disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / spi / spi-ep93xx.c
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
4 * Copyright (C) 2010-2011 Mika Westerberg
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
36
37 #define SSPCR0 0x0000
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
40
41 #define SSPCR1 0x0004
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
49
50 #define SSPDR 0x0008
51
52 #define SSPSR 0x000c
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
59
60 #define SSPIIR 0x0014
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
64 #define SSPICR SSPIIR
65
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT 5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
70
71 /**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
99 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110 struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
115 unsigned long sspdr_phys;
116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
134 };
135
136 /**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
144 *
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
148 */
149 struct ep93xx_spi_chip {
150 const struct spi_device *spi;
151 unsigned long rate;
152 u8 div_cpsr;
153 u8 div_scr;
154 u8 dss;
155 struct ep93xx_spi_chip_ops *ops;
156 };
157
158 /* converts bits per word to CR0.DSS value */
159 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
160
161 static inline void
162 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
163 {
164 __raw_writeb(value, espi->regs_base + reg);
165 }
166
167 static inline u8
168 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
169 {
170 return __raw_readb(spi->regs_base + reg);
171 }
172
173 static inline void
174 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
175 {
176 __raw_writew(value, espi->regs_base + reg);
177 }
178
179 static inline u16
180 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
181 {
182 return __raw_readw(spi->regs_base + reg);
183 }
184
185 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
186 {
187 u8 regval;
188 int err;
189
190 err = clk_enable(espi->clk);
191 if (err)
192 return err;
193
194 regval = ep93xx_spi_read_u8(espi, SSPCR1);
195 regval |= SSPCR1_SSE;
196 ep93xx_spi_write_u8(espi, SSPCR1, regval);
197
198 return 0;
199 }
200
201 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
202 {
203 u8 regval;
204
205 regval = ep93xx_spi_read_u8(espi, SSPCR1);
206 regval &= ~SSPCR1_SSE;
207 ep93xx_spi_write_u8(espi, SSPCR1, regval);
208
209 clk_disable(espi->clk);
210 }
211
212 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
213 {
214 u8 regval;
215
216 regval = ep93xx_spi_read_u8(espi, SSPCR1);
217 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218 ep93xx_spi_write_u8(espi, SSPCR1, regval);
219 }
220
221 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
222 {
223 u8 regval;
224
225 regval = ep93xx_spi_read_u8(espi, SSPCR1);
226 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227 ep93xx_spi_write_u8(espi, SSPCR1, regval);
228 }
229
230 /**
231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232 * @espi: ep93xx SPI controller struct
233 * @chip: divisors are calculated for this chip
234 * @rate: desired SPI output clock rate
235 *
236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238 * for some reason, divisors cannot be calculated nothing is stored and
239 * %-EINVAL is returned.
240 */
241 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242 struct ep93xx_spi_chip *chip,
243 unsigned long rate)
244 {
245 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
246 int cpsr, scr;
247
248 /*
249 * Make sure that max value is between values supported by the
250 * controller. Note that minimum value is already checked in
251 * ep93xx_spi_transfer().
252 */
253 rate = clamp(rate, espi->min_rate, espi->max_rate);
254
255 /*
256 * Calculate divisors so that we can get speed according the
257 * following formula:
258 * rate = spi_clock_rate / (cpsr * (1 + scr))
259 *
260 * cpsr must be even number and starts from 2, scr can be any number
261 * between 0 and 255.
262 */
263 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264 for (scr = 0; scr <= 255; scr++) {
265 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266 chip->div_scr = (u8)scr;
267 chip->div_cpsr = (u8)cpsr;
268 return 0;
269 }
270 }
271 }
272
273 return -EINVAL;
274 }
275
276 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
277 {
278 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
280
281 if (chip->ops && chip->ops->cs_control)
282 chip->ops->cs_control(spi, value);
283 }
284
285 /**
286 * ep93xx_spi_setup() - setup an SPI device
287 * @spi: SPI device to setup
288 *
289 * This function sets up SPI device mode, speed etc. Can be called multiple
290 * times for a single device. Returns %0 in case of success, negative error in
291 * case of failure. When this function returns success, the device is
292 * deselected.
293 */
294 static int ep93xx_spi_setup(struct spi_device *spi)
295 {
296 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297 struct ep93xx_spi_chip *chip;
298
299 if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
300 dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
301 spi->bits_per_word);
302 return -EINVAL;
303 }
304
305 chip = spi_get_ctldata(spi);
306 if (!chip) {
307 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
308 spi->modalias);
309
310 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
311 if (!chip)
312 return -ENOMEM;
313
314 chip->spi = spi;
315 chip->ops = spi->controller_data;
316
317 if (chip->ops && chip->ops->setup) {
318 int ret = chip->ops->setup(spi);
319 if (ret) {
320 kfree(chip);
321 return ret;
322 }
323 }
324
325 spi_set_ctldata(spi, chip);
326 }
327
328 if (spi->max_speed_hz != chip->rate) {
329 int err;
330
331 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
332 if (err != 0) {
333 spi_set_ctldata(spi, NULL);
334 kfree(chip);
335 return err;
336 }
337 chip->rate = spi->max_speed_hz;
338 }
339
340 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
341
342 ep93xx_spi_cs_control(spi, false);
343 return 0;
344 }
345
346 /**
347 * ep93xx_spi_transfer() - queue message to be transferred
348 * @spi: target SPI device
349 * @msg: message to be transferred
350 *
351 * This function is called by SPI device drivers when they are going to transfer
352 * a new message. It simply puts the message in the queue and schedules
353 * workqueue to perform the actual transfer later on.
354 *
355 * Returns %0 on success and negative error in case of failure.
356 */
357 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
358 {
359 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
360 struct spi_transfer *t;
361 unsigned long flags;
362
363 if (!msg || !msg->complete)
364 return -EINVAL;
365
366 /* first validate each transfer */
367 list_for_each_entry(t, &msg->transfers, transfer_list) {
368 if (t->bits_per_word) {
369 if (t->bits_per_word < 4 || t->bits_per_word > 16)
370 return -EINVAL;
371 }
372 if (t->speed_hz && t->speed_hz < espi->min_rate)
373 return -EINVAL;
374 }
375
376 /*
377 * Now that we own the message, let's initialize it so that it is
378 * suitable for us. We use @msg->status to signal whether there was
379 * error in transfer and @msg->state is used to hold pointer to the
380 * current transfer (or %NULL if no active current transfer).
381 */
382 msg->state = NULL;
383 msg->status = 0;
384 msg->actual_length = 0;
385
386 spin_lock_irqsave(&espi->lock, flags);
387 if (!espi->running) {
388 spin_unlock_irqrestore(&espi->lock, flags);
389 return -ESHUTDOWN;
390 }
391 list_add_tail(&msg->queue, &espi->msg_queue);
392 queue_work(espi->wq, &espi->msg_work);
393 spin_unlock_irqrestore(&espi->lock, flags);
394
395 return 0;
396 }
397
398 /**
399 * ep93xx_spi_cleanup() - cleans up master controller specific state
400 * @spi: SPI device to cleanup
401 *
402 * This function releases master controller specific state for given @spi
403 * device.
404 */
405 static void ep93xx_spi_cleanup(struct spi_device *spi)
406 {
407 struct ep93xx_spi_chip *chip;
408
409 chip = spi_get_ctldata(spi);
410 if (chip) {
411 if (chip->ops && chip->ops->cleanup)
412 chip->ops->cleanup(spi);
413 spi_set_ctldata(spi, NULL);
414 kfree(chip);
415 }
416 }
417
418 /**
419 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
420 * @espi: ep93xx SPI controller struct
421 * @chip: chip specific settings
422 *
423 * This function sets up the actual hardware registers with settings given in
424 * @chip. Note that no validation is done so make sure that callers validate
425 * settings before calling this.
426 */
427 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
428 const struct ep93xx_spi_chip *chip)
429 {
430 u16 cr0;
431
432 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
433 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
434 cr0 |= chip->dss;
435
436 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
437 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
438 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
439
440 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
441 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
442 }
443
444 static inline int bits_per_word(const struct ep93xx_spi *espi)
445 {
446 struct spi_message *msg = espi->current_msg;
447 struct spi_transfer *t = msg->state;
448
449 return t->bits_per_word;
450 }
451
452 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
453 {
454 if (bits_per_word(espi) > 8) {
455 u16 tx_val = 0;
456
457 if (t->tx_buf)
458 tx_val = ((u16 *)t->tx_buf)[espi->tx];
459 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
460 espi->tx += sizeof(tx_val);
461 } else {
462 u8 tx_val = 0;
463
464 if (t->tx_buf)
465 tx_val = ((u8 *)t->tx_buf)[espi->tx];
466 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
467 espi->tx += sizeof(tx_val);
468 }
469 }
470
471 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
472 {
473 if (bits_per_word(espi) > 8) {
474 u16 rx_val;
475
476 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
477 if (t->rx_buf)
478 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
479 espi->rx += sizeof(rx_val);
480 } else {
481 u8 rx_val;
482
483 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
484 if (t->rx_buf)
485 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
486 espi->rx += sizeof(rx_val);
487 }
488 }
489
490 /**
491 * ep93xx_spi_read_write() - perform next RX/TX transfer
492 * @espi: ep93xx SPI controller struct
493 *
494 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
495 * called several times, the whole transfer will be completed. Returns
496 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
497 *
498 * When this function is finished, RX FIFO should be empty and TX FIFO should be
499 * full.
500 */
501 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
502 {
503 struct spi_message *msg = espi->current_msg;
504 struct spi_transfer *t = msg->state;
505
506 /* read as long as RX FIFO has frames in it */
507 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
508 ep93xx_do_read(espi, t);
509 espi->fifo_level--;
510 }
511
512 /* write as long as TX FIFO has room */
513 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
514 ep93xx_do_write(espi, t);
515 espi->fifo_level++;
516 }
517
518 if (espi->rx == t->len)
519 return 0;
520
521 return -EINPROGRESS;
522 }
523
524 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
525 {
526 /*
527 * Now everything is set up for the current transfer. We prime the TX
528 * FIFO, enable interrupts, and wait for the transfer to complete.
529 */
530 if (ep93xx_spi_read_write(espi)) {
531 ep93xx_spi_enable_interrupts(espi);
532 wait_for_completion(&espi->wait);
533 }
534 }
535
536 /**
537 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
538 * @espi: ep93xx SPI controller struct
539 * @dir: DMA transfer direction
540 *
541 * Function configures the DMA, maps the buffer and prepares the DMA
542 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
543 * in case of failure.
544 */
545 static struct dma_async_tx_descriptor *
546 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
547 {
548 struct spi_transfer *t = espi->current_msg->state;
549 struct dma_async_tx_descriptor *txd;
550 enum dma_slave_buswidth buswidth;
551 struct dma_slave_config conf;
552 struct scatterlist *sg;
553 struct sg_table *sgt;
554 struct dma_chan *chan;
555 const void *buf, *pbuf;
556 size_t len = t->len;
557 int i, ret, nents;
558
559 if (bits_per_word(espi) > 8)
560 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
561 else
562 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
563
564 memset(&conf, 0, sizeof(conf));
565 conf.direction = dir;
566
567 if (dir == DMA_DEV_TO_MEM) {
568 chan = espi->dma_rx;
569 buf = t->rx_buf;
570 sgt = &espi->rx_sgt;
571
572 conf.src_addr = espi->sspdr_phys;
573 conf.src_addr_width = buswidth;
574 } else {
575 chan = espi->dma_tx;
576 buf = t->tx_buf;
577 sgt = &espi->tx_sgt;
578
579 conf.dst_addr = espi->sspdr_phys;
580 conf.dst_addr_width = buswidth;
581 }
582
583 ret = dmaengine_slave_config(chan, &conf);
584 if (ret)
585 return ERR_PTR(ret);
586
587 /*
588 * We need to split the transfer into PAGE_SIZE'd chunks. This is
589 * because we are using @espi->zeropage to provide a zero RX buffer
590 * for the TX transfers and we have only allocated one page for that.
591 *
592 * For performance reasons we allocate a new sg_table only when
593 * needed. Otherwise we will re-use the current one. Eventually the
594 * last sg_table is released in ep93xx_spi_release_dma().
595 */
596
597 nents = DIV_ROUND_UP(len, PAGE_SIZE);
598 if (nents != sgt->nents) {
599 sg_free_table(sgt);
600
601 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
602 if (ret)
603 return ERR_PTR(ret);
604 }
605
606 pbuf = buf;
607 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
608 size_t bytes = min_t(size_t, len, PAGE_SIZE);
609
610 if (buf) {
611 sg_set_page(sg, virt_to_page(pbuf), bytes,
612 offset_in_page(pbuf));
613 } else {
614 sg_set_page(sg, virt_to_page(espi->zeropage),
615 bytes, 0);
616 }
617
618 pbuf += bytes;
619 len -= bytes;
620 }
621
622 if (WARN_ON(len)) {
623 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
624 return ERR_PTR(-EINVAL);
625 }
626
627 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
628 if (!nents)
629 return ERR_PTR(-ENOMEM);
630
631 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
632 if (!txd) {
633 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
634 return ERR_PTR(-ENOMEM);
635 }
636 return txd;
637 }
638
639 /**
640 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
641 * @espi: ep93xx SPI controller struct
642 * @dir: DMA transfer direction
643 *
644 * Function finishes with the DMA transfer. After this, the DMA buffer is
645 * unmapped.
646 */
647 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
648 enum dma_transfer_direction dir)
649 {
650 struct dma_chan *chan;
651 struct sg_table *sgt;
652
653 if (dir == DMA_DEV_TO_MEM) {
654 chan = espi->dma_rx;
655 sgt = &espi->rx_sgt;
656 } else {
657 chan = espi->dma_tx;
658 sgt = &espi->tx_sgt;
659 }
660
661 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
662 }
663
664 static void ep93xx_spi_dma_callback(void *callback_param)
665 {
666 complete(callback_param);
667 }
668
669 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
670 {
671 struct spi_message *msg = espi->current_msg;
672 struct dma_async_tx_descriptor *rxd, *txd;
673
674 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
675 if (IS_ERR(rxd)) {
676 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
677 msg->status = PTR_ERR(rxd);
678 return;
679 }
680
681 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
682 if (IS_ERR(txd)) {
683 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
684 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
685 msg->status = PTR_ERR(txd);
686 return;
687 }
688
689 /* We are ready when RX is done */
690 rxd->callback = ep93xx_spi_dma_callback;
691 rxd->callback_param = &espi->wait;
692
693 /* Now submit both descriptors and wait while they finish */
694 dmaengine_submit(rxd);
695 dmaengine_submit(txd);
696
697 dma_async_issue_pending(espi->dma_rx);
698 dma_async_issue_pending(espi->dma_tx);
699
700 wait_for_completion(&espi->wait);
701
702 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
703 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
704 }
705
706 /**
707 * ep93xx_spi_process_transfer() - processes one SPI transfer
708 * @espi: ep93xx SPI controller struct
709 * @msg: current message
710 * @t: transfer to process
711 *
712 * This function processes one SPI transfer given in @t. Function waits until
713 * transfer is complete (may sleep) and updates @msg->status based on whether
714 * transfer was successfully processed or not.
715 */
716 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
717 struct spi_message *msg,
718 struct spi_transfer *t)
719 {
720 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
721
722 msg->state = t;
723
724 /*
725 * Handle any transfer specific settings if needed. We use
726 * temporary chip settings here and restore original later when
727 * the transfer is finished.
728 */
729 if (t->speed_hz || t->bits_per_word) {
730 struct ep93xx_spi_chip tmp_chip = *chip;
731
732 if (t->speed_hz) {
733 int err;
734
735 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
736 t->speed_hz);
737 if (err) {
738 dev_err(&espi->pdev->dev,
739 "failed to adjust speed\n");
740 msg->status = err;
741 return;
742 }
743 }
744
745 if (t->bits_per_word)
746 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
747
748 /*
749 * Set up temporary new hw settings for this transfer.
750 */
751 ep93xx_spi_chip_setup(espi, &tmp_chip);
752 }
753
754 espi->rx = 0;
755 espi->tx = 0;
756
757 /*
758 * There is no point of setting up DMA for the transfers which will
759 * fit into the FIFO and can be transferred with a single interrupt.
760 * So in these cases we will be using PIO and don't bother for DMA.
761 */
762 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
763 ep93xx_spi_dma_transfer(espi);
764 else
765 ep93xx_spi_pio_transfer(espi);
766
767 /*
768 * In case of error during transmit, we bail out from processing
769 * the message.
770 */
771 if (msg->status)
772 return;
773
774 msg->actual_length += t->len;
775
776 /*
777 * After this transfer is finished, perform any possible
778 * post-transfer actions requested by the protocol driver.
779 */
780 if (t->delay_usecs) {
781 set_current_state(TASK_UNINTERRUPTIBLE);
782 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
783 }
784 if (t->cs_change) {
785 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
786 /*
787 * In case protocol driver is asking us to drop the
788 * chipselect briefly, we let the scheduler to handle
789 * any "delay" here.
790 */
791 ep93xx_spi_cs_control(msg->spi, false);
792 cond_resched();
793 ep93xx_spi_cs_control(msg->spi, true);
794 }
795 }
796
797 if (t->speed_hz || t->bits_per_word)
798 ep93xx_spi_chip_setup(espi, chip);
799 }
800
801 /*
802 * ep93xx_spi_process_message() - process one SPI message
803 * @espi: ep93xx SPI controller struct
804 * @msg: message to process
805 *
806 * This function processes a single SPI message. We go through all transfers in
807 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
808 * asserted during the whole message (unless per transfer cs_change is set).
809 *
810 * @msg->status contains %0 in case of success or negative error code in case of
811 * failure.
812 */
813 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
814 struct spi_message *msg)
815 {
816 unsigned long timeout;
817 struct spi_transfer *t;
818 int err;
819
820 /*
821 * Enable the SPI controller and its clock.
822 */
823 err = ep93xx_spi_enable(espi);
824 if (err) {
825 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
826 msg->status = err;
827 return;
828 }
829
830 /*
831 * Just to be sure: flush any data from RX FIFO.
832 */
833 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
834 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
835 if (time_after(jiffies, timeout)) {
836 dev_warn(&espi->pdev->dev,
837 "timeout while flushing RX FIFO\n");
838 msg->status = -ETIMEDOUT;
839 return;
840 }
841 ep93xx_spi_read_u16(espi, SSPDR);
842 }
843
844 /*
845 * We explicitly handle FIFO level. This way we don't have to check TX
846 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
847 */
848 espi->fifo_level = 0;
849
850 /*
851 * Update SPI controller registers according to spi device and assert
852 * the chipselect.
853 */
854 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
855 ep93xx_spi_cs_control(msg->spi, true);
856
857 list_for_each_entry(t, &msg->transfers, transfer_list) {
858 ep93xx_spi_process_transfer(espi, msg, t);
859 if (msg->status)
860 break;
861 }
862
863 /*
864 * Now the whole message is transferred (or failed for some reason). We
865 * deselect the device and disable the SPI controller.
866 */
867 ep93xx_spi_cs_control(msg->spi, false);
868 ep93xx_spi_disable(espi);
869 }
870
871 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
872
873 /**
874 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
875 * @work: work struct
876 *
877 * Workqueue worker function. This function is called when there are new
878 * SPI messages to be processed. Message is taken out from the queue and then
879 * passed to ep93xx_spi_process_message().
880 *
881 * After message is transferred, protocol driver is notified by calling
882 * @msg->complete(). In case of error, @msg->status is set to negative error
883 * number, otherwise it contains zero (and @msg->actual_length is updated).
884 */
885 static void ep93xx_spi_work(struct work_struct *work)
886 {
887 struct ep93xx_spi *espi = work_to_espi(work);
888 struct spi_message *msg;
889
890 spin_lock_irq(&espi->lock);
891 if (!espi->running || espi->current_msg ||
892 list_empty(&espi->msg_queue)) {
893 spin_unlock_irq(&espi->lock);
894 return;
895 }
896 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
897 list_del_init(&msg->queue);
898 espi->current_msg = msg;
899 spin_unlock_irq(&espi->lock);
900
901 ep93xx_spi_process_message(espi, msg);
902
903 /*
904 * Update the current message and re-schedule ourselves if there are
905 * more messages in the queue.
906 */
907 spin_lock_irq(&espi->lock);
908 espi->current_msg = NULL;
909 if (espi->running && !list_empty(&espi->msg_queue))
910 queue_work(espi->wq, &espi->msg_work);
911 spin_unlock_irq(&espi->lock);
912
913 /* notify the protocol driver that we are done with this message */
914 msg->complete(msg->context);
915 }
916
917 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
918 {
919 struct ep93xx_spi *espi = dev_id;
920 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
921
922 /*
923 * If we got ROR (receive overrun) interrupt we know that something is
924 * wrong. Just abort the message.
925 */
926 if (unlikely(irq_status & SSPIIR_RORIS)) {
927 /* clear the overrun interrupt */
928 ep93xx_spi_write_u8(espi, SSPICR, 0);
929 dev_warn(&espi->pdev->dev,
930 "receive overrun, aborting the message\n");
931 espi->current_msg->status = -EIO;
932 } else {
933 /*
934 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
935 * simply execute next data transfer.
936 */
937 if (ep93xx_spi_read_write(espi)) {
938 /*
939 * In normal case, there still is some processing left
940 * for current transfer. Let's wait for the next
941 * interrupt then.
942 */
943 return IRQ_HANDLED;
944 }
945 }
946
947 /*
948 * Current transfer is finished, either with error or with success. In
949 * any case we disable interrupts and notify the worker to handle
950 * any post-processing of the message.
951 */
952 ep93xx_spi_disable_interrupts(espi);
953 complete(&espi->wait);
954 return IRQ_HANDLED;
955 }
956
957 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
958 {
959 if (ep93xx_dma_chan_is_m2p(chan))
960 return false;
961
962 chan->private = filter_param;
963 return true;
964 }
965
966 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
967 {
968 dma_cap_mask_t mask;
969 int ret;
970
971 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
972 if (!espi->zeropage)
973 return -ENOMEM;
974
975 dma_cap_zero(mask);
976 dma_cap_set(DMA_SLAVE, mask);
977
978 espi->dma_rx_data.port = EP93XX_DMA_SSP;
979 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
980 espi->dma_rx_data.name = "ep93xx-spi-rx";
981
982 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
983 &espi->dma_rx_data);
984 if (!espi->dma_rx) {
985 ret = -ENODEV;
986 goto fail_free_page;
987 }
988
989 espi->dma_tx_data.port = EP93XX_DMA_SSP;
990 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
991 espi->dma_tx_data.name = "ep93xx-spi-tx";
992
993 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
994 &espi->dma_tx_data);
995 if (!espi->dma_tx) {
996 ret = -ENODEV;
997 goto fail_release_rx;
998 }
999
1000 return 0;
1001
1002 fail_release_rx:
1003 dma_release_channel(espi->dma_rx);
1004 espi->dma_rx = NULL;
1005 fail_free_page:
1006 free_page((unsigned long)espi->zeropage);
1007
1008 return ret;
1009 }
1010
1011 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1012 {
1013 if (espi->dma_rx) {
1014 dma_release_channel(espi->dma_rx);
1015 sg_free_table(&espi->rx_sgt);
1016 }
1017 if (espi->dma_tx) {
1018 dma_release_channel(espi->dma_tx);
1019 sg_free_table(&espi->tx_sgt);
1020 }
1021
1022 if (espi->zeropage)
1023 free_page((unsigned long)espi->zeropage);
1024 }
1025
1026 static int ep93xx_spi_probe(struct platform_device *pdev)
1027 {
1028 struct spi_master *master;
1029 struct ep93xx_spi_info *info;
1030 struct ep93xx_spi *espi;
1031 struct resource *res;
1032 int irq;
1033 int error;
1034
1035 info = pdev->dev.platform_data;
1036
1037 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1038 if (!master) {
1039 dev_err(&pdev->dev, "failed to allocate spi master\n");
1040 return -ENOMEM;
1041 }
1042
1043 master->setup = ep93xx_spi_setup;
1044 master->transfer = ep93xx_spi_transfer;
1045 master->cleanup = ep93xx_spi_cleanup;
1046 master->bus_num = pdev->id;
1047 master->num_chipselect = info->num_chipselect;
1048 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1049
1050 platform_set_drvdata(pdev, master);
1051
1052 espi = spi_master_get_devdata(master);
1053
1054 espi->clk = clk_get(&pdev->dev, NULL);
1055 if (IS_ERR(espi->clk)) {
1056 dev_err(&pdev->dev, "unable to get spi clock\n");
1057 error = PTR_ERR(espi->clk);
1058 goto fail_release_master;
1059 }
1060
1061 spin_lock_init(&espi->lock);
1062 init_completion(&espi->wait);
1063
1064 /*
1065 * Calculate maximum and minimum supported clock rates
1066 * for the controller.
1067 */
1068 espi->max_rate = clk_get_rate(espi->clk) / 2;
1069 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1070 espi->pdev = pdev;
1071
1072 irq = platform_get_irq(pdev, 0);
1073 if (irq < 0) {
1074 error = -EBUSY;
1075 dev_err(&pdev->dev, "failed to get irq resources\n");
1076 goto fail_put_clock;
1077 }
1078
1079 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080 if (!res) {
1081 dev_err(&pdev->dev, "unable to get iomem resource\n");
1082 error = -ENODEV;
1083 goto fail_put_clock;
1084 }
1085
1086 espi->sspdr_phys = res->start + SSPDR;
1087
1088 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1089 if (IS_ERR(espi->regs_base)) {
1090 error = PTR_ERR(espi->regs_base);
1091 goto fail_put_clock;
1092 }
1093
1094 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1095 0, "ep93xx-spi", espi);
1096 if (error) {
1097 dev_err(&pdev->dev, "failed to request irq\n");
1098 goto fail_put_clock;
1099 }
1100
1101 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1102 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1103
1104 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1105 if (!espi->wq) {
1106 dev_err(&pdev->dev, "unable to create workqueue\n");
1107 goto fail_free_dma;
1108 }
1109 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1110 INIT_LIST_HEAD(&espi->msg_queue);
1111 espi->running = true;
1112
1113 /* make sure that the hardware is disabled */
1114 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1115
1116 error = spi_register_master(master);
1117 if (error) {
1118 dev_err(&pdev->dev, "failed to register SPI master\n");
1119 goto fail_free_queue;
1120 }
1121
1122 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1123 (unsigned long)res->start, irq);
1124
1125 return 0;
1126
1127 fail_free_queue:
1128 destroy_workqueue(espi->wq);
1129 fail_free_dma:
1130 ep93xx_spi_release_dma(espi);
1131 fail_put_clock:
1132 clk_put(espi->clk);
1133 fail_release_master:
1134 spi_master_put(master);
1135 platform_set_drvdata(pdev, NULL);
1136
1137 return error;
1138 }
1139
1140 static int ep93xx_spi_remove(struct platform_device *pdev)
1141 {
1142 struct spi_master *master = platform_get_drvdata(pdev);
1143 struct ep93xx_spi *espi = spi_master_get_devdata(master);
1144
1145 spin_lock_irq(&espi->lock);
1146 espi->running = false;
1147 spin_unlock_irq(&espi->lock);
1148
1149 destroy_workqueue(espi->wq);
1150
1151 /*
1152 * Complete remaining messages with %-ESHUTDOWN status.
1153 */
1154 spin_lock_irq(&espi->lock);
1155 while (!list_empty(&espi->msg_queue)) {
1156 struct spi_message *msg;
1157
1158 msg = list_first_entry(&espi->msg_queue,
1159 struct spi_message, queue);
1160 list_del_init(&msg->queue);
1161 msg->status = -ESHUTDOWN;
1162 spin_unlock_irq(&espi->lock);
1163 msg->complete(msg->context);
1164 spin_lock_irq(&espi->lock);
1165 }
1166 spin_unlock_irq(&espi->lock);
1167
1168 ep93xx_spi_release_dma(espi);
1169 clk_put(espi->clk);
1170 platform_set_drvdata(pdev, NULL);
1171
1172 spi_unregister_master(master);
1173 return 0;
1174 }
1175
1176 static struct platform_driver ep93xx_spi_driver = {
1177 .driver = {
1178 .name = "ep93xx-spi",
1179 .owner = THIS_MODULE,
1180 },
1181 .probe = ep93xx_spi_probe,
1182 .remove = ep93xx_spi_remove,
1183 };
1184 module_platform_driver(ep93xx_spi_driver);
1185
1186 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1187 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1188 MODULE_LICENSE("GPL");
1189 MODULE_ALIAS("platform:ep93xx-spi");