 return tty;
1485
1486 err_deinit_tty:
1487 tty_unlock(tty);
1488 deinitialize_tty_struct(tty);
1489 free_tty_struct(tty);
1490 err_module_put:
1491 module_put(driver->owner);
1492 return ERR_PTR(retval);
1493
1494 /* call the tty release_tty routine to clean out this slot */
1495 err_release_tty:
1496 tty_unlock(tty);
1497 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1498 "clearing slot %d\n", idx);
1499 release_tty(tty, idx);
1500 return ERR_PTR(retval);
1501 }
1502
1503 void tty_free_termios(struct tty_struct *tty)
1504 {
1505 struct ktermios *tp;
1506 int idx = tty->index;
1507
1508 /* If the port is going to reset then it has no termios to save */
1509 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1510 return;
1511
1512 /* Stash the termios data */
1513 tp = tty->driver->termios[idx];
1514 if (tp == NULL) {
1515 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1516 if (tp == NULL) {
1517 pr_warn("tty: no memory to save termios state.\n");
1518 return;
1519 }
1520 tty->driver->termios[idx] = tp;
1521 }
1522 *tp = tty->termios;
1523 }
1524 EXPORT_SYMBOL(tty_free_termios);
1525
1526 /**
1527 * tty_flush_works - flush all works of a tty
1528 * @tty: tty device to flush works for
1529 *
1530 * Sync flush all works belonging to @tty.
1531 */
1532 static void tty_flush_works(struct tty_struct *tty)
1533 {
1534 flush_work(&tty->SAK_work);
1535 flush_work(&tty->hangup_work);
1536 }
1537
1538 /**
1539 * release_one_tty - release tty structure memory
1540 * @kref: kref of tty we are obliterating
1541 *
1542 * Releases memory associated with a tty structure, and clears out the
1543 * driver table slots. This function is called when a device is no longer
1544 * in use. It also gets called when setup of a device fails.
1545 *
1546 * Locking:
1547 * takes the file list lock internally when working on the list
1548 * of ttys that the driver keeps.
1549 *
1550 * This method gets called from a work queue so that the driver private
1551 * cleanup ops can sleep (needed for USB at least)
1552 */
1553 static void release_one_tty(struct work_struct *work)
1554 {
1555 struct tty_struct *tty =
1556 container_of(work, struct tty_struct, hangup_work);
1557 struct tty_driver *driver = tty->driver;
1558
1559 if (tty->ops->cleanup)
1560 tty->ops->cleanup(tty);
1561
1562 tty->magic = 0;
1563 tty_driver_kref_put(driver);
1564 module_put(driver->owner);
1565
1566 spin_lock(&tty_files_lock);
1567 list_del_init(&tty->tty_files);
1568 spin_unlock(&tty_files_lock);
1569
1570 put_pid(tty->pgrp);
1571 put_pid(tty->session);
1572 free_tty_struct(tty);
1573 }
1574
1575 static void queue_release_one_tty(struct kref *kref)
1576 {
1577 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1578
1579 /* The hangup queue is now free so we can reuse it rather than
1580 waste a chunk of memory for each port */
1581 INIT_WORK(&tty->hangup_work, release_one_tty);
1582 schedule_work(&tty->hangup_work);
1583 }
1584
1585 /**
1586 * tty_kref_put - release a tty kref
1587 * @tty: tty device
1588 *
1589 * Release a reference to a tty device and if need be let the kref
1590 * layer destruct the object for us
1591 */
1592
1593 void tty_kref_put(struct tty_struct *tty)
1594 {
1595 if (tty)
1596 kref_put(&tty->kref, queue_release_one_tty);
1597 }
1598 EXPORT_SYMBOL(tty_kref_put);
1599
1600 /**
1601 * release_tty - release tty structure memory
1602 *
1603 * Release both @tty and a possible linked partner (think pty pair),
1604 * and decrement the refcount of the backing module.
1605 *
1606 * Locking:
1607 * tty_mutex
1608 * takes the file list lock internally when working on the list
1609 * of ttys that the driver keeps.
1610 *
1611 */
1612 static void release_tty(struct tty_struct *tty, int idx)
1613 {
1614 /* This should always be true but check for the moment */
1615 WARN_ON(tty->index != idx);
1616 WARN_ON(!mutex_is_locked(&tty_mutex));
1617 if (tty->ops->shutdown)
1618 tty->ops->shutdown(tty);
1619 tty_free_termios(tty);
1620 tty_driver_remove_tty(tty->driver, tty);
1621 tty->port->itty = NULL;
1622 if (tty->link)
1623 tty->link->port->itty = NULL;
1624 cancel_work_sync(&tty->port->buf.work);
1625
1626 if (tty->link)
1627 tty_kref_put(tty->link);
1628 tty_kref_put(tty);
1629 }
1630
1631 /**
1632 * tty_release_checks - check a tty before real release
1633 * @tty: tty to check
1634 * @o_tty: link of @tty (if any)
1635 * @idx: index of the tty
1636 *
1637 * Performs some paranoid checking before true release of the @tty.
1638 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1639 */
1640 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1641 int idx)
1642 {
1643 #ifdef TTY_PARANOIA_CHECK
1644 if (idx < 0 || idx >= tty->driver->num) {
1645 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1646 __func__, tty->name);
1647 return -1;
1648 }
1649
1650 /* not much to check for devpts */
1651 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1652 return 0;
1653
1654 if (tty != tty->driver->ttys[idx]) {
1655 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1656 __func__, idx, tty->name);
1657 return -1;
1658 }
1659 if (tty->driver->other) {
1660 if (o_tty != tty->driver->other->ttys[idx]) {
1661 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1662 __func__, idx, tty->name);
1663 return -1;
1664 }
1665 if (o_tty->link != tty) {
1666 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1667 return -1;
1668 }
1669 }
1670 #endif
1671 return 0;
1672 }
1673
1674 /**
1675 * tty_release - vfs callback for close
1676 * @inode: inode of tty
1677 * @filp: file pointer for handle to tty
1678 *
1679 * Called the last time each file handle is closed that references
1680 * this tty. There may however be several such references.
1681 *
1682 * Locking:
1683 * Takes bkl. See tty_release_dev
1684 *
1685 * Even releasing the tty structures is a tricky business.. We have
1686 * to be very careful that the structures are all released at the
1687 * same time, as interrupts might otherwise get the wrong pointers.
1688 *
1689 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1690 * lead to double frees or releasing memory still in use.
1691 */
1692
1693 int tty_release(struct inode *inode, struct file *filp)
1694 {
1695 struct tty_struct *tty = file_tty(filp);
1696 struct tty_struct *o_tty;
1697 int pty_master, tty_closing, o_tty_closing, do_sleep;
1698 int idx;
1699 char buf[64];
1700 long timeout = 0;
1701
1702 if (tty_paranoia_check(tty, inode, __func__))
1703 return 0;
1704
1705 tty_lock(tty);
1706 check_tty_count(tty, __func__);
1707
1708 __tty_fasync(-1, filp, 0);
1709
1710 idx = tty->index;
1711 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1712 tty->driver->subtype == PTY_TYPE_MASTER);
1713 /* Review: parallel close */
1714 o_tty = tty->link;
1715
1716 if (tty_release_checks(tty, o_tty, idx)) {
1717 tty_unlock(tty);
1718 return 0;
1719 }
1720
1721 #ifdef TTY_DEBUG_HANGUP
1722 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1723 tty_name(tty, buf), tty->count);
1724 #endif
1725
1726 if (tty->ops->close)
1727 tty->ops->close(tty, filp);
1728
1729 tty_unlock(tty);
1730 /*
1731 * Sanity check: if tty->count is going to zero, there shouldn't be
1732 * any waiters on tty->read_wait or tty->write_wait. We test the
1733 * wait queues and kick everyone out _before_ actually starting to
1734 * close. This ensures that we won't block while releasing the tty
1735 * structure.
1736 *
1737 * The test for the o_tty closing is necessary, since the master and
1738 * slave sides may close in any order. If the slave side closes out
1739 * first, its count will be one, since the master side holds an open.
1740 * Thus this test wouldn't be triggered at the time the slave closes,
1741 * so we do it now.
1742 *
1743 * Note that it's possible for the tty to be opened again while we're
1744 * flushing out waiters. By recalculating the closing flags before
1745 * each iteration we avoid any problems.
1746 */
1747 while (1) {
1748 /* Guard against races with tty->count changes elsewhere and
1749 opens on /dev/tty */
1750
1751 mutex_lock(&tty_mutex);
1752 tty_lock_pair(tty, o_tty);
1753 tty_closing = tty->count <= 1;
1754 o_tty_closing = o_tty &&
1755 (o_tty->count <= (pty_master ? 1 : 0));
1756 do_sleep = 0;
1757
1758 if (tty_closing) {
1759 if (waitqueue_active(&tty->read_wait)) {
1760 wake_up_poll(&tty->read_wait, POLLIN);
1761 do_sleep++;
1762 }
1763 if (waitqueue_active(&tty->write_wait)) {
1764 wake_up_poll(&tty->write_wait, POLLOUT);
1765 do_sleep++;
1766 }
1767 }
1768 if (o_tty_closing) {
1769 if (waitqueue_active(&o_tty->read_wait)) {
1770 wake_up_poll(&o_tty->read_wait, POLLIN);
1771 do_sleep++;
1772 }
1773 if (waitqueue_active(&o_tty->write_wait)) {
1774 wake_up_poll(&o_tty->write_wait, POLLOUT);
1775 do_sleep++;
1776 }
1777 }
1778 if (!do_sleep)
1779 break;
1780
1781 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1782 __func__, tty_name(tty, buf));
1783 tty_unlock_pair(tty, o_tty);
1784 mutex_unlock(&tty_mutex);
1785 schedule_timeout_killable(timeout);
1786 if (timeout < 120 * HZ)
1787 timeout = 2 * timeout + 1;
1788 else
1789 timeout = MAX_SCHEDULE_TIMEOUT;
1790 }
1791
1792 /*
1793 * The closing flags are now consistent with the open counts on
1794 * both sides, and we've completed the last operation that could
1795 * block, so it's safe to proceed with closing.
1796 *
1797 * We must *not* drop the tty_mutex until we ensure that a further
1798 * entry into tty_open can not pick up this tty.
1799 */
1800 if (pty_master) {
1801 if (--o_tty->count < 0) {
1802 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1803 __func__, o_tty->count, tty_name(o_tty, buf));
1804 o_tty->count = 0;
1805 }
1806 }
1807 if (--tty->count < 0) {
1808 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1809 __func__, tty->count, tty_name(tty, buf));
1810 tty->count = 0;
1811 }
1812
1813 /*
1814 * We've decremented tty->count, so we need to remove this file
1815 * descriptor off the tty->tty_files list; this serves two
1816 * purposes:
1817 * - check_tty_count sees the correct number of file descriptors
1818 * associated with this tty.
1819 * - do_tty_hangup no longer sees this file descriptor as
1820 * something that needs to be handled for hangups.
1821 */
1822 tty_del_file(filp);
1823
1824 /*
1825 * Perform some housekeeping before deciding whether to return.
1826 *
1827 * Set the TTY_CLOSING flag if this was the last open. In the
1828 * case of a pty we may have to wait around for the other side
1829 * to close, and TTY_CLOSING makes sure we can't be reopened.
1830 */
1831 if (tty_closing)
1832 set_bit(TTY_CLOSING, &tty->flags);
1833 if (o_tty_closing)
1834 set_bit(TTY_CLOSING, &o_tty->flags);
1835
1836 /*
1837 * If _either_ side is closing, make sure there aren't any
1838 * processes that still think tty or o_tty is their controlling
1839 * tty.
1840 */
1841 if (tty_closing || o_tty_closing) {
1842 read_lock(&tasklist_lock);
1843 session_clear_tty(tty->session);
1844 if (o_tty)
1845 session_clear_tty(o_tty->session);
1846 read_unlock(&tasklist_lock);
1847 }
1848
1849 mutex_unlock(&tty_mutex);
1850 tty_unlock_pair(tty, o_tty);
1851 /* At this point the TTY_CLOSING flag should ensure a dead tty
1852 cannot be re-opened by a racing opener */
1853
1854 /* check whether both sides are closing ... */
1855 if (!tty_closing || (o_tty && !o_tty_closing))
1856 return 0;
1857
1858 #ifdef TTY_DEBUG_HANGUP
1859 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1860 #endif
1861 /*
1862 * Ask the line discipline code to release its structures
1863 */
1864 tty_ldisc_release(tty, o_tty);
1865
1866 /* Wait for pending work before tty destruction commmences */
1867 tty_flush_works(tty);
1868 if (o_tty)
1869 tty_flush_works(o_tty);
1870
1871 #ifdef TTY_DEBUG_HANGUP
1872 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1873 #endif
1874 /*
1875 * The release_tty function takes care of the details of clearing
1876 * the slots and preserving the termios structure. The tty_unlock_pair
1877 * should be safe as we keep a kref while the tty is locked (so the
1878 * unlock never unlocks a freed tty).
1879 */
1880 mutex_lock(&tty_mutex);
1881 release_tty(tty, idx);
1882 mutex_unlock(&tty_mutex);
1883
1884 return 0;
1885 }
1886
1887 /**
1888 * tty_open_current_tty - get tty of current task for open
1889 * @device: device number
1890 * @filp: file pointer to tty
1891 * @return: tty of the current task iff @device is /dev/tty
1892 *
1893 * We cannot return driver and index like for the other nodes because
1894 * devpts will not work then. It expects inodes to be from devpts FS.
1895 *
1896 * We need to move to returning a refcounted object from all the lookup
1897 * paths including this one.
1898 */
1899 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1900 {
1901 struct tty_struct *tty;
1902
1903 if (device != MKDEV(TTYAUX_MAJOR, 0))
1904 return NULL;
1905
1906 tty = get_current_tty();
1907 if (!tty)
1908 return ERR_PTR(-ENXIO);
1909
1910 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1911 /* noctty = 1; */
1912 tty_kref_put(tty);
1913 /* FIXME: we put a reference and return a TTY! */
1914 /* This is only safe because the caller holds tty_mutex */
1915 return tty;
1916 }
1917
1918 /**
1919 * tty_lookup_driver - lookup a tty driver for a given device file
1920 * @device: device number
1921 * @filp: file pointer to tty
1922 * @noctty: set if the device should not become a controlling tty
1923 * @index: index for the device in the @return driver
1924 * @return: driver for this inode (with increased refcount)
1925 *
1926 * If @return is not erroneous, the caller is responsible to decrement the
1927 * refcount by tty_driver_kref_put.
1928 *
1929 * Locking: tty_mutex protects get_tty_driver
1930 */
1931 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1932 int *noctty, int *index)
1933 {
1934 struct tty_driver *driver;
1935
1936 switch (device) {
1937 #ifdef CONFIG_VT
1938 case MKDEV(TTY_MAJOR, 0): {
1939 extern struct tty_driver *console_driver;
1940 driver = tty_driver_kref_get(console_driver);
1941 *index = fg_console;
1942 *noctty = 1;
1943 break;
1944 }
1945 #endif
1946 case MKDEV(TTYAUX_MAJOR, 1): {
1947 struct tty_driver *console_driver = console_device(index);
1948 if (console_driver) {
1949 driver = tty_driver_kref_get(console_driver);
1950 if (driver) {
1951 /* Don't let /dev/console block */
1952 filp->f_flags |= O_NONBLOCK;
1953 *noctty = 1;
1954 break;
1955 }
1956 }
1957 return ERR_PTR(-ENODEV);
1958 }
1959 default:
1960 driver = get_tty_driver(device, index);
1961 if (!driver)
1962 return ERR_PTR(-ENODEV);
1963 break;
1964 }
1965 return driver;
1966 }
1967
1968 /**
1969 * tty_open - open a tty device
1970 * @inode: inode of device file
1971 * @filp: file pointer to tty
1972 *
1973 * tty_open and tty_release keep up the tty count that contains the
1974 * number of opens done on a tty. We cannot use the inode-count, as
1975 * different inodes might point to the same tty.
1976 *
1977 * Open-counting is needed for pty masters, as well as for keeping
1978 * track of serial lines: DTR is dropped when the last close happens.
1979 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1980 *
1981 * The termios state of a pty is reset on first open so that
1982 * settings don't persist across reuse.
1983 *
1984 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1985 * tty->count should protect the rest.
1986 * ->siglock protects ->signal/->sighand
1987 *
1988 * Note: the tty_unlock/lock cases without a ref are only safe due to
1989 * tty_mutex
1990 */
1991
1992 static int tty_open(struct inode *inode, struct file *filp)
1993 {
1994 struct tty_struct *tty;
1995 int noctty, retval;
1996 struct tty_driver *driver = NULL;
1997 int index;
1998 dev_t device = inode->i_rdev;
1999 unsigned saved_flags = filp->f_flags;
2000
2001 nonseekable_open(inode, filp);
2002
2003 retry_open:
2004 retval = tty_alloc_file(filp);
2005 if (retval)
2006 return -ENOMEM;
2007
2008 noctty = filp->f_flags & O_NOCTTY;
2009 index = -1;
2010 retval = 0;
2011
2012 mutex_lock(&tty_mutex);
2013 /* This is protected by the tty_mutex */
2014 tty = tty_open_current_tty(device, filp);
2015 if (IS_ERR(tty)) {
2016 retval = PTR_ERR(tty);
2017 goto err_unlock;
2018 } else if (!tty) {
2019 driver = tty_lookup_driver(device, filp, &noctty, &index);
2020 if (IS_ERR(driver)) {
2021 retval = PTR_ERR(driver);
2022 goto err_unlock;
2023 }
2024
2025 /* check whether we're reopening an existing tty */
2026 tty = tty_driver_lookup_tty(driver, inode, index);
2027 if (IS_ERR(tty)) {
2028 retval = PTR_ERR(tty);
2029 goto err_unlock;
2030 }
2031 }
2032
2033 if (tty) {
2034 tty_lock(tty);
2035 retval = tty_reopen(tty);
2036 if (retval < 0) {
2037 tty_unlock(tty);
2038 tty = ERR_PTR(retval);
2039 }
2040 } else /* Returns with the tty_lock held for now */
2041 tty = tty_init_dev(driver, index);
2042
2043 mutex_unlock(&tty_mutex);
2044 if (driver)
2045 tty_driver_kref_put(driver);
2046 if (IS_ERR(tty)) {
2047 retval = PTR_ERR(tty);
2048 goto err_file;
2049 }
2050
2051 tty_add_file(tty, filp);
2052
2053 check_tty_count(tty, __func__);
2054 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2055 tty->driver->subtype == PTY_TYPE_MASTER)
2056 noctty = 1;
2057 #ifdef TTY_DEBUG_HANGUP
2058 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2059 #endif
2060 if (tty->ops->open)
2061 retval = tty->ops->open(tty, filp);
2062 else
2063 retval = -ENODEV;
2064 filp->f_flags = saved_flags;
2065
2066 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2067 !capable(CAP_SYS_ADMIN))
2068 retval = -EBUSY;
2069
2070 if (retval) {
2071 #ifdef TTY_DEBUG_HANGUP
2072 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2073 retval, tty->name);
2074 #endif
2075 tty_unlock(tty); /* need to call tty_release without BTM */
2076 tty_release(inode, filp);
2077 if (retval != -ERESTARTSYS)
2078 return retval;
2079
2080 if (signal_pending(current))
2081 return retval;
2082
2083 schedule();
2084 /*
2085 * Need to reset f_op in case a hangup happened.
2086 */
2087 if (filp->f_op == &hung_up_tty_fops)
2088 filp->f_op = &tty_fops;
2089 goto retry_open;
2090 }
2091 tty_unlock(tty);
2092
2093
2094 mutex_lock(&tty_mutex);
2095 tty_lock(tty);
2096 spin_lock_irq(&current->sighand->siglock);
2097 if (!noctty &&
2098 current->signal->leader &&
2099 !current->signal->tty &&
2100 tty->session == NULL)
2101 __proc_set_tty(current, tty);
2102 spin_unlock_irq(&current->sighand->siglock);
2103 tty_unlock(tty);
2104 mutex_unlock(&tty_mutex);
2105 return 0;
2106 err_unlock:
2107 mutex_unlock(&tty_mutex);
2108 /* after locks to avoid deadlock */
2109 if (!IS_ERR_OR_NULL(driver))
2110 tty_driver_kref_put(driver);
2111 err_file:
2112 tty_free_file(filp);
2113 return retval;
2114 }
2115
2116
2117
2118 /**
2119 * tty_poll - check tty status
2120 * @filp: file being polled
2121 * @wait: poll wait structures to update
2122 *
2123 * Call the line discipline polling method to obtain the poll
2124 * status of the device.
2125 *
2126 * Locking: locks called line discipline but ldisc poll method
2127 * may be re-entered freely by other callers.
2128 */
2129
2130 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131 {
2132 struct tty_struct *tty = file_tty(filp);
2133 struct tty_ldisc *ld;
2134 int ret = 0;
2135
2136 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137 return 0;
2138
2139 ld = tty_ldisc_ref_wait(tty);
2140 if (ld->ops->poll)
2141 ret = (ld->ops->poll)(tty, filp, wait);
2142 tty_ldisc_deref(ld);
2143 return ret;
2144 }
2145
2146 static int __tty_fasync(int fd, struct file *filp, int on)
2147 {
2148 struct tty_struct *tty = file_tty(filp);
2149 unsigned long flags;
2150 int retval = 0;
2151
2152 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2153 goto out;
2154
2155 retval = fasync_helper(fd, filp, on, &tty->fasync);
2156 if (retval <= 0)
2157 goto out;
2158
2159 if (on) {
2160 enum pid_type type;
2161 struct pid *pid;
2162 if (!waitqueue_active(&tty->read_wait))
2163 tty->minimum_to_wake = 1;
2164 spin_lock_irqsave(&tty->ctrl_lock, flags);
2165 if (tty->pgrp) {
2166 pid = tty->pgrp;
2167 type = PIDTYPE_PGID;
2168 } else {
2169 pid = task_pid(current);
2170 type = PIDTYPE_PID;
2171 }
2172 get_pid(pid);
2173 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2174 retval = __f_setown(filp, pid, type, 0);
2175 put_pid(pid);
2176 if (retval)
2177 goto out;
2178 } else {
2179 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2180 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2181 }
2182 retval = 0;
2183 out:
2184 return retval;
2185 }
2186
2187 static int tty_fasync(int fd, struct file *filp, int on)
2188 {
2189 struct tty_struct *tty = file_tty(filp);
2190 int retval;
2191
2192 tty_lock(tty);
2193 retval = __tty_fasync(fd, filp, on);
2194 tty_unlock(tty);
2195
2196 return retval;
2197 }
2198
2199 /**
2200 * tiocsti - fake input character
2201 * @tty: tty to fake input into
2202 * @p: pointer to character
2203 *
2204 * Fake input to a tty device. Does the necessary locking and
2205 * input management.
2206 *
2207 * FIXME: does not honour flow control ??
2208 *
2209 * Locking:
2210 * Called functions take tty_ldiscs_lock
2211 * current->signal->tty check is safe without locks
2212 *
2213 * FIXME: may race normal receive processing
2214 */
2215
2216 static int tiocsti(struct tty_struct *tty, char __user *p)
2217 {
2218 char ch, mbz = 0;
2219 struct tty_ldisc *ld;
2220
2221 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2222 return -EPERM;
2223 if (get_user(ch, p))
2224 return -EFAULT;
2225 tty_audit_tiocsti(tty, ch);
2226 ld = tty_ldisc_ref_wait(tty);
2227 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2228 tty_ldisc_deref(ld);
2229 return 0;
2230 }
2231
2232 /**
2233 * tiocgwinsz - implement window query ioctl
2234 * @tty; tty
2235 * @arg: user buffer for result
2236 *
2237 * Copies the kernel idea of the window size into the user buffer.
2238 *
2239 * Locking: tty->termios_mutex is taken to ensure the winsize data
2240 * is consistent.
2241 */
2242
2243 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2244 {
2245 int err;
2246
2247 mutex_lock(&tty->termios_mutex);
2248 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2249 mutex_unlock(&tty->termios_mutex);
2250
2251 return err ? -EFAULT: 0;
2252 }
2253
2254 /**
2255 * tty_do_resize - resize event
2256 * @tty: tty being resized
2257 * @rows: rows (character)
2258 * @cols: cols (character)
2259 *
2260 * Update the termios variables and send the necessary signals to
2261 * peform a terminal resize correctly
2262 */
2263
2264 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2265 {
2266 struct pid *pgrp;
2267 unsigned long flags;
2268
2269 /* Lock the tty */
2270 mutex_lock(&tty->termios_mutex);
2271 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2272 goto done;
2273 /* Get the PID values and reference them so we can
2274 avoid holding the tty ctrl lock while sending signals */
2275 spin_lock_irqsave(&tty->ctrl_lock, flags);
2276 pgrp = get_pid(tty->pgrp);
2277 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2278
2279 if (pgrp)
2280 kill_pgrp(pgrp, SIGWINCH, 1);
2281 put_pid(pgrp);
2282
2283 tty->winsize = *ws;
2284 done:
2285 mutex_unlock(&tty->termios_mutex);
2286 return 0;
2287 }
2288 EXPORT_SYMBOL(tty_do_resize);
2289
2290 /**
2291 * tiocswinsz - implement window size set ioctl
2292 * @tty; tty side of tty
2293 * @arg: user buffer for result
2294 *
2295 * Copies the user idea of the window size to the kernel. Traditionally
2296 * this is just advisory information but for the Linux console it
2297 * actually has driver level meaning and triggers a VC resize.
2298 *
2299 * Locking:
2300 * Driver dependent. The default do_resize method takes the
2301 * tty termios mutex and ctrl_lock. The console takes its own lock
2302 * then calls into the default method.
2303 */
2304
2305 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2306 {
2307 struct winsize tmp_ws;
2308 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2309 return -EFAULT;
2310
2311 if (tty->ops->resize)
2312 return tty->ops->resize(tty, &tmp_ws);
2313 else
2314 return tty_do_resize(tty, &tmp_ws);
2315 }
2316
2317 /**
2318 * tioccons - allow admin to move logical console
2319 * @file: the file to become console
2320 *
2321 * Allow the administrator to move the redirected console device
2322 *
2323 * Locking: uses redirect_lock to guard the redirect information
2324 */
2325
2326 static int tioccons(struct file *file)
2327 {
2328 if (!capable(CAP_SYS_ADMIN))
2329 return -EPERM;
2330 if (file->f_op->write == redirected_tty_write) {
2331 struct file *f;
2332 spin_lock(&redirect_lock);
2333 f = redirect;
2334 redirect = NULL;
2335 spin_unlock(&redirect_lock);
2336 if (f)
2337 fput(f);
2338 return 0;
2339 }
2340 spin_lock(&redirect_lock);
2341 if (redirect) {
2342 spin_unlock(&redirect_lock);
2343 return -EBUSY;
2344 }
2345 redirect = get_file(file);
2346 spin_unlock(&redirect_lock);
2347 return 0;
2348 }
2349
2350 /**
2351 * fionbio - non blocking ioctl
2352 * @file: file to set blocking value
2353 * @p: user parameter
2354 *
2355 * Historical tty interfaces had a blocking control ioctl before
2356 * the generic functionality existed. This piece of history is preserved
2357 * in the expected tty API of posix OS's.
2358 *
2359 * Locking: none, the open file handle ensures it won't go away.
2360 */
2361
2362 static int fionbio(struct file *file, int __user *p)
2363 {
2364 int nonblock;
2365
2366 if (get_user(nonblock, p))
2367 return -EFAULT;
2368
2369 spin_lock(&file->f_lock);
2370 if (nonblock)
2371 file->f_flags |= O_NONBLOCK;
2372 else
2373 file->f_flags &= ~O_NONBLOCK;
2374 spin_unlock(&file->f_lock);
2375 return 0;
2376 }
2377
2378 /**
2379 * tiocsctty - set controlling tty
2380 * @tty: tty structure
2381 * @arg: user argument
2382 *
2383 * This ioctl is used to manage job control. It permits a session
2384 * leader to set this tty as the controlling tty for the session.
2385 *
2386 * Locking:
2387 * Takes tty_mutex() to protect tty instance
2388 * Takes tasklist_lock internally to walk sessions
2389 * Takes ->siglock() when updating signal->tty
2390 */
2391
2392 static int tiocsctty(struct tty_struct *tty, int arg)
2393 {
2394 int ret = 0;
2395 if (current->signal->leader && (task_session(current) == tty->session))
2396 return ret;
2397
2398 mutex_lock(&tty_mutex);
2399 /*
2400 * The process must be a session leader and
2401 * not have a controlling tty already.
2402 */
2403 if (!current->signal->leader || current->signal->tty) {
2404 ret = -EPERM;
2405 goto unlock;
2406 }
2407
2408 if (tty->session) {
2409 /*
2410 * This tty is already the controlling
2411 * tty for another session group!
2412 */
2413 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2414 /*
2415 * Steal it away
2416 */
2417 read_lock(&tasklist_lock);
2418 session_clear_tty(tty->session);
2419 read_unlock(&tasklist_lock);
2420 } else {
2421 ret = -EPERM;
2422 goto unlock;
2423 }
2424 }
2425 proc_set_tty(current, tty);
2426 unlock:
2427 mutex_unlock(&tty_mutex);
2428 return ret;
2429 }
2430
2431 /**
2432 * tty_get_pgrp - return a ref counted pgrp pid
2433 * @tty: tty to read
2434 *
2435 * Returns a refcounted instance of the pid struct for the process
2436 * group controlling the tty.
2437 */
2438
2439 struct pid *tty_get_pgrp(struct tty_struct *tty)
2440 {
2441 unsigned long flags;
2442 struct pid *pgrp;
2443
2444 spin_lock_irqsave(&tty->ctrl_lock, flags);
2445 pgrp = get_pid(tty->pgrp);
2446 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2447
2448 return pgrp;
2449 }
2450 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2451
2452 /**
2453 * tiocgpgrp - get process group
2454 * @tty: tty passed by user
2455 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2456 * @p: returned pid
2457 *
2458 * Obtain the process group of the tty. If there is no process group
2459 * return an error.
2460 *
2461 * Locking: none. Reference to current->signal->tty is safe.
2462 */
2463
2464 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2465 {
2466 struct pid *pid;
2467 int ret;
2468 /*
2469 * (tty == real_tty) is a cheap way of
2470 * testing if the tty is NOT a master pty.
2471 */
2472 if (tty == real_tty && current->signal->tty != real_tty)
2473 return -ENOTTY;
2474 pid = tty_get_pgrp(real_tty);
2475 ret = put_user(pid_vnr(pid), p);
2476 put_pid(pid);
2477 return ret;
2478 }
2479
2480 /**
2481 * tiocspgrp - attempt to set process group
2482 * @tty: tty passed by user
2483 * @real_tty: tty side device matching tty passed by user
2484 * @p: pid pointer
2485 *
2486 * Set the process group of the tty to the session passed. Only
2487 * permitted where the tty session is our session.
2488 *
2489 * Locking: RCU, ctrl lock
2490 */
2491
2492 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2493 {
2494 struct pid *pgrp;
2495 pid_t pgrp_nr;
2496 int retval = tty_check_change(real_tty);
2497 unsigned long flags;
2498
2499 if (retval == -EIO)
2500 return -ENOTTY;
2501 if (retval)
2502 return retval;
2503 if (!current->signal->tty ||
2504 (current->signal->tty != real_tty) ||
2505 (real_tty->session != task_session(current)))
2506 return -ENOTTY;
2507 if (get_user(pgrp_nr, p))
2508 return -EFAULT;
2509 if (pgrp_nr < 0)
2510 return -EINVAL;
2511 rcu_read_lock();
2512 pgrp = find_vpid(pgrp_nr);
2513 retval = -ESRCH;
2514 if (!pgrp)
2515 goto out_unlock;
2516 retval = -EPERM;
2517 if (session_of_pgrp(pgrp) != task_session(current))
2518 goto out_unlock;
2519 retval = 0;
2520 spin_lock_irqsave(&tty->ctrl_lock, flags);
2521 put_pid(real_tty->pgrp);
2522 real_tty->pgrp = get_pid(pgrp);
2523 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2524 out_unlock:
2525 rcu_read_unlock();
2526 return retval;
2527 }
2528
2529 /**
2530 * tiocgsid - get session id
2531 * @tty: tty passed by user
2532 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2533 * @p: pointer to returned session id
2534 *
2535 * Obtain the session id of the tty. If there is no session
2536 * return an error.
2537 *
2538 * Locking: none. Reference to current->signal->tty is safe.
2539 */
2540
2541 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2542 {
2543 /*
2544 * (tty == real_tty) is a cheap way of
2545 * testing if the tty is NOT a master pty.
2546 */
2547 if (tty == real_tty && current->signal->tty != real_tty)
2548 return -ENOTTY;
2549 if (!real_tty->session)
2550 return -ENOTTY;
2551 return put_user(pid_vnr(real_tty->session), p);
2552 }
2553
2554 /**
2555 * tiocsetd - set line discipline
2556 * @tty: tty device
2557 * @p: pointer to user data
2558 *
2559 * Set the line discipline according to user request.
2560 *
2561 * Locking: see tty_set_ldisc, this function is just a helper
2562 */
2563
2564 static int tiocsetd(struct tty_struct *tty, int __user *p)
2565 {
2566 int ldisc;
2567 int ret;
2568
2569 if (get_user(ldisc, p))
2570 return -EFAULT;
2571
2572 ret = tty_set_ldisc(tty, ldisc);
2573
2574 return ret;
2575 }
2576
2577 /**
2578 * tiocgetd - get line discipline
2579 * @tty: tty device
2580 * @p: pointer to user data
2581 *
2582 * Retrieves the line discipline id directly from the ldisc.
2583 *
2584 * Locking: waits for ldisc reference (in case the line discipline
2585 * is changing or the tty is being hungup)
2586 */
2587
2588 static int tiocgetd(struct tty_struct *tty, int __user *p)
2589 {
2590 struct tty_ldisc *ld;
2591 int ret;
2592
2593 ld = tty_ldisc_ref_wait(tty);
2594 ret = put_user(ld->ops->num, p);
2595 tty_ldisc_deref(ld);
2596 return ret;
2597 }
2598
2599 /**
2600 * send_break - performed time break
2601 * @tty: device to break on
2602 * @duration: timeout in mS
2603 *
2604 * Perform a timed break on hardware that lacks its own driver level
2605 * timed break functionality.
2606 *
2607 * Locking:
2608 * atomic_write_lock serializes
2609 *
2610 */
2611
2612 static int send_break(struct tty_struct *tty, unsigned int duration)
2613 {
2614 int retval;
2615
2616 if (tty->ops->break_ctl == NULL)
2617 return 0;
2618
2619 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2620 retval = tty->ops->break_ctl(tty, duration);
2621 else {
2622 /* Do the work ourselves */
2623 if (tty_write_lock(tty, 0) < 0)
2624 return -EINTR;
2625 retval = tty->ops->break_ctl(tty, -1);
2626 if (retval)
2627 goto out;
2628 if (!signal_pending(current))
2629 msleep_interruptible(duration);
2630 retval = tty->ops->break_ctl(tty, 0);
2631 out:
2632 tty_write_unlock(tty);
2633 if (signal_pending(current))
2634 retval = -EINTR;
2635 }
2636 return retval;
2637 }
2638
2639 /**
2640 * tty_tiocmget - get modem status
2641 * @tty: tty device
2642 * @file: user file pointer
2643 * @p: pointer to result
2644 *
2645 * Obtain the modem status bits from the tty driver if the feature
2646 * is supported. Return -EINVAL if it is not available.
2647 *
2648 * Locking: none (up to the driver)
2649 */
2650
2651 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2652 {
2653 int retval = -EINVAL;
2654
2655 if (tty->ops->tiocmget) {
2656 retval = tty->ops->tiocmget(tty);
2657
2658 if (retval >= 0)
2659 retval = put_user(retval, p);
2660 }
2661 return retval;
2662 }
2663
2664 /**
2665 * tty_tiocmset - set modem status
2666 * @tty: tty device
2667 * @cmd: command - clear bits, set bits or set all
2668 * @p: pointer to desired bits
2669 *
2670 * Set the modem status bits from the tty driver if the feature
2671 * is supported. Return -EINVAL if it is not available.
2672 *
2673 * Locking: none (up to the driver)
2674 */
2675
2676 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2677 unsigned __user *p)
2678 {
2679 int retval;
2680 unsigned int set, clear, val;
2681
2682 if (tty->ops->tiocmset == NULL)
2683 return -EINVAL;
2684
2685 retval = get_user(val, p);
2686 if (retval)
2687 return retval;
2688 set = clear = 0;
2689 switch (cmd) {
2690 case TIOCMBIS:
2691 set = val;
2692 break;
2693 case TIOCMBIC:
2694 clear = val;
2695 break;
2696 case TIOCMSET:
2697 set = val;
2698 clear = ~val;
2699 break;
2700 }
2701 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2702 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2703 return tty->ops->tiocmset(tty, set, clear);
2704 }
2705
2706 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2707 {
2708 int retval = -EINVAL;
2709 struct serial_icounter_struct icount;
2710 memset(&icount, 0, sizeof(icount));
2711 if (tty->ops->get_icount)
2712 retval = tty->ops->get_icount(tty, &icount);
2713 if (retval != 0)
2714 return retval;
2715 if (copy_to_user(arg, &icount, sizeof(icount)))
2716 return -EFAULT;
2717 return 0;
2718 }
2719
2720 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2721 {
2722 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2723 tty->driver->subtype == PTY_TYPE_MASTER)
2724 tty = tty->link;
2725 return tty;
2726 }
2727 EXPORT_SYMBOL(tty_pair_get_tty);
2728
2729 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2730 {
2731 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2732 tty->driver->subtype == PTY_TYPE_MASTER)
2733 return tty;
2734 return tty->link;
2735 }
2736 EXPORT_SYMBOL(tty_pair_get_pty);
2737
2738 /*
2739 * Split this up, as gcc can choke on it otherwise..
2740 */
2741 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2742 {
2743 struct tty_struct *tty = file_tty(file);
2744 struct tty_struct *real_tty;
2745 void __user *p = (void __user *)arg;
2746 int retval;
2747 struct tty_ldisc *ld;
2748
2749 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2750 return -EINVAL;
2751
2752 real_tty = tty_pair_get_tty(tty);
2753
2754 /*
2755 * Factor out some common prep work
2756 */
2757 switch (cmd) {
2758 case TIOCSETD:
2759 case TIOCSBRK:
2760 case TIOCCBRK:
2761 case TCSBRK:
2762 case TCSBRKP:
2763 retval = tty_check_change(tty);
2764 if (retval)
2765 return retval;
2766 if (cmd != TIOCCBRK) {
2767 tty_wait_until_sent(tty, 0);
2768 if (signal_pending(current))
2769 return -EINTR;
2770 }
2771 break;
2772 }
2773
2774 /*
2775 * Now do the stuff.
2776 */
2777 switch (cmd) {
2778 case TIOCSTI:
2779 return tiocsti(tty, p);
2780 case TIOCGWINSZ:
2781 return tiocgwinsz(real_tty, p);
2782 case TIOCSWINSZ:
2783 return tiocswinsz(real_tty, p);
2784 case TIOCCONS:
2785 return real_tty != tty ? -EINVAL : tioccons(file);
2786 case FIONBIO:
2787 return fionbio(file, p);
2788 case TIOCEXCL:
2789 set_bit(TTY_EXCLUSIVE, &tty->flags);
2790 return 0;
2791 case TIOCNXCL:
2792 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2793 return 0;
2794 case TIOCGEXCL:
2795 {
2796 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2797 return put_user(excl, (int __user *)p);
2798 }
2799 case TIOCNOTTY:
2800 if (current->signal->tty != tty)
2801 return -ENOTTY;
2802 no_tty();
2803 return 0;
2804 case TIOCSCTTY:
2805 return tiocsctty(tty, arg);
2806 case TIOCGPGRP:
2807 return tiocgpgrp(tty, real_tty, p);
2808 case TIOCSPGRP:
2809 return tiocspgrp(tty, real_tty, p);
2810 case TIOCGSID:
2811 return tiocgsid(tty, real_tty, p);
2812 case TIOCGETD:
2813 return tiocgetd(tty, p);
2814 case TIOCSETD:
2815 return tiocsetd(tty, p);
2816 case TIOCVHANGUP:
2817 if (!capable(CAP_SYS_ADMIN))
2818 return -EPERM;
2819 tty_vhangup(tty);
2820 return 0;
2821 case TIOCGDEV:
2822 {
2823 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2824 return put_user(ret, (unsigned int __user *)p);
2825 }
2826 /*
2827 * Break handling
2828 */
2829 case TIOCSBRK: /* Turn break on, unconditionally */
2830 if (tty->ops->break_ctl)
2831 return tty->ops->break_ctl(tty, -1);
2832 return 0;
2833 case TIOCCBRK: /* Turn break off, unconditionally */
2834 if (tty->ops->break_ctl)
2835 return tty->ops->break_ctl(tty, 0);
2836 return 0;
2837 case TCSBRK: /* SVID version: non-zero arg --> no break */
2838 /* non-zero arg means wait for all output data
2839 * to be sent (performed above) but don't send break.
2840 * This is used by the tcdrain() termios function.
2841 */
2842 if (!arg)
2843 return send_break(tty, 250);
2844 return 0;
2845 case TCSBRKP: /* support for POSIX tcsendbreak() */
2846 return send_break(tty, arg ? arg*100 : 250);
2847
2848 case TIOCMGET:
2849 return tty_tiocmget(tty, p);
2850 case TIOCMSET:
2851 case TIOCMBIC:
2852 case TIOCMBIS:
2853 return tty_tiocmset(tty, cmd, p);
2854 case TIOCGICOUNT:
2855 retval = tty_tiocgicount(tty, p);
2856 /* For the moment allow fall through to the old method */
2857 if (retval != -EINVAL)
2858 return retval;
2859 break;
2860 case TCFLSH:
2861 switch (arg) {
2862 case TCIFLUSH:
2863 case TCIOFLUSH:
2864 /* flush tty buffer and allow ldisc to process ioctl */
2865 tty_buffer_flush(tty);
2866 break;
2867 }
2868 break;
2869 }
2870 if (tty->ops->ioctl) {
2871 retval = (tty->ops->ioctl)(tty, cmd, arg);
2872 if (retval != -ENOIOCTLCMD)
2873 return retval;
2874 }
2875 ld = tty_ldisc_ref_wait(tty);
2876 retval = -EINVAL;
2877 if (ld->ops->ioctl) {
2878 retval = ld->ops->ioctl(tty, file, cmd, arg);
2879 if (retval == -ENOIOCTLCMD)
2880 retval = -ENOTTY;
2881 }
2882 tty_ldisc_deref(ld);
2883 return retval;
2884 }
2885
2886 #ifdef CONFIG_COMPAT
2887 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2888 unsigned long arg)
2889 {
2890 struct tty_struct *tty = file_tty(file);
2891 struct tty_ldisc *ld;
2892 int retval = -ENOIOCTLCMD;
2893
2894 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2895 return -EINVAL;
2896
2897 if (tty->ops->compat_ioctl) {
2898 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2899 if (retval != -ENOIOCTLCMD)
2900 return retval;
2901 }
2902
2903 ld = tty_ldisc_ref_wait(tty);
2904 if (ld->ops->compat_ioctl)
2905 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2906 else
2907 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2908 tty_ldisc_deref(ld);
2909
2910 return retval;
2911 }
2912 #endif
2913
2914 static int this_tty(const void *t, struct file *file, unsigned fd)
2915 {
2916 if (likely(file->f_op->read != tty_read))
2917 return 0;
2918 return file_tty(file) != t ? 0 : fd + 1;
2919 }
2920
2921 /*
2922 * This implements the "Secure Attention Key" --- the idea is to
2923 * prevent trojan horses by killing all processes associated with this
2924 * tty when the user hits the "Secure Attention Key". Required for
2925 * super-paranoid applications --- see the Orange Book for more details.
2926 *
2927 * This code could be nicer; ideally it should send a HUP, wait a few
2928 * seconds, then send a INT, and then a KILL signal. But you then
2929 * have to coordinate with the init process, since all processes associated
2930 * with the current tty must be dead before the new getty is allowed
2931 * to spawn.
2932 *
2933 * Now, if it would be correct ;-/ The current code has a nasty hole -
2934 * it doesn't catch files in flight. We may send the descriptor to ourselves
2935 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2936 *
2937 * Nasty bug: do_SAK is being called in interrupt context. This can
2938 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2939 */
2940 void __do_SAK(struct tty_struct *tty)
2941 {
2942 #ifdef TTY_SOFT_SAK
2943 tty_hangup(tty);
2944 #else
2945 struct task_struct *g, *p;
2946 struct pid *session;
2947 int i;
2948
2949 if (!tty)
2950 return;
2951 session = tty->session;
2952
2953 tty_ldisc_flush(tty);
2954
2955 tty_driver_flush_buffer(tty);
2956
2957 read_lock(&tasklist_lock);
2958 /* Kill the entire session */
2959 do_each_pid_task(session, PIDTYPE_SID, p) {
2960 printk(KERN_NOTICE "SAK: killed process %d"
2961 " (%s): task_session(p)==tty->session\n",
2962 task_pid_nr(p), p->comm);
2963 send_sig(SIGKILL, p, 1);
2964 } while_each_pid_task(session, PIDTYPE_SID, p);
2965 /* Now kill any processes that happen to have the
2966 * tty open.
2967 */
2968 do_each_thread(g, p) {
2969 if (p->signal->tty == tty) {
2970 printk(KERN_NOTICE "SAK: killed process %d"
2971 " (%s): task_session(p)==tty->session\n",
2972 task_pid_nr(p), p->comm);
2973 send_sig(SIGKILL, p, 1);
2974 continue;
2975 }
2976 task_lock(p);
2977 i = iterate_fd(p->files, 0, this_tty, tty);
2978 if (i != 0) {
2979 printk(KERN_NOTICE "SAK: killed process %d"
2980 " (%s): fd#%d opened to the tty\n",
2981 task_pid_nr(p), p->comm, i - 1);
2982 force_sig(SIGKILL, p);
2983 }
2984 task_unlock(p);
2985 } while_each_thread(g, p);
2986 read_unlock(&tasklist_lock);
2987 #endif
2988 }
2989
2990 static void do_SAK_work(struct work_struct *work)
2991 {
2992 struct tty_struct *tty =
2993 container_of(work, struct tty_struct, SAK_work);
2994 __do_SAK(tty);
2995 }
2996
2997 /*
2998 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2999 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3000 * the values which we write to it will be identical to the values which it
3001 * already has. --akpm
3002 */
3003 void do_SAK(struct tty_struct *tty)
3004 {
3005 if (!tty)
3006 return;
3007 schedule_work(&tty->SAK_work);
3008 }
3009
3010 EXPORT_SYMBOL(do_SAK);
3011
3012 static int dev_match_devt(struct device *dev, const void *data)
3013 {
3014 const dev_t *devt = data;
3015 return dev->devt == *devt;
3016 }
3017
3018 /* Must put_device() after it's unused! */
3019 static struct device *tty_get_device(struct tty_struct *tty)
3020 {
3021 dev_t devt = tty_devnum(tty);
3022 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3023 }
3024
3025
3026 /**
3027 * initialize_tty_struct
3028 * @tty: tty to initialize
3029 *
3030 * This subroutine initializes a tty structure that has been newly
3031 * allocated.
3032 *
3033 * Locking: none - tty in question must not be exposed at this point
3034 */
3035
3036 void initialize_tty_struct(struct tty_struct *tty,
3037 struct tty_driver *driver, int idx)
3038 {
3039 memset(tty, 0, sizeof(struct tty_struct));
3040 kref_init(&tty->kref);
3041 tty->magic = TTY_MAGIC;
3042 tty_ldisc_init(tty);
3043 tty->session = NULL;
3044 tty->pgrp = NULL;
3045 mutex_init(&tty->legacy_mutex);
3046 mutex_init(&tty->termios_mutex);
3047 init_ldsem(&tty->ldisc_sem);
3048 init_waitqueue_head(&tty->write_wait);
3049 init_waitqueue_head(&tty->read_wait);
3050 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3051 mutex_init(&tty->atomic_write_lock);
3052 spin_lock_init(&tty->ctrl_lock);
3053 INIT_LIST_HEAD(&tty->tty_files);
3054 INIT_WORK(&tty->SAK_work, do_SAK_work);
3055
3056 tty->driver = driver;
3057 tty->ops = driver->ops;
3058 tty->index = idx;
3059 tty_line_name(driver, idx, tty->name);
3060 tty->dev = tty_get_device(tty);
3061 }
3062
3063 /**
3064 * deinitialize_tty_struct
3065 * @tty: tty to deinitialize
3066 *
3067 * This subroutine deinitializes a tty structure that has been newly
3068 * allocated but tty_release cannot be called on that yet.
3069 *
3070 * Locking: none - tty in question must not be exposed at this point
3071 */
3072 void deinitialize_tty_struct(struct tty_struct *tty)
3073 {
3074 tty_ldisc_deinit(tty);
3075 }
3076
3077 /**
3078 * tty_put_char - write one character to a tty
3079 * @tty: tty
3080 * @ch: character
3081 *
3082 * Write one byte to the tty using the provided put_char method
3083 * if present. Returns the number of characters successfully output.
3084 *
3085 * Note: the specific put_char operation in the driver layer may go
3086 * away soon. Don't call it directly, use this method
3087 */
3088
3089 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3090 {
3091 if (tty->ops->put_char)
3092 return tty->ops->put_char(tty, ch);
3093 return tty->ops->write(tty, &ch, 1);
3094 }
3095 EXPORT_SYMBOL_GPL(tty_put_char);
3096
3097 struct class *tty_class;
3098
3099 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3100 unsigned int index, unsigned int count)
3101 {
3102 /* init here, since reused cdevs cause crashes */
3103 cdev_init(&driver->cdevs[index], &tty_fops);
3104 driver->cdevs[index].owner = driver->owner;
3105 return cdev_add(&driver->cdevs[index], dev, count);
3106 }
3107
3108 /**
3109 * tty_register_device - register a tty device
3110 * @driver: the tty driver that describes the tty device
3111 * @index: the index in the tty driver for this tty device
3112 * @device: a struct device that is associated with this tty device.
3113 * This field is optional, if there is no known struct device
3114 * for this tty device it can be set to NULL safely.
3115 *
3116 * Returns a pointer to the struct device for this tty device
3117 * (or ERR_PTR(-EFOO) on error).
3118 *
3119 * This call is required to be made to register an individual tty device
3120 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3121 * that bit is not set, this function should not be called by a tty
3122 * driver.
3123 *
3124 * Locking: ??
3125 */
3126
3127 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3128 struct device *device)
3129 {
3130 return tty_register_device_attr(driver, index, device, NULL, NULL);
3131 }
3132 EXPORT_SYMBOL(tty_register_device);
3133
3134 static void tty_device_create_release(struct device *dev)
3135 {
3136 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3137 kfree(dev);
3138 }
3139
3140 /**
3141 * tty_register_device_attr - register a tty device
3142 * @driver: the tty driver that describes the tty device
3143 * @index: the index in the tty driver for this tty device
3144 * @device: a struct device that is associated with this tty device.
3145 * This field is optional, if there is no known struct device
3146 * for this tty device it can be set to NULL safely.
3147 * @drvdata: Driver data to be set to device.
3148 * @attr_grp: Attribute group to be set on device.
3149 *
3150 * Returns a pointer to the struct device for this tty device
3151 * (or ERR_PTR(-EFOO) on error).
3152 *
3153 * This call is required to be made to register an individual tty device
3154 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3155 * that bit is not set, this function should not be called by a tty
3156 * driver.
3157 *
3158 * Locking: ??
3159 */
3160 struct device *tty_register_device_attr(struct tty_driver *driver,
3161 unsigned index, struct device *device,
3162 void *drvdata,
3163 const struct attribute_group **attr_grp)
3164 {
3165 char name[64];
3166 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3167 struct device *dev = NULL;
3168 int retval = -ENODEV;
3169 bool cdev = false;
3170
3171 if (index >= driver->num) {
3172 printk(KERN_ERR "Attempt to register invalid tty line number "
3173 " (%d).\n", index);
3174 return ERR_PTR(-EINVAL);
3175 }
3176
3177 if (driver->type == TTY_DRIVER_TYPE_PTY)
3178 pty_line_name(driver, index, name);
3179 else
3180 tty_line_name(driver, index, name);
3181
3182 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3183 retval = tty_cdev_add(driver, devt, index, 1);
3184 if (retval)
3185 goto error;
3186 cdev = true;
3187 }
3188
3189 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3190 if (!dev) {
3191 retval = -ENOMEM;
3192 goto error;
3193 }
3194
3195 dev->devt = devt;
3196 dev->class = tty_class;
3197 dev->parent = device;
3198 dev->release = tty_device_create_release;
3199 dev_set_name(dev, "%s", name);
3200 dev->groups = attr_grp;
3201 dev_set_drvdata(dev, drvdata);
3202
3203 retval = device_register(dev);
3204 if (retval)
3205 goto error;
3206
3207 return dev;
3208
3209 error:
3210 put_device(dev);
3211 if (cdev)
3212 cdev_del(&driver->cdevs[index]);
3213 return ERR_PTR(retval);
3214 }
3215 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3216
3217 /**
3218 * tty_unregister_device - unregister a tty device
3219 * @driver: the tty driver that describes the tty device
3220 * @index: the index in the tty driver for this tty device
3221 *
3222 * If a tty device is registered with a call to tty_register_device() then
3223 * this function must be called when the tty device is gone.
3224 *
3225 * Locking: ??
3226 */
3227
3228 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3229 {
3230 device_destroy(tty_class,
3231 MKDEV(driver->major, driver->minor_start) + index);
3232 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3233 cdev_del(&driver->cdevs[index]);
3234 }
3235 EXPORT_SYMBOL(tty_unregister_device);
3236
3237 /**
3238 * __tty_alloc_driver -- allocate tty driver
3239 * @lines: count of lines this driver can handle at most
3240 * @owner: module which is repsonsible for this driver
3241 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3242 *
3243 * This should not be called directly, some of the provided macros should be
3244 * used instead. Use IS_ERR and friends on @retval.
3245 */
3246 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3247 unsigned long flags)
3248 {
3249 struct tty_driver *driver;
3250 unsigned int cdevs = 1;
3251 int err;
3252
3253 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3254 return ERR_PTR(-EINVAL);
3255
3256 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3257 if (!driver)
3258 return ERR_PTR(-ENOMEM);
3259
3260 kref_init(&driver->kref);
3261 driver->magic = TTY_DRIVER_MAGIC;
3262 driver->num = lines;
3263 driver->owner = owner;
3264 driver->flags = flags;
3265
3266 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3267 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3268 GFP_KERNEL);
3269 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3270 GFP_KERNEL);
3271 if (!driver->ttys || !driver->termios) {
3272 err = -ENOMEM;
3273 goto err_free_all;
3274 }
3275 }
3276
3277 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3278 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3279 GFP_KERNEL);
3280 if (!driver->ports) {
3281 err = -ENOMEM;
3282 goto err_free_all;
3283 }
3284 cdevs = lines;
3285 }
3286
3287 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3288 if (!driver->cdevs) {
3289 err = -ENOMEM;
3290 goto err_free_all;
3291 }
3292
3293 return driver;
3294 err_free_all:
3295 kfree(driver->ports);
3296 kfree(driver->ttys);
3297 kfree(driver->termios);
3298 kfree(driver);
3299 return ERR_PTR(err);
3300 }
3301 EXPORT_SYMBOL(__tty_alloc_driver);
3302
3303 static void destruct_tty_driver(struct kref *kref)
3304 {
3305 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3306 int i;
3307 struct ktermios *tp;
3308
3309 if (driver->flags & TTY_DRIVER_INSTALLED) {
3310 /*
3311 * Free the termios and termios_locked structures because
3312 * we don't want to get memory leaks when modular tty
3313 * drivers are removed from the kernel.
3314 */
3315 for (i = 0; i < driver->num; i++) {
3316 tp = driver->termios[i];
3317 if (tp) {
3318 driver->termios[i] = NULL;
3319 kfree(tp);
3320 }
3321 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3322 tty_unregister_device(driver, i);
3323 }
3324 proc_tty_unregister_driver(driver);
3325 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3326 cdev_del(&driver->cdevs[0]);
3327 }
3328 kfree(driver->cdevs);
3329 kfree(driver->ports);
3330 kfree(driver->termios);
3331 kfree(driver->ttys);
3332 kfree(driver);
3333 }
3334
3335 void tty_driver_kref_put(struct tty_driver *driver)
3336 {
3337 kref_put(&driver->kref, destruct_tty_driver);
3338 }
3339 EXPORT_SYMBOL(tty_driver_kref_put);
3340
3341 void tty_set_operations(struct tty_driver *driver,
3342 const struct tty_operations *op)
3343 {
3344 driver->ops = op;
3345 };
3346 EXPORT_SYMBOL(tty_set_operations);
3347
3348 void put_tty_driver(struct tty_driver *d)
3349 {
3350 tty_driver_kref_put(d);
3351 }
3352 EXPORT_SYMBOL(put_tty_driver);
3353
3354 /*
3355 * Called by a tty driver to register itself.
3356 */
3357 int tty_register_driver(struct tty_driver *driver)
3358 {
3359 int error;
3360 int i;
3361 dev_t dev;
3362 struct device *d;
3363
3364 if (!driver->major) {
3365 error = alloc_chrdev_region(&dev, driver->minor_start,
3366 driver->num, driver->name);
3367 if (!error) {
3368 driver->major = MAJOR(dev);
3369 driver->minor_start = MINOR(dev);
3370 }
3371 } else {
3372 dev = MKDEV(driver->major, driver->minor_start);
3373 error = register_chrdev_region(dev, driver->num, driver->name);
3374 }
3375 if (error < 0)
3376 goto err;
3377
3378 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3379 error = tty_cdev_add(driver, dev, 0, driver->num);
3380 if (error)
3381 goto err_unreg_char;
3382 }
3383
3384 mutex_lock(&tty_mutex);
3385 list_add(&driver->tty_drivers, &tty_drivers);
3386 mutex_unlock(&tty_mutex);
3387
3388 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3389 for (i = 0; i < driver->num; i++) {
3390 d = tty_register_device(driver, i, NULL);
3391 if (IS_ERR(d)) {
3392 error = PTR_ERR(d);
3393 goto err_unreg_devs;
3394 }
3395 }
3396 }
3397 proc_tty_register_driver(driver);
3398 driver->flags |= TTY_DRIVER_INSTALLED;
3399 return 0;
3400
3401 err_unreg_devs:
3402 for (i--; i >= 0; i--)
3403 tty_unregister_device(driver, i);
3404
3405 mutex_lock(&tty_mutex);
3406 list_del(&driver->tty_drivers);
3407 mutex_unlock(&tty_mutex);
3408
3409 err_unreg_char:
3410 unregister_chrdev_region(dev, driver->num);
3411 err:
3412 return error;
3413 }
3414 EXPORT_SYMBOL(tty_register_driver);
3415
3416 /*
3417 * Called by a tty driver to unregister itself.
3418 */
3419 int tty_unregister_driver(struct tty_driver *driver)
3420 {
3421 #if 0
3422 /* FIXME */
3423 if (driver->refcount)
3424 return -EBUSY;
3425 #endif
3426 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3427 driver->num);
3428 mutex_lock(&tty_mutex);
3429 list_del(&driver->tty_drivers);
3430 mutex_unlock(&tty_mutex);
3431 return 0;
3432 }
3433
3434 EXPORT_SYMBOL(tty_unregister_driver);
3435
3436 dev_t tty_devnum(struct tty_struct *tty)
3437 {
3438 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3439 }
3440 EXPORT_SYMBOL(tty_devnum);
3441
3442 void proc_clear_tty(struct task_struct *p)
3443 {
3444 unsigned long flags;
3445 struct tty_struct *tty;
3446 spin_lock_irqsave(&p->sighand->siglock, flags);
3447 tty = p->signal->tty;
3448 p->signal->tty = NULL;
3449 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3450 tty_kref_put(tty);
3451 }
3452
3453 /* Called under the sighand lock */
3454
3455 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3456 {
3457 if (tty) {
3458 unsigned long flags;
3459 /* We should not have a session or pgrp to put here but.... */
3460 spin_lock_irqsave(&tty->ctrl_lock, flags);
3461 put_pid(tty->session);
3462 put_pid(tty->pgrp);
3463 tty->pgrp = get_pid(task_pgrp(tsk));
3464 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3465 tty->session = get_pid(task_session(tsk));
3466 if (tsk->signal->tty) {
3467 printk(KERN_DEBUG "tty not NULL!!\n");
3468 tty_kref_put(tsk->signal->tty);
3469 }
3470 }
3471 put_pid(tsk->signal->tty_old_pgrp);
3472 tsk->signal->tty = tty_kref_get(tty);
3473 tsk->signal->tty_old_pgrp = NULL;
3474 }
3475
3476 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3477 {
3478 spin_lock_irq(&tsk->sighand->siglock);
3479 __proc_set_tty(tsk, tty);
3480 spin_unlock_irq(&tsk->sighand->siglock);
3481 }
3482
3483 struct tty_struct *get_current_tty(void)
3484 {
3485 struct tty_struct *tty;
3486 unsigned long flags;
3487
3488 spin_lock_irqsave(&current->sighand->siglock, flags);
3489 tty = tty_kref_get(current->signal->tty);
3490 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3491 return tty;
3492 }
3493 EXPORT_SYMBOL_GPL(get_current_tty);
3494
3495 void tty_default_fops(struct file_operations *fops)
3496 {
3497 *fops = tty_fops;
3498 }
3499
3500 /*
3501 * Initialize the console device. This is called *early*, so
3502 * we can't necessarily depend on lots of kernel help here.
3503 * Just do some early initializations, and do the complex setup
3504 * later.
3505 */
3506 void __init console_init(void)
3507 {
3508 initcall_t *call;
3509
3510 /* Setup the default TTY line discipline. */
3511 tty_ldisc_begin();
3512
3513 /*
3514 * set up the console device so that later boot sequences can
3515 * inform about problems etc..
3516 */
3517 call = __con_initcall_start;
3518 while (call < __con_initcall_end) {
3519 (*call)();
3520 call++;
3521 }
3522 }
3523
3524 static char *tty_devnode(struct device *dev, umode_t *mode)
3525 {
3526 if (!mode)
3527 return NULL;
3528 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3529 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3530 *mode = 0666;
3531 return NULL;
3532 }
3533
3534 static int __init tty_class_init(void)
3535 {
3536 tty_class = class_create(THIS_MODULE, "tty");
3537 if (IS_ERR(tty_class))
3538 return PTR_ERR(tty_class);
3539 tty_class->devnode = tty_devnode;
3540 return 0;
3541 }
3542
3543 postcore_initcall(tty_class_init);
3544
3545 /* 3/2004 jmc: why do these devices exist? */
3546 static struct cdev tty_cdev, console_cdev;
3547
3548 static ssize_t show_cons_active(struct device *dev,
3549 struct device_attribute *attr, char *buf)
3550 {
3551 struct console *cs[16];
3552 int i = 0;
3553 struct console *c;
3554 ssize_t count = 0;
3555
3556 console_lock();
3557 for_each_console(c) {
3558 if (!c->device)
3559 continue;
3560 if (!c->write)
3561 continue;
3562 if ((c->flags & CON_ENABLED) == 0)
3563 continue;
3564 cs[i++] = c;
3565 if (i >= ARRAY_SIZE(cs))
3566 break;
3567 }
3568 while (i--) {
3569 int index = cs[i]->index;
3570 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3571
3572 /* don't resolve tty0 as some programs depend on it */
3573 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3574 count += tty_line_name(drv, index, buf + count);
3575 else
3576 count += sprintf(buf + count, "%s%d",
3577 cs[i]->name, cs[i]->index);
3578
3579 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3580 }
3581 console_unlock();
3582
3583 return count;
3584 }
3585 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3586
3587 static struct device *consdev;
3588
3589 void console_sysfs_notify(void)
3590 {
3591 if (consdev)
3592 sysfs_notify(&consdev->kobj, NULL, "active");
3593 }
3594
3595 /*
3596 * Ok, now we can initialize the rest of the tty devices and can count
3597 * on memory allocations, interrupts etc..
3598 */
3599 int __init tty_init(void)
3600 {
3601 cdev_init(&tty_cdev, &tty_fops);
3602 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3603 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3604 panic("Couldn't register /dev/tty driver\n");
3605 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3606
3607 cdev_init(&console_cdev, &console_fops);
3608 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3609 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3610 panic("Couldn't register /dev/console driver\n");
3611 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3612 "console");
3613 if (IS_ERR(consdev))
3614 consdev = NULL;
3615 else
3616 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3617
3618 #ifdef CONFIG_VT
3619 vty_init(&console_fops);
3620 #endif
3621 return 0;
3622 }
3623