hw_breakpoint: Use cpu_possible_mask in {reserve,release}_bp_slot()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2012 RisingTide Systems LLC.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54
55 static struct workqueue_struct *target_completion_wq;
56 static struct kmem_cache *se_sess_cache;
57 struct kmem_cache *se_ua_cache;
58 struct kmem_cache *t10_pr_reg_cache;
59 struct kmem_cache *t10_alua_lu_gp_cache;
60 struct kmem_cache *t10_alua_lu_gp_mem_cache;
61 struct kmem_cache *t10_alua_tg_pt_gp_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
63
64 static void transport_complete_task_attr(struct se_cmd *cmd);
65 static void transport_handle_queue_full(struct se_cmd *cmd,
66 struct se_device *dev);
67 static int transport_generic_get_mem(struct se_cmd *cmd);
68 static void transport_put_cmd(struct se_cmd *cmd);
69 static void target_complete_ok_work(struct work_struct *work);
70
71 int init_se_kmem_caches(void)
72 {
73 se_sess_cache = kmem_cache_create("se_sess_cache",
74 sizeof(struct se_session), __alignof__(struct se_session),
75 0, NULL);
76 if (!se_sess_cache) {
77 pr_err("kmem_cache_create() for struct se_session"
78 " failed\n");
79 goto out;
80 }
81 se_ua_cache = kmem_cache_create("se_ua_cache",
82 sizeof(struct se_ua), __alignof__(struct se_ua),
83 0, NULL);
84 if (!se_ua_cache) {
85 pr_err("kmem_cache_create() for struct se_ua failed\n");
86 goto out_free_sess_cache;
87 }
88 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
89 sizeof(struct t10_pr_registration),
90 __alignof__(struct t10_pr_registration), 0, NULL);
91 if (!t10_pr_reg_cache) {
92 pr_err("kmem_cache_create() for struct t10_pr_registration"
93 " failed\n");
94 goto out_free_ua_cache;
95 }
96 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
97 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
98 0, NULL);
99 if (!t10_alua_lu_gp_cache) {
100 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
101 " failed\n");
102 goto out_free_pr_reg_cache;
103 }
104 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
105 sizeof(struct t10_alua_lu_gp_member),
106 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
107 if (!t10_alua_lu_gp_mem_cache) {
108 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
109 "cache failed\n");
110 goto out_free_lu_gp_cache;
111 }
112 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
113 sizeof(struct t10_alua_tg_pt_gp),
114 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
115 if (!t10_alua_tg_pt_gp_cache) {
116 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
117 "cache failed\n");
118 goto out_free_lu_gp_mem_cache;
119 }
120 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
121 "t10_alua_tg_pt_gp_mem_cache",
122 sizeof(struct t10_alua_tg_pt_gp_member),
123 __alignof__(struct t10_alua_tg_pt_gp_member),
124 0, NULL);
125 if (!t10_alua_tg_pt_gp_mem_cache) {
126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
127 "mem_t failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130
131 target_completion_wq = alloc_workqueue("target_completion",
132 WQ_MEM_RECLAIM, 0);
133 if (!target_completion_wq)
134 goto out_free_tg_pt_gp_mem_cache;
135
136 return 0;
137
138 out_free_tg_pt_gp_mem_cache:
139 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
140 out_free_tg_pt_gp_cache:
141 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
142 out_free_lu_gp_mem_cache:
143 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
144 out_free_lu_gp_cache:
145 kmem_cache_destroy(t10_alua_lu_gp_cache);
146 out_free_pr_reg_cache:
147 kmem_cache_destroy(t10_pr_reg_cache);
148 out_free_ua_cache:
149 kmem_cache_destroy(se_ua_cache);
150 out_free_sess_cache:
151 kmem_cache_destroy(se_sess_cache);
152 out:
153 return -ENOMEM;
154 }
155
156 void release_se_kmem_caches(void)
157 {
158 destroy_workqueue(target_completion_wq);
159 kmem_cache_destroy(se_sess_cache);
160 kmem_cache_destroy(se_ua_cache);
161 kmem_cache_destroy(t10_pr_reg_cache);
162 kmem_cache_destroy(t10_alua_lu_gp_cache);
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
165 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
166 }
167
168 /* This code ensures unique mib indexes are handed out. */
169 static DEFINE_SPINLOCK(scsi_mib_index_lock);
170 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
171
172 /*
173 * Allocate a new row index for the entry type specified
174 */
175 u32 scsi_get_new_index(scsi_index_t type)
176 {
177 u32 new_index;
178
179 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
180
181 spin_lock(&scsi_mib_index_lock);
182 new_index = ++scsi_mib_index[type];
183 spin_unlock(&scsi_mib_index_lock);
184
185 return new_index;
186 }
187
188 void transport_subsystem_check_init(void)
189 {
190 int ret;
191 static int sub_api_initialized;
192
193 if (sub_api_initialized)
194 return;
195
196 ret = request_module("target_core_iblock");
197 if (ret != 0)
198 pr_err("Unable to load target_core_iblock\n");
199
200 ret = request_module("target_core_file");
201 if (ret != 0)
202 pr_err("Unable to load target_core_file\n");
203
204 ret = request_module("target_core_pscsi");
205 if (ret != 0)
206 pr_err("Unable to load target_core_pscsi\n");
207
208 sub_api_initialized = 1;
209 }
210
211 struct se_session *transport_init_session(void)
212 {
213 struct se_session *se_sess;
214
215 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
216 if (!se_sess) {
217 pr_err("Unable to allocate struct se_session from"
218 " se_sess_cache\n");
219 return ERR_PTR(-ENOMEM);
220 }
221 INIT_LIST_HEAD(&se_sess->sess_list);
222 INIT_LIST_HEAD(&se_sess->sess_acl_list);
223 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
224 spin_lock_init(&se_sess->sess_cmd_lock);
225 kref_init(&se_sess->sess_kref);
226
227 return se_sess;
228 }
229 EXPORT_SYMBOL(transport_init_session);
230
231 /*
232 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
233 */
234 void __transport_register_session(
235 struct se_portal_group *se_tpg,
236 struct se_node_acl *se_nacl,
237 struct se_session *se_sess,
238 void *fabric_sess_ptr)
239 {
240 unsigned char buf[PR_REG_ISID_LEN];
241
242 se_sess->se_tpg = se_tpg;
243 se_sess->fabric_sess_ptr = fabric_sess_ptr;
244 /*
245 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
246 *
247 * Only set for struct se_session's that will actually be moving I/O.
248 * eg: *NOT* discovery sessions.
249 */
250 if (se_nacl) {
251 /*
252 * If the fabric module supports an ISID based TransportID,
253 * save this value in binary from the fabric I_T Nexus now.
254 */
255 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
256 memset(&buf[0], 0, PR_REG_ISID_LEN);
257 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
258 &buf[0], PR_REG_ISID_LEN);
259 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
260 }
261 kref_get(&se_nacl->acl_kref);
262
263 spin_lock_irq(&se_nacl->nacl_sess_lock);
264 /*
265 * The se_nacl->nacl_sess pointer will be set to the
266 * last active I_T Nexus for each struct se_node_acl.
267 */
268 se_nacl->nacl_sess = se_sess;
269
270 list_add_tail(&se_sess->sess_acl_list,
271 &se_nacl->acl_sess_list);
272 spin_unlock_irq(&se_nacl->nacl_sess_lock);
273 }
274 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
275
276 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
277 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
278 }
279 EXPORT_SYMBOL(__transport_register_session);
280
281 void transport_register_session(
282 struct se_portal_group *se_tpg,
283 struct se_node_acl *se_nacl,
284 struct se_session *se_sess,
285 void *fabric_sess_ptr)
286 {
287 unsigned long flags;
288
289 spin_lock_irqsave(&se_tpg->session_lock, flags);
290 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
291 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
292 }
293 EXPORT_SYMBOL(transport_register_session);
294
295 static void target_release_session(struct kref *kref)
296 {
297 struct se_session *se_sess = container_of(kref,
298 struct se_session, sess_kref);
299 struct se_portal_group *se_tpg = se_sess->se_tpg;
300
301 se_tpg->se_tpg_tfo->close_session(se_sess);
302 }
303
304 void target_get_session(struct se_session *se_sess)
305 {
306 kref_get(&se_sess->sess_kref);
307 }
308 EXPORT_SYMBOL(target_get_session);
309
310 void target_put_session(struct se_session *se_sess)
311 {
312 struct se_portal_group *tpg = se_sess->se_tpg;
313
314 if (tpg->se_tpg_tfo->put_session != NULL) {
315 tpg->se_tpg_tfo->put_session(se_sess);
316 return;
317 }
318 kref_put(&se_sess->sess_kref, target_release_session);
319 }
320 EXPORT_SYMBOL(target_put_session);
321
322 static void target_complete_nacl(struct kref *kref)
323 {
324 struct se_node_acl *nacl = container_of(kref,
325 struct se_node_acl, acl_kref);
326
327 complete(&nacl->acl_free_comp);
328 }
329
330 void target_put_nacl(struct se_node_acl *nacl)
331 {
332 kref_put(&nacl->acl_kref, target_complete_nacl);
333 }
334
335 void transport_deregister_session_configfs(struct se_session *se_sess)
336 {
337 struct se_node_acl *se_nacl;
338 unsigned long flags;
339 /*
340 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
341 */
342 se_nacl = se_sess->se_node_acl;
343 if (se_nacl) {
344 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
345 if (se_nacl->acl_stop == 0)
346 list_del(&se_sess->sess_acl_list);
347 /*
348 * If the session list is empty, then clear the pointer.
349 * Otherwise, set the struct se_session pointer from the tail
350 * element of the per struct se_node_acl active session list.
351 */
352 if (list_empty(&se_nacl->acl_sess_list))
353 se_nacl->nacl_sess = NULL;
354 else {
355 se_nacl->nacl_sess = container_of(
356 se_nacl->acl_sess_list.prev,
357 struct se_session, sess_acl_list);
358 }
359 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
360 }
361 }
362 EXPORT_SYMBOL(transport_deregister_session_configfs);
363
364 void transport_free_session(struct se_session *se_sess)
365 {
366 kmem_cache_free(se_sess_cache, se_sess);
367 }
368 EXPORT_SYMBOL(transport_free_session);
369
370 void transport_deregister_session(struct se_session *se_sess)
371 {
372 struct se_portal_group *se_tpg = se_sess->se_tpg;
373 struct target_core_fabric_ops *se_tfo;
374 struct se_node_acl *se_nacl;
375 unsigned long flags;
376 bool comp_nacl = true;
377
378 if (!se_tpg) {
379 transport_free_session(se_sess);
380 return;
381 }
382 se_tfo = se_tpg->se_tpg_tfo;
383
384 spin_lock_irqsave(&se_tpg->session_lock, flags);
385 list_del(&se_sess->sess_list);
386 se_sess->se_tpg = NULL;
387 se_sess->fabric_sess_ptr = NULL;
388 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
389
390 /*
391 * Determine if we need to do extra work for this initiator node's
392 * struct se_node_acl if it had been previously dynamically generated.
393 */
394 se_nacl = se_sess->se_node_acl;
395
396 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
397 if (se_nacl && se_nacl->dynamic_node_acl) {
398 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
399 list_del(&se_nacl->acl_list);
400 se_tpg->num_node_acls--;
401 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
402 core_tpg_wait_for_nacl_pr_ref(se_nacl);
403 core_free_device_list_for_node(se_nacl, se_tpg);
404 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
405
406 comp_nacl = false;
407 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
408 }
409 }
410 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
411
412 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
413 se_tpg->se_tpg_tfo->get_fabric_name());
414 /*
415 * If last kref is dropping now for an explict NodeACL, awake sleeping
416 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
417 * removal context.
418 */
419 if (se_nacl && comp_nacl == true)
420 target_put_nacl(se_nacl);
421
422 transport_free_session(se_sess);
423 }
424 EXPORT_SYMBOL(transport_deregister_session);
425
426 /*
427 * Called with cmd->t_state_lock held.
428 */
429 static void target_remove_from_state_list(struct se_cmd *cmd)
430 {
431 struct se_device *dev = cmd->se_dev;
432 unsigned long flags;
433
434 if (!dev)
435 return;
436
437 if (cmd->transport_state & CMD_T_BUSY)
438 return;
439
440 spin_lock_irqsave(&dev->execute_task_lock, flags);
441 if (cmd->state_active) {
442 list_del(&cmd->state_list);
443 cmd->state_active = false;
444 }
445 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
446 }
447
448 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
449 {
450 unsigned long flags;
451
452 spin_lock_irqsave(&cmd->t_state_lock, flags);
453 /*
454 * Determine if IOCTL context caller in requesting the stopping of this
455 * command for LUN shutdown purposes.
456 */
457 if (cmd->transport_state & CMD_T_LUN_STOP) {
458 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
459 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
460
461 cmd->transport_state &= ~CMD_T_ACTIVE;
462 if (remove_from_lists)
463 target_remove_from_state_list(cmd);
464 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
465
466 complete(&cmd->transport_lun_stop_comp);
467 return 1;
468 }
469
470 if (remove_from_lists) {
471 target_remove_from_state_list(cmd);
472
473 /*
474 * Clear struct se_cmd->se_lun before the handoff to FE.
475 */
476 cmd->se_lun = NULL;
477 }
478
479 /*
480 * Determine if frontend context caller is requesting the stopping of
481 * this command for frontend exceptions.
482 */
483 if (cmd->transport_state & CMD_T_STOP) {
484 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
485 __func__, __LINE__,
486 cmd->se_tfo->get_task_tag(cmd));
487
488 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
489
490 complete(&cmd->t_transport_stop_comp);
491 return 1;
492 }
493
494 cmd->transport_state &= ~CMD_T_ACTIVE;
495 if (remove_from_lists) {
496 /*
497 * Some fabric modules like tcm_loop can release
498 * their internally allocated I/O reference now and
499 * struct se_cmd now.
500 *
501 * Fabric modules are expected to return '1' here if the
502 * se_cmd being passed is released at this point,
503 * or zero if not being released.
504 */
505 if (cmd->se_tfo->check_stop_free != NULL) {
506 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
507 return cmd->se_tfo->check_stop_free(cmd);
508 }
509 }
510
511 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
512 return 0;
513 }
514
515 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
516 {
517 return transport_cmd_check_stop(cmd, true);
518 }
519
520 static void transport_lun_remove_cmd(struct se_cmd *cmd)
521 {
522 struct se_lun *lun = cmd->se_lun;
523 unsigned long flags;
524
525 if (!lun)
526 return;
527
528 spin_lock_irqsave(&cmd->t_state_lock, flags);
529 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
530 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
531 target_remove_from_state_list(cmd);
532 }
533 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
534
535 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
536 if (!list_empty(&cmd->se_lun_node))
537 list_del_init(&cmd->se_lun_node);
538 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
539 }
540
541 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
542 {
543 if (transport_cmd_check_stop_to_fabric(cmd))
544 return;
545 if (remove)
546 transport_put_cmd(cmd);
547 }
548
549 static void target_complete_failure_work(struct work_struct *work)
550 {
551 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
552
553 transport_generic_request_failure(cmd,
554 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
555 }
556
557 /*
558 * Used when asking transport to copy Sense Data from the underlying
559 * Linux/SCSI struct scsi_cmnd
560 */
561 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
562 {
563 struct se_device *dev = cmd->se_dev;
564
565 WARN_ON(!cmd->se_lun);
566
567 if (!dev)
568 return NULL;
569
570 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
571 return NULL;
572
573 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
574
575 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
576 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
577 return cmd->sense_buffer;
578 }
579
580 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
581 {
582 struct se_device *dev = cmd->se_dev;
583 int success = scsi_status == GOOD;
584 unsigned long flags;
585
586 cmd->scsi_status = scsi_status;
587
588
589 spin_lock_irqsave(&cmd->t_state_lock, flags);
590 cmd->transport_state &= ~CMD_T_BUSY;
591
592 if (dev && dev->transport->transport_complete) {
593 dev->transport->transport_complete(cmd,
594 cmd->t_data_sg,
595 transport_get_sense_buffer(cmd));
596 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
597 success = 1;
598 }
599
600 /*
601 * See if we are waiting to complete for an exception condition.
602 */
603 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
604 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
605 complete(&cmd->task_stop_comp);
606 return;
607 }
608
609 if (!success)
610 cmd->transport_state |= CMD_T_FAILED;
611
612 /*
613 * Check for case where an explict ABORT_TASK has been received
614 * and transport_wait_for_tasks() will be waiting for completion..
615 */
616 if (cmd->transport_state & CMD_T_ABORTED &&
617 cmd->transport_state & CMD_T_STOP) {
618 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
619 complete(&cmd->t_transport_stop_comp);
620 return;
621 } else if (cmd->transport_state & CMD_T_FAILED) {
622 INIT_WORK(&cmd->work, target_complete_failure_work);
623 } else {
624 INIT_WORK(&cmd->work, target_complete_ok_work);
625 }
626
627 cmd->t_state = TRANSPORT_COMPLETE;
628 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
629 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
630
631 queue_work(target_completion_wq, &cmd->work);
632 }
633 EXPORT_SYMBOL(target_complete_cmd);
634
635 static void target_add_to_state_list(struct se_cmd *cmd)
636 {
637 struct se_device *dev = cmd->se_dev;
638 unsigned long flags;
639
640 spin_lock_irqsave(&dev->execute_task_lock, flags);
641 if (!cmd->state_active) {
642 list_add_tail(&cmd->state_list, &dev->state_list);
643 cmd->state_active = true;
644 }
645 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
646 }
647
648 /*
649 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
650 */
651 static void transport_write_pending_qf(struct se_cmd *cmd);
652 static void transport_complete_qf(struct se_cmd *cmd);
653
654 void target_qf_do_work(struct work_struct *work)
655 {
656 struct se_device *dev = container_of(work, struct se_device,
657 qf_work_queue);
658 LIST_HEAD(qf_cmd_list);
659 struct se_cmd *cmd, *cmd_tmp;
660
661 spin_lock_irq(&dev->qf_cmd_lock);
662 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
663 spin_unlock_irq(&dev->qf_cmd_lock);
664
665 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
666 list_del(&cmd->se_qf_node);
667 atomic_dec(&dev->dev_qf_count);
668 smp_mb__after_atomic_dec();
669
670 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
671 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
672 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
673 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
674 : "UNKNOWN");
675
676 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
677 transport_write_pending_qf(cmd);
678 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
679 transport_complete_qf(cmd);
680 }
681 }
682
683 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
684 {
685 switch (cmd->data_direction) {
686 case DMA_NONE:
687 return "NONE";
688 case DMA_FROM_DEVICE:
689 return "READ";
690 case DMA_TO_DEVICE:
691 return "WRITE";
692 case DMA_BIDIRECTIONAL:
693 return "BIDI";
694 default:
695 break;
696 }
697
698 return "UNKNOWN";
699 }
700
701 void transport_dump_dev_state(
702 struct se_device *dev,
703 char *b,
704 int *bl)
705 {
706 *bl += sprintf(b + *bl, "Status: ");
707 if (dev->export_count)
708 *bl += sprintf(b + *bl, "ACTIVATED");
709 else
710 *bl += sprintf(b + *bl, "DEACTIVATED");
711
712 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
713 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
714 dev->dev_attrib.block_size,
715 dev->dev_attrib.hw_max_sectors);
716 *bl += sprintf(b + *bl, " ");
717 }
718
719 void transport_dump_vpd_proto_id(
720 struct t10_vpd *vpd,
721 unsigned char *p_buf,
722 int p_buf_len)
723 {
724 unsigned char buf[VPD_TMP_BUF_SIZE];
725 int len;
726
727 memset(buf, 0, VPD_TMP_BUF_SIZE);
728 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
729
730 switch (vpd->protocol_identifier) {
731 case 0x00:
732 sprintf(buf+len, "Fibre Channel\n");
733 break;
734 case 0x10:
735 sprintf(buf+len, "Parallel SCSI\n");
736 break;
737 case 0x20:
738 sprintf(buf+len, "SSA\n");
739 break;
740 case 0x30:
741 sprintf(buf+len, "IEEE 1394\n");
742 break;
743 case 0x40:
744 sprintf(buf+len, "SCSI Remote Direct Memory Access"
745 " Protocol\n");
746 break;
747 case 0x50:
748 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
749 break;
750 case 0x60:
751 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
752 break;
753 case 0x70:
754 sprintf(buf+len, "Automation/Drive Interface Transport"
755 " Protocol\n");
756 break;
757 case 0x80:
758 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
759 break;
760 default:
761 sprintf(buf+len, "Unknown 0x%02x\n",
762 vpd->protocol_identifier);
763 break;
764 }
765
766 if (p_buf)
767 strncpy(p_buf, buf, p_buf_len);
768 else
769 pr_debug("%s", buf);
770 }
771
772 void
773 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
774 {
775 /*
776 * Check if the Protocol Identifier Valid (PIV) bit is set..
777 *
778 * from spc3r23.pdf section 7.5.1
779 */
780 if (page_83[1] & 0x80) {
781 vpd->protocol_identifier = (page_83[0] & 0xf0);
782 vpd->protocol_identifier_set = 1;
783 transport_dump_vpd_proto_id(vpd, NULL, 0);
784 }
785 }
786 EXPORT_SYMBOL(transport_set_vpd_proto_id);
787
788 int transport_dump_vpd_assoc(
789 struct t10_vpd *vpd,
790 unsigned char *p_buf,
791 int p_buf_len)
792 {
793 unsigned char buf[VPD_TMP_BUF_SIZE];
794 int ret = 0;
795 int len;
796
797 memset(buf, 0, VPD_TMP_BUF_SIZE);
798 len = sprintf(buf, "T10 VPD Identifier Association: ");
799
800 switch (vpd->association) {
801 case 0x00:
802 sprintf(buf+len, "addressed logical unit\n");
803 break;
804 case 0x10:
805 sprintf(buf+len, "target port\n");
806 break;
807 case 0x20:
808 sprintf(buf+len, "SCSI target device\n");
809 break;
810 default:
811 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
812 ret = -EINVAL;
813 break;
814 }
815
816 if (p_buf)
817 strncpy(p_buf, buf, p_buf_len);
818 else
819 pr_debug("%s", buf);
820
821 return ret;
822 }
823
824 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
825 {
826 /*
827 * The VPD identification association..
828 *
829 * from spc3r23.pdf Section 7.6.3.1 Table 297
830 */
831 vpd->association = (page_83[1] & 0x30);
832 return transport_dump_vpd_assoc(vpd, NULL, 0);
833 }
834 EXPORT_SYMBOL(transport_set_vpd_assoc);
835
836 int transport_dump_vpd_ident_type(
837 struct t10_vpd *vpd,
838 unsigned char *p_buf,
839 int p_buf_len)
840 {
841 unsigned char buf[VPD_TMP_BUF_SIZE];
842 int ret = 0;
843 int len;
844
845 memset(buf, 0, VPD_TMP_BUF_SIZE);
846 len = sprintf(buf, "T10 VPD Identifier Type: ");
847
848 switch (vpd->device_identifier_type) {
849 case 0x00:
850 sprintf(buf+len, "Vendor specific\n");
851 break;
852 case 0x01:
853 sprintf(buf+len, "T10 Vendor ID based\n");
854 break;
855 case 0x02:
856 sprintf(buf+len, "EUI-64 based\n");
857 break;
858 case 0x03:
859 sprintf(buf+len, "NAA\n");
860 break;
861 case 0x04:
862 sprintf(buf+len, "Relative target port identifier\n");
863 break;
864 case 0x08:
865 sprintf(buf+len, "SCSI name string\n");
866 break;
867 default:
868 sprintf(buf+len, "Unsupported: 0x%02x\n",
869 vpd->device_identifier_type);
870 ret = -EINVAL;
871 break;
872 }
873
874 if (p_buf) {
875 if (p_buf_len < strlen(buf)+1)
876 return -EINVAL;
877 strncpy(p_buf, buf, p_buf_len);
878 } else {
879 pr_debug("%s", buf);
880 }
881
882 return ret;
883 }
884
885 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
886 {
887 /*
888 * The VPD identifier type..
889 *
890 * from spc3r23.pdf Section 7.6.3.1 Table 298
891 */
892 vpd->device_identifier_type = (page_83[1] & 0x0f);
893 return transport_dump_vpd_ident_type(vpd, NULL, 0);
894 }
895 EXPORT_SYMBOL(transport_set_vpd_ident_type);
896
897 int transport_dump_vpd_ident(
898 struct t10_vpd *vpd,
899 unsigned char *p_buf,
900 int p_buf_len)
901 {
902 unsigned char buf[VPD_TMP_BUF_SIZE];
903 int ret = 0;
904
905 memset(buf, 0, VPD_TMP_BUF_SIZE);
906
907 switch (vpd->device_identifier_code_set) {
908 case 0x01: /* Binary */
909 snprintf(buf, sizeof(buf),
910 "T10 VPD Binary Device Identifier: %s\n",
911 &vpd->device_identifier[0]);
912 break;
913 case 0x02: /* ASCII */
914 snprintf(buf, sizeof(buf),
915 "T10 VPD ASCII Device Identifier: %s\n",
916 &vpd->device_identifier[0]);
917 break;
918 case 0x03: /* UTF-8 */
919 snprintf(buf, sizeof(buf),
920 "T10 VPD UTF-8 Device Identifier: %s\n",
921 &vpd->device_identifier[0]);
922 break;
923 default:
924 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
925 " 0x%02x", vpd->device_identifier_code_set);
926 ret = -EINVAL;
927 break;
928 }
929
930 if (p_buf)
931 strncpy(p_buf, buf, p_buf_len);
932 else
933 pr_debug("%s", buf);
934
935 return ret;
936 }
937
938 int
939 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
940 {
941 static const char hex_str[] = "0123456789abcdef";
942 int j = 0, i = 4; /* offset to start of the identifier */
943
944 /*
945 * The VPD Code Set (encoding)
946 *
947 * from spc3r23.pdf Section 7.6.3.1 Table 296
948 */
949 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
950 switch (vpd->device_identifier_code_set) {
951 case 0x01: /* Binary */
952 vpd->device_identifier[j++] =
953 hex_str[vpd->device_identifier_type];
954 while (i < (4 + page_83[3])) {
955 vpd->device_identifier[j++] =
956 hex_str[(page_83[i] & 0xf0) >> 4];
957 vpd->device_identifier[j++] =
958 hex_str[page_83[i] & 0x0f];
959 i++;
960 }
961 break;
962 case 0x02: /* ASCII */
963 case 0x03: /* UTF-8 */
964 while (i < (4 + page_83[3]))
965 vpd->device_identifier[j++] = page_83[i++];
966 break;
967 default:
968 break;
969 }
970
971 return transport_dump_vpd_ident(vpd, NULL, 0);
972 }
973 EXPORT_SYMBOL(transport_set_vpd_ident);
974
975 sense_reason_t
976 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
977 {
978 struct se_device *dev = cmd->se_dev;
979
980 if (cmd->unknown_data_length) {
981 cmd->data_length = size;
982 } else if (size != cmd->data_length) {
983 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
984 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
985 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
986 cmd->data_length, size, cmd->t_task_cdb[0]);
987
988 if (cmd->data_direction == DMA_TO_DEVICE) {
989 pr_err("Rejecting underflow/overflow"
990 " WRITE data\n");
991 return TCM_INVALID_CDB_FIELD;
992 }
993 /*
994 * Reject READ_* or WRITE_* with overflow/underflow for
995 * type SCF_SCSI_DATA_CDB.
996 */
997 if (dev->dev_attrib.block_size != 512) {
998 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
999 " CDB on non 512-byte sector setup subsystem"
1000 " plugin: %s\n", dev->transport->name);
1001 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1002 return TCM_INVALID_CDB_FIELD;
1003 }
1004 /*
1005 * For the overflow case keep the existing fabric provided
1006 * ->data_length. Otherwise for the underflow case, reset
1007 * ->data_length to the smaller SCSI expected data transfer
1008 * length.
1009 */
1010 if (size > cmd->data_length) {
1011 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1012 cmd->residual_count = (size - cmd->data_length);
1013 } else {
1014 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1015 cmd->residual_count = (cmd->data_length - size);
1016 cmd->data_length = size;
1017 }
1018 }
1019
1020 return 0;
1021
1022 }
1023
1024 /*
1025 * Used by fabric modules containing a local struct se_cmd within their
1026 * fabric dependent per I/O descriptor.
1027 */
1028 void transport_init_se_cmd(
1029 struct se_cmd *cmd,
1030 struct target_core_fabric_ops *tfo,
1031 struct se_session *se_sess,
1032 u32 data_length,
1033 int data_direction,
1034 int task_attr,
1035 unsigned char *sense_buffer)
1036 {
1037 INIT_LIST_HEAD(&cmd->se_lun_node);
1038 INIT_LIST_HEAD(&cmd->se_delayed_node);
1039 INIT_LIST_HEAD(&cmd->se_qf_node);
1040 INIT_LIST_HEAD(&cmd->se_cmd_list);
1041 INIT_LIST_HEAD(&cmd->state_list);
1042 init_completion(&cmd->transport_lun_fe_stop_comp);
1043 init_completion(&cmd->transport_lun_stop_comp);
1044 init_completion(&cmd->t_transport_stop_comp);
1045 init_completion(&cmd->cmd_wait_comp);
1046 init_completion(&cmd->task_stop_comp);
1047 spin_lock_init(&cmd->t_state_lock);
1048 cmd->transport_state = CMD_T_DEV_ACTIVE;
1049
1050 cmd->se_tfo = tfo;
1051 cmd->se_sess = se_sess;
1052 cmd->data_length = data_length;
1053 cmd->data_direction = data_direction;
1054 cmd->sam_task_attr = task_attr;
1055 cmd->sense_buffer = sense_buffer;
1056
1057 cmd->state_active = false;
1058 }
1059 EXPORT_SYMBOL(transport_init_se_cmd);
1060
1061 static sense_reason_t
1062 transport_check_alloc_task_attr(struct se_cmd *cmd)
1063 {
1064 struct se_device *dev = cmd->se_dev;
1065
1066 /*
1067 * Check if SAM Task Attribute emulation is enabled for this
1068 * struct se_device storage object
1069 */
1070 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1071 return 0;
1072
1073 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1074 pr_debug("SAM Task Attribute ACA"
1075 " emulation is not supported\n");
1076 return TCM_INVALID_CDB_FIELD;
1077 }
1078 /*
1079 * Used to determine when ORDERED commands should go from
1080 * Dormant to Active status.
1081 */
1082 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1083 smp_mb__after_atomic_inc();
1084 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1085 cmd->se_ordered_id, cmd->sam_task_attr,
1086 dev->transport->name);
1087 return 0;
1088 }
1089
1090 sense_reason_t
1091 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1092 {
1093 struct se_device *dev = cmd->se_dev;
1094 unsigned long flags;
1095 sense_reason_t ret;
1096
1097 /*
1098 * Ensure that the received CDB is less than the max (252 + 8) bytes
1099 * for VARIABLE_LENGTH_CMD
1100 */
1101 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1102 pr_err("Received SCSI CDB with command_size: %d that"
1103 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1104 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1105 return TCM_INVALID_CDB_FIELD;
1106 }
1107 /*
1108 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1109 * allocate the additional extended CDB buffer now.. Otherwise
1110 * setup the pointer from __t_task_cdb to t_task_cdb.
1111 */
1112 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1113 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1114 GFP_KERNEL);
1115 if (!cmd->t_task_cdb) {
1116 pr_err("Unable to allocate cmd->t_task_cdb"
1117 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1118 scsi_command_size(cdb),
1119 (unsigned long)sizeof(cmd->__t_task_cdb));
1120 return TCM_OUT_OF_RESOURCES;
1121 }
1122 } else
1123 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1124 /*
1125 * Copy the original CDB into cmd->
1126 */
1127 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1128
1129 /*
1130 * Check for an existing UNIT ATTENTION condition
1131 */
1132 ret = target_scsi3_ua_check(cmd);
1133 if (ret)
1134 return ret;
1135
1136 ret = target_alua_state_check(cmd);
1137 if (ret)
1138 return ret;
1139
1140 ret = target_check_reservation(cmd);
1141 if (ret) {
1142 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1143 return ret;
1144 }
1145
1146 ret = dev->transport->parse_cdb(cmd);
1147 if (ret)
1148 return ret;
1149
1150 ret = transport_check_alloc_task_attr(cmd);
1151 if (ret)
1152 return ret;
1153
1154 spin_lock_irqsave(&cmd->t_state_lock, flags);
1155 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1156 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1157
1158 spin_lock(&cmd->se_lun->lun_sep_lock);
1159 if (cmd->se_lun->lun_sep)
1160 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1161 spin_unlock(&cmd->se_lun->lun_sep_lock);
1162 return 0;
1163 }
1164 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1165
1166 /*
1167 * Used by fabric module frontends to queue tasks directly.
1168 * Many only be used from process context only
1169 */
1170 int transport_handle_cdb_direct(
1171 struct se_cmd *cmd)
1172 {
1173 sense_reason_t ret;
1174
1175 if (!cmd->se_lun) {
1176 dump_stack();
1177 pr_err("cmd->se_lun is NULL\n");
1178 return -EINVAL;
1179 }
1180 if (in_interrupt()) {
1181 dump_stack();
1182 pr_err("transport_generic_handle_cdb cannot be called"
1183 " from interrupt context\n");
1184 return -EINVAL;
1185 }
1186 /*
1187 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1188 * outstanding descriptors are handled correctly during shutdown via
1189 * transport_wait_for_tasks()
1190 *
1191 * Also, we don't take cmd->t_state_lock here as we only expect
1192 * this to be called for initial descriptor submission.
1193 */
1194 cmd->t_state = TRANSPORT_NEW_CMD;
1195 cmd->transport_state |= CMD_T_ACTIVE;
1196
1197 /*
1198 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1199 * so follow TRANSPORT_NEW_CMD processing thread context usage
1200 * and call transport_generic_request_failure() if necessary..
1201 */
1202 ret = transport_generic_new_cmd(cmd);
1203 if (ret)
1204 transport_generic_request_failure(cmd, ret);
1205 return 0;
1206 }
1207 EXPORT_SYMBOL(transport_handle_cdb_direct);
1208
1209 static sense_reason_t
1210 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1211 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1212 {
1213 if (!sgl || !sgl_count)
1214 return 0;
1215
1216 /*
1217 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1218 * scatterlists already have been set to follow what the fabric
1219 * passes for the original expected data transfer length.
1220 */
1221 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1222 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1223 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1224 return TCM_INVALID_CDB_FIELD;
1225 }
1226
1227 cmd->t_data_sg = sgl;
1228 cmd->t_data_nents = sgl_count;
1229
1230 if (sgl_bidi && sgl_bidi_count) {
1231 cmd->t_bidi_data_sg = sgl_bidi;
1232 cmd->t_bidi_data_nents = sgl_bidi_count;
1233 }
1234 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1235 return 0;
1236 }
1237
1238 /*
1239 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1240 * se_cmd + use pre-allocated SGL memory.
1241 *
1242 * @se_cmd: command descriptor to submit
1243 * @se_sess: associated se_sess for endpoint
1244 * @cdb: pointer to SCSI CDB
1245 * @sense: pointer to SCSI sense buffer
1246 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1247 * @data_length: fabric expected data transfer length
1248 * @task_addr: SAM task attribute
1249 * @data_dir: DMA data direction
1250 * @flags: flags for command submission from target_sc_flags_tables
1251 * @sgl: struct scatterlist memory for unidirectional mapping
1252 * @sgl_count: scatterlist count for unidirectional mapping
1253 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1254 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1255 *
1256 * Returns non zero to signal active I/O shutdown failure. All other
1257 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1258 * but still return zero here.
1259 *
1260 * This may only be called from process context, and also currently
1261 * assumes internal allocation of fabric payload buffer by target-core.
1262 */
1263 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1264 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1265 u32 data_length, int task_attr, int data_dir, int flags,
1266 struct scatterlist *sgl, u32 sgl_count,
1267 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1268 {
1269 struct se_portal_group *se_tpg;
1270 sense_reason_t rc;
1271 int ret;
1272
1273 se_tpg = se_sess->se_tpg;
1274 BUG_ON(!se_tpg);
1275 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1276 BUG_ON(in_interrupt());
1277 /*
1278 * Initialize se_cmd for target operation. From this point
1279 * exceptions are handled by sending exception status via
1280 * target_core_fabric_ops->queue_status() callback
1281 */
1282 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1283 data_length, data_dir, task_attr, sense);
1284 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1285 se_cmd->unknown_data_length = 1;
1286 /*
1287 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1288 * se_sess->sess_cmd_list. A second kref_get here is necessary
1289 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1290 * kref_put() to happen during fabric packet acknowledgement.
1291 */
1292 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1293 if (ret)
1294 return ret;
1295 /*
1296 * Signal bidirectional data payloads to target-core
1297 */
1298 if (flags & TARGET_SCF_BIDI_OP)
1299 se_cmd->se_cmd_flags |= SCF_BIDI;
1300 /*
1301 * Locate se_lun pointer and attach it to struct se_cmd
1302 */
1303 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1304 if (rc) {
1305 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1306 target_put_sess_cmd(se_sess, se_cmd);
1307 return 0;
1308 }
1309
1310 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1311 if (rc != 0) {
1312 transport_generic_request_failure(se_cmd, rc);
1313 return 0;
1314 }
1315 /*
1316 * When a non zero sgl_count has been passed perform SGL passthrough
1317 * mapping for pre-allocated fabric memory instead of having target
1318 * core perform an internal SGL allocation..
1319 */
1320 if (sgl_count != 0) {
1321 BUG_ON(!sgl);
1322
1323 /*
1324 * A work-around for tcm_loop as some userspace code via
1325 * scsi-generic do not memset their associated read buffers,
1326 * so go ahead and do that here for type non-data CDBs. Also
1327 * note that this is currently guaranteed to be a single SGL
1328 * for this case by target core in target_setup_cmd_from_cdb()
1329 * -> transport_generic_cmd_sequencer().
1330 */
1331 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1332 se_cmd->data_direction == DMA_FROM_DEVICE) {
1333 unsigned char *buf = NULL;
1334
1335 if (sgl)
1336 buf = kmap(sg_page(sgl)) + sgl->offset;
1337
1338 if (buf) {
1339 memset(buf, 0, sgl->length);
1340 kunmap(sg_page(sgl));
1341 }
1342 }
1343
1344 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1345 sgl_bidi, sgl_bidi_count);
1346 if (rc != 0) {
1347 transport_generic_request_failure(se_cmd, rc);
1348 return 0;
1349 }
1350 }
1351 /*
1352 * Check if we need to delay processing because of ALUA
1353 * Active/NonOptimized primary access state..
1354 */
1355 core_alua_check_nonop_delay(se_cmd);
1356
1357 transport_handle_cdb_direct(se_cmd);
1358 return 0;
1359 }
1360 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1361
1362 /*
1363 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1364 *
1365 * @se_cmd: command descriptor to submit
1366 * @se_sess: associated se_sess for endpoint
1367 * @cdb: pointer to SCSI CDB
1368 * @sense: pointer to SCSI sense buffer
1369 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1370 * @data_length: fabric expected data transfer length
1371 * @task_addr: SAM task attribute
1372 * @data_dir: DMA data direction
1373 * @flags: flags for command submission from target_sc_flags_tables
1374 *
1375 * Returns non zero to signal active I/O shutdown failure. All other
1376 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1377 * but still return zero here.
1378 *
1379 * This may only be called from process context, and also currently
1380 * assumes internal allocation of fabric payload buffer by target-core.
1381 *
1382 * It also assumes interal target core SGL memory allocation.
1383 */
1384 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1385 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1386 u32 data_length, int task_attr, int data_dir, int flags)
1387 {
1388 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1389 unpacked_lun, data_length, task_attr, data_dir,
1390 flags, NULL, 0, NULL, 0);
1391 }
1392 EXPORT_SYMBOL(target_submit_cmd);
1393
1394 static void target_complete_tmr_failure(struct work_struct *work)
1395 {
1396 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1397
1398 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1399 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1400
1401 transport_cmd_check_stop_to_fabric(se_cmd);
1402 }
1403
1404 /**
1405 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1406 * for TMR CDBs
1407 *
1408 * @se_cmd: command descriptor to submit
1409 * @se_sess: associated se_sess for endpoint
1410 * @sense: pointer to SCSI sense buffer
1411 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1412 * @fabric_context: fabric context for TMR req
1413 * @tm_type: Type of TM request
1414 * @gfp: gfp type for caller
1415 * @tag: referenced task tag for TMR_ABORT_TASK
1416 * @flags: submit cmd flags
1417 *
1418 * Callable from all contexts.
1419 **/
1420
1421 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1422 unsigned char *sense, u32 unpacked_lun,
1423 void *fabric_tmr_ptr, unsigned char tm_type,
1424 gfp_t gfp, unsigned int tag, int flags)
1425 {
1426 struct se_portal_group *se_tpg;
1427 int ret;
1428
1429 se_tpg = se_sess->se_tpg;
1430 BUG_ON(!se_tpg);
1431
1432 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1433 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1434 /*
1435 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1436 * allocation failure.
1437 */
1438 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1439 if (ret < 0)
1440 return -ENOMEM;
1441
1442 if (tm_type == TMR_ABORT_TASK)
1443 se_cmd->se_tmr_req->ref_task_tag = tag;
1444
1445 /* See target_submit_cmd for commentary */
1446 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1447 if (ret) {
1448 core_tmr_release_req(se_cmd->se_tmr_req);
1449 return ret;
1450 }
1451
1452 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1453 if (ret) {
1454 /*
1455 * For callback during failure handling, push this work off
1456 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1457 */
1458 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1459 schedule_work(&se_cmd->work);
1460 return 0;
1461 }
1462 transport_generic_handle_tmr(se_cmd);
1463 return 0;
1464 }
1465 EXPORT_SYMBOL(target_submit_tmr);
1466
1467 /*
1468 * If the cmd is active, request it to be stopped and sleep until it
1469 * has completed.
1470 */
1471 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1472 {
1473 bool was_active = false;
1474
1475 if (cmd->transport_state & CMD_T_BUSY) {
1476 cmd->transport_state |= CMD_T_REQUEST_STOP;
1477 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1478
1479 pr_debug("cmd %p waiting to complete\n", cmd);
1480 wait_for_completion(&cmd->task_stop_comp);
1481 pr_debug("cmd %p stopped successfully\n", cmd);
1482
1483 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1484 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1485 cmd->transport_state &= ~CMD_T_BUSY;
1486 was_active = true;
1487 }
1488
1489 return was_active;
1490 }
1491
1492 /*
1493 * Handle SAM-esque emulation for generic transport request failures.
1494 */
1495 void transport_generic_request_failure(struct se_cmd *cmd,
1496 sense_reason_t sense_reason)
1497 {
1498 int ret = 0;
1499
1500 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1501 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1502 cmd->t_task_cdb[0]);
1503 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1504 cmd->se_tfo->get_cmd_state(cmd),
1505 cmd->t_state, sense_reason);
1506 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1507 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1508 (cmd->transport_state & CMD_T_STOP) != 0,
1509 (cmd->transport_state & CMD_T_SENT) != 0);
1510
1511 /*
1512 * For SAM Task Attribute emulation for failed struct se_cmd
1513 */
1514 transport_complete_task_attr(cmd);
1515
1516 switch (sense_reason) {
1517 case TCM_NON_EXISTENT_LUN:
1518 case TCM_UNSUPPORTED_SCSI_OPCODE:
1519 case TCM_INVALID_CDB_FIELD:
1520 case TCM_INVALID_PARAMETER_LIST:
1521 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1522 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1523 case TCM_UNKNOWN_MODE_PAGE:
1524 case TCM_WRITE_PROTECTED:
1525 case TCM_ADDRESS_OUT_OF_RANGE:
1526 case TCM_CHECK_CONDITION_ABORT_CMD:
1527 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1528 case TCM_CHECK_CONDITION_NOT_READY:
1529 break;
1530 case TCM_OUT_OF_RESOURCES:
1531 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1532 break;
1533 case TCM_RESERVATION_CONFLICT:
1534 /*
1535 * No SENSE Data payload for this case, set SCSI Status
1536 * and queue the response to $FABRIC_MOD.
1537 *
1538 * Uses linux/include/scsi/scsi.h SAM status codes defs
1539 */
1540 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1541 /*
1542 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1543 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1544 * CONFLICT STATUS.
1545 *
1546 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1547 */
1548 if (cmd->se_sess &&
1549 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1550 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1551 cmd->orig_fe_lun, 0x2C,
1552 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1553
1554 ret = cmd->se_tfo->queue_status(cmd);
1555 if (ret == -EAGAIN || ret == -ENOMEM)
1556 goto queue_full;
1557 goto check_stop;
1558 default:
1559 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1560 cmd->t_task_cdb[0], sense_reason);
1561 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1562 break;
1563 }
1564
1565 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1566 if (ret == -EAGAIN || ret == -ENOMEM)
1567 goto queue_full;
1568
1569 check_stop:
1570 transport_lun_remove_cmd(cmd);
1571 if (!transport_cmd_check_stop_to_fabric(cmd))
1572 ;
1573 return;
1574
1575 queue_full:
1576 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1577 transport_handle_queue_full(cmd, cmd->se_dev);
1578 }
1579 EXPORT_SYMBOL(transport_generic_request_failure);
1580
1581 static void __target_execute_cmd(struct se_cmd *cmd)
1582 {
1583 sense_reason_t ret;
1584
1585 spin_lock_irq(&cmd->t_state_lock);
1586 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1587 spin_unlock_irq(&cmd->t_state_lock);
1588
1589 if (cmd->execute_cmd) {
1590 ret = cmd->execute_cmd(cmd);
1591 if (ret) {
1592 spin_lock_irq(&cmd->t_state_lock);
1593 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1594 spin_unlock_irq(&cmd->t_state_lock);
1595
1596 transport_generic_request_failure(cmd, ret);
1597 }
1598 }
1599 }
1600
1601 static bool target_handle_task_attr(struct se_cmd *cmd)
1602 {
1603 struct se_device *dev = cmd->se_dev;
1604
1605 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1606 return false;
1607
1608 /*
1609 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1610 * to allow the passed struct se_cmd list of tasks to the front of the list.
1611 */
1612 switch (cmd->sam_task_attr) {
1613 case MSG_HEAD_TAG:
1614 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1615 "se_ordered_id: %u\n",
1616 cmd->t_task_cdb[0], cmd->se_ordered_id);
1617 return false;
1618 case MSG_ORDERED_TAG:
1619 atomic_inc(&dev->dev_ordered_sync);
1620 smp_mb__after_atomic_inc();
1621
1622 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1623 " se_ordered_id: %u\n",
1624 cmd->t_task_cdb[0], cmd->se_ordered_id);
1625
1626 /*
1627 * Execute an ORDERED command if no other older commands
1628 * exist that need to be completed first.
1629 */
1630 if (!atomic_read(&dev->simple_cmds))
1631 return false;
1632 break;
1633 default:
1634 /*
1635 * For SIMPLE and UNTAGGED Task Attribute commands
1636 */
1637 atomic_inc(&dev->simple_cmds);
1638 smp_mb__after_atomic_inc();
1639 break;
1640 }
1641
1642 if (atomic_read(&dev->dev_ordered_sync) == 0)
1643 return false;
1644
1645 spin_lock(&dev->delayed_cmd_lock);
1646 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1647 spin_unlock(&dev->delayed_cmd_lock);
1648
1649 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1650 " delayed CMD list, se_ordered_id: %u\n",
1651 cmd->t_task_cdb[0], cmd->sam_task_attr,
1652 cmd->se_ordered_id);
1653 return true;
1654 }
1655
1656 void target_execute_cmd(struct se_cmd *cmd)
1657 {
1658 /*
1659 * If the received CDB has aleady been aborted stop processing it here.
1660 */
1661 if (transport_check_aborted_status(cmd, 1)) {
1662 complete(&cmd->transport_lun_stop_comp);
1663 return;
1664 }
1665
1666 /*
1667 * Determine if IOCTL context caller in requesting the stopping of this
1668 * command for LUN shutdown purposes.
1669 */
1670 spin_lock_irq(&cmd->t_state_lock);
1671 if (cmd->transport_state & CMD_T_LUN_STOP) {
1672 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1673 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1674
1675 cmd->transport_state &= ~CMD_T_ACTIVE;
1676 spin_unlock_irq(&cmd->t_state_lock);
1677 complete(&cmd->transport_lun_stop_comp);
1678 return;
1679 }
1680 /*
1681 * Determine if frontend context caller is requesting the stopping of
1682 * this command for frontend exceptions.
1683 */
1684 if (cmd->transport_state & CMD_T_STOP) {
1685 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1686 __func__, __LINE__,
1687 cmd->se_tfo->get_task_tag(cmd));
1688
1689 spin_unlock_irq(&cmd->t_state_lock);
1690 complete(&cmd->t_transport_stop_comp);
1691 return;
1692 }
1693
1694 cmd->t_state = TRANSPORT_PROCESSING;
1695 cmd->transport_state |= CMD_T_ACTIVE;
1696 spin_unlock_irq(&cmd->t_state_lock);
1697
1698 if (!target_handle_task_attr(cmd))
1699 __target_execute_cmd(cmd);
1700 }
1701 EXPORT_SYMBOL(target_execute_cmd);
1702
1703 /*
1704 * Process all commands up to the last received ORDERED task attribute which
1705 * requires another blocking boundary
1706 */
1707 static void target_restart_delayed_cmds(struct se_device *dev)
1708 {
1709 for (;;) {
1710 struct se_cmd *cmd;
1711
1712 spin_lock(&dev->delayed_cmd_lock);
1713 if (list_empty(&dev->delayed_cmd_list)) {
1714 spin_unlock(&dev->delayed_cmd_lock);
1715 break;
1716 }
1717
1718 cmd = list_entry(dev->delayed_cmd_list.next,
1719 struct se_cmd, se_delayed_node);
1720 list_del(&cmd->se_delayed_node);
1721 spin_unlock(&dev->delayed_cmd_lock);
1722
1723 __target_execute_cmd(cmd);
1724
1725 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1726 break;
1727 }
1728 }
1729
1730 /*
1731 * Called from I/O completion to determine which dormant/delayed
1732 * and ordered cmds need to have their tasks added to the execution queue.
1733 */
1734 static void transport_complete_task_attr(struct se_cmd *cmd)
1735 {
1736 struct se_device *dev = cmd->se_dev;
1737
1738 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1739 return;
1740
1741 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1742 atomic_dec(&dev->simple_cmds);
1743 smp_mb__after_atomic_dec();
1744 dev->dev_cur_ordered_id++;
1745 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1746 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1747 cmd->se_ordered_id);
1748 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1749 dev->dev_cur_ordered_id++;
1750 pr_debug("Incremented dev_cur_ordered_id: %u for"
1751 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1752 cmd->se_ordered_id);
1753 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1754 atomic_dec(&dev->dev_ordered_sync);
1755 smp_mb__after_atomic_dec();
1756
1757 dev->dev_cur_ordered_id++;
1758 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1759 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1760 }
1761
1762 target_restart_delayed_cmds(dev);
1763 }
1764
1765 static void transport_complete_qf(struct se_cmd *cmd)
1766 {
1767 int ret = 0;
1768
1769 transport_complete_task_attr(cmd);
1770
1771 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1772 ret = cmd->se_tfo->queue_status(cmd);
1773 if (ret)
1774 goto out;
1775 }
1776
1777 switch (cmd->data_direction) {
1778 case DMA_FROM_DEVICE:
1779 ret = cmd->se_tfo->queue_data_in(cmd);
1780 break;
1781 case DMA_TO_DEVICE:
1782 if (cmd->t_bidi_data_sg) {
1783 ret = cmd->se_tfo->queue_data_in(cmd);
1784 if (ret < 0)
1785 break;
1786 }
1787 /* Fall through for DMA_TO_DEVICE */
1788 case DMA_NONE:
1789 ret = cmd->se_tfo->queue_status(cmd);
1790 break;
1791 default:
1792 break;
1793 }
1794
1795 out:
1796 if (ret < 0) {
1797 transport_handle_queue_full(cmd, cmd->se_dev);
1798 return;
1799 }
1800 transport_lun_remove_cmd(cmd);
1801 transport_cmd_check_stop_to_fabric(cmd);
1802 }
1803
1804 static void transport_handle_queue_full(
1805 struct se_cmd *cmd,
1806 struct se_device *dev)
1807 {
1808 spin_lock_irq(&dev->qf_cmd_lock);
1809 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1810 atomic_inc(&dev->dev_qf_count);
1811 smp_mb__after_atomic_inc();
1812 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1813
1814 schedule_work(&cmd->se_dev->qf_work_queue);
1815 }
1816
1817 static void target_complete_ok_work(struct work_struct *work)
1818 {
1819 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1820 int ret;
1821
1822 /*
1823 * Check if we need to move delayed/dormant tasks from cmds on the
1824 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1825 * Attribute.
1826 */
1827 transport_complete_task_attr(cmd);
1828
1829 /*
1830 * Check to schedule QUEUE_FULL work, or execute an existing
1831 * cmd->transport_qf_callback()
1832 */
1833 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1834 schedule_work(&cmd->se_dev->qf_work_queue);
1835
1836 /*
1837 * Check if we need to send a sense buffer from
1838 * the struct se_cmd in question.
1839 */
1840 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1841 WARN_ON(!cmd->scsi_status);
1842 ret = transport_send_check_condition_and_sense(
1843 cmd, 0, 1);
1844 if (ret == -EAGAIN || ret == -ENOMEM)
1845 goto queue_full;
1846
1847 transport_lun_remove_cmd(cmd);
1848 transport_cmd_check_stop_to_fabric(cmd);
1849 return;
1850 }
1851 /*
1852 * Check for a callback, used by amongst other things
1853 * XDWRITE_READ_10 emulation.
1854 */
1855 if (cmd->transport_complete_callback)
1856 cmd->transport_complete_callback(cmd);
1857
1858 switch (cmd->data_direction) {
1859 case DMA_FROM_DEVICE:
1860 spin_lock(&cmd->se_lun->lun_sep_lock);
1861 if (cmd->se_lun->lun_sep) {
1862 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1863 cmd->data_length;
1864 }
1865 spin_unlock(&cmd->se_lun->lun_sep_lock);
1866
1867 ret = cmd->se_tfo->queue_data_in(cmd);
1868 if (ret == -EAGAIN || ret == -ENOMEM)
1869 goto queue_full;
1870 break;
1871 case DMA_TO_DEVICE:
1872 spin_lock(&cmd->se_lun->lun_sep_lock);
1873 if (cmd->se_lun->lun_sep) {
1874 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1875 cmd->data_length;
1876 }
1877 spin_unlock(&cmd->se_lun->lun_sep_lock);
1878 /*
1879 * Check if we need to send READ payload for BIDI-COMMAND
1880 */
1881 if (cmd->t_bidi_data_sg) {
1882 spin_lock(&cmd->se_lun->lun_sep_lock);
1883 if (cmd->se_lun->lun_sep) {
1884 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1885 cmd->data_length;
1886 }
1887 spin_unlock(&cmd->se_lun->lun_sep_lock);
1888 ret = cmd->se_tfo->queue_data_in(cmd);
1889 if (ret == -EAGAIN || ret == -ENOMEM)
1890 goto queue_full;
1891 break;
1892 }
1893 /* Fall through for DMA_TO_DEVICE */
1894 case DMA_NONE:
1895 ret = cmd->se_tfo->queue_status(cmd);
1896 if (ret == -EAGAIN || ret == -ENOMEM)
1897 goto queue_full;
1898 break;
1899 default:
1900 break;
1901 }
1902
1903 transport_lun_remove_cmd(cmd);
1904 transport_cmd_check_stop_to_fabric(cmd);
1905 return;
1906
1907 queue_full:
1908 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1909 " data_direction: %d\n", cmd, cmd->data_direction);
1910 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1911 transport_handle_queue_full(cmd, cmd->se_dev);
1912 }
1913
1914 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1915 {
1916 struct scatterlist *sg;
1917 int count;
1918
1919 for_each_sg(sgl, sg, nents, count)
1920 __free_page(sg_page(sg));
1921
1922 kfree(sgl);
1923 }
1924
1925 static inline void transport_free_pages(struct se_cmd *cmd)
1926 {
1927 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
1928 return;
1929
1930 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1931 cmd->t_data_sg = NULL;
1932 cmd->t_data_nents = 0;
1933
1934 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1935 cmd->t_bidi_data_sg = NULL;
1936 cmd->t_bidi_data_nents = 0;
1937 }
1938
1939 /**
1940 * transport_release_cmd - free a command
1941 * @cmd: command to free
1942 *
1943 * This routine unconditionally frees a command, and reference counting
1944 * or list removal must be done in the caller.
1945 */
1946 static void transport_release_cmd(struct se_cmd *cmd)
1947 {
1948 BUG_ON(!cmd->se_tfo);
1949
1950 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1951 core_tmr_release_req(cmd->se_tmr_req);
1952 if (cmd->t_task_cdb != cmd->__t_task_cdb)
1953 kfree(cmd->t_task_cdb);
1954 /*
1955 * If this cmd has been setup with target_get_sess_cmd(), drop
1956 * the kref and call ->release_cmd() in kref callback.
1957 */
1958 if (cmd->check_release != 0) {
1959 target_put_sess_cmd(cmd->se_sess, cmd);
1960 return;
1961 }
1962 cmd->se_tfo->release_cmd(cmd);
1963 }
1964
1965 /**
1966 * transport_put_cmd - release a reference to a command
1967 * @cmd: command to release
1968 *
1969 * This routine releases our reference to the command and frees it if possible.
1970 */
1971 static void transport_put_cmd(struct se_cmd *cmd)
1972 {
1973 unsigned long flags;
1974
1975 spin_lock_irqsave(&cmd->t_state_lock, flags);
1976 if (atomic_read(&cmd->t_fe_count) &&
1977 !atomic_dec_and_test(&cmd->t_fe_count)) {
1978 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1979 return;
1980 }
1981
1982 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
1983 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
1984 target_remove_from_state_list(cmd);
1985 }
1986 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1987
1988 transport_free_pages(cmd);
1989 transport_release_cmd(cmd);
1990 return;
1991 }
1992
1993 void *transport_kmap_data_sg(struct se_cmd *cmd)
1994 {
1995 struct scatterlist *sg = cmd->t_data_sg;
1996 struct page **pages;
1997 int i;
1998
1999 /*
2000 * We need to take into account a possible offset here for fabrics like
2001 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2002 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2003 */
2004 if (!cmd->t_data_nents)
2005 return NULL;
2006
2007 BUG_ON(!sg);
2008 if (cmd->t_data_nents == 1)
2009 return kmap(sg_page(sg)) + sg->offset;
2010
2011 /* >1 page. use vmap */
2012 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2013 if (!pages)
2014 return NULL;
2015
2016 /* convert sg[] to pages[] */
2017 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2018 pages[i] = sg_page(sg);
2019 }
2020
2021 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2022 kfree(pages);
2023 if (!cmd->t_data_vmap)
2024 return NULL;
2025
2026 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2027 }
2028 EXPORT_SYMBOL(transport_kmap_data_sg);
2029
2030 void transport_kunmap_data_sg(struct se_cmd *cmd)
2031 {
2032 if (!cmd->t_data_nents) {
2033 return;
2034 } else if (cmd->t_data_nents == 1) {
2035 kunmap(sg_page(cmd->t_data_sg));
2036 return;
2037 }
2038
2039 vunmap(cmd->t_data_vmap);
2040 cmd->t_data_vmap = NULL;
2041 }
2042 EXPORT_SYMBOL(transport_kunmap_data_sg);
2043
2044 static int
2045 transport_generic_get_mem(struct se_cmd *cmd)
2046 {
2047 u32 length = cmd->data_length;
2048 unsigned int nents;
2049 struct page *page;
2050 gfp_t zero_flag;
2051 int i = 0;
2052
2053 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2054 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2055 if (!cmd->t_data_sg)
2056 return -ENOMEM;
2057
2058 cmd->t_data_nents = nents;
2059 sg_init_table(cmd->t_data_sg, nents);
2060
2061 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2062
2063 while (length) {
2064 u32 page_len = min_t(u32, length, PAGE_SIZE);
2065 page = alloc_page(GFP_KERNEL | zero_flag);
2066 if (!page)
2067 goto out;
2068
2069 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2070 length -= page_len;
2071 i++;
2072 }
2073 return 0;
2074
2075 out:
2076 while (i > 0) {
2077 i--;
2078 __free_page(sg_page(&cmd->t_data_sg[i]));
2079 }
2080 kfree(cmd->t_data_sg);
2081 cmd->t_data_sg = NULL;
2082 return -ENOMEM;
2083 }
2084
2085 /*
2086 * Allocate any required resources to execute the command. For writes we
2087 * might not have the payload yet, so notify the fabric via a call to
2088 * ->write_pending instead. Otherwise place it on the execution queue.
2089 */
2090 sense_reason_t
2091 transport_generic_new_cmd(struct se_cmd *cmd)
2092 {
2093 int ret = 0;
2094
2095 /*
2096 * Determine is the TCM fabric module has already allocated physical
2097 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2098 * beforehand.
2099 */
2100 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2101 cmd->data_length) {
2102 ret = transport_generic_get_mem(cmd);
2103 if (ret < 0)
2104 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2105 }
2106
2107 atomic_inc(&cmd->t_fe_count);
2108
2109 /*
2110 * If this command is not a write we can execute it right here,
2111 * for write buffers we need to notify the fabric driver first
2112 * and let it call back once the write buffers are ready.
2113 */
2114 target_add_to_state_list(cmd);
2115 if (cmd->data_direction != DMA_TO_DEVICE) {
2116 target_execute_cmd(cmd);
2117 return 0;
2118 }
2119
2120 spin_lock_irq(&cmd->t_state_lock);
2121 cmd->t_state = TRANSPORT_WRITE_PENDING;
2122 spin_unlock_irq(&cmd->t_state_lock);
2123
2124 transport_cmd_check_stop(cmd, false);
2125
2126 ret = cmd->se_tfo->write_pending(cmd);
2127 if (ret == -EAGAIN || ret == -ENOMEM)
2128 goto queue_full;
2129
2130 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2131 WARN_ON(ret);
2132
2133 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2134
2135 queue_full:
2136 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2137 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2138 transport_handle_queue_full(cmd, cmd->se_dev);
2139 return 0;
2140 }
2141 EXPORT_SYMBOL(transport_generic_new_cmd);
2142
2143 static void transport_write_pending_qf(struct se_cmd *cmd)
2144 {
2145 int ret;
2146
2147 ret = cmd->se_tfo->write_pending(cmd);
2148 if (ret == -EAGAIN || ret == -ENOMEM) {
2149 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2150 cmd);
2151 transport_handle_queue_full(cmd, cmd->se_dev);
2152 }
2153 }
2154
2155 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2156 {
2157 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2158 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2159 transport_wait_for_tasks(cmd);
2160
2161 transport_release_cmd(cmd);
2162 } else {
2163 if (wait_for_tasks)
2164 transport_wait_for_tasks(cmd);
2165
2166 if (cmd->se_lun)
2167 transport_lun_remove_cmd(cmd);
2168
2169 transport_put_cmd(cmd);
2170 }
2171 }
2172 EXPORT_SYMBOL(transport_generic_free_cmd);
2173
2174 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2175 * @se_sess: session to reference
2176 * @se_cmd: command descriptor to add
2177 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2178 */
2179 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2180 bool ack_kref)
2181 {
2182 unsigned long flags;
2183 int ret = 0;
2184
2185 kref_init(&se_cmd->cmd_kref);
2186 /*
2187 * Add a second kref if the fabric caller is expecting to handle
2188 * fabric acknowledgement that requires two target_put_sess_cmd()
2189 * invocations before se_cmd descriptor release.
2190 */
2191 if (ack_kref == true) {
2192 kref_get(&se_cmd->cmd_kref);
2193 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2194 }
2195
2196 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2197 if (se_sess->sess_tearing_down) {
2198 ret = -ESHUTDOWN;
2199 goto out;
2200 }
2201 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2202 se_cmd->check_release = 1;
2203
2204 out:
2205 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2206 return ret;
2207 }
2208 EXPORT_SYMBOL(target_get_sess_cmd);
2209
2210 static void target_release_cmd_kref(struct kref *kref)
2211 {
2212 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2213 struct se_session *se_sess = se_cmd->se_sess;
2214
2215 if (list_empty(&se_cmd->se_cmd_list)) {
2216 spin_unlock(&se_sess->sess_cmd_lock);
2217 se_cmd->se_tfo->release_cmd(se_cmd);
2218 return;
2219 }
2220 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2221 spin_unlock(&se_sess->sess_cmd_lock);
2222 complete(&se_cmd->cmd_wait_comp);
2223 return;
2224 }
2225 list_del(&se_cmd->se_cmd_list);
2226 spin_unlock(&se_sess->sess_cmd_lock);
2227
2228 se_cmd->se_tfo->release_cmd(se_cmd);
2229 }
2230
2231 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2232 * @se_sess: session to reference
2233 * @se_cmd: command descriptor to drop
2234 */
2235 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2236 {
2237 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2238 &se_sess->sess_cmd_lock);
2239 }
2240 EXPORT_SYMBOL(target_put_sess_cmd);
2241
2242 /* target_sess_cmd_list_set_waiting - Flag all commands in
2243 * sess_cmd_list to complete cmd_wait_comp. Set
2244 * sess_tearing_down so no more commands are queued.
2245 * @se_sess: session to flag
2246 */
2247 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2248 {
2249 struct se_cmd *se_cmd;
2250 unsigned long flags;
2251
2252 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2253
2254 WARN_ON(se_sess->sess_tearing_down);
2255 se_sess->sess_tearing_down = 1;
2256
2257 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list)
2258 se_cmd->cmd_wait_set = 1;
2259
2260 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2261 }
2262 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2263
2264 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2265 * @se_sess: session to wait for active I/O
2266 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2267 */
2268 void target_wait_for_sess_cmds(
2269 struct se_session *se_sess,
2270 int wait_for_tasks)
2271 {
2272 struct se_cmd *se_cmd, *tmp_cmd;
2273 bool rc = false;
2274
2275 list_for_each_entry_safe(se_cmd, tmp_cmd,
2276 &se_sess->sess_cmd_list, se_cmd_list) {
2277 list_del(&se_cmd->se_cmd_list);
2278
2279 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2280 " %d\n", se_cmd, se_cmd->t_state,
2281 se_cmd->se_tfo->get_cmd_state(se_cmd));
2282
2283 if (wait_for_tasks) {
2284 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2285 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2286 se_cmd->se_tfo->get_cmd_state(se_cmd));
2287
2288 rc = transport_wait_for_tasks(se_cmd);
2289
2290 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2291 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2292 se_cmd->se_tfo->get_cmd_state(se_cmd));
2293 }
2294
2295 if (!rc) {
2296 wait_for_completion(&se_cmd->cmd_wait_comp);
2297 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2298 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2299 se_cmd->se_tfo->get_cmd_state(se_cmd));
2300 }
2301
2302 se_cmd->se_tfo->release_cmd(se_cmd);
2303 }
2304 }
2305 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2306
2307 /* transport_lun_wait_for_tasks():
2308 *
2309 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2310 * an struct se_lun to be successfully shutdown.
2311 */
2312 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2313 {
2314 unsigned long flags;
2315 int ret = 0;
2316
2317 /*
2318 * If the frontend has already requested this struct se_cmd to
2319 * be stopped, we can safely ignore this struct se_cmd.
2320 */
2321 spin_lock_irqsave(&cmd->t_state_lock, flags);
2322 if (cmd->transport_state & CMD_T_STOP) {
2323 cmd->transport_state &= ~CMD_T_LUN_STOP;
2324
2325 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2326 cmd->se_tfo->get_task_tag(cmd));
2327 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2328 transport_cmd_check_stop(cmd, false);
2329 return -EPERM;
2330 }
2331 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2332 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2333
2334 // XXX: audit task_flags checks.
2335 spin_lock_irqsave(&cmd->t_state_lock, flags);
2336 if ((cmd->transport_state & CMD_T_BUSY) &&
2337 (cmd->transport_state & CMD_T_SENT)) {
2338 if (!target_stop_cmd(cmd, &flags))
2339 ret++;
2340 }
2341 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2342
2343 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2344 " %d\n", cmd, ret);
2345 if (!ret) {
2346 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2347 cmd->se_tfo->get_task_tag(cmd));
2348 wait_for_completion(&cmd->transport_lun_stop_comp);
2349 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2350 cmd->se_tfo->get_task_tag(cmd));
2351 }
2352
2353 return 0;
2354 }
2355
2356 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2357 {
2358 struct se_cmd *cmd = NULL;
2359 unsigned long lun_flags, cmd_flags;
2360 /*
2361 * Do exception processing and return CHECK_CONDITION status to the
2362 * Initiator Port.
2363 */
2364 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2365 while (!list_empty(&lun->lun_cmd_list)) {
2366 cmd = list_first_entry(&lun->lun_cmd_list,
2367 struct se_cmd, se_lun_node);
2368 list_del_init(&cmd->se_lun_node);
2369
2370 spin_lock(&cmd->t_state_lock);
2371 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2372 "_lun_stop for ITT: 0x%08x\n",
2373 cmd->se_lun->unpacked_lun,
2374 cmd->se_tfo->get_task_tag(cmd));
2375 cmd->transport_state |= CMD_T_LUN_STOP;
2376 spin_unlock(&cmd->t_state_lock);
2377
2378 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2379
2380 if (!cmd->se_lun) {
2381 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2382 cmd->se_tfo->get_task_tag(cmd),
2383 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2384 BUG();
2385 }
2386 /*
2387 * If the Storage engine still owns the iscsi_cmd_t, determine
2388 * and/or stop its context.
2389 */
2390 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2391 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2392 cmd->se_tfo->get_task_tag(cmd));
2393
2394 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2395 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2396 continue;
2397 }
2398
2399 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2400 "_wait_for_tasks(): SUCCESS\n",
2401 cmd->se_lun->unpacked_lun,
2402 cmd->se_tfo->get_task_tag(cmd));
2403
2404 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2405 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2406 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2407 goto check_cond;
2408 }
2409 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2410 target_remove_from_state_list(cmd);
2411 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2412
2413 /*
2414 * The Storage engine stopped this struct se_cmd before it was
2415 * send to the fabric frontend for delivery back to the
2416 * Initiator Node. Return this SCSI CDB back with an
2417 * CHECK_CONDITION status.
2418 */
2419 check_cond:
2420 transport_send_check_condition_and_sense(cmd,
2421 TCM_NON_EXISTENT_LUN, 0);
2422 /*
2423 * If the fabric frontend is waiting for this iscsi_cmd_t to
2424 * be released, notify the waiting thread now that LU has
2425 * finished accessing it.
2426 */
2427 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2428 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2429 pr_debug("SE_LUN[%d] - Detected FE stop for"
2430 " struct se_cmd: %p ITT: 0x%08x\n",
2431 lun->unpacked_lun,
2432 cmd, cmd->se_tfo->get_task_tag(cmd));
2433
2434 spin_unlock_irqrestore(&cmd->t_state_lock,
2435 cmd_flags);
2436 transport_cmd_check_stop(cmd, false);
2437 complete(&cmd->transport_lun_fe_stop_comp);
2438 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2439 continue;
2440 }
2441 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2442 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2443
2444 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2445 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2446 }
2447 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2448 }
2449
2450 static int transport_clear_lun_thread(void *p)
2451 {
2452 struct se_lun *lun = p;
2453
2454 __transport_clear_lun_from_sessions(lun);
2455 complete(&lun->lun_shutdown_comp);
2456
2457 return 0;
2458 }
2459
2460 int transport_clear_lun_from_sessions(struct se_lun *lun)
2461 {
2462 struct task_struct *kt;
2463
2464 kt = kthread_run(transport_clear_lun_thread, lun,
2465 "tcm_cl_%u", lun->unpacked_lun);
2466 if (IS_ERR(kt)) {
2467 pr_err("Unable to start clear_lun thread\n");
2468 return PTR_ERR(kt);
2469 }
2470 wait_for_completion(&lun->lun_shutdown_comp);
2471
2472 return 0;
2473 }
2474
2475 /**
2476 * transport_wait_for_tasks - wait for completion to occur
2477 * @cmd: command to wait
2478 *
2479 * Called from frontend fabric context to wait for storage engine
2480 * to pause and/or release frontend generated struct se_cmd.
2481 */
2482 bool transport_wait_for_tasks(struct se_cmd *cmd)
2483 {
2484 unsigned long flags;
2485
2486 spin_lock_irqsave(&cmd->t_state_lock, flags);
2487 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2488 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2490 return false;
2491 }
2492
2493 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2494 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2495 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2496 return false;
2497 }
2498 /*
2499 * If we are already stopped due to an external event (ie: LUN shutdown)
2500 * sleep until the connection can have the passed struct se_cmd back.
2501 * The cmd->transport_lun_stopped_sem will be upped by
2502 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2503 * has completed its operation on the struct se_cmd.
2504 */
2505 if (cmd->transport_state & CMD_T_LUN_STOP) {
2506 pr_debug("wait_for_tasks: Stopping"
2507 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2508 "_stop_comp); for ITT: 0x%08x\n",
2509 cmd->se_tfo->get_task_tag(cmd));
2510 /*
2511 * There is a special case for WRITES where a FE exception +
2512 * LUN shutdown means ConfigFS context is still sleeping on
2513 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2514 * We go ahead and up transport_lun_stop_comp just to be sure
2515 * here.
2516 */
2517 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2518 complete(&cmd->transport_lun_stop_comp);
2519 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2520 spin_lock_irqsave(&cmd->t_state_lock, flags);
2521
2522 target_remove_from_state_list(cmd);
2523 /*
2524 * At this point, the frontend who was the originator of this
2525 * struct se_cmd, now owns the structure and can be released through
2526 * normal means below.
2527 */
2528 pr_debug("wait_for_tasks: Stopped"
2529 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2530 "stop_comp); for ITT: 0x%08x\n",
2531 cmd->se_tfo->get_task_tag(cmd));
2532
2533 cmd->transport_state &= ~CMD_T_LUN_STOP;
2534 }
2535
2536 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2537 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2538 return false;
2539 }
2540
2541 cmd->transport_state |= CMD_T_STOP;
2542
2543 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2544 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2545 cmd, cmd->se_tfo->get_task_tag(cmd),
2546 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2547
2548 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2549
2550 wait_for_completion(&cmd->t_transport_stop_comp);
2551
2552 spin_lock_irqsave(&cmd->t_state_lock, flags);
2553 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2554
2555 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2556 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2557 cmd->se_tfo->get_task_tag(cmd));
2558
2559 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2560
2561 return true;
2562 }
2563 EXPORT_SYMBOL(transport_wait_for_tasks);
2564
2565 static int transport_get_sense_codes(
2566 struct se_cmd *cmd,
2567 u8 *asc,
2568 u8 *ascq)
2569 {
2570 *asc = cmd->scsi_asc;
2571 *ascq = cmd->scsi_ascq;
2572
2573 return 0;
2574 }
2575
2576 int
2577 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2578 sense_reason_t reason, int from_transport)
2579 {
2580 unsigned char *buffer = cmd->sense_buffer;
2581 unsigned long flags;
2582 u8 asc = 0, ascq = 0;
2583
2584 spin_lock_irqsave(&cmd->t_state_lock, flags);
2585 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2586 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2587 return 0;
2588 }
2589 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2590 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2591
2592 if (!reason && from_transport)
2593 goto after_reason;
2594
2595 if (!from_transport)
2596 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2597
2598 /*
2599 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2600 * SENSE KEY values from include/scsi/scsi.h
2601 */
2602 switch (reason) {
2603 case TCM_NO_SENSE:
2604 /* CURRENT ERROR */
2605 buffer[0] = 0x70;
2606 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2607 /* Not Ready */
2608 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2609 /* NO ADDITIONAL SENSE INFORMATION */
2610 buffer[SPC_ASC_KEY_OFFSET] = 0;
2611 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2612 break;
2613 case TCM_NON_EXISTENT_LUN:
2614 /* CURRENT ERROR */
2615 buffer[0] = 0x70;
2616 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2617 /* ILLEGAL REQUEST */
2618 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2619 /* LOGICAL UNIT NOT SUPPORTED */
2620 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2621 break;
2622 case TCM_UNSUPPORTED_SCSI_OPCODE:
2623 case TCM_SECTOR_COUNT_TOO_MANY:
2624 /* CURRENT ERROR */
2625 buffer[0] = 0x70;
2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2627 /* ILLEGAL REQUEST */
2628 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2629 /* INVALID COMMAND OPERATION CODE */
2630 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2631 break;
2632 case TCM_UNKNOWN_MODE_PAGE:
2633 /* CURRENT ERROR */
2634 buffer[0] = 0x70;
2635 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2636 /* ILLEGAL REQUEST */
2637 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2638 /* INVALID FIELD IN CDB */
2639 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2640 break;
2641 case TCM_CHECK_CONDITION_ABORT_CMD:
2642 /* CURRENT ERROR */
2643 buffer[0] = 0x70;
2644 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2645 /* ABORTED COMMAND */
2646 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2647 /* BUS DEVICE RESET FUNCTION OCCURRED */
2648 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2649 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2650 break;
2651 case TCM_INCORRECT_AMOUNT_OF_DATA:
2652 /* CURRENT ERROR */
2653 buffer[0] = 0x70;
2654 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2655 /* ABORTED COMMAND */
2656 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2657 /* WRITE ERROR */
2658 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2659 /* NOT ENOUGH UNSOLICITED DATA */
2660 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2661 break;
2662 case TCM_INVALID_CDB_FIELD:
2663 /* CURRENT ERROR */
2664 buffer[0] = 0x70;
2665 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2666 /* ILLEGAL REQUEST */
2667 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2668 /* INVALID FIELD IN CDB */
2669 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2670 break;
2671 case TCM_INVALID_PARAMETER_LIST:
2672 /* CURRENT ERROR */
2673 buffer[0] = 0x70;
2674 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2675 /* ILLEGAL REQUEST */
2676 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2677 /* INVALID FIELD IN PARAMETER LIST */
2678 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2679 break;
2680 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2681 /* CURRENT ERROR */
2682 buffer[0] = 0x70;
2683 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2684 /* ILLEGAL REQUEST */
2685 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2686 /* PARAMETER LIST LENGTH ERROR */
2687 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2688 break;
2689 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2690 /* CURRENT ERROR */
2691 buffer[0] = 0x70;
2692 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2693 /* ABORTED COMMAND */
2694 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2695 /* WRITE ERROR */
2696 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2697 /* UNEXPECTED_UNSOLICITED_DATA */
2698 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2699 break;
2700 case TCM_SERVICE_CRC_ERROR:
2701 /* CURRENT ERROR */
2702 buffer[0] = 0x70;
2703 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2704 /* ABORTED COMMAND */
2705 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2706 /* PROTOCOL SERVICE CRC ERROR */
2707 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2708 /* N/A */
2709 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2710 break;
2711 case TCM_SNACK_REJECTED:
2712 /* CURRENT ERROR */
2713 buffer[0] = 0x70;
2714 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2715 /* ABORTED COMMAND */
2716 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2717 /* READ ERROR */
2718 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2719 /* FAILED RETRANSMISSION REQUEST */
2720 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2721 break;
2722 case TCM_WRITE_PROTECTED:
2723 /* CURRENT ERROR */
2724 buffer[0] = 0x70;
2725 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2726 /* DATA PROTECT */
2727 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2728 /* WRITE PROTECTED */
2729 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2730 break;
2731 case TCM_ADDRESS_OUT_OF_RANGE:
2732 /* CURRENT ERROR */
2733 buffer[0] = 0x70;
2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2735 /* ILLEGAL REQUEST */
2736 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2737 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2738 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2739 break;
2740 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2741 /* CURRENT ERROR */
2742 buffer[0] = 0x70;
2743 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2744 /* UNIT ATTENTION */
2745 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2746 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2747 buffer[SPC_ASC_KEY_OFFSET] = asc;
2748 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2749 break;
2750 case TCM_CHECK_CONDITION_NOT_READY:
2751 /* CURRENT ERROR */
2752 buffer[0] = 0x70;
2753 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2754 /* Not Ready */
2755 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2756 transport_get_sense_codes(cmd, &asc, &ascq);
2757 buffer[SPC_ASC_KEY_OFFSET] = asc;
2758 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2759 break;
2760 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2761 default:
2762 /* CURRENT ERROR */
2763 buffer[0] = 0x70;
2764 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2765 /*
2766 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2767 * Solaris initiators. Returning NOT READY instead means the
2768 * operations will be retried a finite number of times and we
2769 * can survive intermittent errors.
2770 */
2771 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2772 /* LOGICAL UNIT COMMUNICATION FAILURE */
2773 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2774 break;
2775 }
2776 /*
2777 * This code uses linux/include/scsi/scsi.h SAM status codes!
2778 */
2779 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2780 /*
2781 * Automatically padded, this value is encoded in the fabric's
2782 * data_length response PDU containing the SCSI defined sense data.
2783 */
2784 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2785
2786 after_reason:
2787 return cmd->se_tfo->queue_status(cmd);
2788 }
2789 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2790
2791 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2792 {
2793 if (!(cmd->transport_state & CMD_T_ABORTED))
2794 return 0;
2795
2796 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2797 return 1;
2798
2799 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2800 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2801
2802 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2803 cmd->se_tfo->queue_status(cmd);
2804
2805 return 1;
2806 }
2807 EXPORT_SYMBOL(transport_check_aborted_status);
2808
2809 void transport_send_task_abort(struct se_cmd *cmd)
2810 {
2811 unsigned long flags;
2812
2813 spin_lock_irqsave(&cmd->t_state_lock, flags);
2814 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2815 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2816 return;
2817 }
2818 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2819
2820 /*
2821 * If there are still expected incoming fabric WRITEs, we wait
2822 * until until they have completed before sending a TASK_ABORTED
2823 * response. This response with TASK_ABORTED status will be
2824 * queued back to fabric module by transport_check_aborted_status().
2825 */
2826 if (cmd->data_direction == DMA_TO_DEVICE) {
2827 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2828 cmd->transport_state |= CMD_T_ABORTED;
2829 smp_mb__after_atomic_inc();
2830 }
2831 }
2832 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2833
2834 transport_lun_remove_cmd(cmd);
2835
2836 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2837 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2838 cmd->se_tfo->get_task_tag(cmd));
2839
2840 cmd->se_tfo->queue_status(cmd);
2841 }
2842
2843 static void target_tmr_work(struct work_struct *work)
2844 {
2845 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2846 struct se_device *dev = cmd->se_dev;
2847 struct se_tmr_req *tmr = cmd->se_tmr_req;
2848 int ret;
2849
2850 switch (tmr->function) {
2851 case TMR_ABORT_TASK:
2852 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2853 break;
2854 case TMR_ABORT_TASK_SET:
2855 case TMR_CLEAR_ACA:
2856 case TMR_CLEAR_TASK_SET:
2857 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2858 break;
2859 case TMR_LUN_RESET:
2860 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2861 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2862 TMR_FUNCTION_REJECTED;
2863 break;
2864 case TMR_TARGET_WARM_RESET:
2865 tmr->response = TMR_FUNCTION_REJECTED;
2866 break;
2867 case TMR_TARGET_COLD_RESET:
2868 tmr->response = TMR_FUNCTION_REJECTED;
2869 break;
2870 default:
2871 pr_err("Uknown TMR function: 0x%02x.\n",
2872 tmr->function);
2873 tmr->response = TMR_FUNCTION_REJECTED;
2874 break;
2875 }
2876
2877 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2878 cmd->se_tfo->queue_tm_rsp(cmd);
2879
2880 transport_cmd_check_stop_to_fabric(cmd);
2881 }
2882
2883 int transport_generic_handle_tmr(
2884 struct se_cmd *cmd)
2885 {
2886 INIT_WORK(&cmd->work, target_tmr_work);
2887 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2888 return 0;
2889 }
2890 EXPORT_SYMBOL(transport_generic_handle_tmr);