locking, lockdep: Convert sprintf_symbol to %pS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 blk_unprep_request(req);
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
99 *
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
105 */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
113
114 SCSI_LOG_MLQUEUE(1,
115 printk("Inserting command %p into mlqueue\n", cmd));
116
117 /*
118 * Set the appropriate busy bit for the device/host.
119 *
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
122 *
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
129 */
130 switch (reason) {
131 case SCSI_MLQUEUE_HOST_BUSY:
132 host->host_blocked = host->max_host_blocked;
133 break;
134 case SCSI_MLQUEUE_DEVICE_BUSY:
135 device->device_blocked = device->max_device_blocked;
136 break;
137 case SCSI_MLQUEUE_TARGET_BUSY:
138 starget->target_blocked = starget->max_target_blocked;
139 break;
140 }
141
142 /*
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
145 */
146 if (unbusy)
147 scsi_device_unbusy(device);
148
149 /*
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
152 *
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
155 *
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
159 */
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
163
164 scsi_run_queue(q);
165
166 return 0;
167 }
168
169 /*
170 * Function: scsi_queue_insert()
171 *
172 * Purpose: Insert a command in the midlevel queue.
173 *
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns: Nothing.
180 *
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
187 */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
212 {
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
216
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
222
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232 /*
233 * head injection *required* here otherwise quiesce won't work
234 */
235 blk_execute_rq(req->q, NULL, req, 1);
236
237 /*
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
242 */
243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246 if (resid)
247 *resid = req->resid_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
251
252 return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
261 {
262 char *sense = NULL;
263 int result;
264
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
269 }
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275 kfree(sense);
276 return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281 * Function: scsi_init_cmd_errh()
282 *
283 * Purpose: Initialize cmd fields related to error handling.
284 *
285 * Arguments: cmd - command that is ready to be queued.
286 *
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
290 */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
305
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
331
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
335
336 /*
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
341 */
342 blk_run_queue(current_sdev->request_queue);
343
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
353
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
357
358 scsi_device_put(sdev);
359 }
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
368
369 return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
384
385 return 0;
386 }
387
388 /*
389 * Function: scsi_run_queue()
390 *
391 * Purpose: Select a proper request queue to serve next
392 *
393 * Arguments: q - last request's queue
394 *
395 * Returns: Nothing
396 *
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
399 */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost = sdev->host;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
406
407 if (scsi_target(sdev)->single_lun)
408 scsi_single_lun_run(sdev);
409
410 spin_lock_irqsave(shost->host_lock, flags);
411 list_splice_init(&shost->starved_list, &starved_list);
412
413 while (!list_empty(&starved_list)) {
414 int flagset;
415
416 /*
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
420 * starved_list.
421 *
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
425 */
426 if (scsi_host_is_busy(shost))
427 break;
428
429 sdev = list_entry(starved_list.next,
430 struct scsi_device, starved_entry);
431 list_del_init(&sdev->starved_entry);
432 if (scsi_target_is_busy(scsi_target(sdev))) {
433 list_move_tail(&sdev->starved_entry,
434 &shost->starved_list);
435 continue;
436 }
437
438 spin_unlock(shost->host_lock);
439
440 spin_lock(sdev->request_queue->queue_lock);
441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 !test_bit(QUEUE_FLAG_REENTER,
443 &sdev->request_queue->queue_flags);
444 if (flagset)
445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 __blk_run_queue(sdev->request_queue);
447 if (flagset)
448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 spin_unlock(sdev->request_queue->queue_lock);
450
451 spin_lock(shost->host_lock);
452 }
453 /* put any unprocessed entries back */
454 list_splice(&starved_list, &shost->starved_list);
455 spin_unlock_irqrestore(shost->host_lock, flags);
456
457 blk_run_queue(q);
458 }
459
460 /*
461 * Function: scsi_requeue_command()
462 *
463 * Purpose: Handle post-processing of completed commands.
464 *
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
467 *
468 * Returns: Nothing
469 *
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
475 * sector.
476 * Notes: Upon return, cmd is a stale pointer.
477 */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 struct request *req = cmd->request;
481 unsigned long flags;
482
483 spin_lock_irqsave(q->queue_lock, flags);
484 scsi_unprep_request(req);
485 blk_requeue_request(q, req);
486 spin_unlock_irqrestore(q->queue_lock, flags);
487
488 scsi_run_queue(q);
489 }
490
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 struct scsi_device *sdev = cmd->device;
494 struct request_queue *q = sdev->request_queue;
495
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev->sdev_gendev);
498
499 scsi_put_command(cmd);
500 scsi_run_queue(q);
501
502 /* ok to remove device now */
503 put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 struct scsi_device *sdev;
509
510 shost_for_each_device(sdev, shost)
511 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517 * Function: scsi_end_request()
518 *
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns: cmd if requeue required, NULL otherwise.
530 *
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
533 *
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
537 */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 int bytes, int requeue)
540 {
541 struct request_queue *q = cmd->device->request_queue;
542 struct request *req = cmd->request;
543
544 /*
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
547 */
548 if (blk_end_request(req, error, bytes)) {
549 /* kill remainder if no retrys */
550 if (error && scsi_noretry_cmd(cmd))
551 blk_end_request_all(req, error);
552 else {
553 if (requeue) {
554 /*
555 * Bleah. Leftovers again. Stick the
556 * leftovers in the front of the
557 * queue, and goose the queue again.
558 */
559 scsi_release_buffers(cmd);
560 scsi_requeue_command(q, cmd);
561 cmd = NULL;
562 }
563 return cmd;
564 }
565 }
566
567 /*
568 * This will goose the queue request function at the end, so we don't
569 * need to worry about launching another command.
570 */
571 __scsi_release_buffers(cmd, 0);
572 scsi_next_command(cmd);
573 return NULL;
574 }
575
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 unsigned int index;
579
580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582 if (nents <= 8)
583 index = 0;
584 else
585 index = get_count_order(nents) - 3;
586
587 return index;
588 }
589
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 struct scsi_host_sg_pool *sgp;
593
594 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 mempool_free(sgl, sgp->pool);
596 }
597
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 struct scsi_host_sg_pool *sgp;
601
602 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 return mempool_alloc(sgp->pool, gfp_mask);
604 }
605
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 gfp_t gfp_mask)
608 {
609 int ret;
610
611 BUG_ON(!nents);
612
613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 gfp_mask, scsi_sg_alloc);
615 if (unlikely(ret))
616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 scsi_sg_free);
618
619 return ret;
620 }
621
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629
630 if (cmd->sdb.table.nents)
631 scsi_free_sgtable(&cmd->sdb);
632
633 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 struct scsi_data_buffer *bidi_sdb =
637 cmd->request->next_rq->special;
638 scsi_free_sgtable(bidi_sdb);
639 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 cmd->request->next_rq->special = NULL;
641 }
642
643 if (scsi_prot_sg_count(cmd))
644 scsi_free_sgtable(cmd->prot_sdb);
645 }
646
647 /*
648 * Function: scsi_release_buffers()
649 *
650 * Purpose: Completion processing for block device I/O requests.
651 *
652 * Arguments: cmd - command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns: Nothing
657 *
658 * Notes: In the event that an upper level driver rejects a
659 * command, we must release resources allocated during
660 * the __init_io() function. Primarily this would involve
661 * the scatter-gather table, and potentially any bounce
662 * buffers.
663 */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 __scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669
670 /*
671 * Function: scsi_io_completion()
672 *
673 * Purpose: Completion processing for block device I/O requests.
674 *
675 * Arguments: cmd - command that is finished.
676 *
677 * Lock status: Assumed that no lock is held upon entry.
678 *
679 * Returns: Nothing
680 *
681 * Notes: This function is matched in terms of capabilities to
682 * the function that created the scatter-gather list.
683 * In other words, if there are no bounce buffers
684 * (the normal case for most drivers), we don't need
685 * the logic to deal with cleaning up afterwards.
686 *
687 * We must call scsi_end_request(). This will finish off
688 * the specified number of sectors. If we are done, the
689 * command block will be released and the queue function
690 * will be goosed. If we are not done then we have to
691 * figure out what to do next:
692 *
693 * a) We can call scsi_requeue_command(). The request
694 * will be unprepared and put back on the queue. Then
695 * a new command will be created for it. This should
696 * be used if we made forward progress, or if we want
697 * to switch from READ(10) to READ(6) for example.
698 *
699 * b) We can call scsi_queue_insert(). The request will
700 * be put back on the queue and retried using the same
701 * command as before, possibly after a delay.
702 *
703 * c) We can call blk_end_request() with -EIO to fail
704 * the remainder of the request.
705 */
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
707 {
708 int result = cmd->result;
709 struct request_queue *q = cmd->device->request_queue;
710 struct request *req = cmd->request;
711 int error = 0;
712 struct scsi_sense_hdr sshdr;
713 int sense_valid = 0;
714 int sense_deferred = 0;
715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716 ACTION_DELAYED_RETRY} action;
717 char *description = NULL;
718
719 if (result) {
720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721 if (sense_valid)
722 sense_deferred = scsi_sense_is_deferred(&sshdr);
723 }
724
725 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
726 req->errors = result;
727 if (result) {
728 if (sense_valid && req->sense) {
729 /*
730 * SG_IO wants current and deferred errors
731 */
732 int len = 8 + cmd->sense_buffer[7];
733
734 if (len > SCSI_SENSE_BUFFERSIZE)
735 len = SCSI_SENSE_BUFFERSIZE;
736 memcpy(req->sense, cmd->sense_buffer, len);
737 req->sense_len = len;
738 }
739 if (!sense_deferred)
740 error = -EIO;
741 }
742
743 req->resid_len = scsi_get_resid(cmd);
744
745 if (scsi_bidi_cmnd(cmd)) {
746 /*
747 * Bidi commands Must be complete as a whole,
748 * both sides at once.
749 */
750 req->next_rq->resid_len = scsi_in(cmd)->resid;
751
752 scsi_release_buffers(cmd);
753 blk_end_request_all(req, 0);
754
755 scsi_next_command(cmd);
756 return;
757 }
758 }
759
760 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
761 BUG_ON(blk_bidi_rq(req));
762
763 /*
764 * Next deal with any sectors which we were able to correctly
765 * handle.
766 */
767 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
768 "%d bytes done.\n",
769 blk_rq_sectors(req), good_bytes));
770
771 /*
772 * Recovered errors need reporting, but they're always treated
773 * as success, so fiddle the result code here. For BLOCK_PC
774 * we already took a copy of the original into rq->errors which
775 * is what gets returned to the user
776 */
777 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
778 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
779 * print since caller wants ATA registers. Only occurs on
780 * SCSI ATA PASS_THROUGH commands when CK_COND=1
781 */
782 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
783 ;
784 else if (!(req->cmd_flags & REQ_QUIET))
785 scsi_print_sense("", cmd);
786 result = 0;
787 /* BLOCK_PC may have set error */
788 error = 0;
789 }
790
791 /*
792 * A number of bytes were successfully read. If there
793 * are leftovers and there is some kind of error
794 * (result != 0), retry the rest.
795 */
796 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
797 return;
798
799 error = -EIO;
800
801 if (host_byte(result) == DID_RESET) {
802 /* Third party bus reset or reset for error recovery
803 * reasons. Just retry the command and see what
804 * happens.
805 */
806 action = ACTION_RETRY;
807 } else if (sense_valid && !sense_deferred) {
808 switch (sshdr.sense_key) {
809 case UNIT_ATTENTION:
810 if (cmd->device->removable) {
811 /* Detected disc change. Set a bit
812 * and quietly refuse further access.
813 */
814 cmd->device->changed = 1;
815 description = "Media Changed";
816 action = ACTION_FAIL;
817 } else {
818 /* Must have been a power glitch, or a
819 * bus reset. Could not have been a
820 * media change, so we just retry the
821 * command and see what happens.
822 */
823 action = ACTION_RETRY;
824 }
825 break;
826 case ILLEGAL_REQUEST:
827 /* If we had an ILLEGAL REQUEST returned, then
828 * we may have performed an unsupported
829 * command. The only thing this should be
830 * would be a ten byte read where only a six
831 * byte read was supported. Also, on a system
832 * where READ CAPACITY failed, we may have
833 * read past the end of the disk.
834 */
835 if ((cmd->device->use_10_for_rw &&
836 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
837 (cmd->cmnd[0] == READ_10 ||
838 cmd->cmnd[0] == WRITE_10)) {
839 /* This will issue a new 6-byte command. */
840 cmd->device->use_10_for_rw = 0;
841 action = ACTION_REPREP;
842 } else if (sshdr.asc == 0x10) /* DIX */ {
843 description = "Host Data Integrity Failure";
844 action = ACTION_FAIL;
845 error = -EILSEQ;
846 } else
847 action = ACTION_FAIL;
848 break;
849 case ABORTED_COMMAND:
850 action = ACTION_FAIL;
851 if (sshdr.asc == 0x10) { /* DIF */
852 description = "Target Data Integrity Failure";
853 error = -EILSEQ;
854 }
855 break;
856 case NOT_READY:
857 /* If the device is in the process of becoming
858 * ready, or has a temporary blockage, retry.
859 */
860 if (sshdr.asc == 0x04) {
861 switch (sshdr.ascq) {
862 case 0x01: /* becoming ready */
863 case 0x04: /* format in progress */
864 case 0x05: /* rebuild in progress */
865 case 0x06: /* recalculation in progress */
866 case 0x07: /* operation in progress */
867 case 0x08: /* Long write in progress */
868 case 0x09: /* self test in progress */
869 case 0x14: /* space allocation in progress */
870 action = ACTION_DELAYED_RETRY;
871 break;
872 default:
873 description = "Device not ready";
874 action = ACTION_FAIL;
875 break;
876 }
877 } else {
878 description = "Device not ready";
879 action = ACTION_FAIL;
880 }
881 break;
882 case VOLUME_OVERFLOW:
883 /* See SSC3rXX or current. */
884 action = ACTION_FAIL;
885 break;
886 default:
887 description = "Unhandled sense code";
888 action = ACTION_FAIL;
889 break;
890 }
891 } else {
892 description = "Unhandled error code";
893 action = ACTION_FAIL;
894 }
895
896 switch (action) {
897 case ACTION_FAIL:
898 /* Give up and fail the remainder of the request */
899 scsi_release_buffers(cmd);
900 if (!(req->cmd_flags & REQ_QUIET)) {
901 if (description)
902 scmd_printk(KERN_INFO, cmd, "%s\n",
903 description);
904 scsi_print_result(cmd);
905 if (driver_byte(result) & DRIVER_SENSE)
906 scsi_print_sense("", cmd);
907 scsi_print_command(cmd);
908 }
909 if (blk_end_request_err(req, error))
910 scsi_requeue_command(q, cmd);
911 else
912 scsi_next_command(cmd);
913 break;
914 case ACTION_REPREP:
915 /* Unprep the request and put it back at the head of the queue.
916 * A new command will be prepared and issued.
917 */
918 scsi_release_buffers(cmd);
919 scsi_requeue_command(q, cmd);
920 break;
921 case ACTION_RETRY:
922 /* Retry the same command immediately */
923 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
924 break;
925 case ACTION_DELAYED_RETRY:
926 /* Retry the same command after a delay */
927 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
928 break;
929 }
930 }
931
932 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
933 gfp_t gfp_mask)
934 {
935 int count;
936
937 /*
938 * If sg table allocation fails, requeue request later.
939 */
940 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
941 gfp_mask))) {
942 return BLKPREP_DEFER;
943 }
944
945 req->buffer = NULL;
946
947 /*
948 * Next, walk the list, and fill in the addresses and sizes of
949 * each segment.
950 */
951 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
952 BUG_ON(count > sdb->table.nents);
953 sdb->table.nents = count;
954 sdb->length = blk_rq_bytes(req);
955 return BLKPREP_OK;
956 }
957
958 /*
959 * Function: scsi_init_io()
960 *
961 * Purpose: SCSI I/O initialize function.
962 *
963 * Arguments: cmd - Command descriptor we wish to initialize
964 *
965 * Returns: 0 on success
966 * BLKPREP_DEFER if the failure is retryable
967 * BLKPREP_KILL if the failure is fatal
968 */
969 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
970 {
971 struct request *rq = cmd->request;
972
973 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
974 if (error)
975 goto err_exit;
976
977 if (blk_bidi_rq(rq)) {
978 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
979 scsi_sdb_cache, GFP_ATOMIC);
980 if (!bidi_sdb) {
981 error = BLKPREP_DEFER;
982 goto err_exit;
983 }
984
985 rq->next_rq->special = bidi_sdb;
986 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
987 if (error)
988 goto err_exit;
989 }
990
991 if (blk_integrity_rq(rq)) {
992 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
993 int ivecs, count;
994
995 BUG_ON(prot_sdb == NULL);
996 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
997
998 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
999 error = BLKPREP_DEFER;
1000 goto err_exit;
1001 }
1002
1003 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1004 prot_sdb->table.sgl);
1005 BUG_ON(unlikely(count > ivecs));
1006 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1007
1008 cmd->prot_sdb = prot_sdb;
1009 cmd->prot_sdb->table.nents = count;
1010 }
1011
1012 return BLKPREP_OK ;
1013
1014 err_exit:
1015 scsi_release_buffers(cmd);
1016 cmd->request->special = NULL;
1017 scsi_put_command(cmd);
1018 return error;
1019 }
1020 EXPORT_SYMBOL(scsi_init_io);
1021
1022 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1023 struct request *req)
1024 {
1025 struct scsi_cmnd *cmd;
1026
1027 if (!req->special) {
1028 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1029 if (unlikely(!cmd))
1030 return NULL;
1031 req->special = cmd;
1032 } else {
1033 cmd = req->special;
1034 }
1035
1036 /* pull a tag out of the request if we have one */
1037 cmd->tag = req->tag;
1038 cmd->request = req;
1039
1040 cmd->cmnd = req->cmd;
1041
1042 return cmd;
1043 }
1044
1045 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1046 {
1047 struct scsi_cmnd *cmd;
1048 int ret = scsi_prep_state_check(sdev, req);
1049
1050 if (ret != BLKPREP_OK)
1051 return ret;
1052
1053 cmd = scsi_get_cmd_from_req(sdev, req);
1054 if (unlikely(!cmd))
1055 return BLKPREP_DEFER;
1056
1057 /*
1058 * BLOCK_PC requests may transfer data, in which case they must
1059 * a bio attached to them. Or they might contain a SCSI command
1060 * that does not transfer data, in which case they may optionally
1061 * submit a request without an attached bio.
1062 */
1063 if (req->bio) {
1064 int ret;
1065
1066 BUG_ON(!req->nr_phys_segments);
1067
1068 ret = scsi_init_io(cmd, GFP_ATOMIC);
1069 if (unlikely(ret))
1070 return ret;
1071 } else {
1072 BUG_ON(blk_rq_bytes(req));
1073
1074 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1075 req->buffer = NULL;
1076 }
1077
1078 cmd->cmd_len = req->cmd_len;
1079 if (!blk_rq_bytes(req))
1080 cmd->sc_data_direction = DMA_NONE;
1081 else if (rq_data_dir(req) == WRITE)
1082 cmd->sc_data_direction = DMA_TO_DEVICE;
1083 else
1084 cmd->sc_data_direction = DMA_FROM_DEVICE;
1085
1086 cmd->transfersize = blk_rq_bytes(req);
1087 cmd->allowed = req->retries;
1088 return BLKPREP_OK;
1089 }
1090 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1091
1092 /*
1093 * Setup a REQ_TYPE_FS command. These are simple read/write request
1094 * from filesystems that still need to be translated to SCSI CDBs from
1095 * the ULD.
1096 */
1097 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1098 {
1099 struct scsi_cmnd *cmd;
1100 int ret = scsi_prep_state_check(sdev, req);
1101
1102 if (ret != BLKPREP_OK)
1103 return ret;
1104
1105 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1106 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1107 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1108 if (ret != BLKPREP_OK)
1109 return ret;
1110 }
1111
1112 /*
1113 * Filesystem requests must transfer data.
1114 */
1115 BUG_ON(!req->nr_phys_segments);
1116
1117 cmd = scsi_get_cmd_from_req(sdev, req);
1118 if (unlikely(!cmd))
1119 return BLKPREP_DEFER;
1120
1121 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1122 return scsi_init_io(cmd, GFP_ATOMIC);
1123 }
1124 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1125
1126 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1127 {
1128 int ret = BLKPREP_OK;
1129
1130 /*
1131 * If the device is not in running state we will reject some
1132 * or all commands.
1133 */
1134 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1135 switch (sdev->sdev_state) {
1136 case SDEV_OFFLINE:
1137 /*
1138 * If the device is offline we refuse to process any
1139 * commands. The device must be brought online
1140 * before trying any recovery commands.
1141 */
1142 sdev_printk(KERN_ERR, sdev,
1143 "rejecting I/O to offline device\n");
1144 ret = BLKPREP_KILL;
1145 break;
1146 case SDEV_DEL:
1147 /*
1148 * If the device is fully deleted, we refuse to
1149 * process any commands as well.
1150 */
1151 sdev_printk(KERN_ERR, sdev,
1152 "rejecting I/O to dead device\n");
1153 ret = BLKPREP_KILL;
1154 break;
1155 case SDEV_QUIESCE:
1156 case SDEV_BLOCK:
1157 case SDEV_CREATED_BLOCK:
1158 /*
1159 * If the devices is blocked we defer normal commands.
1160 */
1161 if (!(req->cmd_flags & REQ_PREEMPT))
1162 ret = BLKPREP_DEFER;
1163 break;
1164 default:
1165 /*
1166 * For any other not fully online state we only allow
1167 * special commands. In particular any user initiated
1168 * command is not allowed.
1169 */
1170 if (!(req->cmd_flags & REQ_PREEMPT))
1171 ret = BLKPREP_KILL;
1172 break;
1173 }
1174 }
1175 return ret;
1176 }
1177 EXPORT_SYMBOL(scsi_prep_state_check);
1178
1179 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1180 {
1181 struct scsi_device *sdev = q->queuedata;
1182
1183 switch (ret) {
1184 case BLKPREP_KILL:
1185 req->errors = DID_NO_CONNECT << 16;
1186 /* release the command and kill it */
1187 if (req->special) {
1188 struct scsi_cmnd *cmd = req->special;
1189 scsi_release_buffers(cmd);
1190 scsi_put_command(cmd);
1191 req->special = NULL;
1192 }
1193 break;
1194 case BLKPREP_DEFER:
1195 /*
1196 * If we defer, the blk_peek_request() returns NULL, but the
1197 * queue must be restarted, so we plug here if no returning
1198 * command will automatically do that.
1199 */
1200 if (sdev->device_busy == 0)
1201 blk_plug_device(q);
1202 break;
1203 default:
1204 req->cmd_flags |= REQ_DONTPREP;
1205 }
1206
1207 return ret;
1208 }
1209 EXPORT_SYMBOL(scsi_prep_return);
1210
1211 int scsi_prep_fn(struct request_queue *q, struct request *req)
1212 {
1213 struct scsi_device *sdev = q->queuedata;
1214 int ret = BLKPREP_KILL;
1215
1216 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1217 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1218 return scsi_prep_return(q, req, ret);
1219 }
1220 EXPORT_SYMBOL(scsi_prep_fn);
1221
1222 /*
1223 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1224 * return 0.
1225 *
1226 * Called with the queue_lock held.
1227 */
1228 static inline int scsi_dev_queue_ready(struct request_queue *q,
1229 struct scsi_device *sdev)
1230 {
1231 if (sdev->device_busy == 0 && sdev->device_blocked) {
1232 /*
1233 * unblock after device_blocked iterates to zero
1234 */
1235 if (--sdev->device_blocked == 0) {
1236 SCSI_LOG_MLQUEUE(3,
1237 sdev_printk(KERN_INFO, sdev,
1238 "unblocking device at zero depth\n"));
1239 } else {
1240 blk_plug_device(q);
1241 return 0;
1242 }
1243 }
1244 if (scsi_device_is_busy(sdev))
1245 return 0;
1246
1247 return 1;
1248 }
1249
1250
1251 /*
1252 * scsi_target_queue_ready: checks if there we can send commands to target
1253 * @sdev: scsi device on starget to check.
1254 *
1255 * Called with the host lock held.
1256 */
1257 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1258 struct scsi_device *sdev)
1259 {
1260 struct scsi_target *starget = scsi_target(sdev);
1261
1262 if (starget->single_lun) {
1263 if (starget->starget_sdev_user &&
1264 starget->starget_sdev_user != sdev)
1265 return 0;
1266 starget->starget_sdev_user = sdev;
1267 }
1268
1269 if (starget->target_busy == 0 && starget->target_blocked) {
1270 /*
1271 * unblock after target_blocked iterates to zero
1272 */
1273 if (--starget->target_blocked == 0) {
1274 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1275 "unblocking target at zero depth\n"));
1276 } else
1277 return 0;
1278 }
1279
1280 if (scsi_target_is_busy(starget)) {
1281 if (list_empty(&sdev->starved_entry)) {
1282 list_add_tail(&sdev->starved_entry,
1283 &shost->starved_list);
1284 return 0;
1285 }
1286 }
1287
1288 /* We're OK to process the command, so we can't be starved */
1289 if (!list_empty(&sdev->starved_entry))
1290 list_del_init(&sdev->starved_entry);
1291 return 1;
1292 }
1293
1294 /*
1295 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1296 * return 0. We must end up running the queue again whenever 0 is
1297 * returned, else IO can hang.
1298 *
1299 * Called with host_lock held.
1300 */
1301 static inline int scsi_host_queue_ready(struct request_queue *q,
1302 struct Scsi_Host *shost,
1303 struct scsi_device *sdev)
1304 {
1305 if (scsi_host_in_recovery(shost))
1306 return 0;
1307 if (shost->host_busy == 0 && shost->host_blocked) {
1308 /*
1309 * unblock after host_blocked iterates to zero
1310 */
1311 if (--shost->host_blocked == 0) {
1312 SCSI_LOG_MLQUEUE(3,
1313 printk("scsi%d unblocking host at zero depth\n",
1314 shost->host_no));
1315 } else {
1316 return 0;
1317 }
1318 }
1319 if (scsi_host_is_busy(shost)) {
1320 if (list_empty(&sdev->starved_entry))
1321 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1322 return 0;
1323 }
1324
1325 /* We're OK to process the command, so we can't be starved */
1326 if (!list_empty(&sdev->starved_entry))
1327 list_del_init(&sdev->starved_entry);
1328
1329 return 1;
1330 }
1331
1332 /*
1333 * Busy state exporting function for request stacking drivers.
1334 *
1335 * For efficiency, no lock is taken to check the busy state of
1336 * shost/starget/sdev, since the returned value is not guaranteed and
1337 * may be changed after request stacking drivers call the function,
1338 * regardless of taking lock or not.
1339 *
1340 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1341 * (e.g. !sdev), scsi needs to return 'not busy'.
1342 * Otherwise, request stacking drivers may hold requests forever.
1343 */
1344 static int scsi_lld_busy(struct request_queue *q)
1345 {
1346 struct scsi_device *sdev = q->queuedata;
1347 struct Scsi_Host *shost;
1348 struct scsi_target *starget;
1349
1350 if (!sdev)
1351 return 0;
1352
1353 shost = sdev->host;
1354 starget = scsi_target(sdev);
1355
1356 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1357 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1358 return 1;
1359
1360 return 0;
1361 }
1362
1363 /*
1364 * Kill a request for a dead device
1365 */
1366 static void scsi_kill_request(struct request *req, struct request_queue *q)
1367 {
1368 struct scsi_cmnd *cmd = req->special;
1369 struct scsi_device *sdev;
1370 struct scsi_target *starget;
1371 struct Scsi_Host *shost;
1372
1373 blk_start_request(req);
1374
1375 sdev = cmd->device;
1376 starget = scsi_target(sdev);
1377 shost = sdev->host;
1378 scsi_init_cmd_errh(cmd);
1379 cmd->result = DID_NO_CONNECT << 16;
1380 atomic_inc(&cmd->device->iorequest_cnt);
1381
1382 /*
1383 * SCSI request completion path will do scsi_device_unbusy(),
1384 * bump busy counts. To bump the counters, we need to dance
1385 * with the locks as normal issue path does.
1386 */
1387 sdev->device_busy++;
1388 spin_unlock(sdev->request_queue->queue_lock);
1389 spin_lock(shost->host_lock);
1390 shost->host_busy++;
1391 starget->target_busy++;
1392 spin_unlock(shost->host_lock);
1393 spin_lock(sdev->request_queue->queue_lock);
1394
1395 blk_complete_request(req);
1396 }
1397
1398 static void scsi_softirq_done(struct request *rq)
1399 {
1400 struct scsi_cmnd *cmd = rq->special;
1401 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1402 int disposition;
1403
1404 INIT_LIST_HEAD(&cmd->eh_entry);
1405
1406 /*
1407 * Set the serial numbers back to zero
1408 */
1409 cmd->serial_number = 0;
1410
1411 atomic_inc(&cmd->device->iodone_cnt);
1412 if (cmd->result)
1413 atomic_inc(&cmd->device->ioerr_cnt);
1414
1415 disposition = scsi_decide_disposition(cmd);
1416 if (disposition != SUCCESS &&
1417 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1418 sdev_printk(KERN_ERR, cmd->device,
1419 "timing out command, waited %lus\n",
1420 wait_for/HZ);
1421 disposition = SUCCESS;
1422 }
1423
1424 scsi_log_completion(cmd, disposition);
1425
1426 switch (disposition) {
1427 case SUCCESS:
1428 scsi_finish_command(cmd);
1429 break;
1430 case NEEDS_RETRY:
1431 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1432 break;
1433 case ADD_TO_MLQUEUE:
1434 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1435 break;
1436 default:
1437 if (!scsi_eh_scmd_add(cmd, 0))
1438 scsi_finish_command(cmd);
1439 }
1440 }
1441
1442 /*
1443 * Function: scsi_request_fn()
1444 *
1445 * Purpose: Main strategy routine for SCSI.
1446 *
1447 * Arguments: q - Pointer to actual queue.
1448 *
1449 * Returns: Nothing
1450 *
1451 * Lock status: IO request lock assumed to be held when called.
1452 */
1453 static void scsi_request_fn(struct request_queue *q)
1454 {
1455 struct scsi_device *sdev = q->queuedata;
1456 struct Scsi_Host *shost;
1457 struct scsi_cmnd *cmd;
1458 struct request *req;
1459
1460 if (!sdev) {
1461 printk("scsi: killing requests for dead queue\n");
1462 while ((req = blk_peek_request(q)) != NULL)
1463 scsi_kill_request(req, q);
1464 return;
1465 }
1466
1467 if(!get_device(&sdev->sdev_gendev))
1468 /* We must be tearing the block queue down already */
1469 return;
1470
1471 /*
1472 * To start with, we keep looping until the queue is empty, or until
1473 * the host is no longer able to accept any more requests.
1474 */
1475 shost = sdev->host;
1476 while (!blk_queue_plugged(q)) {
1477 int rtn;
1478 /*
1479 * get next queueable request. We do this early to make sure
1480 * that the request is fully prepared even if we cannot
1481 * accept it.
1482 */
1483 req = blk_peek_request(q);
1484 if (!req || !scsi_dev_queue_ready(q, sdev))
1485 break;
1486
1487 if (unlikely(!scsi_device_online(sdev))) {
1488 sdev_printk(KERN_ERR, sdev,
1489 "rejecting I/O to offline device\n");
1490 scsi_kill_request(req, q);
1491 continue;
1492 }
1493
1494
1495 /*
1496 * Remove the request from the request list.
1497 */
1498 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1499 blk_start_request(req);
1500 sdev->device_busy++;
1501
1502 spin_unlock(q->queue_lock);
1503 cmd = req->special;
1504 if (unlikely(cmd == NULL)) {
1505 printk(KERN_CRIT "impossible request in %s.\n"
1506 "please mail a stack trace to "
1507 "linux-scsi@vger.kernel.org\n",
1508 __func__);
1509 blk_dump_rq_flags(req, "foo");
1510 BUG();
1511 }
1512 spin_lock(shost->host_lock);
1513
1514 /*
1515 * We hit this when the driver is using a host wide
1516 * tag map. For device level tag maps the queue_depth check
1517 * in the device ready fn would prevent us from trying
1518 * to allocate a tag. Since the map is a shared host resource
1519 * we add the dev to the starved list so it eventually gets
1520 * a run when a tag is freed.
1521 */
1522 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1523 if (list_empty(&sdev->starved_entry))
1524 list_add_tail(&sdev->starved_entry,
1525 &shost->starved_list);
1526 goto not_ready;
1527 }
1528
1529 if (!scsi_target_queue_ready(shost, sdev))
1530 goto not_ready;
1531
1532 if (!scsi_host_queue_ready(q, shost, sdev))
1533 goto not_ready;
1534
1535 scsi_target(sdev)->target_busy++;
1536 shost->host_busy++;
1537
1538 /*
1539 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1540 * take the lock again.
1541 */
1542 spin_unlock_irq(shost->host_lock);
1543
1544 /*
1545 * Finally, initialize any error handling parameters, and set up
1546 * the timers for timeouts.
1547 */
1548 scsi_init_cmd_errh(cmd);
1549
1550 /*
1551 * Dispatch the command to the low-level driver.
1552 */
1553 rtn = scsi_dispatch_cmd(cmd);
1554 spin_lock_irq(q->queue_lock);
1555 if(rtn) {
1556 /* we're refusing the command; because of
1557 * the way locks get dropped, we need to
1558 * check here if plugging is required */
1559 if(sdev->device_busy == 0)
1560 blk_plug_device(q);
1561
1562 break;
1563 }
1564 }
1565
1566 goto out;
1567
1568 not_ready:
1569 spin_unlock_irq(shost->host_lock);
1570
1571 /*
1572 * lock q, handle tag, requeue req, and decrement device_busy. We
1573 * must return with queue_lock held.
1574 *
1575 * Decrementing device_busy without checking it is OK, as all such
1576 * cases (host limits or settings) should run the queue at some
1577 * later time.
1578 */
1579 spin_lock_irq(q->queue_lock);
1580 blk_requeue_request(q, req);
1581 sdev->device_busy--;
1582 if(sdev->device_busy == 0)
1583 blk_plug_device(q);
1584 out:
1585 /* must be careful here...if we trigger the ->remove() function
1586 * we cannot be holding the q lock */
1587 spin_unlock_irq(q->queue_lock);
1588 put_device(&sdev->sdev_gendev);
1589 spin_lock_irq(q->queue_lock);
1590 }
1591
1592 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1593 {
1594 struct device *host_dev;
1595 u64 bounce_limit = 0xffffffff;
1596
1597 if (shost->unchecked_isa_dma)
1598 return BLK_BOUNCE_ISA;
1599 /*
1600 * Platforms with virtual-DMA translation
1601 * hardware have no practical limit.
1602 */
1603 if (!PCI_DMA_BUS_IS_PHYS)
1604 return BLK_BOUNCE_ANY;
1605
1606 host_dev = scsi_get_device(shost);
1607 if (host_dev && host_dev->dma_mask)
1608 bounce_limit = *host_dev->dma_mask;
1609
1610 return bounce_limit;
1611 }
1612 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1613
1614 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1615 request_fn_proc *request_fn)
1616 {
1617 struct request_queue *q;
1618 struct device *dev = shost->shost_gendev.parent;
1619
1620 q = blk_init_queue(request_fn, NULL);
1621 if (!q)
1622 return NULL;
1623
1624 /*
1625 * this limit is imposed by hardware restrictions
1626 */
1627 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1628 SCSI_MAX_SG_CHAIN_SEGMENTS));
1629
1630 if (scsi_host_prot_dma(shost)) {
1631 shost->sg_prot_tablesize =
1632 min_not_zero(shost->sg_prot_tablesize,
1633 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1634 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1635 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1636 }
1637
1638 blk_queue_max_hw_sectors(q, shost->max_sectors);
1639 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1640 blk_queue_segment_boundary(q, shost->dma_boundary);
1641 dma_set_seg_boundary(dev, shost->dma_boundary);
1642
1643 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1644
1645 /* New queue, no concurrency on queue_flags */
1646 if (!shost->use_clustering)
1647 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1648
1649 /*
1650 * set a reasonable default alignment on word boundaries: the
1651 * host and device may alter it using
1652 * blk_queue_update_dma_alignment() later.
1653 */
1654 blk_queue_dma_alignment(q, 0x03);
1655
1656 return q;
1657 }
1658 EXPORT_SYMBOL(__scsi_alloc_queue);
1659
1660 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1661 {
1662 struct request_queue *q;
1663
1664 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1665 if (!q)
1666 return NULL;
1667
1668 blk_queue_prep_rq(q, scsi_prep_fn);
1669 blk_queue_softirq_done(q, scsi_softirq_done);
1670 blk_queue_rq_timed_out(q, scsi_times_out);
1671 blk_queue_lld_busy(q, scsi_lld_busy);
1672 return q;
1673 }
1674
1675 void scsi_free_queue(struct request_queue *q)
1676 {
1677 blk_cleanup_queue(q);
1678 }
1679
1680 /*
1681 * Function: scsi_block_requests()
1682 *
1683 * Purpose: Utility function used by low-level drivers to prevent further
1684 * commands from being queued to the device.
1685 *
1686 * Arguments: shost - Host in question
1687 *
1688 * Returns: Nothing
1689 *
1690 * Lock status: No locks are assumed held.
1691 *
1692 * Notes: There is no timer nor any other means by which the requests
1693 * get unblocked other than the low-level driver calling
1694 * scsi_unblock_requests().
1695 */
1696 void scsi_block_requests(struct Scsi_Host *shost)
1697 {
1698 shost->host_self_blocked = 1;
1699 }
1700 EXPORT_SYMBOL(scsi_block_requests);
1701
1702 /*
1703 * Function: scsi_unblock_requests()
1704 *
1705 * Purpose: Utility function used by low-level drivers to allow further
1706 * commands from being queued to the device.
1707 *
1708 * Arguments: shost - Host in question
1709 *
1710 * Returns: Nothing
1711 *
1712 * Lock status: No locks are assumed held.
1713 *
1714 * Notes: There is no timer nor any other means by which the requests
1715 * get unblocked other than the low-level driver calling
1716 * scsi_unblock_requests().
1717 *
1718 * This is done as an API function so that changes to the
1719 * internals of the scsi mid-layer won't require wholesale
1720 * changes to drivers that use this feature.
1721 */
1722 void scsi_unblock_requests(struct Scsi_Host *shost)
1723 {
1724 shost->host_self_blocked = 0;
1725 scsi_run_host_queues(shost);
1726 }
1727 EXPORT_SYMBOL(scsi_unblock_requests);
1728
1729 int __init scsi_init_queue(void)
1730 {
1731 int i;
1732
1733 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1734 sizeof(struct scsi_data_buffer),
1735 0, 0, NULL);
1736 if (!scsi_sdb_cache) {
1737 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1738 return -ENOMEM;
1739 }
1740
1741 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1742 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1743 int size = sgp->size * sizeof(struct scatterlist);
1744
1745 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1746 SLAB_HWCACHE_ALIGN, NULL);
1747 if (!sgp->slab) {
1748 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1749 sgp->name);
1750 goto cleanup_sdb;
1751 }
1752
1753 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1754 sgp->slab);
1755 if (!sgp->pool) {
1756 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1757 sgp->name);
1758 goto cleanup_sdb;
1759 }
1760 }
1761
1762 return 0;
1763
1764 cleanup_sdb:
1765 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767 if (sgp->pool)
1768 mempool_destroy(sgp->pool);
1769 if (sgp->slab)
1770 kmem_cache_destroy(sgp->slab);
1771 }
1772 kmem_cache_destroy(scsi_sdb_cache);
1773
1774 return -ENOMEM;
1775 }
1776
1777 void scsi_exit_queue(void)
1778 {
1779 int i;
1780
1781 kmem_cache_destroy(scsi_sdb_cache);
1782
1783 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1784 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1785 mempool_destroy(sgp->pool);
1786 kmem_cache_destroy(sgp->slab);
1787 }
1788 }
1789
1790 /**
1791 * scsi_mode_select - issue a mode select
1792 * @sdev: SCSI device to be queried
1793 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1794 * @sp: Save page bit (0 == don't save, 1 == save)
1795 * @modepage: mode page being requested
1796 * @buffer: request buffer (may not be smaller than eight bytes)
1797 * @len: length of request buffer.
1798 * @timeout: command timeout
1799 * @retries: number of retries before failing
1800 * @data: returns a structure abstracting the mode header data
1801 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1802 * must be SCSI_SENSE_BUFFERSIZE big.
1803 *
1804 * Returns zero if successful; negative error number or scsi
1805 * status on error
1806 *
1807 */
1808 int
1809 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1810 unsigned char *buffer, int len, int timeout, int retries,
1811 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1812 {
1813 unsigned char cmd[10];
1814 unsigned char *real_buffer;
1815 int ret;
1816
1817 memset(cmd, 0, sizeof(cmd));
1818 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1819
1820 if (sdev->use_10_for_ms) {
1821 if (len > 65535)
1822 return -EINVAL;
1823 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1824 if (!real_buffer)
1825 return -ENOMEM;
1826 memcpy(real_buffer + 8, buffer, len);
1827 len += 8;
1828 real_buffer[0] = 0;
1829 real_buffer[1] = 0;
1830 real_buffer[2] = data->medium_type;
1831 real_buffer[3] = data->device_specific;
1832 real_buffer[4] = data->longlba ? 0x01 : 0;
1833 real_buffer[5] = 0;
1834 real_buffer[6] = data->block_descriptor_length >> 8;
1835 real_buffer[7] = data->block_descriptor_length;
1836
1837 cmd[0] = MODE_SELECT_10;
1838 cmd[7] = len >> 8;
1839 cmd[8] = len;
1840 } else {
1841 if (len > 255 || data->block_descriptor_length > 255 ||
1842 data->longlba)
1843 return -EINVAL;
1844
1845 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1846 if (!real_buffer)
1847 return -ENOMEM;
1848 memcpy(real_buffer + 4, buffer, len);
1849 len += 4;
1850 real_buffer[0] = 0;
1851 real_buffer[1] = data->medium_type;
1852 real_buffer[2] = data->device_specific;
1853 real_buffer[3] = data->block_descriptor_length;
1854
1855
1856 cmd[0] = MODE_SELECT;
1857 cmd[4] = len;
1858 }
1859
1860 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1861 sshdr, timeout, retries, NULL);
1862 kfree(real_buffer);
1863 return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(scsi_mode_select);
1866
1867 /**
1868 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1869 * @sdev: SCSI device to be queried
1870 * @dbd: set if mode sense will allow block descriptors to be returned
1871 * @modepage: mode page being requested
1872 * @buffer: request buffer (may not be smaller than eight bytes)
1873 * @len: length of request buffer.
1874 * @timeout: command timeout
1875 * @retries: number of retries before failing
1876 * @data: returns a structure abstracting the mode header data
1877 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1878 * must be SCSI_SENSE_BUFFERSIZE big.
1879 *
1880 * Returns zero if unsuccessful, or the header offset (either 4
1881 * or 8 depending on whether a six or ten byte command was
1882 * issued) if successful.
1883 */
1884 int
1885 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1886 unsigned char *buffer, int len, int timeout, int retries,
1887 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1888 {
1889 unsigned char cmd[12];
1890 int use_10_for_ms;
1891 int header_length;
1892 int result;
1893 struct scsi_sense_hdr my_sshdr;
1894
1895 memset(data, 0, sizeof(*data));
1896 memset(&cmd[0], 0, 12);
1897 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1898 cmd[2] = modepage;
1899
1900 /* caller might not be interested in sense, but we need it */
1901 if (!sshdr)
1902 sshdr = &my_sshdr;
1903
1904 retry:
1905 use_10_for_ms = sdev->use_10_for_ms;
1906
1907 if (use_10_for_ms) {
1908 if (len < 8)
1909 len = 8;
1910
1911 cmd[0] = MODE_SENSE_10;
1912 cmd[8] = len;
1913 header_length = 8;
1914 } else {
1915 if (len < 4)
1916 len = 4;
1917
1918 cmd[0] = MODE_SENSE;
1919 cmd[4] = len;
1920 header_length = 4;
1921 }
1922
1923 memset(buffer, 0, len);
1924
1925 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1926 sshdr, timeout, retries, NULL);
1927
1928 /* This code looks awful: what it's doing is making sure an
1929 * ILLEGAL REQUEST sense return identifies the actual command
1930 * byte as the problem. MODE_SENSE commands can return
1931 * ILLEGAL REQUEST if the code page isn't supported */
1932
1933 if (use_10_for_ms && !scsi_status_is_good(result) &&
1934 (driver_byte(result) & DRIVER_SENSE)) {
1935 if (scsi_sense_valid(sshdr)) {
1936 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1937 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1938 /*
1939 * Invalid command operation code
1940 */
1941 sdev->use_10_for_ms = 0;
1942 goto retry;
1943 }
1944 }
1945 }
1946
1947 if(scsi_status_is_good(result)) {
1948 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1949 (modepage == 6 || modepage == 8))) {
1950 /* Initio breakage? */
1951 header_length = 0;
1952 data->length = 13;
1953 data->medium_type = 0;
1954 data->device_specific = 0;
1955 data->longlba = 0;
1956 data->block_descriptor_length = 0;
1957 } else if(use_10_for_ms) {
1958 data->length = buffer[0]*256 + buffer[1] + 2;
1959 data->medium_type = buffer[2];
1960 data->device_specific = buffer[3];
1961 data->longlba = buffer[4] & 0x01;
1962 data->block_descriptor_length = buffer[6]*256
1963 + buffer[7];
1964 } else {
1965 data->length = buffer[0] + 1;
1966 data->medium_type = buffer[1];
1967 data->device_specific = buffer[2];
1968 data->block_descriptor_length = buffer[3];
1969 }
1970 data->header_length = header_length;
1971 }
1972
1973 return result;
1974 }
1975 EXPORT_SYMBOL(scsi_mode_sense);
1976
1977 /**
1978 * scsi_test_unit_ready - test if unit is ready
1979 * @sdev: scsi device to change the state of.
1980 * @timeout: command timeout
1981 * @retries: number of retries before failing
1982 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1983 * returning sense. Make sure that this is cleared before passing
1984 * in.
1985 *
1986 * Returns zero if unsuccessful or an error if TUR failed. For
1987 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1988 * translated to success, with the ->changed flag updated.
1989 **/
1990 int
1991 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1992 struct scsi_sense_hdr *sshdr_external)
1993 {
1994 char cmd[] = {
1995 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1996 };
1997 struct scsi_sense_hdr *sshdr;
1998 int result;
1999
2000 if (!sshdr_external)
2001 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2002 else
2003 sshdr = sshdr_external;
2004
2005 /* try to eat the UNIT_ATTENTION if there are enough retries */
2006 do {
2007 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2008 timeout, retries, NULL);
2009 if (sdev->removable && scsi_sense_valid(sshdr) &&
2010 sshdr->sense_key == UNIT_ATTENTION)
2011 sdev->changed = 1;
2012 } while (scsi_sense_valid(sshdr) &&
2013 sshdr->sense_key == UNIT_ATTENTION && --retries);
2014
2015 if (!sshdr)
2016 /* could not allocate sense buffer, so can't process it */
2017 return result;
2018
2019 if (sdev->removable && scsi_sense_valid(sshdr) &&
2020 (sshdr->sense_key == UNIT_ATTENTION ||
2021 sshdr->sense_key == NOT_READY)) {
2022 sdev->changed = 1;
2023 result = 0;
2024 }
2025 if (!sshdr_external)
2026 kfree(sshdr);
2027 return result;
2028 }
2029 EXPORT_SYMBOL(scsi_test_unit_ready);
2030
2031 /**
2032 * scsi_device_set_state - Take the given device through the device state model.
2033 * @sdev: scsi device to change the state of.
2034 * @state: state to change to.
2035 *
2036 * Returns zero if unsuccessful or an error if the requested
2037 * transition is illegal.
2038 */
2039 int
2040 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2041 {
2042 enum scsi_device_state oldstate = sdev->sdev_state;
2043
2044 if (state == oldstate)
2045 return 0;
2046
2047 switch (state) {
2048 case SDEV_CREATED:
2049 switch (oldstate) {
2050 case SDEV_CREATED_BLOCK:
2051 break;
2052 default:
2053 goto illegal;
2054 }
2055 break;
2056
2057 case SDEV_RUNNING:
2058 switch (oldstate) {
2059 case SDEV_CREATED:
2060 case SDEV_OFFLINE:
2061 case SDEV_QUIESCE:
2062 case SDEV_BLOCK:
2063 break;
2064 default:
2065 goto illegal;
2066 }
2067 break;
2068
2069 case SDEV_QUIESCE:
2070 switch (oldstate) {
2071 case SDEV_RUNNING:
2072 case SDEV_OFFLINE:
2073 break;
2074 default:
2075 goto illegal;
2076 }
2077 break;
2078
2079 case SDEV_OFFLINE:
2080 switch (oldstate) {
2081 case SDEV_CREATED:
2082 case SDEV_RUNNING:
2083 case SDEV_QUIESCE:
2084 case SDEV_BLOCK:
2085 break;
2086 default:
2087 goto illegal;
2088 }
2089 break;
2090
2091 case SDEV_BLOCK:
2092 switch (oldstate) {
2093 case SDEV_RUNNING:
2094 case SDEV_CREATED_BLOCK:
2095 break;
2096 default:
2097 goto illegal;
2098 }
2099 break;
2100
2101 case SDEV_CREATED_BLOCK:
2102 switch (oldstate) {
2103 case SDEV_CREATED:
2104 break;
2105 default:
2106 goto illegal;
2107 }
2108 break;
2109
2110 case SDEV_CANCEL:
2111 switch (oldstate) {
2112 case SDEV_CREATED:
2113 case SDEV_RUNNING:
2114 case SDEV_QUIESCE:
2115 case SDEV_OFFLINE:
2116 case SDEV_BLOCK:
2117 break;
2118 default:
2119 goto illegal;
2120 }
2121 break;
2122
2123 case SDEV_DEL:
2124 switch (oldstate) {
2125 case SDEV_CREATED:
2126 case SDEV_RUNNING:
2127 case SDEV_OFFLINE:
2128 case SDEV_CANCEL:
2129 break;
2130 default:
2131 goto illegal;
2132 }
2133 break;
2134
2135 }
2136 sdev->sdev_state = state;
2137 return 0;
2138
2139 illegal:
2140 SCSI_LOG_ERROR_RECOVERY(1,
2141 sdev_printk(KERN_ERR, sdev,
2142 "Illegal state transition %s->%s\n",
2143 scsi_device_state_name(oldstate),
2144 scsi_device_state_name(state))
2145 );
2146 return -EINVAL;
2147 }
2148 EXPORT_SYMBOL(scsi_device_set_state);
2149
2150 /**
2151 * sdev_evt_emit - emit a single SCSI device uevent
2152 * @sdev: associated SCSI device
2153 * @evt: event to emit
2154 *
2155 * Send a single uevent (scsi_event) to the associated scsi_device.
2156 */
2157 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2158 {
2159 int idx = 0;
2160 char *envp[3];
2161
2162 switch (evt->evt_type) {
2163 case SDEV_EVT_MEDIA_CHANGE:
2164 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2165 break;
2166
2167 default:
2168 /* do nothing */
2169 break;
2170 }
2171
2172 envp[idx++] = NULL;
2173
2174 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2175 }
2176
2177 /**
2178 * sdev_evt_thread - send a uevent for each scsi event
2179 * @work: work struct for scsi_device
2180 *
2181 * Dispatch queued events to their associated scsi_device kobjects
2182 * as uevents.
2183 */
2184 void scsi_evt_thread(struct work_struct *work)
2185 {
2186 struct scsi_device *sdev;
2187 LIST_HEAD(event_list);
2188
2189 sdev = container_of(work, struct scsi_device, event_work);
2190
2191 while (1) {
2192 struct scsi_event *evt;
2193 struct list_head *this, *tmp;
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&sdev->list_lock, flags);
2197 list_splice_init(&sdev->event_list, &event_list);
2198 spin_unlock_irqrestore(&sdev->list_lock, flags);
2199
2200 if (list_empty(&event_list))
2201 break;
2202
2203 list_for_each_safe(this, tmp, &event_list) {
2204 evt = list_entry(this, struct scsi_event, node);
2205 list_del(&evt->node);
2206 scsi_evt_emit(sdev, evt);
2207 kfree(evt);
2208 }
2209 }
2210 }
2211
2212 /**
2213 * sdev_evt_send - send asserted event to uevent thread
2214 * @sdev: scsi_device event occurred on
2215 * @evt: event to send
2216 *
2217 * Assert scsi device event asynchronously.
2218 */
2219 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2220 {
2221 unsigned long flags;
2222
2223 #if 0
2224 /* FIXME: currently this check eliminates all media change events
2225 * for polled devices. Need to update to discriminate between AN
2226 * and polled events */
2227 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2228 kfree(evt);
2229 return;
2230 }
2231 #endif
2232
2233 spin_lock_irqsave(&sdev->list_lock, flags);
2234 list_add_tail(&evt->node, &sdev->event_list);
2235 schedule_work(&sdev->event_work);
2236 spin_unlock_irqrestore(&sdev->list_lock, flags);
2237 }
2238 EXPORT_SYMBOL_GPL(sdev_evt_send);
2239
2240 /**
2241 * sdev_evt_alloc - allocate a new scsi event
2242 * @evt_type: type of event to allocate
2243 * @gfpflags: GFP flags for allocation
2244 *
2245 * Allocates and returns a new scsi_event.
2246 */
2247 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2248 gfp_t gfpflags)
2249 {
2250 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2251 if (!evt)
2252 return NULL;
2253
2254 evt->evt_type = evt_type;
2255 INIT_LIST_HEAD(&evt->node);
2256
2257 /* evt_type-specific initialization, if any */
2258 switch (evt_type) {
2259 case SDEV_EVT_MEDIA_CHANGE:
2260 default:
2261 /* do nothing */
2262 break;
2263 }
2264
2265 return evt;
2266 }
2267 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2268
2269 /**
2270 * sdev_evt_send_simple - send asserted event to uevent thread
2271 * @sdev: scsi_device event occurred on
2272 * @evt_type: type of event to send
2273 * @gfpflags: GFP flags for allocation
2274 *
2275 * Assert scsi device event asynchronously, given an event type.
2276 */
2277 void sdev_evt_send_simple(struct scsi_device *sdev,
2278 enum scsi_device_event evt_type, gfp_t gfpflags)
2279 {
2280 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2281 if (!evt) {
2282 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2283 evt_type);
2284 return;
2285 }
2286
2287 sdev_evt_send(sdev, evt);
2288 }
2289 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2290
2291 /**
2292 * scsi_device_quiesce - Block user issued commands.
2293 * @sdev: scsi device to quiesce.
2294 *
2295 * This works by trying to transition to the SDEV_QUIESCE state
2296 * (which must be a legal transition). When the device is in this
2297 * state, only special requests will be accepted, all others will
2298 * be deferred. Since special requests may also be requeued requests,
2299 * a successful return doesn't guarantee the device will be
2300 * totally quiescent.
2301 *
2302 * Must be called with user context, may sleep.
2303 *
2304 * Returns zero if unsuccessful or an error if not.
2305 */
2306 int
2307 scsi_device_quiesce(struct scsi_device *sdev)
2308 {
2309 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2310 if (err)
2311 return err;
2312
2313 scsi_run_queue(sdev->request_queue);
2314 while (sdev->device_busy) {
2315 msleep_interruptible(200);
2316 scsi_run_queue(sdev->request_queue);
2317 }
2318 return 0;
2319 }
2320 EXPORT_SYMBOL(scsi_device_quiesce);
2321
2322 /**
2323 * scsi_device_resume - Restart user issued commands to a quiesced device.
2324 * @sdev: scsi device to resume.
2325 *
2326 * Moves the device from quiesced back to running and restarts the
2327 * queues.
2328 *
2329 * Must be called with user context, may sleep.
2330 */
2331 void
2332 scsi_device_resume(struct scsi_device *sdev)
2333 {
2334 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2335 return;
2336 scsi_run_queue(sdev->request_queue);
2337 }
2338 EXPORT_SYMBOL(scsi_device_resume);
2339
2340 static void
2341 device_quiesce_fn(struct scsi_device *sdev, void *data)
2342 {
2343 scsi_device_quiesce(sdev);
2344 }
2345
2346 void
2347 scsi_target_quiesce(struct scsi_target *starget)
2348 {
2349 starget_for_each_device(starget, NULL, device_quiesce_fn);
2350 }
2351 EXPORT_SYMBOL(scsi_target_quiesce);
2352
2353 static void
2354 device_resume_fn(struct scsi_device *sdev, void *data)
2355 {
2356 scsi_device_resume(sdev);
2357 }
2358
2359 void
2360 scsi_target_resume(struct scsi_target *starget)
2361 {
2362 starget_for_each_device(starget, NULL, device_resume_fn);
2363 }
2364 EXPORT_SYMBOL(scsi_target_resume);
2365
2366 /**
2367 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2368 * @sdev: device to block
2369 *
2370 * Block request made by scsi lld's to temporarily stop all
2371 * scsi commands on the specified device. Called from interrupt
2372 * or normal process context.
2373 *
2374 * Returns zero if successful or error if not
2375 *
2376 * Notes:
2377 * This routine transitions the device to the SDEV_BLOCK state
2378 * (which must be a legal transition). When the device is in this
2379 * state, all commands are deferred until the scsi lld reenables
2380 * the device with scsi_device_unblock or device_block_tmo fires.
2381 * This routine assumes the host_lock is held on entry.
2382 */
2383 int
2384 scsi_internal_device_block(struct scsi_device *sdev)
2385 {
2386 struct request_queue *q = sdev->request_queue;
2387 unsigned long flags;
2388 int err = 0;
2389
2390 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2391 if (err) {
2392 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2393
2394 if (err)
2395 return err;
2396 }
2397
2398 /*
2399 * The device has transitioned to SDEV_BLOCK. Stop the
2400 * block layer from calling the midlayer with this device's
2401 * request queue.
2402 */
2403 spin_lock_irqsave(q->queue_lock, flags);
2404 blk_stop_queue(q);
2405 spin_unlock_irqrestore(q->queue_lock, flags);
2406
2407 return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2410
2411 /**
2412 * scsi_internal_device_unblock - resume a device after a block request
2413 * @sdev: device to resume
2414 *
2415 * Called by scsi lld's or the midlayer to restart the device queue
2416 * for the previously suspended scsi device. Called from interrupt or
2417 * normal process context.
2418 *
2419 * Returns zero if successful or error if not.
2420 *
2421 * Notes:
2422 * This routine transitions the device to the SDEV_RUNNING state
2423 * (which must be a legal transition) allowing the midlayer to
2424 * goose the queue for this device. This routine assumes the
2425 * host_lock is held upon entry.
2426 */
2427 int
2428 scsi_internal_device_unblock(struct scsi_device *sdev)
2429 {
2430 struct request_queue *q = sdev->request_queue;
2431 unsigned long flags;
2432
2433 /*
2434 * Try to transition the scsi device to SDEV_RUNNING
2435 * and goose the device queue if successful.
2436 */
2437 if (sdev->sdev_state == SDEV_BLOCK)
2438 sdev->sdev_state = SDEV_RUNNING;
2439 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2440 sdev->sdev_state = SDEV_CREATED;
2441 else if (sdev->sdev_state != SDEV_CANCEL &&
2442 sdev->sdev_state != SDEV_OFFLINE)
2443 return -EINVAL;
2444
2445 spin_lock_irqsave(q->queue_lock, flags);
2446 blk_start_queue(q);
2447 spin_unlock_irqrestore(q->queue_lock, flags);
2448
2449 return 0;
2450 }
2451 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2452
2453 static void
2454 device_block(struct scsi_device *sdev, void *data)
2455 {
2456 scsi_internal_device_block(sdev);
2457 }
2458
2459 static int
2460 target_block(struct device *dev, void *data)
2461 {
2462 if (scsi_is_target_device(dev))
2463 starget_for_each_device(to_scsi_target(dev), NULL,
2464 device_block);
2465 return 0;
2466 }
2467
2468 void
2469 scsi_target_block(struct device *dev)
2470 {
2471 if (scsi_is_target_device(dev))
2472 starget_for_each_device(to_scsi_target(dev), NULL,
2473 device_block);
2474 else
2475 device_for_each_child(dev, NULL, target_block);
2476 }
2477 EXPORT_SYMBOL_GPL(scsi_target_block);
2478
2479 static void
2480 device_unblock(struct scsi_device *sdev, void *data)
2481 {
2482 scsi_internal_device_unblock(sdev);
2483 }
2484
2485 static int
2486 target_unblock(struct device *dev, void *data)
2487 {
2488 if (scsi_is_target_device(dev))
2489 starget_for_each_device(to_scsi_target(dev), NULL,
2490 device_unblock);
2491 return 0;
2492 }
2493
2494 void
2495 scsi_target_unblock(struct device *dev)
2496 {
2497 if (scsi_is_target_device(dev))
2498 starget_for_each_device(to_scsi_target(dev), NULL,
2499 device_unblock);
2500 else
2501 device_for_each_child(dev, NULL, target_unblock);
2502 }
2503 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2504
2505 /**
2506 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2507 * @sgl: scatter-gather list
2508 * @sg_count: number of segments in sg
2509 * @offset: offset in bytes into sg, on return offset into the mapped area
2510 * @len: bytes to map, on return number of bytes mapped
2511 *
2512 * Returns virtual address of the start of the mapped page
2513 */
2514 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2515 size_t *offset, size_t *len)
2516 {
2517 int i;
2518 size_t sg_len = 0, len_complete = 0;
2519 struct scatterlist *sg;
2520 struct page *page;
2521
2522 WARN_ON(!irqs_disabled());
2523
2524 for_each_sg(sgl, sg, sg_count, i) {
2525 len_complete = sg_len; /* Complete sg-entries */
2526 sg_len += sg->length;
2527 if (sg_len > *offset)
2528 break;
2529 }
2530
2531 if (unlikely(i == sg_count)) {
2532 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2533 "elements %d\n",
2534 __func__, sg_len, *offset, sg_count);
2535 WARN_ON(1);
2536 return NULL;
2537 }
2538
2539 /* Offset starting from the beginning of first page in this sg-entry */
2540 *offset = *offset - len_complete + sg->offset;
2541
2542 /* Assumption: contiguous pages can be accessed as "page + i" */
2543 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2544 *offset &= ~PAGE_MASK;
2545
2546 /* Bytes in this sg-entry from *offset to the end of the page */
2547 sg_len = PAGE_SIZE - *offset;
2548 if (*len > sg_len)
2549 *len = sg_len;
2550
2551 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2552 }
2553 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2554
2555 /**
2556 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2557 * @virt: virtual address to be unmapped
2558 */
2559 void scsi_kunmap_atomic_sg(void *virt)
2560 {
2561 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2562 }
2563 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);