include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / staging / iio / accel / lis3l02dq_ring.c
1 #include <linux/interrupt.h>
2 #include <linux/irq.h>
3 #include <linux/gpio.h>
4 #include <linux/workqueue.h>
5 #include <linux/mutex.h>
6 #include <linux/device.h>
7 #include <linux/kernel.h>
8 #include <linux/spi/spi.h>
9 #include <linux/sysfs.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12
13 #include "../iio.h"
14 #include "../sysfs.h"
15 #include "../ring_sw.h"
16 #include "accel.h"
17 #include "../trigger.h"
18 #include "lis3l02dq.h"
19
20 /**
21 * combine_8_to_16() utility function to munge to u8s into u16
22 **/
23 static inline u16 combine_8_to_16(u8 lower, u8 upper)
24 {
25 u16 _lower = lower;
26 u16 _upper = upper;
27 return _lower | (_upper << 8);
28 }
29
30 /**
31 * lis3l02dq_scan_el_set_state() set whether a scan contains a given channel
32 * @scan_el: associtate iio scan element attribute
33 * @indio_dev: the device structure
34 * @bool: desired state
35 *
36 * mlock already held when this is called.
37 **/
38 static int lis3l02dq_scan_el_set_state(struct iio_scan_el *scan_el,
39 struct iio_dev *indio_dev,
40 bool state)
41 {
42 u8 t, mask;
43 int ret;
44
45 ret = lis3l02dq_spi_read_reg_8(&indio_dev->dev,
46 LIS3L02DQ_REG_CTRL_1_ADDR,
47 &t);
48 if (ret)
49 goto error_ret;
50 switch (scan_el->label) {
51 case LIS3L02DQ_REG_OUT_X_L_ADDR:
52 mask = LIS3L02DQ_REG_CTRL_1_AXES_X_ENABLE;
53 break;
54 case LIS3L02DQ_REG_OUT_Y_L_ADDR:
55 mask = LIS3L02DQ_REG_CTRL_1_AXES_Y_ENABLE;
56 break;
57 case LIS3L02DQ_REG_OUT_Z_L_ADDR:
58 mask = LIS3L02DQ_REG_CTRL_1_AXES_Z_ENABLE;
59 break;
60 default:
61 ret = -EINVAL;
62 goto error_ret;
63 }
64
65 if (!(mask & t) == state) {
66 if (state)
67 t |= mask;
68 else
69 t &= ~mask;
70 ret = lis3l02dq_spi_write_reg_8(&indio_dev->dev,
71 LIS3L02DQ_REG_CTRL_1_ADDR,
72 &t);
73 }
74 error_ret:
75 return ret;
76
77 }
78 static IIO_SCAN_EL_C(accel_x, LIS3L02DQ_SCAN_ACC_X, IIO_SIGNED(16),
79 LIS3L02DQ_REG_OUT_X_L_ADDR,
80 &lis3l02dq_scan_el_set_state);
81 static IIO_SCAN_EL_C(accel_y, LIS3L02DQ_SCAN_ACC_Y, IIO_SIGNED(16),
82 LIS3L02DQ_REG_OUT_Y_L_ADDR,
83 &lis3l02dq_scan_el_set_state);
84 static IIO_SCAN_EL_C(accel_z, LIS3L02DQ_SCAN_ACC_Z, IIO_SIGNED(16),
85 LIS3L02DQ_REG_OUT_Z_L_ADDR,
86 &lis3l02dq_scan_el_set_state);
87 static IIO_SCAN_EL_TIMESTAMP;
88
89 static struct attribute *lis3l02dq_scan_el_attrs[] = {
90 &iio_scan_el_accel_x.dev_attr.attr,
91 &iio_scan_el_accel_y.dev_attr.attr,
92 &iio_scan_el_accel_z.dev_attr.attr,
93 &iio_scan_el_timestamp.dev_attr.attr,
94 NULL,
95 };
96
97 static struct attribute_group lis3l02dq_scan_el_group = {
98 .attrs = lis3l02dq_scan_el_attrs,
99 .name = "scan_elements",
100 };
101
102 /**
103 * lis3l02dq_poll_func_th() top half interrupt handler called by trigger
104 * @private_data: iio_dev
105 **/
106 static void lis3l02dq_poll_func_th(struct iio_dev *indio_dev)
107 {
108 struct lis3l02dq_state *st = iio_dev_get_devdata(indio_dev);
109 st->last_timestamp = indio_dev->trig->timestamp;
110 schedule_work(&st->work_trigger_to_ring);
111 /* Indicate that this interrupt is being handled */
112
113 /* Technically this is trigger related, but without this
114 * handler running there is currently now way for the interrupt
115 * to clear.
116 */
117 st->inter = 1;
118 }
119
120 /**
121 * lis3l02dq_data_rdy_trig_poll() the event handler for the data rdy trig
122 **/
123 static int lis3l02dq_data_rdy_trig_poll(struct iio_dev *dev_info,
124 int index,
125 s64 timestamp,
126 int no_test)
127 {
128 struct lis3l02dq_state *st = iio_dev_get_devdata(dev_info);
129 struct iio_trigger *trig = st->trig;
130
131 trig->timestamp = timestamp;
132 iio_trigger_poll(trig);
133
134 return IRQ_HANDLED;
135 }
136
137 /* This is an event as it is a response to a physical interrupt */
138 IIO_EVENT_SH(data_rdy_trig, &lis3l02dq_data_rdy_trig_poll);
139
140 /**
141 * lis3l02dq_read_accel_from_ring() individual acceleration read from ring
142 **/
143 ssize_t lis3l02dq_read_accel_from_ring(struct device *dev,
144 struct device_attribute *attr,
145 char *buf)
146 {
147 struct iio_scan_el *el = NULL;
148 int ret, len = 0, i = 0;
149 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
150 struct iio_dev *dev_info = dev_get_drvdata(dev);
151 s16 *data;
152
153 while (dev_info->scan_el_attrs->attrs[i]) {
154 el = to_iio_scan_el((struct device_attribute *)
155 (dev_info->scan_el_attrs->attrs[i]));
156 /* label is in fact the address */
157 if (el->label == this_attr->address)
158 break;
159 i++;
160 }
161 if (!dev_info->scan_el_attrs->attrs[i]) {
162 ret = -EINVAL;
163 goto error_ret;
164 }
165 /* If this element is in the scan mask */
166 ret = iio_scan_mask_query(dev_info, el->number);
167 if (ret < 0)
168 goto error_ret;
169 if (ret) {
170 data = kmalloc(dev_info->ring->access.get_bpd(dev_info->ring),
171 GFP_KERNEL);
172 if (data == NULL)
173 return -ENOMEM;
174 ret = dev_info->ring->access.read_last(dev_info->ring,
175 (u8 *)data);
176 if (ret)
177 goto error_free_data;
178 } else {
179 ret = -EINVAL;
180 goto error_ret;
181 }
182 len = iio_scan_mask_count_to_right(dev_info, el->number);
183 if (len < 0) {
184 ret = len;
185 goto error_free_data;
186 }
187 len = sprintf(buf, "ring %d\n", data[len]);
188 error_free_data:
189 kfree(data);
190 error_ret:
191 return ret ? ret : len;
192
193 }
194
195 static const u8 read_all_tx_array[] =
196 {
197 LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_X_L_ADDR), 0,
198 LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_X_H_ADDR), 0,
199 LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Y_L_ADDR), 0,
200 LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Y_H_ADDR), 0,
201 LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Z_L_ADDR), 0,
202 LIS3L02DQ_READ_REG(LIS3L02DQ_REG_OUT_Z_H_ADDR), 0,
203 };
204
205 /**
206 * lis3l02dq_read_all() Reads all channels currently selected
207 * @st: device specific state
208 * @rx_array: (dma capable) recieve array, must be at least
209 * 4*number of channels
210 **/
211 int lis3l02dq_read_all(struct lis3l02dq_state *st, u8 *rx_array)
212 {
213 struct spi_transfer *xfers;
214 struct spi_message msg;
215 int ret, i, j = 0;
216
217 xfers = kzalloc((st->indio_dev->scan_count) * 2
218 * sizeof(*xfers), GFP_KERNEL);
219 if (!xfers)
220 return -ENOMEM;
221
222 mutex_lock(&st->buf_lock);
223
224 for (i = 0; i < ARRAY_SIZE(read_all_tx_array)/4; i++) {
225 if (st->indio_dev->scan_mask & (1 << i)) {
226 /* lower byte */
227 xfers[j].tx_buf = st->tx + 2*j;
228 st->tx[2*j] = read_all_tx_array[i*4];
229 st->tx[2*j + 1] = 0;
230 if (rx_array)
231 xfers[j].rx_buf = rx_array + j*2;
232 xfers[j].bits_per_word = 8;
233 xfers[j].len = 2;
234 xfers[j].cs_change = 1;
235 j++;
236
237 /* upper byte */
238 xfers[j].tx_buf = st->tx + 2*j;
239 st->tx[2*j] = read_all_tx_array[i*4 + 2];
240 st->tx[2*j + 1] = 0;
241 if (rx_array)
242 xfers[j].rx_buf = rx_array + j*2;
243 xfers[j].bits_per_word = 8;
244 xfers[j].len = 2;
245 xfers[j].cs_change = 1;
246 j++;
247 }
248 }
249 /* After these are transmitted, the rx_buff should have
250 * values in alternate bytes
251 */
252 spi_message_init(&msg);
253 for (j = 0; j < st->indio_dev->scan_count * 2; j++)
254 spi_message_add_tail(&xfers[j], &msg);
255
256 ret = spi_sync(st->us, &msg);
257 mutex_unlock(&st->buf_lock);
258 kfree(xfers);
259
260 return ret;
261 }
262
263
264 /* Whilst this makes a lot of calls to iio_sw_ring functions - it is to device
265 * specific to be rolled into the core.
266 */
267 static void lis3l02dq_trigger_bh_to_ring(struct work_struct *work_s)
268 {
269 struct lis3l02dq_state *st
270 = container_of(work_s, struct lis3l02dq_state,
271 work_trigger_to_ring);
272
273 u8 *rx_array;
274 int i = 0;
275 u16 *data;
276 size_t datasize = st->indio_dev
277 ->ring->access.get_bpd(st->indio_dev->ring);
278
279 data = kmalloc(datasize , GFP_KERNEL);
280 if (data == NULL) {
281 dev_err(&st->us->dev, "memory alloc failed in ring bh");
282 return;
283 }
284 /* Due to interleaved nature of transmission this buffer must be
285 * twice the number of bytes, or 4 times the number of channels
286 */
287 rx_array = kmalloc(4 * (st->indio_dev->scan_count), GFP_KERNEL);
288 if (rx_array == NULL) {
289 dev_err(&st->us->dev, "memory alloc failed in ring bh");
290 kfree(data);
291 return;
292 }
293
294 /* whilst trigger specific, if this read does nto occur the data
295 ready interrupt will not be cleared. Need to add a mechanism
296 to provide a dummy read function if this is not triggering on
297 the data ready function but something else is.
298 */
299 st->inter = 0;
300
301 if (st->indio_dev->scan_count)
302 if (lis3l02dq_read_all(st, rx_array) >= 0)
303 for (; i < st->indio_dev->scan_count; i++)
304 data[i] = combine_8_to_16(rx_array[i*4+1],
305 rx_array[i*4+3]);
306 /* Guaranteed to be aligned with 8 byte boundary */
307 if (st->indio_dev->scan_timestamp)
308 *((s64 *)(data + ((i + 3)/4)*4)) = st->last_timestamp;
309
310 st->indio_dev->ring->access.store_to(st->indio_dev->ring,
311 (u8 *)data,
312 st->last_timestamp);
313
314 iio_trigger_notify_done(st->indio_dev->trig);
315 kfree(rx_array);
316 kfree(data);
317
318 return;
319 }
320 /* in these circumstances is it better to go with unaligned packing and
321 * deal with the cost?*/
322 static int lis3l02dq_data_rdy_ring_preenable(struct iio_dev *indio_dev)
323 {
324 size_t size;
325 /* Check if there are any scan elements enabled, if not fail*/
326 if (!(indio_dev->scan_count || indio_dev->scan_timestamp))
327 return -EINVAL;
328
329 if (indio_dev->ring->access.set_bpd) {
330 if (indio_dev->scan_timestamp)
331 if (indio_dev->scan_count) /* Timestamp and data */
332 size = 2*sizeof(s64);
333 else /* Timestamp only */
334 size = sizeof(s64);
335 else /* Data only */
336 size = indio_dev->scan_count*sizeof(s16);
337 indio_dev->ring->access.set_bpd(indio_dev->ring, size);
338 }
339
340 return 0;
341 }
342
343 static int lis3l02dq_data_rdy_ring_postenable(struct iio_dev *indio_dev)
344 {
345 return indio_dev->trig
346 ? iio_trigger_attach_poll_func(indio_dev->trig,
347 indio_dev->pollfunc)
348 : 0;
349 }
350
351 static int lis3l02dq_data_rdy_ring_predisable(struct iio_dev *indio_dev)
352 {
353 return indio_dev->trig
354 ? iio_trigger_dettach_poll_func(indio_dev->trig,
355 indio_dev->pollfunc)
356 : 0;
357 }
358
359
360 /* Caller responsible for locking as necessary. */
361 static int __lis3l02dq_write_data_ready_config(struct device *dev,
362 struct
363 iio_event_handler_list *list,
364 bool state)
365 {
366 int ret;
367 u8 valold;
368 bool currentlyset;
369 struct iio_dev *indio_dev = dev_get_drvdata(dev);
370
371 /* Get the current event mask register */
372 ret = lis3l02dq_spi_read_reg_8(dev,
373 LIS3L02DQ_REG_CTRL_2_ADDR,
374 &valold);
375 if (ret)
376 goto error_ret;
377 /* Find out if data ready is already on */
378 currentlyset
379 = valold & LIS3L02DQ_REG_CTRL_2_ENABLE_DATA_READY_GENERATION;
380
381 /* Disable requested */
382 if (!state && currentlyset) {
383
384 valold &= ~LIS3L02DQ_REG_CTRL_2_ENABLE_DATA_READY_GENERATION;
385 /* The double write is to overcome a hardware bug?*/
386 ret = lis3l02dq_spi_write_reg_8(dev,
387 LIS3L02DQ_REG_CTRL_2_ADDR,
388 &valold);
389 if (ret)
390 goto error_ret;
391 ret = lis3l02dq_spi_write_reg_8(dev,
392 LIS3L02DQ_REG_CTRL_2_ADDR,
393 &valold);
394 if (ret)
395 goto error_ret;
396
397 iio_remove_event_from_list(list,
398 &indio_dev->interrupts[0]
399 ->ev_list);
400
401 /* Enable requested */
402 } else if (state && !currentlyset) {
403 /* if not set, enable requested */
404 valold |= LIS3L02DQ_REG_CTRL_2_ENABLE_DATA_READY_GENERATION;
405 iio_add_event_to_list(list, &indio_dev->interrupts[0]->ev_list);
406 ret = lis3l02dq_spi_write_reg_8(dev,
407 LIS3L02DQ_REG_CTRL_2_ADDR,
408 &valold);
409 if (ret)
410 goto error_ret;
411 }
412
413 return 0;
414 error_ret:
415 return ret;
416 }
417
418 /**
419 * lis3l02dq_data_rdy_trigger_set_state() set datardy interrupt state
420 *
421 * If disabling the interrupt also does a final read to ensure it is clear.
422 * This is only important in some cases where the scan enable elements are
423 * switched before the ring is reenabled.
424 **/
425 static int lis3l02dq_data_rdy_trigger_set_state(struct iio_trigger *trig,
426 bool state)
427 {
428 struct lis3l02dq_state *st = trig->private_data;
429 int ret = 0;
430 u8 t;
431 __lis3l02dq_write_data_ready_config(&st->indio_dev->dev,
432 &iio_event_data_rdy_trig,
433 state);
434 if (state == false) {
435 /* possible quirk with handler currently worked around
436 by ensuring the work queue is empty */
437 flush_scheduled_work();
438 /* Clear any outstanding ready events */
439 ret = lis3l02dq_read_all(st, NULL);
440 }
441 lis3l02dq_spi_read_reg_8(&st->indio_dev->dev,
442 LIS3L02DQ_REG_WAKE_UP_SRC_ADDR,
443 &t);
444 return ret;
445 }
446 static DEVICE_ATTR(name, S_IRUGO, iio_trigger_read_name, NULL);
447
448 static struct attribute *lis3l02dq_trigger_attrs[] = {
449 &dev_attr_name.attr,
450 NULL,
451 };
452
453 static const struct attribute_group lis3l02dq_trigger_attr_group = {
454 .attrs = lis3l02dq_trigger_attrs,
455 };
456
457 /**
458 * lis3l02dq_trig_try_reen() try renabling irq for data rdy trigger
459 * @trig: the datardy trigger
460 *
461 * As the trigger may occur on any data element being updated it is
462 * really rather likely to occur during the read from the previous
463 * trigger event. The only way to discover if this has occured on
464 * boards not supporting level interrupts is to take a look at the line.
465 * If it is indicating another interrupt and we don't seem to have a
466 * handler looking at it, then we need to notify the core that we need
467 * to tell the triggering core to try reading all these again.
468 **/
469 static int lis3l02dq_trig_try_reen(struct iio_trigger *trig)
470 {
471 struct lis3l02dq_state *st = trig->private_data;
472 enable_irq(st->us->irq);
473 /* If gpio still high (or high again) */
474 if (gpio_get_value(irq_to_gpio(st->us->irq)))
475 if (st->inter == 0) {
476 /* already interrupt handler dealing with it */
477 disable_irq_nosync(st->us->irq);
478 if (st->inter == 1) {
479 /* interrupt handler snuck in between test
480 * and disable */
481 enable_irq(st->us->irq);
482 return 0;
483 }
484 return -EAGAIN;
485 }
486 /* irq reenabled so success! */
487 return 0;
488 }
489
490 int lis3l02dq_probe_trigger(struct iio_dev *indio_dev)
491 {
492 int ret;
493 struct lis3l02dq_state *state = indio_dev->dev_data;
494
495 state->trig = iio_allocate_trigger();
496 state->trig->name = kmalloc(IIO_TRIGGER_NAME_LENGTH, GFP_KERNEL);
497 if (!state->trig->name) {
498 ret = -ENOMEM;
499 goto error_free_trig;
500 }
501 snprintf((char *)state->trig->name,
502 IIO_TRIGGER_NAME_LENGTH,
503 "lis3l02dq-dev%d", indio_dev->id);
504 state->trig->dev.parent = &state->us->dev;
505 state->trig->owner = THIS_MODULE;
506 state->trig->private_data = state;
507 state->trig->set_trigger_state = &lis3l02dq_data_rdy_trigger_set_state;
508 state->trig->try_reenable = &lis3l02dq_trig_try_reen;
509 state->trig->control_attrs = &lis3l02dq_trigger_attr_group;
510 ret = iio_trigger_register(state->trig);
511 if (ret)
512 goto error_free_trig_name;
513
514 return 0;
515
516 error_free_trig_name:
517 kfree(state->trig->name);
518 error_free_trig:
519 iio_free_trigger(state->trig);
520
521 return ret;
522 }
523
524 void lis3l02dq_remove_trigger(struct iio_dev *indio_dev)
525 {
526 struct lis3l02dq_state *state = indio_dev->dev_data;
527
528 iio_trigger_unregister(state->trig);
529 kfree(state->trig->name);
530 iio_free_trigger(state->trig);
531 }
532
533 void lis3l02dq_unconfigure_ring(struct iio_dev *indio_dev)
534 {
535 kfree(indio_dev->pollfunc);
536 iio_sw_rb_free(indio_dev->ring);
537 }
538
539 int lis3l02dq_configure_ring(struct iio_dev *indio_dev)
540 {
541 int ret = 0;
542 struct lis3l02dq_state *st = indio_dev->dev_data;
543 struct iio_ring_buffer *ring;
544 INIT_WORK(&st->work_trigger_to_ring, lis3l02dq_trigger_bh_to_ring);
545 /* Set default scan mode */
546
547 iio_scan_mask_set(indio_dev, iio_scan_el_accel_x.number);
548 iio_scan_mask_set(indio_dev, iio_scan_el_accel_y.number);
549 iio_scan_mask_set(indio_dev, iio_scan_el_accel_z.number);
550 indio_dev->scan_timestamp = true;
551
552 indio_dev->scan_el_attrs = &lis3l02dq_scan_el_group;
553
554 ring = iio_sw_rb_allocate(indio_dev);
555 if (!ring) {
556 ret = -ENOMEM;
557 return ret;
558 }
559 indio_dev->ring = ring;
560 /* Effectively select the ring buffer implementation */
561 iio_ring_sw_register_funcs(&ring->access);
562 ring->preenable = &lis3l02dq_data_rdy_ring_preenable;
563 ring->postenable = &lis3l02dq_data_rdy_ring_postenable;
564 ring->predisable = &lis3l02dq_data_rdy_ring_predisable;
565 ring->owner = THIS_MODULE;
566
567 indio_dev->pollfunc = kzalloc(sizeof(*indio_dev->pollfunc), GFP_KERNEL);
568 if (indio_dev->pollfunc == NULL) {
569 ret = -ENOMEM;
570 goto error_iio_sw_rb_free;;
571 }
572 indio_dev->pollfunc->poll_func_main = &lis3l02dq_poll_func_th;
573 indio_dev->pollfunc->private_data = indio_dev;
574 indio_dev->modes |= INDIO_RING_TRIGGERED;
575 return 0;
576
577 error_iio_sw_rb_free:
578 iio_sw_rb_free(indio_dev->ring);
579 return ret;
580 }
581
582 int lis3l02dq_initialize_ring(struct iio_ring_buffer *ring)
583 {
584 return iio_ring_buffer_register(ring);
585 }
586
587 void lis3l02dq_uninitialize_ring(struct iio_ring_buffer *ring)
588 {
589 iio_ring_buffer_unregister(ring);
590 }
591
592
593 int lis3l02dq_set_ring_length(struct iio_dev *indio_dev, int length)
594 {
595 /* Set sensible defaults for the ring buffer */
596 if (indio_dev->ring->access.set_length)
597 return indio_dev->ring->access.set_length(indio_dev->ring, 500);
598 return 0;
599 }
600
601