sd: get disk reference in sd_check_events()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / scsi_transport_spi.c
1 /*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3 *
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/ctype.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/workqueue.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/sysfs.h>
28 #include <linux/slab.h>
29 #include <scsi/scsi.h>
30 #include "scsi_priv.h"
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_eh.h>
35 #include <scsi/scsi_transport.h>
36 #include <scsi/scsi_transport_spi.h>
37
38 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
39 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
40 * on" attributes */
41 #define SPI_HOST_ATTRS 1
42
43 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
44
45 #define DV_LOOPS 3
46 #define DV_TIMEOUT (10*HZ)
47 #define DV_RETRIES 3 /* should only need at most
48 * two cc/ua clears */
49
50 /* Our blacklist flags */
51 enum {
52 SPI_BLIST_NOIUS = 0x1,
53 };
54
55 /* blacklist table, modelled on scsi_devinfo.c */
56 static struct {
57 char *vendor;
58 char *model;
59 unsigned flags;
60 } spi_static_device_list[] __initdata = {
61 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
62 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
63 {NULL, NULL, 0}
64 };
65
66 /* Private data accessors (keep these out of the header file) */
67 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
68 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
69
70 struct spi_internal {
71 struct scsi_transport_template t;
72 struct spi_function_template *f;
73 };
74
75 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
76
77 static const int ppr_to_ps[] = {
78 /* The PPR values 0-6 are reserved, fill them in when
79 * the committee defines them */
80 -1, /* 0x00 */
81 -1, /* 0x01 */
82 -1, /* 0x02 */
83 -1, /* 0x03 */
84 -1, /* 0x04 */
85 -1, /* 0x05 */
86 -1, /* 0x06 */
87 3125, /* 0x07 */
88 6250, /* 0x08 */
89 12500, /* 0x09 */
90 25000, /* 0x0a */
91 30300, /* 0x0b */
92 50000, /* 0x0c */
93 };
94 /* The PPR values at which you calculate the period in ns by multiplying
95 * by 4 */
96 #define SPI_STATIC_PPR 0x0c
97
98 static int sprint_frac(char *dest, int value, int denom)
99 {
100 int frac = value % denom;
101 int result = sprintf(dest, "%d", value / denom);
102
103 if (frac == 0)
104 return result;
105 dest[result++] = '.';
106
107 do {
108 denom /= 10;
109 sprintf(dest + result, "%d", frac / denom);
110 result++;
111 frac %= denom;
112 } while (frac);
113
114 dest[result++] = '\0';
115 return result;
116 }
117
118 static int spi_execute(struct scsi_device *sdev, const void *cmd,
119 enum dma_data_direction dir,
120 void *buffer, unsigned bufflen,
121 struct scsi_sense_hdr *sshdr)
122 {
123 int i, result;
124 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
125
126 for(i = 0; i < DV_RETRIES; i++) {
127 result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
128 sense, DV_TIMEOUT, /* retries */ 1,
129 REQ_FAILFAST_DEV |
130 REQ_FAILFAST_TRANSPORT |
131 REQ_FAILFAST_DRIVER,
132 NULL);
133 if (driver_byte(result) & DRIVER_SENSE) {
134 struct scsi_sense_hdr sshdr_tmp;
135 if (!sshdr)
136 sshdr = &sshdr_tmp;
137
138 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
139 sshdr)
140 && sshdr->sense_key == UNIT_ATTENTION)
141 continue;
142 }
143 break;
144 }
145 return result;
146 }
147
148 static struct {
149 enum spi_signal_type value;
150 char *name;
151 } signal_types[] = {
152 { SPI_SIGNAL_UNKNOWN, "unknown" },
153 { SPI_SIGNAL_SE, "SE" },
154 { SPI_SIGNAL_LVD, "LVD" },
155 { SPI_SIGNAL_HVD, "HVD" },
156 };
157
158 static inline const char *spi_signal_to_string(enum spi_signal_type type)
159 {
160 int i;
161
162 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
163 if (type == signal_types[i].value)
164 return signal_types[i].name;
165 }
166 return NULL;
167 }
168 static inline enum spi_signal_type spi_signal_to_value(const char *name)
169 {
170 int i, len;
171
172 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
173 len = strlen(signal_types[i].name);
174 if (strncmp(name, signal_types[i].name, len) == 0 &&
175 (name[len] == '\n' || name[len] == '\0'))
176 return signal_types[i].value;
177 }
178 return SPI_SIGNAL_UNKNOWN;
179 }
180
181 static int spi_host_setup(struct transport_container *tc, struct device *dev,
182 struct device *cdev)
183 {
184 struct Scsi_Host *shost = dev_to_shost(dev);
185
186 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
187
188 return 0;
189 }
190
191 static int spi_host_configure(struct transport_container *tc,
192 struct device *dev,
193 struct device *cdev);
194
195 static DECLARE_TRANSPORT_CLASS(spi_host_class,
196 "spi_host",
197 spi_host_setup,
198 NULL,
199 spi_host_configure);
200
201 static int spi_host_match(struct attribute_container *cont,
202 struct device *dev)
203 {
204 struct Scsi_Host *shost;
205
206 if (!scsi_is_host_device(dev))
207 return 0;
208
209 shost = dev_to_shost(dev);
210 if (!shost->transportt || shost->transportt->host_attrs.ac.class
211 != &spi_host_class.class)
212 return 0;
213
214 return &shost->transportt->host_attrs.ac == cont;
215 }
216
217 static int spi_target_configure(struct transport_container *tc,
218 struct device *dev,
219 struct device *cdev);
220
221 static int spi_device_configure(struct transport_container *tc,
222 struct device *dev,
223 struct device *cdev)
224 {
225 struct scsi_device *sdev = to_scsi_device(dev);
226 struct scsi_target *starget = sdev->sdev_target;
227 unsigned bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
228 &sdev->inquiry[16],
229 SCSI_DEVINFO_SPI);
230
231 /* Populate the target capability fields with the values
232 * gleaned from the device inquiry */
233
234 spi_support_sync(starget) = scsi_device_sync(sdev);
235 spi_support_wide(starget) = scsi_device_wide(sdev);
236 spi_support_dt(starget) = scsi_device_dt(sdev);
237 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
238 spi_support_ius(starget) = scsi_device_ius(sdev);
239 if (bflags & SPI_BLIST_NOIUS) {
240 dev_info(dev, "Information Units disabled by blacklist\n");
241 spi_support_ius(starget) = 0;
242 }
243 spi_support_qas(starget) = scsi_device_qas(sdev);
244
245 return 0;
246 }
247
248 static int spi_setup_transport_attrs(struct transport_container *tc,
249 struct device *dev,
250 struct device *cdev)
251 {
252 struct scsi_target *starget = to_scsi_target(dev);
253
254 spi_period(starget) = -1; /* illegal value */
255 spi_min_period(starget) = 0;
256 spi_offset(starget) = 0; /* async */
257 spi_max_offset(starget) = 255;
258 spi_width(starget) = 0; /* narrow */
259 spi_max_width(starget) = 1;
260 spi_iu(starget) = 0; /* no IU */
261 spi_max_iu(starget) = 1;
262 spi_dt(starget) = 0; /* ST */
263 spi_qas(starget) = 0;
264 spi_max_qas(starget) = 1;
265 spi_wr_flow(starget) = 0;
266 spi_rd_strm(starget) = 0;
267 spi_rti(starget) = 0;
268 spi_pcomp_en(starget) = 0;
269 spi_hold_mcs(starget) = 0;
270 spi_dv_pending(starget) = 0;
271 spi_dv_in_progress(starget) = 0;
272 spi_initial_dv(starget) = 0;
273 mutex_init(&spi_dv_mutex(starget));
274
275 return 0;
276 }
277
278 #define spi_transport_show_simple(field, format_string) \
279 \
280 static ssize_t \
281 show_spi_transport_##field(struct device *dev, \
282 struct device_attribute *attr, char *buf) \
283 { \
284 struct scsi_target *starget = transport_class_to_starget(dev); \
285 struct spi_transport_attrs *tp; \
286 \
287 tp = (struct spi_transport_attrs *)&starget->starget_data; \
288 return snprintf(buf, 20, format_string, tp->field); \
289 }
290
291 #define spi_transport_store_simple(field, format_string) \
292 \
293 static ssize_t \
294 store_spi_transport_##field(struct device *dev, \
295 struct device_attribute *attr, \
296 const char *buf, size_t count) \
297 { \
298 int val; \
299 struct scsi_target *starget = transport_class_to_starget(dev); \
300 struct spi_transport_attrs *tp; \
301 \
302 tp = (struct spi_transport_attrs *)&starget->starget_data; \
303 val = simple_strtoul(buf, NULL, 0); \
304 tp->field = val; \
305 return count; \
306 }
307
308 #define spi_transport_show_function(field, format_string) \
309 \
310 static ssize_t \
311 show_spi_transport_##field(struct device *dev, \
312 struct device_attribute *attr, char *buf) \
313 { \
314 struct scsi_target *starget = transport_class_to_starget(dev); \
315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
316 struct spi_transport_attrs *tp; \
317 struct spi_internal *i = to_spi_internal(shost->transportt); \
318 tp = (struct spi_transport_attrs *)&starget->starget_data; \
319 if (i->f->get_##field) \
320 i->f->get_##field(starget); \
321 return snprintf(buf, 20, format_string, tp->field); \
322 }
323
324 #define spi_transport_store_function(field, format_string) \
325 static ssize_t \
326 store_spi_transport_##field(struct device *dev, \
327 struct device_attribute *attr, \
328 const char *buf, size_t count) \
329 { \
330 int val; \
331 struct scsi_target *starget = transport_class_to_starget(dev); \
332 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
333 struct spi_internal *i = to_spi_internal(shost->transportt); \
334 \
335 if (!i->f->set_##field) \
336 return -EINVAL; \
337 val = simple_strtoul(buf, NULL, 0); \
338 i->f->set_##field(starget, val); \
339 return count; \
340 }
341
342 #define spi_transport_store_max(field, format_string) \
343 static ssize_t \
344 store_spi_transport_##field(struct device *dev, \
345 struct device_attribute *attr, \
346 const char *buf, size_t count) \
347 { \
348 int val; \
349 struct scsi_target *starget = transport_class_to_starget(dev); \
350 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
351 struct spi_internal *i = to_spi_internal(shost->transportt); \
352 struct spi_transport_attrs *tp \
353 = (struct spi_transport_attrs *)&starget->starget_data; \
354 \
355 if (i->f->set_##field) \
356 return -EINVAL; \
357 val = simple_strtoul(buf, NULL, 0); \
358 if (val > tp->max_##field) \
359 val = tp->max_##field; \
360 i->f->set_##field(starget, val); \
361 return count; \
362 }
363
364 #define spi_transport_rd_attr(field, format_string) \
365 spi_transport_show_function(field, format_string) \
366 spi_transport_store_function(field, format_string) \
367 static DEVICE_ATTR(field, S_IRUGO, \
368 show_spi_transport_##field, \
369 store_spi_transport_##field);
370
371 #define spi_transport_simple_attr(field, format_string) \
372 spi_transport_show_simple(field, format_string) \
373 spi_transport_store_simple(field, format_string) \
374 static DEVICE_ATTR(field, S_IRUGO, \
375 show_spi_transport_##field, \
376 store_spi_transport_##field);
377
378 #define spi_transport_max_attr(field, format_string) \
379 spi_transport_show_function(field, format_string) \
380 spi_transport_store_max(field, format_string) \
381 spi_transport_simple_attr(max_##field, format_string) \
382 static DEVICE_ATTR(field, S_IRUGO, \
383 show_spi_transport_##field, \
384 store_spi_transport_##field);
385
386 /* The Parallel SCSI Tranport Attributes: */
387 spi_transport_max_attr(offset, "%d\n");
388 spi_transport_max_attr(width, "%d\n");
389 spi_transport_max_attr(iu, "%d\n");
390 spi_transport_rd_attr(dt, "%d\n");
391 spi_transport_max_attr(qas, "%d\n");
392 spi_transport_rd_attr(wr_flow, "%d\n");
393 spi_transport_rd_attr(rd_strm, "%d\n");
394 spi_transport_rd_attr(rti, "%d\n");
395 spi_transport_rd_attr(pcomp_en, "%d\n");
396 spi_transport_rd_attr(hold_mcs, "%d\n");
397
398 /* we only care about the first child device that's a real SCSI device
399 * so we return 1 to terminate the iteration when we find it */
400 static int child_iter(struct device *dev, void *data)
401 {
402 if (!scsi_is_sdev_device(dev))
403 return 0;
404
405 spi_dv_device(to_scsi_device(dev));
406 return 1;
407 }
408
409 static ssize_t
410 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
411 const char *buf, size_t count)
412 {
413 struct scsi_target *starget = transport_class_to_starget(dev);
414
415 device_for_each_child(&starget->dev, NULL, child_iter);
416 return count;
417 }
418 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
419
420 /* Translate the period into ns according to the current spec
421 * for SDTR/PPR messages */
422 static int period_to_str(char *buf, int period)
423 {
424 int len, picosec;
425
426 if (period < 0 || period > 0xff) {
427 picosec = -1;
428 } else if (period <= SPI_STATIC_PPR) {
429 picosec = ppr_to_ps[period];
430 } else {
431 picosec = period * 4000;
432 }
433
434 if (picosec == -1) {
435 len = sprintf(buf, "reserved");
436 } else {
437 len = sprint_frac(buf, picosec, 1000);
438 }
439
440 return len;
441 }
442
443 static ssize_t
444 show_spi_transport_period_helper(char *buf, int period)
445 {
446 int len = period_to_str(buf, period);
447 buf[len++] = '\n';
448 buf[len] = '\0';
449 return len;
450 }
451
452 static ssize_t
453 store_spi_transport_period_helper(struct device *dev, const char *buf,
454 size_t count, int *periodp)
455 {
456 int j, picosec, period = -1;
457 char *endp;
458
459 picosec = simple_strtoul(buf, &endp, 10) * 1000;
460 if (*endp == '.') {
461 int mult = 100;
462 do {
463 endp++;
464 if (!isdigit(*endp))
465 break;
466 picosec += (*endp - '0') * mult;
467 mult /= 10;
468 } while (mult > 0);
469 }
470
471 for (j = 0; j <= SPI_STATIC_PPR; j++) {
472 if (ppr_to_ps[j] < picosec)
473 continue;
474 period = j;
475 break;
476 }
477
478 if (period == -1)
479 period = picosec / 4000;
480
481 if (period > 0xff)
482 period = 0xff;
483
484 *periodp = period;
485
486 return count;
487 }
488
489 static ssize_t
490 show_spi_transport_period(struct device *dev,
491 struct device_attribute *attr, char *buf)
492 {
493 struct scsi_target *starget = transport_class_to_starget(dev);
494 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
495 struct spi_internal *i = to_spi_internal(shost->transportt);
496 struct spi_transport_attrs *tp =
497 (struct spi_transport_attrs *)&starget->starget_data;
498
499 if (i->f->get_period)
500 i->f->get_period(starget);
501
502 return show_spi_transport_period_helper(buf, tp->period);
503 }
504
505 static ssize_t
506 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
507 const char *buf, size_t count)
508 {
509 struct scsi_target *starget = transport_class_to_starget(cdev);
510 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
511 struct spi_internal *i = to_spi_internal(shost->transportt);
512 struct spi_transport_attrs *tp =
513 (struct spi_transport_attrs *)&starget->starget_data;
514 int period, retval;
515
516 if (!i->f->set_period)
517 return -EINVAL;
518
519 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
520
521 if (period < tp->min_period)
522 period = tp->min_period;
523
524 i->f->set_period(starget, period);
525
526 return retval;
527 }
528
529 static DEVICE_ATTR(period, S_IRUGO,
530 show_spi_transport_period,
531 store_spi_transport_period);
532
533 static ssize_t
534 show_spi_transport_min_period(struct device *cdev,
535 struct device_attribute *attr, char *buf)
536 {
537 struct scsi_target *starget = transport_class_to_starget(cdev);
538 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
539 struct spi_internal *i = to_spi_internal(shost->transportt);
540 struct spi_transport_attrs *tp =
541 (struct spi_transport_attrs *)&starget->starget_data;
542
543 if (!i->f->set_period)
544 return -EINVAL;
545
546 return show_spi_transport_period_helper(buf, tp->min_period);
547 }
548
549 static ssize_t
550 store_spi_transport_min_period(struct device *cdev,
551 struct device_attribute *attr,
552 const char *buf, size_t count)
553 {
554 struct scsi_target *starget = transport_class_to_starget(cdev);
555 struct spi_transport_attrs *tp =
556 (struct spi_transport_attrs *)&starget->starget_data;
557
558 return store_spi_transport_period_helper(cdev, buf, count,
559 &tp->min_period);
560 }
561
562
563 static DEVICE_ATTR(min_period, S_IRUGO,
564 show_spi_transport_min_period,
565 store_spi_transport_min_period);
566
567
568 static ssize_t show_spi_host_signalling(struct device *cdev,
569 struct device_attribute *attr,
570 char *buf)
571 {
572 struct Scsi_Host *shost = transport_class_to_shost(cdev);
573 struct spi_internal *i = to_spi_internal(shost->transportt);
574
575 if (i->f->get_signalling)
576 i->f->get_signalling(shost);
577
578 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
579 }
580 static ssize_t store_spi_host_signalling(struct device *dev,
581 struct device_attribute *attr,
582 const char *buf, size_t count)
583 {
584 struct Scsi_Host *shost = transport_class_to_shost(dev);
585 struct spi_internal *i = to_spi_internal(shost->transportt);
586 enum spi_signal_type type = spi_signal_to_value(buf);
587
588 if (!i->f->set_signalling)
589 return -EINVAL;
590
591 if (type != SPI_SIGNAL_UNKNOWN)
592 i->f->set_signalling(shost, type);
593
594 return count;
595 }
596 static DEVICE_ATTR(signalling, S_IRUGO,
597 show_spi_host_signalling,
598 store_spi_host_signalling);
599
600 static ssize_t show_spi_host_width(struct device *cdev,
601 struct device_attribute *attr,
602 char *buf)
603 {
604 struct Scsi_Host *shost = transport_class_to_shost(cdev);
605
606 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
607 }
608 static DEVICE_ATTR(host_width, S_IRUGO,
609 show_spi_host_width, NULL);
610
611 static ssize_t show_spi_host_hba_id(struct device *cdev,
612 struct device_attribute *attr,
613 char *buf)
614 {
615 struct Scsi_Host *shost = transport_class_to_shost(cdev);
616
617 return sprintf(buf, "%d\n", shost->this_id);
618 }
619 static DEVICE_ATTR(hba_id, S_IRUGO,
620 show_spi_host_hba_id, NULL);
621
622 #define DV_SET(x, y) \
623 if(i->f->set_##x) \
624 i->f->set_##x(sdev->sdev_target, y)
625
626 enum spi_compare_returns {
627 SPI_COMPARE_SUCCESS,
628 SPI_COMPARE_FAILURE,
629 SPI_COMPARE_SKIP_TEST,
630 };
631
632
633 /* This is for read/write Domain Validation: If the device supports
634 * an echo buffer, we do read/write tests to it */
635 static enum spi_compare_returns
636 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
637 u8 *ptr, const int retries)
638 {
639 int len = ptr - buffer;
640 int j, k, r, result;
641 unsigned int pattern = 0x0000ffff;
642 struct scsi_sense_hdr sshdr;
643
644 const char spi_write_buffer[] = {
645 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
646 };
647 const char spi_read_buffer[] = {
648 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
649 };
650
651 /* set up the pattern buffer. Doesn't matter if we spill
652 * slightly beyond since that's where the read buffer is */
653 for (j = 0; j < len; ) {
654
655 /* fill the buffer with counting (test a) */
656 for ( ; j < min(len, 32); j++)
657 buffer[j] = j;
658 k = j;
659 /* fill the buffer with alternating words of 0x0 and
660 * 0xffff (test b) */
661 for ( ; j < min(len, k + 32); j += 2) {
662 u16 *word = (u16 *)&buffer[j];
663
664 *word = (j & 0x02) ? 0x0000 : 0xffff;
665 }
666 k = j;
667 /* fill with crosstalk (alternating 0x5555 0xaaa)
668 * (test c) */
669 for ( ; j < min(len, k + 32); j += 2) {
670 u16 *word = (u16 *)&buffer[j];
671
672 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
673 }
674 k = j;
675 /* fill with shifting bits (test d) */
676 for ( ; j < min(len, k + 32); j += 4) {
677 u32 *word = (unsigned int *)&buffer[j];
678 u32 roll = (pattern & 0x80000000) ? 1 : 0;
679
680 *word = pattern;
681 pattern = (pattern << 1) | roll;
682 }
683 /* don't bother with random data (test e) */
684 }
685
686 for (r = 0; r < retries; r++) {
687 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
688 buffer, len, &sshdr);
689 if(result || !scsi_device_online(sdev)) {
690
691 scsi_device_set_state(sdev, SDEV_QUIESCE);
692 if (scsi_sense_valid(&sshdr)
693 && sshdr.sense_key == ILLEGAL_REQUEST
694 /* INVALID FIELD IN CDB */
695 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
696 /* This would mean that the drive lied
697 * to us about supporting an echo
698 * buffer (unfortunately some Western
699 * Digital drives do precisely this)
700 */
701 return SPI_COMPARE_SKIP_TEST;
702
703
704 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
705 return SPI_COMPARE_FAILURE;
706 }
707
708 memset(ptr, 0, len);
709 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
710 ptr, len, NULL);
711 scsi_device_set_state(sdev, SDEV_QUIESCE);
712
713 if (memcmp(buffer, ptr, len) != 0)
714 return SPI_COMPARE_FAILURE;
715 }
716 return SPI_COMPARE_SUCCESS;
717 }
718
719 /* This is for the simplest form of Domain Validation: a read test
720 * on the inquiry data from the device */
721 static enum spi_compare_returns
722 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
723 u8 *ptr, const int retries)
724 {
725 int r, result;
726 const int len = sdev->inquiry_len;
727 const char spi_inquiry[] = {
728 INQUIRY, 0, 0, 0, len, 0
729 };
730
731 for (r = 0; r < retries; r++) {
732 memset(ptr, 0, len);
733
734 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
735 ptr, len, NULL);
736
737 if(result || !scsi_device_online(sdev)) {
738 scsi_device_set_state(sdev, SDEV_QUIESCE);
739 return SPI_COMPARE_FAILURE;
740 }
741
742 /* If we don't have the inquiry data already, the
743 * first read gets it */
744 if (ptr == buffer) {
745 ptr += len;
746 --r;
747 continue;
748 }
749
750 if (memcmp(buffer, ptr, len) != 0)
751 /* failure */
752 return SPI_COMPARE_FAILURE;
753 }
754 return SPI_COMPARE_SUCCESS;
755 }
756
757 static enum spi_compare_returns
758 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
759 enum spi_compare_returns
760 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
761 {
762 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
763 struct scsi_target *starget = sdev->sdev_target;
764 int period = 0, prevperiod = 0;
765 enum spi_compare_returns retval;
766
767
768 for (;;) {
769 int newperiod;
770 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
771
772 if (retval == SPI_COMPARE_SUCCESS
773 || retval == SPI_COMPARE_SKIP_TEST)
774 break;
775
776 /* OK, retrain, fallback */
777 if (i->f->get_iu)
778 i->f->get_iu(starget);
779 if (i->f->get_qas)
780 i->f->get_qas(starget);
781 if (i->f->get_period)
782 i->f->get_period(sdev->sdev_target);
783
784 /* Here's the fallback sequence; first try turning off
785 * IU, then QAS (if we can control them), then finally
786 * fall down the periods */
787 if (i->f->set_iu && spi_iu(starget)) {
788 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
789 DV_SET(iu, 0);
790 } else if (i->f->set_qas && spi_qas(starget)) {
791 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
792 DV_SET(qas, 0);
793 } else {
794 newperiod = spi_period(starget);
795 period = newperiod > period ? newperiod : period;
796 if (period < 0x0d)
797 period++;
798 else
799 period += period >> 1;
800
801 if (unlikely(period > 0xff || period == prevperiod)) {
802 /* Total failure; set to async and return */
803 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
804 DV_SET(offset, 0);
805 return SPI_COMPARE_FAILURE;
806 }
807 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
808 DV_SET(period, period);
809 prevperiod = period;
810 }
811 }
812 return retval;
813 }
814
815 static int
816 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
817 {
818 int l, result;
819
820 /* first off do a test unit ready. This can error out
821 * because of reservations or some other reason. If it
822 * fails, the device won't let us write to the echo buffer
823 * so just return failure */
824
825 const char spi_test_unit_ready[] = {
826 TEST_UNIT_READY, 0, 0, 0, 0, 0
827 };
828
829 const char spi_read_buffer_descriptor[] = {
830 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
831 };
832
833
834 /* We send a set of three TURs to clear any outstanding
835 * unit attention conditions if they exist (Otherwise the
836 * buffer tests won't be happy). If the TUR still fails
837 * (reservation conflict, device not ready, etc) just
838 * skip the write tests */
839 for (l = 0; ; l++) {
840 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
841 NULL, 0, NULL);
842
843 if(result) {
844 if(l >= 3)
845 return 0;
846 } else {
847 /* TUR succeeded */
848 break;
849 }
850 }
851
852 result = spi_execute(sdev, spi_read_buffer_descriptor,
853 DMA_FROM_DEVICE, buffer, 4, NULL);
854
855 if (result)
856 /* Device has no echo buffer */
857 return 0;
858
859 return buffer[3] + ((buffer[2] & 0x1f) << 8);
860 }
861
862 static void
863 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
864 {
865 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
866 struct scsi_target *starget = sdev->sdev_target;
867 struct Scsi_Host *shost = sdev->host;
868 int len = sdev->inquiry_len;
869 int min_period = spi_min_period(starget);
870 int max_width = spi_max_width(starget);
871 /* first set us up for narrow async */
872 DV_SET(offset, 0);
873 DV_SET(width, 0);
874
875 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
876 != SPI_COMPARE_SUCCESS) {
877 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
878 /* FIXME: should probably offline the device here? */
879 return;
880 }
881
882 if (!spi_support_wide(starget)) {
883 spi_max_width(starget) = 0;
884 max_width = 0;
885 }
886
887 /* test width */
888 if (i->f->set_width && max_width) {
889 i->f->set_width(starget, 1);
890
891 if (spi_dv_device_compare_inquiry(sdev, buffer,
892 buffer + len,
893 DV_LOOPS)
894 != SPI_COMPARE_SUCCESS) {
895 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
896 i->f->set_width(starget, 0);
897 /* Make sure we don't force wide back on by asking
898 * for a transfer period that requires it */
899 max_width = 0;
900 if (min_period < 10)
901 min_period = 10;
902 }
903 }
904
905 if (!i->f->set_period)
906 return;
907
908 /* device can't handle synchronous */
909 if (!spi_support_sync(starget) && !spi_support_dt(starget))
910 return;
911
912 /* len == -1 is the signal that we need to ascertain the
913 * presence of an echo buffer before trying to use it. len ==
914 * 0 means we don't have an echo buffer */
915 len = -1;
916
917 retry:
918
919 /* now set up to the maximum */
920 DV_SET(offset, spi_max_offset(starget));
921 DV_SET(period, min_period);
922
923 /* try QAS requests; this should be harmless to set if the
924 * target supports it */
925 if (spi_support_qas(starget) && spi_max_qas(starget)) {
926 DV_SET(qas, 1);
927 } else {
928 DV_SET(qas, 0);
929 }
930
931 if (spi_support_ius(starget) && spi_max_iu(starget) &&
932 min_period < 9) {
933 /* This u320 (or u640). Set IU transfers */
934 DV_SET(iu, 1);
935 /* Then set the optional parameters */
936 DV_SET(rd_strm, 1);
937 DV_SET(wr_flow, 1);
938 DV_SET(rti, 1);
939 if (min_period == 8)
940 DV_SET(pcomp_en, 1);
941 } else {
942 DV_SET(iu, 0);
943 }
944
945 /* now that we've done all this, actually check the bus
946 * signal type (if known). Some devices are stupid on
947 * a SE bus and still claim they can try LVD only settings */
948 if (i->f->get_signalling)
949 i->f->get_signalling(shost);
950 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
951 spi_signalling(shost) == SPI_SIGNAL_HVD ||
952 !spi_support_dt(starget)) {
953 DV_SET(dt, 0);
954 } else {
955 DV_SET(dt, 1);
956 }
957 /* set width last because it will pull all the other
958 * parameters down to required values */
959 DV_SET(width, max_width);
960
961 /* Do the read only INQUIRY tests */
962 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
963 spi_dv_device_compare_inquiry);
964 /* See if we actually managed to negotiate and sustain DT */
965 if (i->f->get_dt)
966 i->f->get_dt(starget);
967
968 /* see if the device has an echo buffer. If it does we can do
969 * the SPI pattern write tests. Because of some broken
970 * devices, we *only* try this on a device that has actually
971 * negotiated DT */
972
973 if (len == -1 && spi_dt(starget))
974 len = spi_dv_device_get_echo_buffer(sdev, buffer);
975
976 if (len <= 0) {
977 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
978 return;
979 }
980
981 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
982 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
983 len = SPI_MAX_ECHO_BUFFER_SIZE;
984 }
985
986 if (spi_dv_retrain(sdev, buffer, buffer + len,
987 spi_dv_device_echo_buffer)
988 == SPI_COMPARE_SKIP_TEST) {
989 /* OK, the stupid drive can't do a write echo buffer
990 * test after all, fall back to the read tests */
991 len = 0;
992 goto retry;
993 }
994 }
995
996
997 /** spi_dv_device - Do Domain Validation on the device
998 * @sdev: scsi device to validate
999 *
1000 * Performs the domain validation on the given device in the
1001 * current execution thread. Since DV operations may sleep,
1002 * the current thread must have user context. Also no SCSI
1003 * related locks that would deadlock I/O issued by the DV may
1004 * be held.
1005 */
1006 void
1007 spi_dv_device(struct scsi_device *sdev)
1008 {
1009 struct scsi_target *starget = sdev->sdev_target;
1010 u8 *buffer;
1011 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1012
1013 if (unlikely(spi_dv_in_progress(starget)))
1014 return;
1015
1016 if (unlikely(scsi_device_get(sdev)))
1017 return;
1018 spi_dv_in_progress(starget) = 1;
1019
1020 buffer = kzalloc(len, GFP_KERNEL);
1021
1022 if (unlikely(!buffer))
1023 goto out_put;
1024
1025 /* We need to verify that the actual device will quiesce; the
1026 * later target quiesce is just a nice to have */
1027 if (unlikely(scsi_device_quiesce(sdev)))
1028 goto out_free;
1029
1030 scsi_target_quiesce(starget);
1031
1032 spi_dv_pending(starget) = 1;
1033 mutex_lock(&spi_dv_mutex(starget));
1034
1035 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1036
1037 spi_dv_device_internal(sdev, buffer);
1038
1039 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1040
1041 mutex_unlock(&spi_dv_mutex(starget));
1042 spi_dv_pending(starget) = 0;
1043
1044 scsi_target_resume(starget);
1045
1046 spi_initial_dv(starget) = 1;
1047
1048 out_free:
1049 kfree(buffer);
1050 out_put:
1051 spi_dv_in_progress(starget) = 0;
1052 scsi_device_put(sdev);
1053 }
1054 EXPORT_SYMBOL(spi_dv_device);
1055
1056 struct work_queue_wrapper {
1057 struct work_struct work;
1058 struct scsi_device *sdev;
1059 };
1060
1061 static void
1062 spi_dv_device_work_wrapper(struct work_struct *work)
1063 {
1064 struct work_queue_wrapper *wqw =
1065 container_of(work, struct work_queue_wrapper, work);
1066 struct scsi_device *sdev = wqw->sdev;
1067
1068 kfree(wqw);
1069 spi_dv_device(sdev);
1070 spi_dv_pending(sdev->sdev_target) = 0;
1071 scsi_device_put(sdev);
1072 }
1073
1074
1075 /**
1076 * spi_schedule_dv_device - schedule domain validation to occur on the device
1077 * @sdev: The device to validate
1078 *
1079 * Identical to spi_dv_device() above, except that the DV will be
1080 * scheduled to occur in a workqueue later. All memory allocations
1081 * are atomic, so may be called from any context including those holding
1082 * SCSI locks.
1083 */
1084 void
1085 spi_schedule_dv_device(struct scsi_device *sdev)
1086 {
1087 struct work_queue_wrapper *wqw =
1088 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1089
1090 if (unlikely(!wqw))
1091 return;
1092
1093 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1094 kfree(wqw);
1095 return;
1096 }
1097 /* Set pending early (dv_device doesn't check it, only sets it) */
1098 spi_dv_pending(sdev->sdev_target) = 1;
1099 if (unlikely(scsi_device_get(sdev))) {
1100 kfree(wqw);
1101 spi_dv_pending(sdev->sdev_target) = 0;
1102 return;
1103 }
1104
1105 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1106 wqw->sdev = sdev;
1107
1108 schedule_work(&wqw->work);
1109 }
1110 EXPORT_SYMBOL(spi_schedule_dv_device);
1111
1112 /**
1113 * spi_display_xfer_agreement - Print the current target transfer agreement
1114 * @starget: The target for which to display the agreement
1115 *
1116 * Each SPI port is required to maintain a transfer agreement for each
1117 * other port on the bus. This function prints a one-line summary of
1118 * the current agreement; more detailed information is available in sysfs.
1119 */
1120 void spi_display_xfer_agreement(struct scsi_target *starget)
1121 {
1122 struct spi_transport_attrs *tp;
1123 tp = (struct spi_transport_attrs *)&starget->starget_data;
1124
1125 if (tp->offset > 0 && tp->period > 0) {
1126 unsigned int picosec, kb100;
1127 char *scsi = "FAST-?";
1128 char tmp[8];
1129
1130 if (tp->period <= SPI_STATIC_PPR) {
1131 picosec = ppr_to_ps[tp->period];
1132 switch (tp->period) {
1133 case 7: scsi = "FAST-320"; break;
1134 case 8: scsi = "FAST-160"; break;
1135 case 9: scsi = "FAST-80"; break;
1136 case 10:
1137 case 11: scsi = "FAST-40"; break;
1138 case 12: scsi = "FAST-20"; break;
1139 }
1140 } else {
1141 picosec = tp->period * 4000;
1142 if (tp->period < 25)
1143 scsi = "FAST-20";
1144 else if (tp->period < 50)
1145 scsi = "FAST-10";
1146 else
1147 scsi = "FAST-5";
1148 }
1149
1150 kb100 = (10000000 + picosec / 2) / picosec;
1151 if (tp->width)
1152 kb100 *= 2;
1153 sprint_frac(tmp, picosec, 1000);
1154
1155 dev_info(&starget->dev,
1156 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1157 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1158 tp->dt ? "DT" : "ST",
1159 tp->iu ? " IU" : "",
1160 tp->qas ? " QAS" : "",
1161 tp->rd_strm ? " RDSTRM" : "",
1162 tp->rti ? " RTI" : "",
1163 tp->wr_flow ? " WRFLOW" : "",
1164 tp->pcomp_en ? " PCOMP" : "",
1165 tp->hold_mcs ? " HMCS" : "",
1166 tmp, tp->offset);
1167 } else {
1168 dev_info(&starget->dev, "%sasynchronous\n",
1169 tp->width ? "wide " : "");
1170 }
1171 }
1172 EXPORT_SYMBOL(spi_display_xfer_agreement);
1173
1174 int spi_populate_width_msg(unsigned char *msg, int width)
1175 {
1176 msg[0] = EXTENDED_MESSAGE;
1177 msg[1] = 2;
1178 msg[2] = EXTENDED_WDTR;
1179 msg[3] = width;
1180 return 4;
1181 }
1182 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1183
1184 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1185 {
1186 msg[0] = EXTENDED_MESSAGE;
1187 msg[1] = 3;
1188 msg[2] = EXTENDED_SDTR;
1189 msg[3] = period;
1190 msg[4] = offset;
1191 return 5;
1192 }
1193 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1194
1195 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1196 int width, int options)
1197 {
1198 msg[0] = EXTENDED_MESSAGE;
1199 msg[1] = 6;
1200 msg[2] = EXTENDED_PPR;
1201 msg[3] = period;
1202 msg[4] = 0;
1203 msg[5] = offset;
1204 msg[6] = width;
1205 msg[7] = options;
1206 return 8;
1207 }
1208 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1209
1210 #ifdef CONFIG_SCSI_CONSTANTS
1211 static const char * const one_byte_msgs[] = {
1212 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1213 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1214 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1215 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1216 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1217 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1218 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1219 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1220 };
1221
1222 static const char * const two_byte_msgs[] = {
1223 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1224 /* 0x23 */ "Ignore Wide Residue", "ACA"
1225 };
1226
1227 static const char * const extended_msgs[] = {
1228 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1229 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1230 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1231 };
1232
1233 static void print_nego(const unsigned char *msg, int per, int off, int width)
1234 {
1235 if (per) {
1236 char buf[20];
1237 period_to_str(buf, msg[per]);
1238 printk("period = %s ns ", buf);
1239 }
1240
1241 if (off)
1242 printk("offset = %d ", msg[off]);
1243 if (width)
1244 printk("width = %d ", 8 << msg[width]);
1245 }
1246
1247 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1248 {
1249 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1250 msg[msb+3];
1251 printk("%s = %d ", desc, ptr);
1252 }
1253
1254 int spi_print_msg(const unsigned char *msg)
1255 {
1256 int len = 1, i;
1257 if (msg[0] == EXTENDED_MESSAGE) {
1258 len = 2 + msg[1];
1259 if (len == 2)
1260 len += 256;
1261 if (msg[2] < ARRAY_SIZE(extended_msgs))
1262 printk ("%s ", extended_msgs[msg[2]]);
1263 else
1264 printk ("Extended Message, reserved code (0x%02x) ",
1265 (int) msg[2]);
1266 switch (msg[2]) {
1267 case EXTENDED_MODIFY_DATA_POINTER:
1268 print_ptr(msg, 3, "pointer");
1269 break;
1270 case EXTENDED_SDTR:
1271 print_nego(msg, 3, 4, 0);
1272 break;
1273 case EXTENDED_WDTR:
1274 print_nego(msg, 0, 0, 3);
1275 break;
1276 case EXTENDED_PPR:
1277 print_nego(msg, 3, 5, 6);
1278 break;
1279 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1280 print_ptr(msg, 3, "out");
1281 print_ptr(msg, 7, "in");
1282 break;
1283 default:
1284 for (i = 2; i < len; ++i)
1285 printk("%02x ", msg[i]);
1286 }
1287 /* Identify */
1288 } else if (msg[0] & 0x80) {
1289 printk("Identify disconnect %sallowed %s %d ",
1290 (msg[0] & 0x40) ? "" : "not ",
1291 (msg[0] & 0x20) ? "target routine" : "lun",
1292 msg[0] & 0x7);
1293 /* Normal One byte */
1294 } else if (msg[0] < 0x1f) {
1295 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1296 printk("%s ", one_byte_msgs[msg[0]]);
1297 else
1298 printk("reserved (%02x) ", msg[0]);
1299 } else if (msg[0] == 0x55) {
1300 printk("QAS Request ");
1301 /* Two byte */
1302 } else if (msg[0] <= 0x2f) {
1303 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1304 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1305 msg[1]);
1306 else
1307 printk("reserved two byte (%02x %02x) ",
1308 msg[0], msg[1]);
1309 len = 2;
1310 } else
1311 printk("reserved ");
1312 return len;
1313 }
1314 EXPORT_SYMBOL(spi_print_msg);
1315
1316 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1317
1318 int spi_print_msg(const unsigned char *msg)
1319 {
1320 int len = 1, i;
1321
1322 if (msg[0] == EXTENDED_MESSAGE) {
1323 len = 2 + msg[1];
1324 if (len == 2)
1325 len += 256;
1326 for (i = 0; i < len; ++i)
1327 printk("%02x ", msg[i]);
1328 /* Identify */
1329 } else if (msg[0] & 0x80) {
1330 printk("%02x ", msg[0]);
1331 /* Normal One byte */
1332 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1333 printk("%02x ", msg[0]);
1334 /* Two byte */
1335 } else if (msg[0] <= 0x2f) {
1336 printk("%02x %02x", msg[0], msg[1]);
1337 len = 2;
1338 } else
1339 printk("%02x ", msg[0]);
1340 return len;
1341 }
1342 EXPORT_SYMBOL(spi_print_msg);
1343 #endif /* ! CONFIG_SCSI_CONSTANTS */
1344
1345 static int spi_device_match(struct attribute_container *cont,
1346 struct device *dev)
1347 {
1348 struct scsi_device *sdev;
1349 struct Scsi_Host *shost;
1350 struct spi_internal *i;
1351
1352 if (!scsi_is_sdev_device(dev))
1353 return 0;
1354
1355 sdev = to_scsi_device(dev);
1356 shost = sdev->host;
1357 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1358 != &spi_host_class.class)
1359 return 0;
1360 /* Note: this class has no device attributes, so it has
1361 * no per-HBA allocation and thus we don't need to distinguish
1362 * the attribute containers for the device */
1363 i = to_spi_internal(shost->transportt);
1364 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1365 return 0;
1366 return 1;
1367 }
1368
1369 static int spi_target_match(struct attribute_container *cont,
1370 struct device *dev)
1371 {
1372 struct Scsi_Host *shost;
1373 struct scsi_target *starget;
1374 struct spi_internal *i;
1375
1376 if (!scsi_is_target_device(dev))
1377 return 0;
1378
1379 shost = dev_to_shost(dev->parent);
1380 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1381 != &spi_host_class.class)
1382 return 0;
1383
1384 i = to_spi_internal(shost->transportt);
1385 starget = to_scsi_target(dev);
1386
1387 if (i->f->deny_binding && i->f->deny_binding(starget))
1388 return 0;
1389
1390 return &i->t.target_attrs.ac == cont;
1391 }
1392
1393 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1394 "spi_transport",
1395 spi_setup_transport_attrs,
1396 NULL,
1397 spi_target_configure);
1398
1399 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1400 spi_device_match,
1401 spi_device_configure);
1402
1403 static struct attribute *host_attributes[] = {
1404 &dev_attr_signalling.attr,
1405 &dev_attr_host_width.attr,
1406 &dev_attr_hba_id.attr,
1407 NULL
1408 };
1409
1410 static struct attribute_group host_attribute_group = {
1411 .attrs = host_attributes,
1412 };
1413
1414 static int spi_host_configure(struct transport_container *tc,
1415 struct device *dev,
1416 struct device *cdev)
1417 {
1418 struct kobject *kobj = &cdev->kobj;
1419 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1420 struct spi_internal *si = to_spi_internal(shost->transportt);
1421 struct attribute *attr = &dev_attr_signalling.attr;
1422 int rc = 0;
1423
1424 if (si->f->set_signalling)
1425 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1426
1427 return rc;
1428 }
1429
1430 /* returns true if we should be showing the variable. Also
1431 * overloads the return by setting 1<<1 if the attribute should
1432 * be writeable */
1433 #define TARGET_ATTRIBUTE_HELPER(name) \
1434 (si->f->show_##name ? S_IRUGO : 0) | \
1435 (si->f->set_##name ? S_IWUSR : 0)
1436
1437 static umode_t target_attribute_is_visible(struct kobject *kobj,
1438 struct attribute *attr, int i)
1439 {
1440 struct device *cdev = container_of(kobj, struct device, kobj);
1441 struct scsi_target *starget = transport_class_to_starget(cdev);
1442 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1443 struct spi_internal *si = to_spi_internal(shost->transportt);
1444
1445 if (attr == &dev_attr_period.attr &&
1446 spi_support_sync(starget))
1447 return TARGET_ATTRIBUTE_HELPER(period);
1448 else if (attr == &dev_attr_min_period.attr &&
1449 spi_support_sync(starget))
1450 return TARGET_ATTRIBUTE_HELPER(period);
1451 else if (attr == &dev_attr_offset.attr &&
1452 spi_support_sync(starget))
1453 return TARGET_ATTRIBUTE_HELPER(offset);
1454 else if (attr == &dev_attr_max_offset.attr &&
1455 spi_support_sync(starget))
1456 return TARGET_ATTRIBUTE_HELPER(offset);
1457 else if (attr == &dev_attr_width.attr &&
1458 spi_support_wide(starget))
1459 return TARGET_ATTRIBUTE_HELPER(width);
1460 else if (attr == &dev_attr_max_width.attr &&
1461 spi_support_wide(starget))
1462 return TARGET_ATTRIBUTE_HELPER(width);
1463 else if (attr == &dev_attr_iu.attr &&
1464 spi_support_ius(starget))
1465 return TARGET_ATTRIBUTE_HELPER(iu);
1466 else if (attr == &dev_attr_max_iu.attr &&
1467 spi_support_ius(starget))
1468 return TARGET_ATTRIBUTE_HELPER(iu);
1469 else if (attr == &dev_attr_dt.attr &&
1470 spi_support_dt(starget))
1471 return TARGET_ATTRIBUTE_HELPER(dt);
1472 else if (attr == &dev_attr_qas.attr &&
1473 spi_support_qas(starget))
1474 return TARGET_ATTRIBUTE_HELPER(qas);
1475 else if (attr == &dev_attr_max_qas.attr &&
1476 spi_support_qas(starget))
1477 return TARGET_ATTRIBUTE_HELPER(qas);
1478 else if (attr == &dev_attr_wr_flow.attr &&
1479 spi_support_ius(starget))
1480 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1481 else if (attr == &dev_attr_rd_strm.attr &&
1482 spi_support_ius(starget))
1483 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1484 else if (attr == &dev_attr_rti.attr &&
1485 spi_support_ius(starget))
1486 return TARGET_ATTRIBUTE_HELPER(rti);
1487 else if (attr == &dev_attr_pcomp_en.attr &&
1488 spi_support_ius(starget))
1489 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1490 else if (attr == &dev_attr_hold_mcs.attr &&
1491 spi_support_ius(starget))
1492 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1493 else if (attr == &dev_attr_revalidate.attr)
1494 return S_IWUSR;
1495
1496 return 0;
1497 }
1498
1499 static struct attribute *target_attributes[] = {
1500 &dev_attr_period.attr,
1501 &dev_attr_min_period.attr,
1502 &dev_attr_offset.attr,
1503 &dev_attr_max_offset.attr,
1504 &dev_attr_width.attr,
1505 &dev_attr_max_width.attr,
1506 &dev_attr_iu.attr,
1507 &dev_attr_max_iu.attr,
1508 &dev_attr_dt.attr,
1509 &dev_attr_qas.attr,
1510 &dev_attr_max_qas.attr,
1511 &dev_attr_wr_flow.attr,
1512 &dev_attr_rd_strm.attr,
1513 &dev_attr_rti.attr,
1514 &dev_attr_pcomp_en.attr,
1515 &dev_attr_hold_mcs.attr,
1516 &dev_attr_revalidate.attr,
1517 NULL
1518 };
1519
1520 static struct attribute_group target_attribute_group = {
1521 .attrs = target_attributes,
1522 .is_visible = target_attribute_is_visible,
1523 };
1524
1525 static int spi_target_configure(struct transport_container *tc,
1526 struct device *dev,
1527 struct device *cdev)
1528 {
1529 struct kobject *kobj = &cdev->kobj;
1530
1531 /* force an update based on parameters read from the device */
1532 sysfs_update_group(kobj, &target_attribute_group);
1533
1534 return 0;
1535 }
1536
1537 struct scsi_transport_template *
1538 spi_attach_transport(struct spi_function_template *ft)
1539 {
1540 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1541 GFP_KERNEL);
1542
1543 if (unlikely(!i))
1544 return NULL;
1545
1546 i->t.target_attrs.ac.class = &spi_transport_class.class;
1547 i->t.target_attrs.ac.grp = &target_attribute_group;
1548 i->t.target_attrs.ac.match = spi_target_match;
1549 transport_container_register(&i->t.target_attrs);
1550 i->t.target_size = sizeof(struct spi_transport_attrs);
1551 i->t.host_attrs.ac.class = &spi_host_class.class;
1552 i->t.host_attrs.ac.grp = &host_attribute_group;
1553 i->t.host_attrs.ac.match = spi_host_match;
1554 transport_container_register(&i->t.host_attrs);
1555 i->t.host_size = sizeof(struct spi_host_attrs);
1556 i->f = ft;
1557
1558 return &i->t;
1559 }
1560 EXPORT_SYMBOL(spi_attach_transport);
1561
1562 void spi_release_transport(struct scsi_transport_template *t)
1563 {
1564 struct spi_internal *i = to_spi_internal(t);
1565
1566 transport_container_unregister(&i->t.target_attrs);
1567 transport_container_unregister(&i->t.host_attrs);
1568
1569 kfree(i);
1570 }
1571 EXPORT_SYMBOL(spi_release_transport);
1572
1573 static __init int spi_transport_init(void)
1574 {
1575 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1576 "SCSI Parallel Transport Class");
1577 if (!error) {
1578 int i;
1579
1580 for (i = 0; spi_static_device_list[i].vendor; i++)
1581 scsi_dev_info_list_add_keyed(1, /* compatible */
1582 spi_static_device_list[i].vendor,
1583 spi_static_device_list[i].model,
1584 NULL,
1585 spi_static_device_list[i].flags,
1586 SCSI_DEVINFO_SPI);
1587 }
1588
1589 error = transport_class_register(&spi_transport_class);
1590 if (error)
1591 return error;
1592 error = anon_transport_class_register(&spi_device_class);
1593 return transport_class_register(&spi_host_class);
1594 }
1595
1596 static void __exit spi_transport_exit(void)
1597 {
1598 transport_class_unregister(&spi_transport_class);
1599 anon_transport_class_unregister(&spi_device_class);
1600 transport_class_unregister(&spi_host_class);
1601 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1602 }
1603
1604 MODULE_AUTHOR("Martin Hicks");
1605 MODULE_DESCRIPTION("SPI Transport Attributes");
1606 MODULE_LICENSE("GPL");
1607
1608 module_init(spi_transport_init);
1609 module_exit(spi_transport_exit);