Merge branches 'audit', 'delay', 'fixes', 'misc' and 'sta2x11' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / tty / serial / amba-pl011.c
1 /*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/pinctrl/consumer.h>
56 #include <linux/sizes.h>
57
58 #include <asm/io.h>
59
60 #define UART_NR 14
61
62 #define SERIAL_AMBA_MAJOR 204
63 #define SERIAL_AMBA_MINOR 64
64 #define SERIAL_AMBA_NR UART_NR
65
66 #define AMBA_ISR_PASS_LIMIT 256
67
68 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
69 #define UART_DUMMY_DR_RX (1 << 16)
70
71 /* There is by now at least one vendor with differing details, so handle it */
72 struct vendor_data {
73 unsigned int ifls;
74 unsigned int fifosize;
75 unsigned int lcrh_tx;
76 unsigned int lcrh_rx;
77 bool oversampling;
78 bool interrupt_may_hang; /* vendor-specific */
79 bool dma_threshold;
80 bool cts_event_workaround;
81 };
82
83 static struct vendor_data vendor_arm = {
84 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
85 .fifosize = 16,
86 .lcrh_tx = UART011_LCRH,
87 .lcrh_rx = UART011_LCRH,
88 .oversampling = false,
89 .dma_threshold = false,
90 .cts_event_workaround = false,
91 };
92
93 static struct vendor_data vendor_st = {
94 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
95 .fifosize = 64,
96 .lcrh_tx = ST_UART011_LCRH_TX,
97 .lcrh_rx = ST_UART011_LCRH_RX,
98 .oversampling = true,
99 .interrupt_may_hang = true,
100 .dma_threshold = true,
101 .cts_event_workaround = true,
102 };
103
104 static struct uart_amba_port *amba_ports[UART_NR];
105
106 /* Deals with DMA transactions */
107
108 struct pl011_sgbuf {
109 struct scatterlist sg;
110 char *buf;
111 };
112
113 struct pl011_dmarx_data {
114 struct dma_chan *chan;
115 struct completion complete;
116 bool use_buf_b;
117 struct pl011_sgbuf sgbuf_a;
118 struct pl011_sgbuf sgbuf_b;
119 dma_cookie_t cookie;
120 bool running;
121 };
122
123 struct pl011_dmatx_data {
124 struct dma_chan *chan;
125 struct scatterlist sg;
126 char *buf;
127 bool queued;
128 };
129
130 /*
131 * We wrap our port structure around the generic uart_port.
132 */
133 struct uart_amba_port {
134 struct uart_port port;
135 struct clk *clk;
136 /* Two optional pin states - default & sleep */
137 struct pinctrl *pinctrl;
138 struct pinctrl_state *pins_default;
139 struct pinctrl_state *pins_sleep;
140 const struct vendor_data *vendor;
141 unsigned int dmacr; /* dma control reg */
142 unsigned int im; /* interrupt mask */
143 unsigned int old_status;
144 unsigned int fifosize; /* vendor-specific */
145 unsigned int lcrh_tx; /* vendor-specific */
146 unsigned int lcrh_rx; /* vendor-specific */
147 unsigned int old_cr; /* state during shutdown */
148 bool autorts;
149 char type[12];
150 bool interrupt_may_hang; /* vendor-specific */
151 #ifdef CONFIG_DMA_ENGINE
152 /* DMA stuff */
153 bool using_tx_dma;
154 bool using_rx_dma;
155 struct pl011_dmarx_data dmarx;
156 struct pl011_dmatx_data dmatx;
157 #endif
158 };
159
160 /*
161 * Reads up to 256 characters from the FIFO or until it's empty and
162 * inserts them into the TTY layer. Returns the number of characters
163 * read from the FIFO.
164 */
165 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
166 {
167 u16 status, ch;
168 unsigned int flag, max_count = 256;
169 int fifotaken = 0;
170
171 while (max_count--) {
172 status = readw(uap->port.membase + UART01x_FR);
173 if (status & UART01x_FR_RXFE)
174 break;
175
176 /* Take chars from the FIFO and update status */
177 ch = readw(uap->port.membase + UART01x_DR) |
178 UART_DUMMY_DR_RX;
179 flag = TTY_NORMAL;
180 uap->port.icount.rx++;
181 fifotaken++;
182
183 if (unlikely(ch & UART_DR_ERROR)) {
184 if (ch & UART011_DR_BE) {
185 ch &= ~(UART011_DR_FE | UART011_DR_PE);
186 uap->port.icount.brk++;
187 if (uart_handle_break(&uap->port))
188 continue;
189 } else if (ch & UART011_DR_PE)
190 uap->port.icount.parity++;
191 else if (ch & UART011_DR_FE)
192 uap->port.icount.frame++;
193 if (ch & UART011_DR_OE)
194 uap->port.icount.overrun++;
195
196 ch &= uap->port.read_status_mask;
197
198 if (ch & UART011_DR_BE)
199 flag = TTY_BREAK;
200 else if (ch & UART011_DR_PE)
201 flag = TTY_PARITY;
202 else if (ch & UART011_DR_FE)
203 flag = TTY_FRAME;
204 }
205
206 if (uart_handle_sysrq_char(&uap->port, ch & 255))
207 continue;
208
209 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
210 }
211
212 return fifotaken;
213 }
214
215
216 /*
217 * All the DMA operation mode stuff goes inside this ifdef.
218 * This assumes that you have a generic DMA device interface,
219 * no custom DMA interfaces are supported.
220 */
221 #ifdef CONFIG_DMA_ENGINE
222
223 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
224
225 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
226 enum dma_data_direction dir)
227 {
228 sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
229 if (!sg->buf)
230 return -ENOMEM;
231
232 sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
233
234 if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
235 kfree(sg->buf);
236 return -EINVAL;
237 }
238 return 0;
239 }
240
241 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
242 enum dma_data_direction dir)
243 {
244 if (sg->buf) {
245 dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
246 kfree(sg->buf);
247 }
248 }
249
250 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
251 {
252 /* DMA is the sole user of the platform data right now */
253 struct amba_pl011_data *plat = uap->port.dev->platform_data;
254 struct dma_slave_config tx_conf = {
255 .dst_addr = uap->port.mapbase + UART01x_DR,
256 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
257 .direction = DMA_MEM_TO_DEV,
258 .dst_maxburst = uap->fifosize >> 1,
259 .device_fc = false,
260 };
261 struct dma_chan *chan;
262 dma_cap_mask_t mask;
263
264 /* We need platform data */
265 if (!plat || !plat->dma_filter) {
266 dev_info(uap->port.dev, "no DMA platform data\n");
267 return;
268 }
269
270 /* Try to acquire a generic DMA engine slave TX channel */
271 dma_cap_zero(mask);
272 dma_cap_set(DMA_SLAVE, mask);
273
274 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
275 if (!chan) {
276 dev_err(uap->port.dev, "no TX DMA channel!\n");
277 return;
278 }
279
280 dmaengine_slave_config(chan, &tx_conf);
281 uap->dmatx.chan = chan;
282
283 dev_info(uap->port.dev, "DMA channel TX %s\n",
284 dma_chan_name(uap->dmatx.chan));
285
286 /* Optionally make use of an RX channel as well */
287 if (plat->dma_rx_param) {
288 struct dma_slave_config rx_conf = {
289 .src_addr = uap->port.mapbase + UART01x_DR,
290 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
291 .direction = DMA_DEV_TO_MEM,
292 .src_maxburst = uap->fifosize >> 1,
293 .device_fc = false,
294 };
295
296 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
297 if (!chan) {
298 dev_err(uap->port.dev, "no RX DMA channel!\n");
299 return;
300 }
301
302 dmaengine_slave_config(chan, &rx_conf);
303 uap->dmarx.chan = chan;
304
305 dev_info(uap->port.dev, "DMA channel RX %s\n",
306 dma_chan_name(uap->dmarx.chan));
307 }
308 }
309
310 #ifndef MODULE
311 /*
312 * Stack up the UARTs and let the above initcall be done at device
313 * initcall time, because the serial driver is called as an arch
314 * initcall, and at this time the DMA subsystem is not yet registered.
315 * At this point the driver will switch over to using DMA where desired.
316 */
317 struct dma_uap {
318 struct list_head node;
319 struct uart_amba_port *uap;
320 };
321
322 static LIST_HEAD(pl011_dma_uarts);
323
324 static int __init pl011_dma_initcall(void)
325 {
326 struct list_head *node, *tmp;
327
328 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
329 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
330 pl011_dma_probe_initcall(dmau->uap);
331 list_del(node);
332 kfree(dmau);
333 }
334 return 0;
335 }
336
337 device_initcall(pl011_dma_initcall);
338
339 static void pl011_dma_probe(struct uart_amba_port *uap)
340 {
341 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
342 if (dmau) {
343 dmau->uap = uap;
344 list_add_tail(&dmau->node, &pl011_dma_uarts);
345 }
346 }
347 #else
348 static void pl011_dma_probe(struct uart_amba_port *uap)
349 {
350 pl011_dma_probe_initcall(uap);
351 }
352 #endif
353
354 static void pl011_dma_remove(struct uart_amba_port *uap)
355 {
356 /* TODO: remove the initcall if it has not yet executed */
357 if (uap->dmatx.chan)
358 dma_release_channel(uap->dmatx.chan);
359 if (uap->dmarx.chan)
360 dma_release_channel(uap->dmarx.chan);
361 }
362
363 /* Forward declare this for the refill routine */
364 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
365
366 /*
367 * The current DMA TX buffer has been sent.
368 * Try to queue up another DMA buffer.
369 */
370 static void pl011_dma_tx_callback(void *data)
371 {
372 struct uart_amba_port *uap = data;
373 struct pl011_dmatx_data *dmatx = &uap->dmatx;
374 unsigned long flags;
375 u16 dmacr;
376
377 spin_lock_irqsave(&uap->port.lock, flags);
378 if (uap->dmatx.queued)
379 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
380 DMA_TO_DEVICE);
381
382 dmacr = uap->dmacr;
383 uap->dmacr = dmacr & ~UART011_TXDMAE;
384 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
385
386 /*
387 * If TX DMA was disabled, it means that we've stopped the DMA for
388 * some reason (eg, XOFF received, or we want to send an X-char.)
389 *
390 * Note: we need to be careful here of a potential race between DMA
391 * and the rest of the driver - if the driver disables TX DMA while
392 * a TX buffer completing, we must update the tx queued status to
393 * get further refills (hence we check dmacr).
394 */
395 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
396 uart_circ_empty(&uap->port.state->xmit)) {
397 uap->dmatx.queued = false;
398 spin_unlock_irqrestore(&uap->port.lock, flags);
399 return;
400 }
401
402 if (pl011_dma_tx_refill(uap) <= 0) {
403 /*
404 * We didn't queue a DMA buffer for some reason, but we
405 * have data pending to be sent. Re-enable the TX IRQ.
406 */
407 uap->im |= UART011_TXIM;
408 writew(uap->im, uap->port.membase + UART011_IMSC);
409 }
410 spin_unlock_irqrestore(&uap->port.lock, flags);
411 }
412
413 /*
414 * Try to refill the TX DMA buffer.
415 * Locking: called with port lock held and IRQs disabled.
416 * Returns:
417 * 1 if we queued up a TX DMA buffer.
418 * 0 if we didn't want to handle this by DMA
419 * <0 on error
420 */
421 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
422 {
423 struct pl011_dmatx_data *dmatx = &uap->dmatx;
424 struct dma_chan *chan = dmatx->chan;
425 struct dma_device *dma_dev = chan->device;
426 struct dma_async_tx_descriptor *desc;
427 struct circ_buf *xmit = &uap->port.state->xmit;
428 unsigned int count;
429
430 /*
431 * Try to avoid the overhead involved in using DMA if the
432 * transaction fits in the first half of the FIFO, by using
433 * the standard interrupt handling. This ensures that we
434 * issue a uart_write_wakeup() at the appropriate time.
435 */
436 count = uart_circ_chars_pending(xmit);
437 if (count < (uap->fifosize >> 1)) {
438 uap->dmatx.queued = false;
439 return 0;
440 }
441
442 /*
443 * Bodge: don't send the last character by DMA, as this
444 * will prevent XON from notifying us to restart DMA.
445 */
446 count -= 1;
447
448 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
449 if (count > PL011_DMA_BUFFER_SIZE)
450 count = PL011_DMA_BUFFER_SIZE;
451
452 if (xmit->tail < xmit->head)
453 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
454 else {
455 size_t first = UART_XMIT_SIZE - xmit->tail;
456 size_t second = xmit->head;
457
458 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
459 if (second)
460 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
461 }
462
463 dmatx->sg.length = count;
464
465 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
466 uap->dmatx.queued = false;
467 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
468 return -EBUSY;
469 }
470
471 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
472 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
473 if (!desc) {
474 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
475 uap->dmatx.queued = false;
476 /*
477 * If DMA cannot be used right now, we complete this
478 * transaction via IRQ and let the TTY layer retry.
479 */
480 dev_dbg(uap->port.dev, "TX DMA busy\n");
481 return -EBUSY;
482 }
483
484 /* Some data to go along to the callback */
485 desc->callback = pl011_dma_tx_callback;
486 desc->callback_param = uap;
487
488 /* All errors should happen at prepare time */
489 dmaengine_submit(desc);
490
491 /* Fire the DMA transaction */
492 dma_dev->device_issue_pending(chan);
493
494 uap->dmacr |= UART011_TXDMAE;
495 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
496 uap->dmatx.queued = true;
497
498 /*
499 * Now we know that DMA will fire, so advance the ring buffer
500 * with the stuff we just dispatched.
501 */
502 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
503 uap->port.icount.tx += count;
504
505 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
506 uart_write_wakeup(&uap->port);
507
508 return 1;
509 }
510
511 /*
512 * We received a transmit interrupt without a pending X-char but with
513 * pending characters.
514 * Locking: called with port lock held and IRQs disabled.
515 * Returns:
516 * false if we want to use PIO to transmit
517 * true if we queued a DMA buffer
518 */
519 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
520 {
521 if (!uap->using_tx_dma)
522 return false;
523
524 /*
525 * If we already have a TX buffer queued, but received a
526 * TX interrupt, it will be because we've just sent an X-char.
527 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
528 */
529 if (uap->dmatx.queued) {
530 uap->dmacr |= UART011_TXDMAE;
531 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
532 uap->im &= ~UART011_TXIM;
533 writew(uap->im, uap->port.membase + UART011_IMSC);
534 return true;
535 }
536
537 /*
538 * We don't have a TX buffer queued, so try to queue one.
539 * If we successfully queued a buffer, mask the TX IRQ.
540 */
541 if (pl011_dma_tx_refill(uap) > 0) {
542 uap->im &= ~UART011_TXIM;
543 writew(uap->im, uap->port.membase + UART011_IMSC);
544 return true;
545 }
546 return false;
547 }
548
549 /*
550 * Stop the DMA transmit (eg, due to received XOFF).
551 * Locking: called with port lock held and IRQs disabled.
552 */
553 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
554 {
555 if (uap->dmatx.queued) {
556 uap->dmacr &= ~UART011_TXDMAE;
557 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
558 }
559 }
560
561 /*
562 * Try to start a DMA transmit, or in the case of an XON/OFF
563 * character queued for send, try to get that character out ASAP.
564 * Locking: called with port lock held and IRQs disabled.
565 * Returns:
566 * false if we want the TX IRQ to be enabled
567 * true if we have a buffer queued
568 */
569 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
570 {
571 u16 dmacr;
572
573 if (!uap->using_tx_dma)
574 return false;
575
576 if (!uap->port.x_char) {
577 /* no X-char, try to push chars out in DMA mode */
578 bool ret = true;
579
580 if (!uap->dmatx.queued) {
581 if (pl011_dma_tx_refill(uap) > 0) {
582 uap->im &= ~UART011_TXIM;
583 ret = true;
584 } else {
585 uap->im |= UART011_TXIM;
586 ret = false;
587 }
588 writew(uap->im, uap->port.membase + UART011_IMSC);
589 } else if (!(uap->dmacr & UART011_TXDMAE)) {
590 uap->dmacr |= UART011_TXDMAE;
591 writew(uap->dmacr,
592 uap->port.membase + UART011_DMACR);
593 }
594 return ret;
595 }
596
597 /*
598 * We have an X-char to send. Disable DMA to prevent it loading
599 * the TX fifo, and then see if we can stuff it into the FIFO.
600 */
601 dmacr = uap->dmacr;
602 uap->dmacr &= ~UART011_TXDMAE;
603 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
604
605 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
606 /*
607 * No space in the FIFO, so enable the transmit interrupt
608 * so we know when there is space. Note that once we've
609 * loaded the character, we should just re-enable DMA.
610 */
611 return false;
612 }
613
614 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
615 uap->port.icount.tx++;
616 uap->port.x_char = 0;
617
618 /* Success - restore the DMA state */
619 uap->dmacr = dmacr;
620 writew(dmacr, uap->port.membase + UART011_DMACR);
621
622 return true;
623 }
624
625 /*
626 * Flush the transmit buffer.
627 * Locking: called with port lock held and IRQs disabled.
628 */
629 static void pl011_dma_flush_buffer(struct uart_port *port)
630 {
631 struct uart_amba_port *uap = (struct uart_amba_port *)port;
632
633 if (!uap->using_tx_dma)
634 return;
635
636 /* Avoid deadlock with the DMA engine callback */
637 spin_unlock(&uap->port.lock);
638 dmaengine_terminate_all(uap->dmatx.chan);
639 spin_lock(&uap->port.lock);
640 if (uap->dmatx.queued) {
641 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
642 DMA_TO_DEVICE);
643 uap->dmatx.queued = false;
644 uap->dmacr &= ~UART011_TXDMAE;
645 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
646 }
647 }
648
649 static void pl011_dma_rx_callback(void *data);
650
651 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
652 {
653 struct dma_chan *rxchan = uap->dmarx.chan;
654 struct pl011_dmarx_data *dmarx = &uap->dmarx;
655 struct dma_async_tx_descriptor *desc;
656 struct pl011_sgbuf *sgbuf;
657
658 if (!rxchan)
659 return -EIO;
660
661 /* Start the RX DMA job */
662 sgbuf = uap->dmarx.use_buf_b ?
663 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
664 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
665 DMA_DEV_TO_MEM,
666 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
667 /*
668 * If the DMA engine is busy and cannot prepare a
669 * channel, no big deal, the driver will fall back
670 * to interrupt mode as a result of this error code.
671 */
672 if (!desc) {
673 uap->dmarx.running = false;
674 dmaengine_terminate_all(rxchan);
675 return -EBUSY;
676 }
677
678 /* Some data to go along to the callback */
679 desc->callback = pl011_dma_rx_callback;
680 desc->callback_param = uap;
681 dmarx->cookie = dmaengine_submit(desc);
682 dma_async_issue_pending(rxchan);
683
684 uap->dmacr |= UART011_RXDMAE;
685 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
686 uap->dmarx.running = true;
687
688 uap->im &= ~UART011_RXIM;
689 writew(uap->im, uap->port.membase + UART011_IMSC);
690
691 return 0;
692 }
693
694 /*
695 * This is called when either the DMA job is complete, or
696 * the FIFO timeout interrupt occurred. This must be called
697 * with the port spinlock uap->port.lock held.
698 */
699 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
700 u32 pending, bool use_buf_b,
701 bool readfifo)
702 {
703 struct tty_struct *tty = uap->port.state->port.tty;
704 struct pl011_sgbuf *sgbuf = use_buf_b ?
705 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
706 struct device *dev = uap->dmarx.chan->device->dev;
707 int dma_count = 0;
708 u32 fifotaken = 0; /* only used for vdbg() */
709
710 /* Pick everything from the DMA first */
711 if (pending) {
712 /* Sync in buffer */
713 dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
714
715 /*
716 * First take all chars in the DMA pipe, then look in the FIFO.
717 * Note that tty_insert_flip_buf() tries to take as many chars
718 * as it can.
719 */
720 dma_count = tty_insert_flip_string(uap->port.state->port.tty,
721 sgbuf->buf, pending);
722
723 /* Return buffer to device */
724 dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
725
726 uap->port.icount.rx += dma_count;
727 if (dma_count < pending)
728 dev_warn(uap->port.dev,
729 "couldn't insert all characters (TTY is full?)\n");
730 }
731
732 /*
733 * Only continue with trying to read the FIFO if all DMA chars have
734 * been taken first.
735 */
736 if (dma_count == pending && readfifo) {
737 /* Clear any error flags */
738 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
739 uap->port.membase + UART011_ICR);
740
741 /*
742 * If we read all the DMA'd characters, and we had an
743 * incomplete buffer, that could be due to an rx error, or
744 * maybe we just timed out. Read any pending chars and check
745 * the error status.
746 *
747 * Error conditions will only occur in the FIFO, these will
748 * trigger an immediate interrupt and stop the DMA job, so we
749 * will always find the error in the FIFO, never in the DMA
750 * buffer.
751 */
752 fifotaken = pl011_fifo_to_tty(uap);
753 }
754
755 spin_unlock(&uap->port.lock);
756 dev_vdbg(uap->port.dev,
757 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
758 dma_count, fifotaken);
759 tty_flip_buffer_push(tty);
760 spin_lock(&uap->port.lock);
761 }
762
763 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
764 {
765 struct pl011_dmarx_data *dmarx = &uap->dmarx;
766 struct dma_chan *rxchan = dmarx->chan;
767 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
768 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
769 size_t pending;
770 struct dma_tx_state state;
771 enum dma_status dmastat;
772
773 /*
774 * Pause the transfer so we can trust the current counter,
775 * do this before we pause the PL011 block, else we may
776 * overflow the FIFO.
777 */
778 if (dmaengine_pause(rxchan))
779 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
780 dmastat = rxchan->device->device_tx_status(rxchan,
781 dmarx->cookie, &state);
782 if (dmastat != DMA_PAUSED)
783 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
784
785 /* Disable RX DMA - incoming data will wait in the FIFO */
786 uap->dmacr &= ~UART011_RXDMAE;
787 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
788 uap->dmarx.running = false;
789
790 pending = sgbuf->sg.length - state.residue;
791 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
792 /* Then we terminate the transfer - we now know our residue */
793 dmaengine_terminate_all(rxchan);
794
795 /*
796 * This will take the chars we have so far and insert
797 * into the framework.
798 */
799 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
800
801 /* Switch buffer & re-trigger DMA job */
802 dmarx->use_buf_b = !dmarx->use_buf_b;
803 if (pl011_dma_rx_trigger_dma(uap)) {
804 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
805 "fall back to interrupt mode\n");
806 uap->im |= UART011_RXIM;
807 writew(uap->im, uap->port.membase + UART011_IMSC);
808 }
809 }
810
811 static void pl011_dma_rx_callback(void *data)
812 {
813 struct uart_amba_port *uap = data;
814 struct pl011_dmarx_data *dmarx = &uap->dmarx;
815 struct dma_chan *rxchan = dmarx->chan;
816 bool lastbuf = dmarx->use_buf_b;
817 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
818 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
819 size_t pending;
820 struct dma_tx_state state;
821 int ret;
822
823 /*
824 * This completion interrupt occurs typically when the
825 * RX buffer is totally stuffed but no timeout has yet
826 * occurred. When that happens, we just want the RX
827 * routine to flush out the secondary DMA buffer while
828 * we immediately trigger the next DMA job.
829 */
830 spin_lock_irq(&uap->port.lock);
831 /*
832 * Rx data can be taken by the UART interrupts during
833 * the DMA irq handler. So we check the residue here.
834 */
835 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
836 pending = sgbuf->sg.length - state.residue;
837 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
838 /* Then we terminate the transfer - we now know our residue */
839 dmaengine_terminate_all(rxchan);
840
841 uap->dmarx.running = false;
842 dmarx->use_buf_b = !lastbuf;
843 ret = pl011_dma_rx_trigger_dma(uap);
844
845 pl011_dma_rx_chars(uap, pending, lastbuf, false);
846 spin_unlock_irq(&uap->port.lock);
847 /*
848 * Do this check after we picked the DMA chars so we don't
849 * get some IRQ immediately from RX.
850 */
851 if (ret) {
852 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
853 "fall back to interrupt mode\n");
854 uap->im |= UART011_RXIM;
855 writew(uap->im, uap->port.membase + UART011_IMSC);
856 }
857 }
858
859 /*
860 * Stop accepting received characters, when we're shutting down or
861 * suspending this port.
862 * Locking: called with port lock held and IRQs disabled.
863 */
864 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
865 {
866 /* FIXME. Just disable the DMA enable */
867 uap->dmacr &= ~UART011_RXDMAE;
868 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
869 }
870
871 static void pl011_dma_startup(struct uart_amba_port *uap)
872 {
873 int ret;
874
875 if (!uap->dmatx.chan)
876 return;
877
878 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
879 if (!uap->dmatx.buf) {
880 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
881 uap->port.fifosize = uap->fifosize;
882 return;
883 }
884
885 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
886
887 /* The DMA buffer is now the FIFO the TTY subsystem can use */
888 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
889 uap->using_tx_dma = true;
890
891 if (!uap->dmarx.chan)
892 goto skip_rx;
893
894 /* Allocate and map DMA RX buffers */
895 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
896 DMA_FROM_DEVICE);
897 if (ret) {
898 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
899 "RX buffer A", ret);
900 goto skip_rx;
901 }
902
903 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
904 DMA_FROM_DEVICE);
905 if (ret) {
906 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
907 "RX buffer B", ret);
908 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
909 DMA_FROM_DEVICE);
910 goto skip_rx;
911 }
912
913 uap->using_rx_dma = true;
914
915 skip_rx:
916 /* Turn on DMA error (RX/TX will be enabled on demand) */
917 uap->dmacr |= UART011_DMAONERR;
918 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
919
920 /*
921 * ST Micro variants has some specific dma burst threshold
922 * compensation. Set this to 16 bytes, so burst will only
923 * be issued above/below 16 bytes.
924 */
925 if (uap->vendor->dma_threshold)
926 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
927 uap->port.membase + ST_UART011_DMAWM);
928
929 if (uap->using_rx_dma) {
930 if (pl011_dma_rx_trigger_dma(uap))
931 dev_dbg(uap->port.dev, "could not trigger initial "
932 "RX DMA job, fall back to interrupt mode\n");
933 }
934 }
935
936 static void pl011_dma_shutdown(struct uart_amba_port *uap)
937 {
938 if (!(uap->using_tx_dma || uap->using_rx_dma))
939 return;
940
941 /* Disable RX and TX DMA */
942 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
943 barrier();
944
945 spin_lock_irq(&uap->port.lock);
946 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
947 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
948 spin_unlock_irq(&uap->port.lock);
949
950 if (uap->using_tx_dma) {
951 /* In theory, this should already be done by pl011_dma_flush_buffer */
952 dmaengine_terminate_all(uap->dmatx.chan);
953 if (uap->dmatx.queued) {
954 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
955 DMA_TO_DEVICE);
956 uap->dmatx.queued = false;
957 }
958
959 kfree(uap->dmatx.buf);
960 uap->using_tx_dma = false;
961 }
962
963 if (uap->using_rx_dma) {
964 dmaengine_terminate_all(uap->dmarx.chan);
965 /* Clean up the RX DMA */
966 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
967 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
968 uap->using_rx_dma = false;
969 }
970 }
971
972 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
973 {
974 return uap->using_rx_dma;
975 }
976
977 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
978 {
979 return uap->using_rx_dma && uap->dmarx.running;
980 }
981
982
983 #else
984 /* Blank functions if the DMA engine is not available */
985 static inline void pl011_dma_probe(struct uart_amba_port *uap)
986 {
987 }
988
989 static inline void pl011_dma_remove(struct uart_amba_port *uap)
990 {
991 }
992
993 static inline void pl011_dma_startup(struct uart_amba_port *uap)
994 {
995 }
996
997 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
998 {
999 }
1000
1001 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1002 {
1003 return false;
1004 }
1005
1006 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1007 {
1008 }
1009
1010 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1011 {
1012 return false;
1013 }
1014
1015 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1016 {
1017 }
1018
1019 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1020 {
1021 }
1022
1023 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1024 {
1025 return -EIO;
1026 }
1027
1028 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1029 {
1030 return false;
1031 }
1032
1033 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1034 {
1035 return false;
1036 }
1037
1038 #define pl011_dma_flush_buffer NULL
1039 #endif
1040
1041 static void pl011_stop_tx(struct uart_port *port)
1042 {
1043 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1044
1045 uap->im &= ~UART011_TXIM;
1046 writew(uap->im, uap->port.membase + UART011_IMSC);
1047 pl011_dma_tx_stop(uap);
1048 }
1049
1050 static void pl011_start_tx(struct uart_port *port)
1051 {
1052 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1053
1054 if (!pl011_dma_tx_start(uap)) {
1055 uap->im |= UART011_TXIM;
1056 writew(uap->im, uap->port.membase + UART011_IMSC);
1057 }
1058 }
1059
1060 static void pl011_stop_rx(struct uart_port *port)
1061 {
1062 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1063
1064 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1065 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1066 writew(uap->im, uap->port.membase + UART011_IMSC);
1067
1068 pl011_dma_rx_stop(uap);
1069 }
1070
1071 static void pl011_enable_ms(struct uart_port *port)
1072 {
1073 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1074
1075 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1076 writew(uap->im, uap->port.membase + UART011_IMSC);
1077 }
1078
1079 static void pl011_rx_chars(struct uart_amba_port *uap)
1080 {
1081 struct tty_struct *tty = uap->port.state->port.tty;
1082
1083 pl011_fifo_to_tty(uap);
1084
1085 spin_unlock(&uap->port.lock);
1086 tty_flip_buffer_push(tty);
1087 /*
1088 * If we were temporarily out of DMA mode for a while,
1089 * attempt to switch back to DMA mode again.
1090 */
1091 if (pl011_dma_rx_available(uap)) {
1092 if (pl011_dma_rx_trigger_dma(uap)) {
1093 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1094 "fall back to interrupt mode again\n");
1095 uap->im |= UART011_RXIM;
1096 } else
1097 uap->im &= ~UART011_RXIM;
1098 writew(uap->im, uap->port.membase + UART011_IMSC);
1099 }
1100 spin_lock(&uap->port.lock);
1101 }
1102
1103 static void pl011_tx_chars(struct uart_amba_port *uap)
1104 {
1105 struct circ_buf *xmit = &uap->port.state->xmit;
1106 int count;
1107
1108 if (uap->port.x_char) {
1109 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1110 uap->port.icount.tx++;
1111 uap->port.x_char = 0;
1112 return;
1113 }
1114 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1115 pl011_stop_tx(&uap->port);
1116 return;
1117 }
1118
1119 /* If we are using DMA mode, try to send some characters. */
1120 if (pl011_dma_tx_irq(uap))
1121 return;
1122
1123 count = uap->fifosize >> 1;
1124 do {
1125 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1126 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1127 uap->port.icount.tx++;
1128 if (uart_circ_empty(xmit))
1129 break;
1130 } while (--count > 0);
1131
1132 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1133 uart_write_wakeup(&uap->port);
1134
1135 if (uart_circ_empty(xmit))
1136 pl011_stop_tx(&uap->port);
1137 }
1138
1139 static void pl011_modem_status(struct uart_amba_port *uap)
1140 {
1141 unsigned int status, delta;
1142
1143 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1144
1145 delta = status ^ uap->old_status;
1146 uap->old_status = status;
1147
1148 if (!delta)
1149 return;
1150
1151 if (delta & UART01x_FR_DCD)
1152 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1153
1154 if (delta & UART01x_FR_DSR)
1155 uap->port.icount.dsr++;
1156
1157 if (delta & UART01x_FR_CTS)
1158 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1159
1160 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1161 }
1162
1163 static irqreturn_t pl011_int(int irq, void *dev_id)
1164 {
1165 struct uart_amba_port *uap = dev_id;
1166 unsigned long flags;
1167 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1168 int handled = 0;
1169 unsigned int dummy_read;
1170
1171 spin_lock_irqsave(&uap->port.lock, flags);
1172
1173 status = readw(uap->port.membase + UART011_MIS);
1174 if (status) {
1175 do {
1176 if (uap->vendor->cts_event_workaround) {
1177 /* workaround to make sure that all bits are unlocked.. */
1178 writew(0x00, uap->port.membase + UART011_ICR);
1179
1180 /*
1181 * WA: introduce 26ns(1 uart clk) delay before W1C;
1182 * single apb access will incur 2 pclk(133.12Mhz) delay,
1183 * so add 2 dummy reads
1184 */
1185 dummy_read = readw(uap->port.membase + UART011_ICR);
1186 dummy_read = readw(uap->port.membase + UART011_ICR);
1187 }
1188
1189 writew(status & ~(UART011_TXIS|UART011_RTIS|
1190 UART011_RXIS),
1191 uap->port.membase + UART011_ICR);
1192
1193 if (status & (UART011_RTIS|UART011_RXIS)) {
1194 if (pl011_dma_rx_running(uap))
1195 pl011_dma_rx_irq(uap);
1196 else
1197 pl011_rx_chars(uap);
1198 }
1199 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1200 UART011_CTSMIS|UART011_RIMIS))
1201 pl011_modem_status(uap);
1202 if (status & UART011_TXIS)
1203 pl011_tx_chars(uap);
1204
1205 if (pass_counter-- == 0)
1206 break;
1207
1208 status = readw(uap->port.membase + UART011_MIS);
1209 } while (status != 0);
1210 handled = 1;
1211 }
1212
1213 spin_unlock_irqrestore(&uap->port.lock, flags);
1214
1215 return IRQ_RETVAL(handled);
1216 }
1217
1218 static unsigned int pl01x_tx_empty(struct uart_port *port)
1219 {
1220 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1221 unsigned int status = readw(uap->port.membase + UART01x_FR);
1222 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1223 }
1224
1225 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1226 {
1227 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1228 unsigned int result = 0;
1229 unsigned int status = readw(uap->port.membase + UART01x_FR);
1230
1231 #define TIOCMBIT(uartbit, tiocmbit) \
1232 if (status & uartbit) \
1233 result |= tiocmbit
1234
1235 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1236 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1237 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1238 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1239 #undef TIOCMBIT
1240 return result;
1241 }
1242
1243 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1244 {
1245 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1246 unsigned int cr;
1247
1248 cr = readw(uap->port.membase + UART011_CR);
1249
1250 #define TIOCMBIT(tiocmbit, uartbit) \
1251 if (mctrl & tiocmbit) \
1252 cr |= uartbit; \
1253 else \
1254 cr &= ~uartbit
1255
1256 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1257 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1258 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1259 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1260 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1261
1262 if (uap->autorts) {
1263 /* We need to disable auto-RTS if we want to turn RTS off */
1264 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1265 }
1266 #undef TIOCMBIT
1267
1268 writew(cr, uap->port.membase + UART011_CR);
1269 }
1270
1271 static void pl011_break_ctl(struct uart_port *port, int break_state)
1272 {
1273 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1274 unsigned long flags;
1275 unsigned int lcr_h;
1276
1277 spin_lock_irqsave(&uap->port.lock, flags);
1278 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1279 if (break_state == -1)
1280 lcr_h |= UART01x_LCRH_BRK;
1281 else
1282 lcr_h &= ~UART01x_LCRH_BRK;
1283 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1284 spin_unlock_irqrestore(&uap->port.lock, flags);
1285 }
1286
1287 #ifdef CONFIG_CONSOLE_POLL
1288 static int pl010_get_poll_char(struct uart_port *port)
1289 {
1290 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1291 unsigned int status;
1292
1293 status = readw(uap->port.membase + UART01x_FR);
1294 if (status & UART01x_FR_RXFE)
1295 return NO_POLL_CHAR;
1296
1297 return readw(uap->port.membase + UART01x_DR);
1298 }
1299
1300 static void pl010_put_poll_char(struct uart_port *port,
1301 unsigned char ch)
1302 {
1303 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1304
1305 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1306 barrier();
1307
1308 writew(ch, uap->port.membase + UART01x_DR);
1309 }
1310
1311 #endif /* CONFIG_CONSOLE_POLL */
1312
1313 static int pl011_startup(struct uart_port *port)
1314 {
1315 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1316 unsigned int cr;
1317 int retval;
1318
1319 /* Optionaly enable pins to be muxed in and configured */
1320 if (!IS_ERR(uap->pins_default)) {
1321 retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1322 if (retval)
1323 dev_err(port->dev,
1324 "could not set default pins\n");
1325 }
1326
1327 retval = clk_prepare(uap->clk);
1328 if (retval)
1329 goto out;
1330
1331 /*
1332 * Try to enable the clock producer.
1333 */
1334 retval = clk_enable(uap->clk);
1335 if (retval)
1336 goto clk_unprep;
1337
1338 uap->port.uartclk = clk_get_rate(uap->clk);
1339
1340 /* Clear pending error and receive interrupts */
1341 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1342 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1343
1344 /*
1345 * Allocate the IRQ
1346 */
1347 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1348 if (retval)
1349 goto clk_dis;
1350
1351 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1352
1353 /*
1354 * Provoke TX FIFO interrupt into asserting.
1355 */
1356 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1357 writew(cr, uap->port.membase + UART011_CR);
1358 writew(0, uap->port.membase + UART011_FBRD);
1359 writew(1, uap->port.membase + UART011_IBRD);
1360 writew(0, uap->port.membase + uap->lcrh_rx);
1361 if (uap->lcrh_tx != uap->lcrh_rx) {
1362 int i;
1363 /*
1364 * Wait 10 PCLKs before writing LCRH_TX register,
1365 * to get this delay write read only register 10 times
1366 */
1367 for (i = 0; i < 10; ++i)
1368 writew(0xff, uap->port.membase + UART011_MIS);
1369 writew(0, uap->port.membase + uap->lcrh_tx);
1370 }
1371 writew(0, uap->port.membase + UART01x_DR);
1372 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1373 barrier();
1374
1375 /* restore RTS and DTR */
1376 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1377 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1378 writew(cr, uap->port.membase + UART011_CR);
1379
1380 /*
1381 * initialise the old status of the modem signals
1382 */
1383 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1384
1385 /* Startup DMA */
1386 pl011_dma_startup(uap);
1387
1388 /*
1389 * Finally, enable interrupts, only timeouts when using DMA
1390 * if initial RX DMA job failed, start in interrupt mode
1391 * as well.
1392 */
1393 spin_lock_irq(&uap->port.lock);
1394 /* Clear out any spuriously appearing RX interrupts */
1395 writew(UART011_RTIS | UART011_RXIS,
1396 uap->port.membase + UART011_ICR);
1397 uap->im = UART011_RTIM;
1398 if (!pl011_dma_rx_running(uap))
1399 uap->im |= UART011_RXIM;
1400 writew(uap->im, uap->port.membase + UART011_IMSC);
1401 spin_unlock_irq(&uap->port.lock);
1402
1403 if (uap->port.dev->platform_data) {
1404 struct amba_pl011_data *plat;
1405
1406 plat = uap->port.dev->platform_data;
1407 if (plat->init)
1408 plat->init();
1409 }
1410
1411 return 0;
1412
1413 clk_dis:
1414 clk_disable(uap->clk);
1415 clk_unprep:
1416 clk_unprepare(uap->clk);
1417 out:
1418 return retval;
1419 }
1420
1421 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1422 unsigned int lcrh)
1423 {
1424 unsigned long val;
1425
1426 val = readw(uap->port.membase + lcrh);
1427 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1428 writew(val, uap->port.membase + lcrh);
1429 }
1430
1431 static void pl011_shutdown(struct uart_port *port)
1432 {
1433 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1434 unsigned int cr;
1435 int retval;
1436
1437 /*
1438 * disable all interrupts
1439 */
1440 spin_lock_irq(&uap->port.lock);
1441 uap->im = 0;
1442 writew(uap->im, uap->port.membase + UART011_IMSC);
1443 writew(0xffff, uap->port.membase + UART011_ICR);
1444 spin_unlock_irq(&uap->port.lock);
1445
1446 pl011_dma_shutdown(uap);
1447
1448 /*
1449 * Free the interrupt
1450 */
1451 free_irq(uap->port.irq, uap);
1452
1453 /*
1454 * disable the port
1455 * disable the port. It should not disable RTS and DTR.
1456 * Also RTS and DTR state should be preserved to restore
1457 * it during startup().
1458 */
1459 uap->autorts = false;
1460 cr = readw(uap->port.membase + UART011_CR);
1461 uap->old_cr = cr;
1462 cr &= UART011_CR_RTS | UART011_CR_DTR;
1463 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1464 writew(cr, uap->port.membase + UART011_CR);
1465
1466 /*
1467 * disable break condition and fifos
1468 */
1469 pl011_shutdown_channel(uap, uap->lcrh_rx);
1470 if (uap->lcrh_rx != uap->lcrh_tx)
1471 pl011_shutdown_channel(uap, uap->lcrh_tx);
1472
1473 /*
1474 * Shut down the clock producer
1475 */
1476 clk_disable(uap->clk);
1477 clk_unprepare(uap->clk);
1478 /* Optionally let pins go into sleep states */
1479 if (!IS_ERR(uap->pins_sleep)) {
1480 retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1481 if (retval)
1482 dev_err(port->dev,
1483 "could not set pins to sleep state\n");
1484 }
1485
1486
1487 if (uap->port.dev->platform_data) {
1488 struct amba_pl011_data *plat;
1489
1490 plat = uap->port.dev->platform_data;
1491 if (plat->exit)
1492 plat->exit();
1493 }
1494
1495 }
1496
1497 static void
1498 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1499 struct ktermios *old)
1500 {
1501 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1502 unsigned int lcr_h, old_cr;
1503 unsigned long flags;
1504 unsigned int baud, quot, clkdiv;
1505
1506 if (uap->vendor->oversampling)
1507 clkdiv = 8;
1508 else
1509 clkdiv = 16;
1510
1511 /*
1512 * Ask the core to calculate the divisor for us.
1513 */
1514 baud = uart_get_baud_rate(port, termios, old, 0,
1515 port->uartclk / clkdiv);
1516
1517 if (baud > port->uartclk/16)
1518 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1519 else
1520 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1521
1522 switch (termios->c_cflag & CSIZE) {
1523 case CS5:
1524 lcr_h = UART01x_LCRH_WLEN_5;
1525 break;
1526 case CS6:
1527 lcr_h = UART01x_LCRH_WLEN_6;
1528 break;
1529 case CS7:
1530 lcr_h = UART01x_LCRH_WLEN_7;
1531 break;
1532 default: // CS8
1533 lcr_h = UART01x_LCRH_WLEN_8;
1534 break;
1535 }
1536 if (termios->c_cflag & CSTOPB)
1537 lcr_h |= UART01x_LCRH_STP2;
1538 if (termios->c_cflag & PARENB) {
1539 lcr_h |= UART01x_LCRH_PEN;
1540 if (!(termios->c_cflag & PARODD))
1541 lcr_h |= UART01x_LCRH_EPS;
1542 }
1543 if (uap->fifosize > 1)
1544 lcr_h |= UART01x_LCRH_FEN;
1545
1546 spin_lock_irqsave(&port->lock, flags);
1547
1548 /*
1549 * Update the per-port timeout.
1550 */
1551 uart_update_timeout(port, termios->c_cflag, baud);
1552
1553 port->read_status_mask = UART011_DR_OE | 255;
1554 if (termios->c_iflag & INPCK)
1555 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1556 if (termios->c_iflag & (BRKINT | PARMRK))
1557 port->read_status_mask |= UART011_DR_BE;
1558
1559 /*
1560 * Characters to ignore
1561 */
1562 port->ignore_status_mask = 0;
1563 if (termios->c_iflag & IGNPAR)
1564 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1565 if (termios->c_iflag & IGNBRK) {
1566 port->ignore_status_mask |= UART011_DR_BE;
1567 /*
1568 * If we're ignoring parity and break indicators,
1569 * ignore overruns too (for real raw support).
1570 */
1571 if (termios->c_iflag & IGNPAR)
1572 port->ignore_status_mask |= UART011_DR_OE;
1573 }
1574
1575 /*
1576 * Ignore all characters if CREAD is not set.
1577 */
1578 if ((termios->c_cflag & CREAD) == 0)
1579 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1580
1581 if (UART_ENABLE_MS(port, termios->c_cflag))
1582 pl011_enable_ms(port);
1583
1584 /* first, disable everything */
1585 old_cr = readw(port->membase + UART011_CR);
1586 writew(0, port->membase + UART011_CR);
1587
1588 if (termios->c_cflag & CRTSCTS) {
1589 if (old_cr & UART011_CR_RTS)
1590 old_cr |= UART011_CR_RTSEN;
1591
1592 old_cr |= UART011_CR_CTSEN;
1593 uap->autorts = true;
1594 } else {
1595 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1596 uap->autorts = false;
1597 }
1598
1599 if (uap->vendor->oversampling) {
1600 if (baud > port->uartclk / 16)
1601 old_cr |= ST_UART011_CR_OVSFACT;
1602 else
1603 old_cr &= ~ST_UART011_CR_OVSFACT;
1604 }
1605
1606 /* Set baud rate */
1607 writew(quot & 0x3f, port->membase + UART011_FBRD);
1608 writew(quot >> 6, port->membase + UART011_IBRD);
1609
1610 /*
1611 * ----------v----------v----------v----------v-----
1612 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1613 * ----------^----------^----------^----------^-----
1614 */
1615 writew(lcr_h, port->membase + uap->lcrh_rx);
1616 if (uap->lcrh_rx != uap->lcrh_tx) {
1617 int i;
1618 /*
1619 * Wait 10 PCLKs before writing LCRH_TX register,
1620 * to get this delay write read only register 10 times
1621 */
1622 for (i = 0; i < 10; ++i)
1623 writew(0xff, uap->port.membase + UART011_MIS);
1624 writew(lcr_h, port->membase + uap->lcrh_tx);
1625 }
1626 writew(old_cr, port->membase + UART011_CR);
1627
1628 spin_unlock_irqrestore(&port->lock, flags);
1629 }
1630
1631 static const char *pl011_type(struct uart_port *port)
1632 {
1633 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1634 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1635 }
1636
1637 /*
1638 * Release the memory region(s) being used by 'port'
1639 */
1640 static void pl010_release_port(struct uart_port *port)
1641 {
1642 release_mem_region(port->mapbase, SZ_4K);
1643 }
1644
1645 /*
1646 * Request the memory region(s) being used by 'port'
1647 */
1648 static int pl010_request_port(struct uart_port *port)
1649 {
1650 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1651 != NULL ? 0 : -EBUSY;
1652 }
1653
1654 /*
1655 * Configure/autoconfigure the port.
1656 */
1657 static void pl010_config_port(struct uart_port *port, int flags)
1658 {
1659 if (flags & UART_CONFIG_TYPE) {
1660 port->type = PORT_AMBA;
1661 pl010_request_port(port);
1662 }
1663 }
1664
1665 /*
1666 * verify the new serial_struct (for TIOCSSERIAL).
1667 */
1668 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1669 {
1670 int ret = 0;
1671 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1672 ret = -EINVAL;
1673 if (ser->irq < 0 || ser->irq >= nr_irqs)
1674 ret = -EINVAL;
1675 if (ser->baud_base < 9600)
1676 ret = -EINVAL;
1677 return ret;
1678 }
1679
1680 static struct uart_ops amba_pl011_pops = {
1681 .tx_empty = pl01x_tx_empty,
1682 .set_mctrl = pl011_set_mctrl,
1683 .get_mctrl = pl01x_get_mctrl,
1684 .stop_tx = pl011_stop_tx,
1685 .start_tx = pl011_start_tx,
1686 .stop_rx = pl011_stop_rx,
1687 .enable_ms = pl011_enable_ms,
1688 .break_ctl = pl011_break_ctl,
1689 .startup = pl011_startup,
1690 .shutdown = pl011_shutdown,
1691 .flush_buffer = pl011_dma_flush_buffer,
1692 .set_termios = pl011_set_termios,
1693 .type = pl011_type,
1694 .release_port = pl010_release_port,
1695 .request_port = pl010_request_port,
1696 .config_port = pl010_config_port,
1697 .verify_port = pl010_verify_port,
1698 #ifdef CONFIG_CONSOLE_POLL
1699 .poll_get_char = pl010_get_poll_char,
1700 .poll_put_char = pl010_put_poll_char,
1701 #endif
1702 };
1703
1704 static struct uart_amba_port *amba_ports[UART_NR];
1705
1706 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1707
1708 static void pl011_console_putchar(struct uart_port *port, int ch)
1709 {
1710 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1711
1712 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1713 barrier();
1714 writew(ch, uap->port.membase + UART01x_DR);
1715 }
1716
1717 static void
1718 pl011_console_write(struct console *co, const char *s, unsigned int count)
1719 {
1720 struct uart_amba_port *uap = amba_ports[co->index];
1721 unsigned int status, old_cr, new_cr;
1722 unsigned long flags;
1723 int locked = 1;
1724
1725 clk_enable(uap->clk);
1726
1727 local_irq_save(flags);
1728 if (uap->port.sysrq)
1729 locked = 0;
1730 else if (oops_in_progress)
1731 locked = spin_trylock(&uap->port.lock);
1732 else
1733 spin_lock(&uap->port.lock);
1734
1735 /*
1736 * First save the CR then disable the interrupts
1737 */
1738 old_cr = readw(uap->port.membase + UART011_CR);
1739 new_cr = old_cr & ~UART011_CR_CTSEN;
1740 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1741 writew(new_cr, uap->port.membase + UART011_CR);
1742
1743 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1744
1745 /*
1746 * Finally, wait for transmitter to become empty
1747 * and restore the TCR
1748 */
1749 do {
1750 status = readw(uap->port.membase + UART01x_FR);
1751 } while (status & UART01x_FR_BUSY);
1752 writew(old_cr, uap->port.membase + UART011_CR);
1753
1754 if (locked)
1755 spin_unlock(&uap->port.lock);
1756 local_irq_restore(flags);
1757
1758 clk_disable(uap->clk);
1759 }
1760
1761 static void __init
1762 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763 int *parity, int *bits)
1764 {
1765 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766 unsigned int lcr_h, ibrd, fbrd;
1767
1768 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770 *parity = 'n';
1771 if (lcr_h & UART01x_LCRH_PEN) {
1772 if (lcr_h & UART01x_LCRH_EPS)
1773 *parity = 'e';
1774 else
1775 *parity = 'o';
1776 }
1777
1778 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779 *bits = 7;
1780 else
1781 *bits = 8;
1782
1783 ibrd = readw(uap->port.membase + UART011_IBRD);
1784 fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788 if (uap->vendor->oversampling) {
1789 if (readw(uap->port.membase + UART011_CR)
1790 & ST_UART011_CR_OVSFACT)
1791 *baud *= 2;
1792 }
1793 }
1794 }
1795
1796 static int __init pl011_console_setup(struct console *co, char *options)
1797 {
1798 struct uart_amba_port *uap;
1799 int baud = 38400;
1800 int bits = 8;
1801 int parity = 'n';
1802 int flow = 'n';
1803 int ret;
1804
1805 /*
1806 * Check whether an invalid uart number has been specified, and
1807 * if so, search for the first available port that does have
1808 * console support.
1809 */
1810 if (co->index >= UART_NR)
1811 co->index = 0;
1812 uap = amba_ports[co->index];
1813 if (!uap)
1814 return -ENODEV;
1815
1816 /* Allow pins to be muxed in and configured */
1817 if (!IS_ERR(uap->pins_default)) {
1818 ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1819 if (ret)
1820 dev_err(uap->port.dev,
1821 "could not set default pins\n");
1822 }
1823
1824 ret = clk_prepare(uap->clk);
1825 if (ret)
1826 return ret;
1827
1828 if (uap->port.dev->platform_data) {
1829 struct amba_pl011_data *plat;
1830
1831 plat = uap->port.dev->platform_data;
1832 if (plat->init)
1833 plat->init();
1834 }
1835
1836 uap->port.uartclk = clk_get_rate(uap->clk);
1837
1838 if (options)
1839 uart_parse_options(options, &baud, &parity, &bits, &flow);
1840 else
1841 pl011_console_get_options(uap, &baud, &parity, &bits);
1842
1843 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1844 }
1845
1846 static struct uart_driver amba_reg;
1847 static struct console amba_console = {
1848 .name = "ttyAMA",
1849 .write = pl011_console_write,
1850 .device = uart_console_device,
1851 .setup = pl011_console_setup,
1852 .flags = CON_PRINTBUFFER,
1853 .index = -1,
1854 .data = &amba_reg,
1855 };
1856
1857 #define AMBA_CONSOLE (&amba_console)
1858 #else
1859 #define AMBA_CONSOLE NULL
1860 #endif
1861
1862 static struct uart_driver amba_reg = {
1863 .owner = THIS_MODULE,
1864 .driver_name = "ttyAMA",
1865 .dev_name = "ttyAMA",
1866 .major = SERIAL_AMBA_MAJOR,
1867 .minor = SERIAL_AMBA_MINOR,
1868 .nr = UART_NR,
1869 .cons = AMBA_CONSOLE,
1870 };
1871
1872 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1873 {
1874 struct uart_amba_port *uap;
1875 struct vendor_data *vendor = id->data;
1876 void __iomem *base;
1877 int i, ret;
1878
1879 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1880 if (amba_ports[i] == NULL)
1881 break;
1882
1883 if (i == ARRAY_SIZE(amba_ports)) {
1884 ret = -EBUSY;
1885 goto out;
1886 }
1887
1888 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1889 if (uap == NULL) {
1890 ret = -ENOMEM;
1891 goto out;
1892 }
1893
1894 base = ioremap(dev->res.start, resource_size(&dev->res));
1895 if (!base) {
1896 ret = -ENOMEM;
1897 goto free;
1898 }
1899
1900 uap->pinctrl = devm_pinctrl_get(&dev->dev);
1901 if (IS_ERR(uap->pinctrl)) {
1902 ret = PTR_ERR(uap->pinctrl);
1903 goto unmap;
1904 }
1905 uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1906 PINCTRL_STATE_DEFAULT);
1907 if (IS_ERR(uap->pins_default))
1908 dev_err(&dev->dev, "could not get default pinstate\n");
1909
1910 uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
1911 PINCTRL_STATE_SLEEP);
1912 if (IS_ERR(uap->pins_sleep))
1913 dev_dbg(&dev->dev, "could not get sleep pinstate\n");
1914
1915 uap->clk = clk_get(&dev->dev, NULL);
1916 if (IS_ERR(uap->clk)) {
1917 ret = PTR_ERR(uap->clk);
1918 goto unmap;
1919 }
1920
1921 uap->vendor = vendor;
1922 uap->lcrh_rx = vendor->lcrh_rx;
1923 uap->lcrh_tx = vendor->lcrh_tx;
1924 uap->old_cr = 0;
1925 uap->fifosize = vendor->fifosize;
1926 uap->interrupt_may_hang = vendor->interrupt_may_hang;
1927 uap->port.dev = &dev->dev;
1928 uap->port.mapbase = dev->res.start;
1929 uap->port.membase = base;
1930 uap->port.iotype = UPIO_MEM;
1931 uap->port.irq = dev->irq[0];
1932 uap->port.fifosize = uap->fifosize;
1933 uap->port.ops = &amba_pl011_pops;
1934 uap->port.flags = UPF_BOOT_AUTOCONF;
1935 uap->port.line = i;
1936 pl011_dma_probe(uap);
1937
1938 /* Ensure interrupts from this UART are masked and cleared */
1939 writew(0, uap->port.membase + UART011_IMSC);
1940 writew(0xffff, uap->port.membase + UART011_ICR);
1941
1942 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1943
1944 amba_ports[i] = uap;
1945
1946 amba_set_drvdata(dev, uap);
1947 ret = uart_add_one_port(&amba_reg, &uap->port);
1948 if (ret) {
1949 amba_set_drvdata(dev, NULL);
1950 amba_ports[i] = NULL;
1951 pl011_dma_remove(uap);
1952 clk_put(uap->clk);
1953 unmap:
1954 iounmap(base);
1955 free:
1956 kfree(uap);
1957 }
1958 out:
1959 return ret;
1960 }
1961
1962 static int pl011_remove(struct amba_device *dev)
1963 {
1964 struct uart_amba_port *uap = amba_get_drvdata(dev);
1965 int i;
1966
1967 amba_set_drvdata(dev, NULL);
1968
1969 uart_remove_one_port(&amba_reg, &uap->port);
1970
1971 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1972 if (amba_ports[i] == uap)
1973 amba_ports[i] = NULL;
1974
1975 pl011_dma_remove(uap);
1976 iounmap(uap->port.membase);
1977 clk_put(uap->clk);
1978 kfree(uap);
1979 return 0;
1980 }
1981
1982 #ifdef CONFIG_PM
1983 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1984 {
1985 struct uart_amba_port *uap = amba_get_drvdata(dev);
1986
1987 if (!uap)
1988 return -EINVAL;
1989
1990 return uart_suspend_port(&amba_reg, &uap->port);
1991 }
1992
1993 static int pl011_resume(struct amba_device *dev)
1994 {
1995 struct uart_amba_port *uap = amba_get_drvdata(dev);
1996
1997 if (!uap)
1998 return -EINVAL;
1999
2000 return uart_resume_port(&amba_reg, &uap->port);
2001 }
2002 #endif
2003
2004 static struct amba_id pl011_ids[] = {
2005 {
2006 .id = 0x00041011,
2007 .mask = 0x000fffff,
2008 .data = &vendor_arm,
2009 },
2010 {
2011 .id = 0x00380802,
2012 .mask = 0x00ffffff,
2013 .data = &vendor_st,
2014 },
2015 { 0, 0 },
2016 };
2017
2018 MODULE_DEVICE_TABLE(amba, pl011_ids);
2019
2020 static struct amba_driver pl011_driver = {
2021 .drv = {
2022 .name = "uart-pl011",
2023 },
2024 .id_table = pl011_ids,
2025 .probe = pl011_probe,
2026 .remove = pl011_remove,
2027 #ifdef CONFIG_PM
2028 .suspend = pl011_suspend,
2029 .resume = pl011_resume,
2030 #endif
2031 };
2032
2033 static int __init pl011_init(void)
2034 {
2035 int ret;
2036 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2037
2038 ret = uart_register_driver(&amba_reg);
2039 if (ret == 0) {
2040 ret = amba_driver_register(&pl011_driver);
2041 if (ret)
2042 uart_unregister_driver(&amba_reg);
2043 }
2044 return ret;
2045 }
2046
2047 static void __exit pl011_exit(void)
2048 {
2049 amba_driver_unregister(&pl011_driver);
2050 uart_unregister_driver(&amba_reg);
2051 }
2052
2053 /*
2054 * While this can be a module, if builtin it's most likely the console
2055 * So let's leave module_exit but move module_init to an earlier place
2056 */
2057 arch_initcall(pl011_init);
2058 module_exit(pl011_exit);
2059
2060 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2061 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2062 MODULE_LICENSE("GPL");