[SCSI] SCSI core kmalloc2kzalloc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / scsi_transport_spi.c
1 /*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3 *
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/config.h>
22 #include <linux/ctype.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/workqueue.h>
26 #include <linux/blkdev.h>
27 #include <linux/mutex.h>
28 #include <scsi/scsi.h>
29 #include "scsi_priv.h"
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_spi.h>
36
37 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
38 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
39 * on" attributes */
40 #define SPI_HOST_ATTRS 1
41
42 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
43
44 #define DV_LOOPS 3
45 #define DV_TIMEOUT (10*HZ)
46 #define DV_RETRIES 3 /* should only need at most
47 * two cc/ua clears */
48
49 /* Private data accessors (keep these out of the header file) */
50 #define spi_dv_pending(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_pending)
51 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
52
53 struct spi_internal {
54 struct scsi_transport_template t;
55 struct spi_function_template *f;
56 /* The actual attributes */
57 struct class_device_attribute private_attrs[SPI_NUM_ATTRS];
58 /* The array of null terminated pointers to attributes
59 * needed by scsi_sysfs.c */
60 struct class_device_attribute *attrs[SPI_NUM_ATTRS + SPI_OTHER_ATTRS + 1];
61 struct class_device_attribute private_host_attrs[SPI_HOST_ATTRS];
62 struct class_device_attribute *host_attrs[SPI_HOST_ATTRS + 1];
63 };
64
65 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
66
67 static const int ppr_to_ps[] = {
68 /* The PPR values 0-6 are reserved, fill them in when
69 * the committee defines them */
70 -1, /* 0x00 */
71 -1, /* 0x01 */
72 -1, /* 0x02 */
73 -1, /* 0x03 */
74 -1, /* 0x04 */
75 -1, /* 0x05 */
76 -1, /* 0x06 */
77 3125, /* 0x07 */
78 6250, /* 0x08 */
79 12500, /* 0x09 */
80 25000, /* 0x0a */
81 30300, /* 0x0b */
82 50000, /* 0x0c */
83 };
84 /* The PPR values at which you calculate the period in ns by multiplying
85 * by 4 */
86 #define SPI_STATIC_PPR 0x0c
87
88 static int sprint_frac(char *dest, int value, int denom)
89 {
90 int frac = value % denom;
91 int result = sprintf(dest, "%d", value / denom);
92
93 if (frac == 0)
94 return result;
95 dest[result++] = '.';
96
97 do {
98 denom /= 10;
99 sprintf(dest + result, "%d", frac / denom);
100 result++;
101 frac %= denom;
102 } while (frac);
103
104 dest[result++] = '\0';
105 return result;
106 }
107
108 static int spi_execute(struct scsi_device *sdev, const void *cmd,
109 enum dma_data_direction dir,
110 void *buffer, unsigned bufflen,
111 struct scsi_sense_hdr *sshdr)
112 {
113 int i, result;
114 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
115
116 for(i = 0; i < DV_RETRIES; i++) {
117 result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
118 sense, DV_TIMEOUT, /* retries */ 1,
119 REQ_FAILFAST);
120 if (result & DRIVER_SENSE) {
121 struct scsi_sense_hdr sshdr_tmp;
122 if (!sshdr)
123 sshdr = &sshdr_tmp;
124
125 if (scsi_normalize_sense(sense, sizeof(*sense),
126 sshdr)
127 && sshdr->sense_key == UNIT_ATTENTION)
128 continue;
129 }
130 break;
131 }
132 return result;
133 }
134
135 static struct {
136 enum spi_signal_type value;
137 char *name;
138 } signal_types[] = {
139 { SPI_SIGNAL_UNKNOWN, "unknown" },
140 { SPI_SIGNAL_SE, "SE" },
141 { SPI_SIGNAL_LVD, "LVD" },
142 { SPI_SIGNAL_HVD, "HVD" },
143 };
144
145 static inline const char *spi_signal_to_string(enum spi_signal_type type)
146 {
147 int i;
148
149 for (i = 0; i < sizeof(signal_types)/sizeof(signal_types[0]); i++) {
150 if (type == signal_types[i].value)
151 return signal_types[i].name;
152 }
153 return NULL;
154 }
155 static inline enum spi_signal_type spi_signal_to_value(const char *name)
156 {
157 int i, len;
158
159 for (i = 0; i < sizeof(signal_types)/sizeof(signal_types[0]); i++) {
160 len = strlen(signal_types[i].name);
161 if (strncmp(name, signal_types[i].name, len) == 0 &&
162 (name[len] == '\n' || name[len] == '\0'))
163 return signal_types[i].value;
164 }
165 return SPI_SIGNAL_UNKNOWN;
166 }
167
168 static int spi_host_setup(struct transport_container *tc, struct device *dev,
169 struct class_device *cdev)
170 {
171 struct Scsi_Host *shost = dev_to_shost(dev);
172
173 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
174
175 return 0;
176 }
177
178 static DECLARE_TRANSPORT_CLASS(spi_host_class,
179 "spi_host",
180 spi_host_setup,
181 NULL,
182 NULL);
183
184 static int spi_host_match(struct attribute_container *cont,
185 struct device *dev)
186 {
187 struct Scsi_Host *shost;
188 struct spi_internal *i;
189
190 if (!scsi_is_host_device(dev))
191 return 0;
192
193 shost = dev_to_shost(dev);
194 if (!shost->transportt || shost->transportt->host_attrs.ac.class
195 != &spi_host_class.class)
196 return 0;
197
198 i = to_spi_internal(shost->transportt);
199
200 return &i->t.host_attrs.ac == cont;
201 }
202
203 static int spi_device_configure(struct transport_container *tc,
204 struct device *dev,
205 struct class_device *cdev)
206 {
207 struct scsi_device *sdev = to_scsi_device(dev);
208 struct scsi_target *starget = sdev->sdev_target;
209
210 /* Populate the target capability fields with the values
211 * gleaned from the device inquiry */
212
213 spi_support_sync(starget) = scsi_device_sync(sdev);
214 spi_support_wide(starget) = scsi_device_wide(sdev);
215 spi_support_dt(starget) = scsi_device_dt(sdev);
216 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
217 spi_support_ius(starget) = scsi_device_ius(sdev);
218 spi_support_qas(starget) = scsi_device_qas(sdev);
219
220 return 0;
221 }
222
223 static int spi_setup_transport_attrs(struct transport_container *tc,
224 struct device *dev,
225 struct class_device *cdev)
226 {
227 struct scsi_target *starget = to_scsi_target(dev);
228
229 spi_period(starget) = -1; /* illegal value */
230 spi_min_period(starget) = 0;
231 spi_offset(starget) = 0; /* async */
232 spi_max_offset(starget) = 255;
233 spi_width(starget) = 0; /* narrow */
234 spi_max_width(starget) = 1;
235 spi_iu(starget) = 0; /* no IU */
236 spi_dt(starget) = 0; /* ST */
237 spi_qas(starget) = 0;
238 spi_wr_flow(starget) = 0;
239 spi_rd_strm(starget) = 0;
240 spi_rti(starget) = 0;
241 spi_pcomp_en(starget) = 0;
242 spi_hold_mcs(starget) = 0;
243 spi_dv_pending(starget) = 0;
244 spi_initial_dv(starget) = 0;
245 mutex_init(&spi_dv_mutex(starget));
246
247 return 0;
248 }
249
250 #define spi_transport_show_simple(field, format_string) \
251 \
252 static ssize_t \
253 show_spi_transport_##field(struct class_device *cdev, char *buf) \
254 { \
255 struct scsi_target *starget = transport_class_to_starget(cdev); \
256 struct spi_transport_attrs *tp; \
257 \
258 tp = (struct spi_transport_attrs *)&starget->starget_data; \
259 return snprintf(buf, 20, format_string, tp->field); \
260 }
261
262 #define spi_transport_store_simple(field, format_string) \
263 \
264 static ssize_t \
265 store_spi_transport_##field(struct class_device *cdev, const char *buf, \
266 size_t count) \
267 { \
268 int val; \
269 struct scsi_target *starget = transport_class_to_starget(cdev); \
270 struct spi_transport_attrs *tp; \
271 \
272 tp = (struct spi_transport_attrs *)&starget->starget_data; \
273 val = simple_strtoul(buf, NULL, 0); \
274 tp->field = val; \
275 return count; \
276 }
277
278 #define spi_transport_show_function(field, format_string) \
279 \
280 static ssize_t \
281 show_spi_transport_##field(struct class_device *cdev, char *buf) \
282 { \
283 struct scsi_target *starget = transport_class_to_starget(cdev); \
284 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
285 struct spi_transport_attrs *tp; \
286 struct spi_internal *i = to_spi_internal(shost->transportt); \
287 tp = (struct spi_transport_attrs *)&starget->starget_data; \
288 if (i->f->get_##field) \
289 i->f->get_##field(starget); \
290 return snprintf(buf, 20, format_string, tp->field); \
291 }
292
293 #define spi_transport_store_function(field, format_string) \
294 static ssize_t \
295 store_spi_transport_##field(struct class_device *cdev, const char *buf, \
296 size_t count) \
297 { \
298 int val; \
299 struct scsi_target *starget = transport_class_to_starget(cdev); \
300 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
301 struct spi_internal *i = to_spi_internal(shost->transportt); \
302 \
303 val = simple_strtoul(buf, NULL, 0); \
304 i->f->set_##field(starget, val); \
305 return count; \
306 }
307
308 #define spi_transport_store_max(field, format_string) \
309 static ssize_t \
310 store_spi_transport_##field(struct class_device *cdev, const char *buf, \
311 size_t count) \
312 { \
313 int val; \
314 struct scsi_target *starget = transport_class_to_starget(cdev); \
315 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
316 struct spi_internal *i = to_spi_internal(shost->transportt); \
317 struct spi_transport_attrs *tp \
318 = (struct spi_transport_attrs *)&starget->starget_data; \
319 \
320 val = simple_strtoul(buf, NULL, 0); \
321 if (val > tp->max_##field) \
322 val = tp->max_##field; \
323 i->f->set_##field(starget, val); \
324 return count; \
325 }
326
327 #define spi_transport_rd_attr(field, format_string) \
328 spi_transport_show_function(field, format_string) \
329 spi_transport_store_function(field, format_string) \
330 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \
331 show_spi_transport_##field, \
332 store_spi_transport_##field);
333
334 #define spi_transport_simple_attr(field, format_string) \
335 spi_transport_show_simple(field, format_string) \
336 spi_transport_store_simple(field, format_string) \
337 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \
338 show_spi_transport_##field, \
339 store_spi_transport_##field);
340
341 #define spi_transport_max_attr(field, format_string) \
342 spi_transport_show_function(field, format_string) \
343 spi_transport_store_max(field, format_string) \
344 spi_transport_simple_attr(max_##field, format_string) \
345 static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \
346 show_spi_transport_##field, \
347 store_spi_transport_##field);
348
349 /* The Parallel SCSI Tranport Attributes: */
350 spi_transport_max_attr(offset, "%d\n");
351 spi_transport_max_attr(width, "%d\n");
352 spi_transport_rd_attr(iu, "%d\n");
353 spi_transport_rd_attr(dt, "%d\n");
354 spi_transport_rd_attr(qas, "%d\n");
355 spi_transport_rd_attr(wr_flow, "%d\n");
356 spi_transport_rd_attr(rd_strm, "%d\n");
357 spi_transport_rd_attr(rti, "%d\n");
358 spi_transport_rd_attr(pcomp_en, "%d\n");
359 spi_transport_rd_attr(hold_mcs, "%d\n");
360
361 /* we only care about the first child device so we return 1 */
362 static int child_iter(struct device *dev, void *data)
363 {
364 struct scsi_device *sdev = to_scsi_device(dev);
365
366 spi_dv_device(sdev);
367 return 1;
368 }
369
370 static ssize_t
371 store_spi_revalidate(struct class_device *cdev, const char *buf, size_t count)
372 {
373 struct scsi_target *starget = transport_class_to_starget(cdev);
374
375 device_for_each_child(&starget->dev, NULL, child_iter);
376 return count;
377 }
378 static CLASS_DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
379
380 /* Translate the period into ns according to the current spec
381 * for SDTR/PPR messages */
382 static int period_to_str(char *buf, int period)
383 {
384 int len, picosec;
385
386 if (period < 0 || period > 0xff) {
387 picosec = -1;
388 } else if (period <= SPI_STATIC_PPR) {
389 picosec = ppr_to_ps[period];
390 } else {
391 picosec = period * 4000;
392 }
393
394 if (picosec == -1) {
395 len = sprintf(buf, "reserved");
396 } else {
397 len = sprint_frac(buf, picosec, 1000);
398 }
399
400 return len;
401 }
402
403 static ssize_t
404 show_spi_transport_period_helper(struct class_device *cdev, char *buf,
405 int period)
406 {
407 int len = period_to_str(buf, period);
408 buf[len++] = '\n';
409 buf[len] = '\0';
410 return len;
411 }
412
413 static ssize_t
414 store_spi_transport_period_helper(struct class_device *cdev, const char *buf,
415 size_t count, int *periodp)
416 {
417 int j, picosec, period = -1;
418 char *endp;
419
420 picosec = simple_strtoul(buf, &endp, 10) * 1000;
421 if (*endp == '.') {
422 int mult = 100;
423 do {
424 endp++;
425 if (!isdigit(*endp))
426 break;
427 picosec += (*endp - '0') * mult;
428 mult /= 10;
429 } while (mult > 0);
430 }
431
432 for (j = 0; j <= SPI_STATIC_PPR; j++) {
433 if (ppr_to_ps[j] < picosec)
434 continue;
435 period = j;
436 break;
437 }
438
439 if (period == -1)
440 period = picosec / 4000;
441
442 if (period > 0xff)
443 period = 0xff;
444
445 *periodp = period;
446
447 return count;
448 }
449
450 static ssize_t
451 show_spi_transport_period(struct class_device *cdev, char *buf)
452 {
453 struct scsi_target *starget = transport_class_to_starget(cdev);
454 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
455 struct spi_internal *i = to_spi_internal(shost->transportt);
456 struct spi_transport_attrs *tp =
457 (struct spi_transport_attrs *)&starget->starget_data;
458
459 if (i->f->get_period)
460 i->f->get_period(starget);
461
462 return show_spi_transport_period_helper(cdev, buf, tp->period);
463 }
464
465 static ssize_t
466 store_spi_transport_period(struct class_device *cdev, const char *buf,
467 size_t count)
468 {
469 struct scsi_target *starget = transport_class_to_starget(cdev);
470 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
471 struct spi_internal *i = to_spi_internal(shost->transportt);
472 struct spi_transport_attrs *tp =
473 (struct spi_transport_attrs *)&starget->starget_data;
474 int period, retval;
475
476 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
477
478 if (period < tp->min_period)
479 period = tp->min_period;
480
481 i->f->set_period(starget, period);
482
483 return retval;
484 }
485
486 static CLASS_DEVICE_ATTR(period, S_IRUGO | S_IWUSR,
487 show_spi_transport_period,
488 store_spi_transport_period);
489
490 static ssize_t
491 show_spi_transport_min_period(struct class_device *cdev, char *buf)
492 {
493 struct scsi_target *starget = transport_class_to_starget(cdev);
494 struct spi_transport_attrs *tp =
495 (struct spi_transport_attrs *)&starget->starget_data;
496
497 return show_spi_transport_period_helper(cdev, buf, tp->min_period);
498 }
499
500 static ssize_t
501 store_spi_transport_min_period(struct class_device *cdev, const char *buf,
502 size_t count)
503 {
504 struct scsi_target *starget = transport_class_to_starget(cdev);
505 struct spi_transport_attrs *tp =
506 (struct spi_transport_attrs *)&starget->starget_data;
507
508 return store_spi_transport_period_helper(cdev, buf, count,
509 &tp->min_period);
510 }
511
512
513 static CLASS_DEVICE_ATTR(min_period, S_IRUGO | S_IWUSR,
514 show_spi_transport_min_period,
515 store_spi_transport_min_period);
516
517
518 static ssize_t show_spi_host_signalling(struct class_device *cdev, char *buf)
519 {
520 struct Scsi_Host *shost = transport_class_to_shost(cdev);
521 struct spi_internal *i = to_spi_internal(shost->transportt);
522
523 if (i->f->get_signalling)
524 i->f->get_signalling(shost);
525
526 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
527 }
528 static ssize_t store_spi_host_signalling(struct class_device *cdev,
529 const char *buf, size_t count)
530 {
531 struct Scsi_Host *shost = transport_class_to_shost(cdev);
532 struct spi_internal *i = to_spi_internal(shost->transportt);
533 enum spi_signal_type type = spi_signal_to_value(buf);
534
535 if (type != SPI_SIGNAL_UNKNOWN)
536 i->f->set_signalling(shost, type);
537
538 return count;
539 }
540 static CLASS_DEVICE_ATTR(signalling, S_IRUGO | S_IWUSR,
541 show_spi_host_signalling,
542 store_spi_host_signalling);
543
544 #define DV_SET(x, y) \
545 if(i->f->set_##x) \
546 i->f->set_##x(sdev->sdev_target, y)
547
548 enum spi_compare_returns {
549 SPI_COMPARE_SUCCESS,
550 SPI_COMPARE_FAILURE,
551 SPI_COMPARE_SKIP_TEST,
552 };
553
554
555 /* This is for read/write Domain Validation: If the device supports
556 * an echo buffer, we do read/write tests to it */
557 static enum spi_compare_returns
558 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
559 u8 *ptr, const int retries)
560 {
561 int len = ptr - buffer;
562 int j, k, r, result;
563 unsigned int pattern = 0x0000ffff;
564 struct scsi_sense_hdr sshdr;
565
566 const char spi_write_buffer[] = {
567 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
568 };
569 const char spi_read_buffer[] = {
570 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
571 };
572
573 /* set up the pattern buffer. Doesn't matter if we spill
574 * slightly beyond since that's where the read buffer is */
575 for (j = 0; j < len; ) {
576
577 /* fill the buffer with counting (test a) */
578 for ( ; j < min(len, 32); j++)
579 buffer[j] = j;
580 k = j;
581 /* fill the buffer with alternating words of 0x0 and
582 * 0xffff (test b) */
583 for ( ; j < min(len, k + 32); j += 2) {
584 u16 *word = (u16 *)&buffer[j];
585
586 *word = (j & 0x02) ? 0x0000 : 0xffff;
587 }
588 k = j;
589 /* fill with crosstalk (alternating 0x5555 0xaaa)
590 * (test c) */
591 for ( ; j < min(len, k + 32); j += 2) {
592 u16 *word = (u16 *)&buffer[j];
593
594 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
595 }
596 k = j;
597 /* fill with shifting bits (test d) */
598 for ( ; j < min(len, k + 32); j += 4) {
599 u32 *word = (unsigned int *)&buffer[j];
600 u32 roll = (pattern & 0x80000000) ? 1 : 0;
601
602 *word = pattern;
603 pattern = (pattern << 1) | roll;
604 }
605 /* don't bother with random data (test e) */
606 }
607
608 for (r = 0; r < retries; r++) {
609 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
610 buffer, len, &sshdr);
611 if(result || !scsi_device_online(sdev)) {
612
613 scsi_device_set_state(sdev, SDEV_QUIESCE);
614 if (scsi_sense_valid(&sshdr)
615 && sshdr.sense_key == ILLEGAL_REQUEST
616 /* INVALID FIELD IN CDB */
617 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
618 /* This would mean that the drive lied
619 * to us about supporting an echo
620 * buffer (unfortunately some Western
621 * Digital drives do precisely this)
622 */
623 return SPI_COMPARE_SKIP_TEST;
624
625
626 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
627 return SPI_COMPARE_FAILURE;
628 }
629
630 memset(ptr, 0, len);
631 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
632 ptr, len, NULL);
633 scsi_device_set_state(sdev, SDEV_QUIESCE);
634
635 if (memcmp(buffer, ptr, len) != 0)
636 return SPI_COMPARE_FAILURE;
637 }
638 return SPI_COMPARE_SUCCESS;
639 }
640
641 /* This is for the simplest form of Domain Validation: a read test
642 * on the inquiry data from the device */
643 static enum spi_compare_returns
644 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
645 u8 *ptr, const int retries)
646 {
647 int r, result;
648 const int len = sdev->inquiry_len;
649 const char spi_inquiry[] = {
650 INQUIRY, 0, 0, 0, len, 0
651 };
652
653 for (r = 0; r < retries; r++) {
654 memset(ptr, 0, len);
655
656 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
657 ptr, len, NULL);
658
659 if(result || !scsi_device_online(sdev)) {
660 scsi_device_set_state(sdev, SDEV_QUIESCE);
661 return SPI_COMPARE_FAILURE;
662 }
663
664 /* If we don't have the inquiry data already, the
665 * first read gets it */
666 if (ptr == buffer) {
667 ptr += len;
668 --r;
669 continue;
670 }
671
672 if (memcmp(buffer, ptr, len) != 0)
673 /* failure */
674 return SPI_COMPARE_FAILURE;
675 }
676 return SPI_COMPARE_SUCCESS;
677 }
678
679 static enum spi_compare_returns
680 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
681 enum spi_compare_returns
682 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
683 {
684 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
685 struct scsi_target *starget = sdev->sdev_target;
686 int period = 0, prevperiod = 0;
687 enum spi_compare_returns retval;
688
689
690 for (;;) {
691 int newperiod;
692 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
693
694 if (retval == SPI_COMPARE_SUCCESS
695 || retval == SPI_COMPARE_SKIP_TEST)
696 break;
697
698 /* OK, retrain, fallback */
699 if (i->f->get_iu)
700 i->f->get_iu(starget);
701 if (i->f->get_qas)
702 i->f->get_qas(starget);
703 if (i->f->get_period)
704 i->f->get_period(sdev->sdev_target);
705
706 /* Here's the fallback sequence; first try turning off
707 * IU, then QAS (if we can control them), then finally
708 * fall down the periods */
709 if (i->f->set_iu && spi_iu(starget)) {
710 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Information Units\n");
711 DV_SET(iu, 0);
712 } else if (i->f->set_qas && spi_qas(starget)) {
713 starget_printk(KERN_ERR, starget, "Domain Validation Disabing Quick Arbitration and Selection\n");
714 DV_SET(qas, 0);
715 } else {
716 newperiod = spi_period(starget);
717 period = newperiod > period ? newperiod : period;
718 if (period < 0x0d)
719 period++;
720 else
721 period += period >> 1;
722
723 if (unlikely(period > 0xff || period == prevperiod)) {
724 /* Total failure; set to async and return */
725 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
726 DV_SET(offset, 0);
727 return SPI_COMPARE_FAILURE;
728 }
729 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
730 DV_SET(period, period);
731 prevperiod = period;
732 }
733 }
734 return retval;
735 }
736
737 static int
738 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
739 {
740 int l, result;
741
742 /* first off do a test unit ready. This can error out
743 * because of reservations or some other reason. If it
744 * fails, the device won't let us write to the echo buffer
745 * so just return failure */
746
747 const char spi_test_unit_ready[] = {
748 TEST_UNIT_READY, 0, 0, 0, 0, 0
749 };
750
751 const char spi_read_buffer_descriptor[] = {
752 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
753 };
754
755
756 /* We send a set of three TURs to clear any outstanding
757 * unit attention conditions if they exist (Otherwise the
758 * buffer tests won't be happy). If the TUR still fails
759 * (reservation conflict, device not ready, etc) just
760 * skip the write tests */
761 for (l = 0; ; l++) {
762 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
763 NULL, 0, NULL);
764
765 if(result) {
766 if(l >= 3)
767 return 0;
768 } else {
769 /* TUR succeeded */
770 break;
771 }
772 }
773
774 result = spi_execute(sdev, spi_read_buffer_descriptor,
775 DMA_FROM_DEVICE, buffer, 4, NULL);
776
777 if (result)
778 /* Device has no echo buffer */
779 return 0;
780
781 return buffer[3] + ((buffer[2] & 0x1f) << 8);
782 }
783
784 static void
785 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
786 {
787 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
788 struct scsi_target *starget = sdev->sdev_target;
789 int len = sdev->inquiry_len;
790 /* first set us up for narrow async */
791 DV_SET(offset, 0);
792 DV_SET(width, 0);
793
794 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
795 != SPI_COMPARE_SUCCESS) {
796 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
797 /* FIXME: should probably offline the device here? */
798 return;
799 }
800
801 /* test width */
802 if (i->f->set_width && spi_max_width(starget) &&
803 scsi_device_wide(sdev)) {
804 i->f->set_width(starget, 1);
805
806 if (spi_dv_device_compare_inquiry(sdev, buffer,
807 buffer + len,
808 DV_LOOPS)
809 != SPI_COMPARE_SUCCESS) {
810 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
811 i->f->set_width(starget, 0);
812 }
813 }
814
815 if (!i->f->set_period)
816 return;
817
818 /* device can't handle synchronous */
819 if (!scsi_device_sync(sdev) && !scsi_device_dt(sdev))
820 return;
821
822 /* len == -1 is the signal that we need to ascertain the
823 * presence of an echo buffer before trying to use it. len ==
824 * 0 means we don't have an echo buffer */
825 len = -1;
826
827 retry:
828
829 /* now set up to the maximum */
830 DV_SET(offset, spi_max_offset(starget));
831 DV_SET(period, spi_min_period(starget));
832 /* try QAS requests; this should be harmless to set if the
833 * target supports it */
834 if (scsi_device_qas(sdev))
835 DV_SET(qas, 1);
836 /* Also try IU transfers */
837 if (scsi_device_ius(sdev))
838 DV_SET(iu, 1);
839 if (spi_min_period(starget) < 9) {
840 /* This u320 (or u640). Ignore the coupled parameters
841 * like DT and IU, but set the optional ones */
842 DV_SET(rd_strm, 1);
843 DV_SET(wr_flow, 1);
844 DV_SET(rti, 1);
845 if (spi_min_period(starget) == 8)
846 DV_SET(pcomp_en, 1);
847 }
848 /* Do the read only INQUIRY tests */
849 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
850 spi_dv_device_compare_inquiry);
851 /* See if we actually managed to negotiate and sustain DT */
852 if (i->f->get_dt)
853 i->f->get_dt(starget);
854
855 /* see if the device has an echo buffer. If it does we can do
856 * the SPI pattern write tests. Because of some broken
857 * devices, we *only* try this on a device that has actually
858 * negotiated DT */
859
860 if (len == -1 && spi_dt(starget))
861 len = spi_dv_device_get_echo_buffer(sdev, buffer);
862
863 if (len <= 0) {
864 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
865 return;
866 }
867
868 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
869 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
870 len = SPI_MAX_ECHO_BUFFER_SIZE;
871 }
872
873 if (spi_dv_retrain(sdev, buffer, buffer + len,
874 spi_dv_device_echo_buffer)
875 == SPI_COMPARE_SKIP_TEST) {
876 /* OK, the stupid drive can't do a write echo buffer
877 * test after all, fall back to the read tests */
878 len = 0;
879 goto retry;
880 }
881 }
882
883
884 /** spi_dv_device - Do Domain Validation on the device
885 * @sdev: scsi device to validate
886 *
887 * Performs the domain validation on the given device in the
888 * current execution thread. Since DV operations may sleep,
889 * the current thread must have user context. Also no SCSI
890 * related locks that would deadlock I/O issued by the DV may
891 * be held.
892 */
893 void
894 spi_dv_device(struct scsi_device *sdev)
895 {
896 struct scsi_target *starget = sdev->sdev_target;
897 u8 *buffer;
898 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
899
900 if (unlikely(scsi_device_get(sdev)))
901 return;
902
903 buffer = kzalloc(len, GFP_KERNEL);
904
905 if (unlikely(!buffer))
906 goto out_put;
907
908 /* We need to verify that the actual device will quiesce; the
909 * later target quiesce is just a nice to have */
910 if (unlikely(scsi_device_quiesce(sdev)))
911 goto out_free;
912
913 scsi_target_quiesce(starget);
914
915 spi_dv_pending(starget) = 1;
916 mutex_lock(&spi_dv_mutex(starget));
917
918 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
919
920 spi_dv_device_internal(sdev, buffer);
921
922 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
923
924 mutex_unlock(&spi_dv_mutex(starget));
925 spi_dv_pending(starget) = 0;
926
927 scsi_target_resume(starget);
928
929 spi_initial_dv(starget) = 1;
930
931 out_free:
932 kfree(buffer);
933 out_put:
934 scsi_device_put(sdev);
935 }
936 EXPORT_SYMBOL(spi_dv_device);
937
938 struct work_queue_wrapper {
939 struct work_struct work;
940 struct scsi_device *sdev;
941 };
942
943 static void
944 spi_dv_device_work_wrapper(void *data)
945 {
946 struct work_queue_wrapper *wqw = (struct work_queue_wrapper *)data;
947 struct scsi_device *sdev = wqw->sdev;
948
949 kfree(wqw);
950 spi_dv_device(sdev);
951 spi_dv_pending(sdev->sdev_target) = 0;
952 scsi_device_put(sdev);
953 }
954
955
956 /**
957 * spi_schedule_dv_device - schedule domain validation to occur on the device
958 * @sdev: The device to validate
959 *
960 * Identical to spi_dv_device() above, except that the DV will be
961 * scheduled to occur in a workqueue later. All memory allocations
962 * are atomic, so may be called from any context including those holding
963 * SCSI locks.
964 */
965 void
966 spi_schedule_dv_device(struct scsi_device *sdev)
967 {
968 struct work_queue_wrapper *wqw =
969 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
970
971 if (unlikely(!wqw))
972 return;
973
974 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
975 kfree(wqw);
976 return;
977 }
978 /* Set pending early (dv_device doesn't check it, only sets it) */
979 spi_dv_pending(sdev->sdev_target) = 1;
980 if (unlikely(scsi_device_get(sdev))) {
981 kfree(wqw);
982 spi_dv_pending(sdev->sdev_target) = 0;
983 return;
984 }
985
986 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper, wqw);
987 wqw->sdev = sdev;
988
989 schedule_work(&wqw->work);
990 }
991 EXPORT_SYMBOL(spi_schedule_dv_device);
992
993 /**
994 * spi_display_xfer_agreement - Print the current target transfer agreement
995 * @starget: The target for which to display the agreement
996 *
997 * Each SPI port is required to maintain a transfer agreement for each
998 * other port on the bus. This function prints a one-line summary of
999 * the current agreement; more detailed information is available in sysfs.
1000 */
1001 void spi_display_xfer_agreement(struct scsi_target *starget)
1002 {
1003 struct spi_transport_attrs *tp;
1004 tp = (struct spi_transport_attrs *)&starget->starget_data;
1005
1006 if (tp->offset > 0 && tp->period > 0) {
1007 unsigned int picosec, kb100;
1008 char *scsi = "FAST-?";
1009 char tmp[8];
1010
1011 if (tp->period <= SPI_STATIC_PPR) {
1012 picosec = ppr_to_ps[tp->period];
1013 switch (tp->period) {
1014 case 7: scsi = "FAST-320"; break;
1015 case 8: scsi = "FAST-160"; break;
1016 case 9: scsi = "FAST-80"; break;
1017 case 10:
1018 case 11: scsi = "FAST-40"; break;
1019 case 12: scsi = "FAST-20"; break;
1020 }
1021 } else {
1022 picosec = tp->period * 4000;
1023 if (tp->period < 25)
1024 scsi = "FAST-20";
1025 else if (tp->period < 50)
1026 scsi = "FAST-10";
1027 else
1028 scsi = "FAST-5";
1029 }
1030
1031 kb100 = (10000000 + picosec / 2) / picosec;
1032 if (tp->width)
1033 kb100 *= 2;
1034 sprint_frac(tmp, picosec, 1000);
1035
1036 dev_info(&starget->dev,
1037 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1038 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1039 tp->dt ? "DT" : "ST",
1040 tp->iu ? " IU" : "",
1041 tp->qas ? " QAS" : "",
1042 tp->rd_strm ? " RDSTRM" : "",
1043 tp->rti ? " RTI" : "",
1044 tp->wr_flow ? " WRFLOW" : "",
1045 tp->pcomp_en ? " PCOMP" : "",
1046 tp->hold_mcs ? " HMCS" : "",
1047 tmp, tp->offset);
1048 } else {
1049 dev_info(&starget->dev, "%sasynchronous\n",
1050 tp->width ? "wide " : "");
1051 }
1052 }
1053 EXPORT_SYMBOL(spi_display_xfer_agreement);
1054
1055 #ifdef CONFIG_SCSI_CONSTANTS
1056 static const char * const one_byte_msgs[] = {
1057 /* 0x00 */ "Command Complete", NULL, "Save Pointers",
1058 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1059 /* 0x06 */ "Abort", "Message Reject", "Nop", "Message Parity Error",
1060 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1061 /* 0x0c */ "Bus device reset", "Abort Tag", "Clear Queue",
1062 /* 0x0f */ "Initiate Recovery", "Release Recovery"
1063 };
1064
1065 static const char * const two_byte_msgs[] = {
1066 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1067 /* 0x23 */ "Ignore Wide Residue"
1068 };
1069
1070 static const char * const extended_msgs[] = {
1071 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1072 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1073 /* 0x04 */ "Parallel Protocol Request"
1074 };
1075
1076 static void print_nego(const unsigned char *msg, int per, int off, int width)
1077 {
1078 if (per) {
1079 char buf[20];
1080 period_to_str(buf, msg[per]);
1081 printk("period = %s ns ", buf);
1082 }
1083
1084 if (off)
1085 printk("offset = %d ", msg[off]);
1086 if (width)
1087 printk("width = %d ", 8 << msg[width]);
1088 }
1089
1090 int spi_print_msg(const unsigned char *msg)
1091 {
1092 int len = 0, i;
1093 if (msg[0] == EXTENDED_MESSAGE) {
1094 len = 3 + msg[1];
1095 if (msg[2] < ARRAY_SIZE(extended_msgs))
1096 printk ("%s ", extended_msgs[msg[2]]);
1097 else
1098 printk ("Extended Message, reserved code (0x%02x) ",
1099 (int) msg[2]);
1100 switch (msg[2]) {
1101 case EXTENDED_MODIFY_DATA_POINTER:
1102 printk("pointer = %d", (int) (msg[3] << 24) |
1103 (msg[4] << 16) | (msg[5] << 8) | msg[6]);
1104 break;
1105 case EXTENDED_SDTR:
1106 print_nego(msg, 3, 4, 0);
1107 break;
1108 case EXTENDED_WDTR:
1109 print_nego(msg, 0, 0, 3);
1110 break;
1111 case EXTENDED_PPR:
1112 print_nego(msg, 3, 5, 6);
1113 break;
1114 default:
1115 for (i = 2; i < len; ++i)
1116 printk("%02x ", msg[i]);
1117 }
1118 /* Identify */
1119 } else if (msg[0] & 0x80) {
1120 printk("Identify disconnect %sallowed %s %d ",
1121 (msg[0] & 0x40) ? "" : "not ",
1122 (msg[0] & 0x20) ? "target routine" : "lun",
1123 msg[0] & 0x7);
1124 len = 1;
1125 /* Normal One byte */
1126 } else if (msg[0] < 0x1f) {
1127 if (msg[0] < ARRAY_SIZE(one_byte_msgs))
1128 printk(one_byte_msgs[msg[0]]);
1129 else
1130 printk("reserved (%02x) ", msg[0]);
1131 len = 1;
1132 /* Two byte */
1133 } else if (msg[0] <= 0x2f) {
1134 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1135 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1136 msg[1]);
1137 else
1138 printk("reserved two byte (%02x %02x) ",
1139 msg[0], msg[1]);
1140 len = 2;
1141 } else
1142 printk("reserved");
1143 return len;
1144 }
1145 EXPORT_SYMBOL(spi_print_msg);
1146
1147 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1148
1149 int spi_print_msg(const unsigned char *msg)
1150 {
1151 int len = 0, i;
1152
1153 if (msg[0] == EXTENDED_MESSAGE) {
1154 len = 3 + msg[1];
1155 for (i = 0; i < len; ++i)
1156 printk("%02x ", msg[i]);
1157 /* Identify */
1158 } else if (msg[0] & 0x80) {
1159 printk("%02x ", msg[0]);
1160 len = 1;
1161 /* Normal One byte */
1162 } else if (msg[0] < 0x1f) {
1163 printk("%02x ", msg[0]);
1164 len = 1;
1165 /* Two byte */
1166 } else if (msg[0] <= 0x2f) {
1167 printk("%02x %02x", msg[0], msg[1]);
1168 len = 2;
1169 } else
1170 printk("%02x ", msg[0]);
1171 return len;
1172 }
1173 EXPORT_SYMBOL(spi_print_msg);
1174 #endif /* ! CONFIG_SCSI_CONSTANTS */
1175
1176 #define SETUP_ATTRIBUTE(field) \
1177 i->private_attrs[count] = class_device_attr_##field; \
1178 if (!i->f->set_##field) { \
1179 i->private_attrs[count].attr.mode = S_IRUGO; \
1180 i->private_attrs[count].store = NULL; \
1181 } \
1182 i->attrs[count] = &i->private_attrs[count]; \
1183 if (i->f->show_##field) \
1184 count++
1185
1186 #define SETUP_RELATED_ATTRIBUTE(field, rel_field) \
1187 i->private_attrs[count] = class_device_attr_##field; \
1188 if (!i->f->set_##rel_field) { \
1189 i->private_attrs[count].attr.mode = S_IRUGO; \
1190 i->private_attrs[count].store = NULL; \
1191 } \
1192 i->attrs[count] = &i->private_attrs[count]; \
1193 if (i->f->show_##rel_field) \
1194 count++
1195
1196 #define SETUP_HOST_ATTRIBUTE(field) \
1197 i->private_host_attrs[count] = class_device_attr_##field; \
1198 if (!i->f->set_##field) { \
1199 i->private_host_attrs[count].attr.mode = S_IRUGO; \
1200 i->private_host_attrs[count].store = NULL; \
1201 } \
1202 i->host_attrs[count] = &i->private_host_attrs[count]; \
1203 count++
1204
1205 static int spi_device_match(struct attribute_container *cont,
1206 struct device *dev)
1207 {
1208 struct scsi_device *sdev;
1209 struct Scsi_Host *shost;
1210 struct spi_internal *i;
1211
1212 if (!scsi_is_sdev_device(dev))
1213 return 0;
1214
1215 sdev = to_scsi_device(dev);
1216 shost = sdev->host;
1217 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1218 != &spi_host_class.class)
1219 return 0;
1220 /* Note: this class has no device attributes, so it has
1221 * no per-HBA allocation and thus we don't need to distinguish
1222 * the attribute containers for the device */
1223 i = to_spi_internal(shost->transportt);
1224 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1225 return 0;
1226 return 1;
1227 }
1228
1229 static int spi_target_match(struct attribute_container *cont,
1230 struct device *dev)
1231 {
1232 struct Scsi_Host *shost;
1233 struct scsi_target *starget;
1234 struct spi_internal *i;
1235
1236 if (!scsi_is_target_device(dev))
1237 return 0;
1238
1239 shost = dev_to_shost(dev->parent);
1240 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1241 != &spi_host_class.class)
1242 return 0;
1243
1244 i = to_spi_internal(shost->transportt);
1245 starget = to_scsi_target(dev);
1246
1247 if (i->f->deny_binding && i->f->deny_binding(starget))
1248 return 0;
1249
1250 return &i->t.target_attrs.ac == cont;
1251 }
1252
1253 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1254 "spi_transport",
1255 spi_setup_transport_attrs,
1256 NULL,
1257 NULL);
1258
1259 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1260 spi_device_match,
1261 spi_device_configure);
1262
1263 struct scsi_transport_template *
1264 spi_attach_transport(struct spi_function_template *ft)
1265 {
1266 int count = 0;
1267 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1268 GFP_KERNEL);
1269
1270 if (unlikely(!i))
1271 return NULL;
1272
1273 i->t.target_attrs.ac.class = &spi_transport_class.class;
1274 i->t.target_attrs.ac.attrs = &i->attrs[0];
1275 i->t.target_attrs.ac.match = spi_target_match;
1276 transport_container_register(&i->t.target_attrs);
1277 i->t.target_size = sizeof(struct spi_transport_attrs);
1278 i->t.host_attrs.ac.class = &spi_host_class.class;
1279 i->t.host_attrs.ac.attrs = &i->host_attrs[0];
1280 i->t.host_attrs.ac.match = spi_host_match;
1281 transport_container_register(&i->t.host_attrs);
1282 i->t.host_size = sizeof(struct spi_host_attrs);
1283 i->f = ft;
1284
1285 SETUP_ATTRIBUTE(period);
1286 SETUP_RELATED_ATTRIBUTE(min_period, period);
1287 SETUP_ATTRIBUTE(offset);
1288 SETUP_RELATED_ATTRIBUTE(max_offset, offset);
1289 SETUP_ATTRIBUTE(width);
1290 SETUP_RELATED_ATTRIBUTE(max_width, width);
1291 SETUP_ATTRIBUTE(iu);
1292 SETUP_ATTRIBUTE(dt);
1293 SETUP_ATTRIBUTE(qas);
1294 SETUP_ATTRIBUTE(wr_flow);
1295 SETUP_ATTRIBUTE(rd_strm);
1296 SETUP_ATTRIBUTE(rti);
1297 SETUP_ATTRIBUTE(pcomp_en);
1298 SETUP_ATTRIBUTE(hold_mcs);
1299
1300 /* if you add an attribute but forget to increase SPI_NUM_ATTRS
1301 * this bug will trigger */
1302 BUG_ON(count > SPI_NUM_ATTRS);
1303
1304 i->attrs[count++] = &class_device_attr_revalidate;
1305
1306 i->attrs[count] = NULL;
1307
1308 count = 0;
1309 SETUP_HOST_ATTRIBUTE(signalling);
1310
1311 BUG_ON(count > SPI_HOST_ATTRS);
1312
1313 i->host_attrs[count] = NULL;
1314
1315 return &i->t;
1316 }
1317 EXPORT_SYMBOL(spi_attach_transport);
1318
1319 void spi_release_transport(struct scsi_transport_template *t)
1320 {
1321 struct spi_internal *i = to_spi_internal(t);
1322
1323 transport_container_unregister(&i->t.target_attrs);
1324 transport_container_unregister(&i->t.host_attrs);
1325
1326 kfree(i);
1327 }
1328 EXPORT_SYMBOL(spi_release_transport);
1329
1330 static __init int spi_transport_init(void)
1331 {
1332 int error = transport_class_register(&spi_transport_class);
1333 if (error)
1334 return error;
1335 error = anon_transport_class_register(&spi_device_class);
1336 return transport_class_register(&spi_host_class);
1337 }
1338
1339 static void __exit spi_transport_exit(void)
1340 {
1341 transport_class_unregister(&spi_transport_class);
1342 anon_transport_class_unregister(&spi_device_class);
1343 transport_class_unregister(&spi_host_class);
1344 }
1345
1346 MODULE_AUTHOR("Martin Hicks");
1347 MODULE_DESCRIPTION("SPI Transport Attributes");
1348 MODULE_LICENSE("GPL");
1349
1350 module_init(spi_transport_init);
1351 module_exit(spi_transport_exit);