[SCSI] qla2xxx: Code cleanups.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2005 QLogic Corporation
4 *
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16
17 /*
18 * NVRAM support routines
19 */
20
21 /**
22 * qla2x00_lock_nvram_access() -
23 * @ha: HA context
24 */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 uint16_t data;
29 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30
31 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 data = RD_REG_WORD(&reg->nvram);
33 while (data & NVR_BUSY) {
34 udelay(100);
35 data = RD_REG_WORD(&reg->nvram);
36 }
37
38 /* Lock resource */
39 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 udelay(5);
42 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 while ((data & BIT_0) == 0) {
44 /* Lock failed */
45 udelay(100);
46 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 udelay(5);
49 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 }
51 }
52 }
53
54 /**
55 * qla2x00_unlock_nvram_access() -
56 * @ha: HA context
57 */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62
63 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 }
67 }
68
69 /**
70 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71 * request routine to get the word from NVRAM.
72 * @ha: HA context
73 * @addr: Address in NVRAM to read
74 *
75 * Returns the word read from nvram @addr.
76 */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 uint16_t data;
81 uint32_t nv_cmd;
82
83 nv_cmd = addr << 16;
84 nv_cmd |= NV_READ_OP;
85 data = qla2x00_nvram_request(ha, nv_cmd);
86
87 return (data);
88 }
89
90 /**
91 * qla2x00_write_nvram_word() - Write NVRAM data.
92 * @ha: HA context
93 * @addr: Address in NVRAM to write
94 * @data: word to program
95 */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 int count;
100 uint16_t word;
101 uint32_t nv_cmd, wait_cnt;
102 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103
104 qla2x00_nv_write(ha, NVR_DATA_OUT);
105 qla2x00_nv_write(ha, 0);
106 qla2x00_nv_write(ha, 0);
107
108 for (word = 0; word < 8; word++)
109 qla2x00_nv_write(ha, NVR_DATA_OUT);
110
111 qla2x00_nv_deselect(ha);
112
113 /* Write data */
114 nv_cmd = (addr << 16) | NV_WRITE_OP;
115 nv_cmd |= data;
116 nv_cmd <<= 5;
117 for (count = 0; count < 27; count++) {
118 if (nv_cmd & BIT_31)
119 qla2x00_nv_write(ha, NVR_DATA_OUT);
120 else
121 qla2x00_nv_write(ha, 0);
122
123 nv_cmd <<= 1;
124 }
125
126 qla2x00_nv_deselect(ha);
127
128 /* Wait for NVRAM to become ready */
129 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
131 wait_cnt = NVR_WAIT_CNT;
132 do {
133 if (!--wait_cnt) {
134 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 __func__, ha->host_no));
136 break;
137 }
138 NVRAM_DELAY();
139 word = RD_REG_WORD(&reg->nvram);
140 } while ((word & NVR_DATA_IN) == 0);
141
142 qla2x00_nv_deselect(ha);
143
144 /* Disable writes */
145 qla2x00_nv_write(ha, NVR_DATA_OUT);
146 for (count = 0; count < 10; count++)
147 qla2x00_nv_write(ha, 0);
148
149 qla2x00_nv_deselect(ha);
150 }
151
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154 uint32_t tmo)
155 {
156 int ret, count;
157 uint16_t word;
158 uint32_t nv_cmd;
159 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160
161 ret = QLA_SUCCESS;
162
163 qla2x00_nv_write(ha, NVR_DATA_OUT);
164 qla2x00_nv_write(ha, 0);
165 qla2x00_nv_write(ha, 0);
166
167 for (word = 0; word < 8; word++)
168 qla2x00_nv_write(ha, NVR_DATA_OUT);
169
170 qla2x00_nv_deselect(ha);
171
172 /* Write data */
173 nv_cmd = (addr << 16) | NV_WRITE_OP;
174 nv_cmd |= data;
175 nv_cmd <<= 5;
176 for (count = 0; count < 27; count++) {
177 if (nv_cmd & BIT_31)
178 qla2x00_nv_write(ha, NVR_DATA_OUT);
179 else
180 qla2x00_nv_write(ha, 0);
181
182 nv_cmd <<= 1;
183 }
184
185 qla2x00_nv_deselect(ha);
186
187 /* Wait for NVRAM to become ready */
188 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
190 do {
191 NVRAM_DELAY();
192 word = RD_REG_WORD(&reg->nvram);
193 if (!--tmo) {
194 ret = QLA_FUNCTION_FAILED;
195 break;
196 }
197 } while ((word & NVR_DATA_IN) == 0);
198
199 qla2x00_nv_deselect(ha);
200
201 /* Disable writes */
202 qla2x00_nv_write(ha, NVR_DATA_OUT);
203 for (count = 0; count < 10; count++)
204 qla2x00_nv_write(ha, 0);
205
206 qla2x00_nv_deselect(ha);
207
208 return ret;
209 }
210
211 /**
212 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213 * NVRAM.
214 * @ha: HA context
215 * @nv_cmd: NVRAM command
216 *
217 * Bit definitions for NVRAM command:
218 *
219 * Bit 26 = start bit
220 * Bit 25, 24 = opcode
221 * Bit 23-16 = address
222 * Bit 15-0 = write data
223 *
224 * Returns the word read from nvram @addr.
225 */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 uint8_t cnt;
230 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 uint16_t data = 0;
232 uint16_t reg_data;
233
234 /* Send command to NVRAM. */
235 nv_cmd <<= 5;
236 for (cnt = 0; cnt < 11; cnt++) {
237 if (nv_cmd & BIT_31)
238 qla2x00_nv_write(ha, NVR_DATA_OUT);
239 else
240 qla2x00_nv_write(ha, 0);
241 nv_cmd <<= 1;
242 }
243
244 /* Read data from NVRAM. */
245 for (cnt = 0; cnt < 16; cnt++) {
246 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
248 NVRAM_DELAY();
249 data <<= 1;
250 reg_data = RD_REG_WORD(&reg->nvram);
251 if (reg_data & NVR_DATA_IN)
252 data |= BIT_0;
253 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
255 NVRAM_DELAY();
256 }
257
258 /* Deselect chip. */
259 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
261 NVRAM_DELAY();
262
263 return (data);
264 }
265
266 /**
267 * qla2x00_nv_write() - Clean NVRAM operations.
268 * @ha: HA context
269 */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274
275 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
277 NVRAM_DELAY();
278 }
279
280 /**
281 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282 * @ha: HA context
283 * @data: Serial interface selector
284 */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289
290 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
292 NVRAM_DELAY();
293 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 NVR_WRT_ENABLE);
295 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
296 NVRAM_DELAY();
297 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
299 NVRAM_DELAY();
300 }
301
302 /**
303 * qla2x00_clear_nvram_protection() -
304 * @ha: HA context
305 */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 int ret, stat;
310 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 uint32_t word, wait_cnt;
312 uint16_t wprot, wprot_old;
313
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
316
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
328
329 qla2x00_nv_deselect(ha);
330
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337
338 qla2x00_nv_deselect(ha);
339
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346
347 qla2x00_nv_deselect(ha);
348
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 "ready...\n", __func__,
357 ha->host_no));
358 break;
359 }
360 NVRAM_DELAY();
361 word = RD_REG_WORD(&reg->nvram);
362 } while ((word & NVR_DATA_IN) == 0);
363
364 if (wait_cnt)
365 ret = QLA_SUCCESS;
366 } else
367 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368
369 return ret;
370 }
371
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 uint32_t word, wait_cnt;
377
378 if (stat != QLA_SUCCESS)
379 return;
380
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
388
389 qla2x00_nv_deselect(ha);
390
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397
398 qla2x00_nv_deselect(ha);
399
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
406
407 qla2x00_nv_deselect(ha);
408
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 __func__, ha->host_no));
417 break;
418 }
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
422 }
423
424
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
428
429 #define OPTROM_BURST_SIZE 0x1000
430 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
431
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 int rval;
460 uint32_t cnt, data;
461 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462
463 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 /* Wait for READ cycle to complete. */
465 rval = QLA_SUCCESS;
466 for (cnt = 3000;
467 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 rval == QLA_SUCCESS; cnt--) {
469 if (cnt)
470 udelay(10);
471 else
472 rval = QLA_FUNCTION_TIMEOUT;
473 cond_resched();
474 }
475
476 /* TODO: What happens if we time out? */
477 data = 0xDEADDEAD;
478 if (rval == QLA_SUCCESS)
479 data = RD_REG_DWORD(&reg->flash_data);
480
481 return data;
482 }
483
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486 uint32_t dwords)
487 {
488 uint32_t i;
489
490 /* Dword reads to flash. */
491 for (i = 0; i < dwords; i++, faddr++)
492 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 flash_data_to_access_addr(faddr)));
494
495 return dwptr;
496 }
497
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 int rval;
502 uint32_t cnt;
503 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504
505 WRT_REG_DWORD(&reg->flash_data, data);
506 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
507 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 /* Wait for Write cycle to complete. */
509 rval = QLA_SUCCESS;
510 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 rval == QLA_SUCCESS; cnt--) {
512 if (cnt)
513 udelay(10);
514 else
515 rval = QLA_FUNCTION_TIMEOUT;
516 cond_resched();
517 }
518 return rval;
519 }
520
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523 uint8_t *flash_id)
524 {
525 uint32_t ids;
526
527 ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 *man_id = LSB(ids);
529 *flash_id = MSB(ids);
530
531 /* Check if man_id and flash_id are valid. */
532 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 /* Read information using 0x9f opcode
534 * Device ID, Mfg ID would be read in the format:
535 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 * Example: ATMEL 0x00 01 45 1F
537 * Extract MFG and Dev ID from last two bytes.
538 */
539 ids = qla24xx_read_flash_dword(ha,
540 flash_data_to_access_addr(0xd009f));
541 *man_id = LSB(ids);
542 *flash_id = MSB(ids);
543 }
544 }
545
546 static int
547 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
548 uint32_t dwords)
549 {
550 int ret;
551 uint32_t liter, miter;
552 uint32_t sec_mask, rest_addr, conf_addr;
553 uint32_t fdata, findex, cnt;
554 uint8_t man_id, flash_id;
555 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
556 dma_addr_t optrom_dma;
557 void *optrom = NULL;
558 uint32_t *s, *d;
559
560 ret = QLA_SUCCESS;
561
562 /* Prepare burst-capable write on supported ISPs. */
563 if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
564 dwords > OPTROM_BURST_DWORDS) {
565 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
566 &optrom_dma, GFP_KERNEL);
567 if (!optrom) {
568 qla_printk(KERN_DEBUG, ha,
569 "Unable to allocate memory for optrom burst write "
570 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
571 }
572 }
573
574 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
575 DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
576 ha->host_no, man_id, flash_id));
577
578 conf_addr = flash_conf_to_access_addr(0x03d8);
579 switch (man_id) {
580 case 0xbf: /* STT flash. */
581 if (flash_id == 0x8e) {
582 rest_addr = 0x3fff;
583 sec_mask = 0x7c000;
584 } else {
585 rest_addr = 0x1fff;
586 sec_mask = 0x7e000;
587 }
588 if (flash_id == 0x80)
589 conf_addr = flash_conf_to_access_addr(0x0352);
590 break;
591 case 0x13: /* ST M25P80. */
592 rest_addr = 0x3fff;
593 sec_mask = 0x7c000;
594 break;
595 case 0x1f: // Atmel 26DF081A
596 rest_addr = 0x3fff;
597 sec_mask = 0x7c000;
598 conf_addr = flash_conf_to_access_addr(0x0320);
599 break;
600 default:
601 /* Default to 64 kb sector size. */
602 rest_addr = 0x3fff;
603 sec_mask = 0x7c000;
604 break;
605 }
606
607 /* Enable flash write. */
608 WRT_REG_DWORD(&reg->ctrl_status,
609 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
610 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
611
612 /* Disable flash write-protection. */
613 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
614 /* Some flash parts need an additional zero-write to clear bits.*/
615 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
616
617 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
618 if (man_id == 0x1f) {
619 findex = faddr << 2;
620 fdata = findex & sec_mask;
621 } else {
622 findex = faddr;
623 fdata = (findex & sec_mask) << 2;
624 }
625
626 /* Are we at the beginning of a sector? */
627 if ((findex & rest_addr) == 0) {
628 /* Do sector unprotect at 4K boundry for Atmel part. */
629 if (man_id == 0x1f)
630 qla24xx_write_flash_dword(ha,
631 flash_conf_to_access_addr(0x0339),
632 (fdata & 0xff00) | ((fdata << 16) &
633 0xff0000) | ((fdata >> 16) & 0xff));
634 ret = qla24xx_write_flash_dword(ha, conf_addr,
635 (fdata & 0xff00) |((fdata << 16) &
636 0xff0000) | ((fdata >> 16) & 0xff));
637 if (ret != QLA_SUCCESS) {
638 DEBUG9(printk("%s(%ld) Unable to flash "
639 "sector: address=%x.\n", __func__,
640 ha->host_no, faddr));
641 break;
642 }
643 }
644
645 /* Go with burst-write. */
646 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
647 /* Copy data to DMA'ble buffer. */
648 for (miter = 0, s = optrom, d = dwptr;
649 miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
650 *s = cpu_to_le32(*d);
651
652 ret = qla2x00_load_ram(ha, optrom_dma,
653 flash_data_to_access_addr(faddr),
654 OPTROM_BURST_DWORDS);
655 if (ret != QLA_SUCCESS) {
656 qla_printk(KERN_WARNING, ha,
657 "Unable to burst-write optrom segment "
658 "(%x/%x/%llx).\n", ret,
659 flash_data_to_access_addr(faddr),
660 (unsigned long long)optrom_dma);
661 qla_printk(KERN_WARNING, ha,
662 "Reverting to slow-write.\n");
663
664 dma_free_coherent(&ha->pdev->dev,
665 OPTROM_BURST_SIZE, optrom, optrom_dma);
666 optrom = NULL;
667 } else {
668 liter += OPTROM_BURST_DWORDS - 1;
669 faddr += OPTROM_BURST_DWORDS - 1;
670 dwptr += OPTROM_BURST_DWORDS - 1;
671 continue;
672 }
673 }
674
675 ret = qla24xx_write_flash_dword(ha,
676 flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
677 if (ret != QLA_SUCCESS) {
678 DEBUG9(printk("%s(%ld) Unable to program flash "
679 "address=%x data=%x.\n", __func__,
680 ha->host_no, faddr, *dwptr));
681 break;
682 }
683
684 /* Do sector protect at 4K boundry for Atmel part. */
685 if (man_id == 0x1f &&
686 ((faddr & rest_addr) == rest_addr))
687 qla24xx_write_flash_dword(ha,
688 flash_conf_to_access_addr(0x0336),
689 (fdata & 0xff00) | ((fdata << 16) &
690 0xff0000) | ((fdata >> 16) & 0xff));
691 }
692
693 /* Enable flash write-protection and wait for completion. */
694 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
695 for (cnt = 300; cnt &&
696 qla24xx_read_flash_dword(ha,
697 flash_conf_to_access_addr(0x005)) & BIT_0;
698 cnt--) {
699 udelay(10);
700 }
701
702 /* Disable flash write. */
703 WRT_REG_DWORD(&reg->ctrl_status,
704 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
705 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
706
707 if (optrom)
708 dma_free_coherent(&ha->pdev->dev,
709 OPTROM_BURST_SIZE, optrom, optrom_dma);
710
711 return ret;
712 }
713
714 uint8_t *
715 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
716 uint32_t bytes)
717 {
718 uint32_t i;
719 uint16_t *wptr;
720
721 /* Word reads to NVRAM via registers. */
722 wptr = (uint16_t *)buf;
723 qla2x00_lock_nvram_access(ha);
724 for (i = 0; i < bytes >> 1; i++, naddr++)
725 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
726 naddr));
727 qla2x00_unlock_nvram_access(ha);
728
729 return buf;
730 }
731
732 uint8_t *
733 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
734 uint32_t bytes)
735 {
736 uint32_t i;
737 uint32_t *dwptr;
738
739 /* Dword reads to flash. */
740 dwptr = (uint32_t *)buf;
741 for (i = 0; i < bytes >> 2; i++, naddr++)
742 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
743 nvram_data_to_access_addr(naddr)));
744
745 return buf;
746 }
747
748 int
749 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
750 uint32_t bytes)
751 {
752 int ret, stat;
753 uint32_t i;
754 uint16_t *wptr;
755 unsigned long flags;
756
757 ret = QLA_SUCCESS;
758
759 spin_lock_irqsave(&ha->hardware_lock, flags);
760 qla2x00_lock_nvram_access(ha);
761
762 /* Disable NVRAM write-protection. */
763 stat = qla2x00_clear_nvram_protection(ha);
764
765 wptr = (uint16_t *)buf;
766 for (i = 0; i < bytes >> 1; i++, naddr++) {
767 qla2x00_write_nvram_word(ha, naddr,
768 cpu_to_le16(*wptr));
769 wptr++;
770 }
771
772 /* Enable NVRAM write-protection. */
773 qla2x00_set_nvram_protection(ha, stat);
774
775 qla2x00_unlock_nvram_access(ha);
776 spin_unlock_irqrestore(&ha->hardware_lock, flags);
777
778 return ret;
779 }
780
781 int
782 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
783 uint32_t bytes)
784 {
785 int ret;
786 uint32_t i;
787 uint32_t *dwptr;
788 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
789 unsigned long flags;
790
791 ret = QLA_SUCCESS;
792
793 spin_lock_irqsave(&ha->hardware_lock, flags);
794 /* Enable flash write. */
795 WRT_REG_DWORD(&reg->ctrl_status,
796 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
797 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
798
799 /* Disable NVRAM write-protection. */
800 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
801 0);
802 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
803 0);
804
805 /* Dword writes to flash. */
806 dwptr = (uint32_t *)buf;
807 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
808 ret = qla24xx_write_flash_dword(ha,
809 nvram_data_to_access_addr(naddr),
810 cpu_to_le32(*dwptr));
811 if (ret != QLA_SUCCESS) {
812 DEBUG9(printk("%s(%ld) Unable to program "
813 "nvram address=%x data=%x.\n", __func__,
814 ha->host_no, naddr, *dwptr));
815 break;
816 }
817 }
818
819 /* Enable NVRAM write-protection. */
820 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
821 0x8c);
822
823 /* Disable flash write. */
824 WRT_REG_DWORD(&reg->ctrl_status,
825 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
826 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
827 spin_unlock_irqrestore(&ha->hardware_lock, flags);
828
829 return ret;
830 }
831
832 uint8_t *
833 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
834 uint32_t bytes)
835 {
836 uint32_t i;
837 uint32_t *dwptr;
838
839 /* Dword reads to flash. */
840 dwptr = (uint32_t *)buf;
841 for (i = 0; i < bytes >> 2; i++, naddr++)
842 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
843 flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
844
845 return buf;
846 }
847
848 int
849 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
850 uint32_t bytes)
851 {
852 #define RMW_BUFFER_SIZE (64 * 1024)
853 uint8_t *dbuf;
854
855 dbuf = vmalloc(RMW_BUFFER_SIZE);
856 if (!dbuf)
857 return QLA_MEMORY_ALLOC_FAILED;
858 ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
859 RMW_BUFFER_SIZE);
860 memcpy(dbuf + (naddr << 2), buf, bytes);
861 ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
862 RMW_BUFFER_SIZE);
863 vfree(dbuf);
864
865 return QLA_SUCCESS;
866 }
867
868 static inline void
869 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
870 {
871 if (IS_QLA2322(ha)) {
872 /* Flip all colors. */
873 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
874 /* Turn off. */
875 ha->beacon_color_state = 0;
876 *pflags = GPIO_LED_ALL_OFF;
877 } else {
878 /* Turn on. */
879 ha->beacon_color_state = QLA_LED_ALL_ON;
880 *pflags = GPIO_LED_RGA_ON;
881 }
882 } else {
883 /* Flip green led only. */
884 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
885 /* Turn off. */
886 ha->beacon_color_state = 0;
887 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
888 } else {
889 /* Turn on. */
890 ha->beacon_color_state = QLA_LED_GRN_ON;
891 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
892 }
893 }
894 }
895
896 void
897 qla2x00_beacon_blink(struct scsi_qla_host *ha)
898 {
899 uint16_t gpio_enable;
900 uint16_t gpio_data;
901 uint16_t led_color = 0;
902 unsigned long flags;
903 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
904
905 if (ha->pio_address)
906 reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
907
908 spin_lock_irqsave(&ha->hardware_lock, flags);
909
910 /* Save the Original GPIOE. */
911 if (ha->pio_address) {
912 gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
913 gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
914 } else {
915 gpio_enable = RD_REG_WORD(&reg->gpioe);
916 gpio_data = RD_REG_WORD(&reg->gpiod);
917 }
918
919 /* Set the modified gpio_enable values */
920 gpio_enable |= GPIO_LED_MASK;
921
922 if (ha->pio_address) {
923 WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
924 } else {
925 WRT_REG_WORD(&reg->gpioe, gpio_enable);
926 RD_REG_WORD(&reg->gpioe);
927 }
928
929 qla2x00_flip_colors(ha, &led_color);
930
931 /* Clear out any previously set LED color. */
932 gpio_data &= ~GPIO_LED_MASK;
933
934 /* Set the new input LED color to GPIOD. */
935 gpio_data |= led_color;
936
937 /* Set the modified gpio_data values */
938 if (ha->pio_address) {
939 WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
940 } else {
941 WRT_REG_WORD(&reg->gpiod, gpio_data);
942 RD_REG_WORD(&reg->gpiod);
943 }
944
945 spin_unlock_irqrestore(&ha->hardware_lock, flags);
946 }
947
948 int
949 qla2x00_beacon_on(struct scsi_qla_host *ha)
950 {
951 uint16_t gpio_enable;
952 uint16_t gpio_data;
953 unsigned long flags;
954 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
955
956 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
957 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
958
959 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
960 qla_printk(KERN_WARNING, ha,
961 "Unable to update fw options (beacon on).\n");
962 return QLA_FUNCTION_FAILED;
963 }
964
965 if (ha->pio_address)
966 reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
967
968 /* Turn off LEDs. */
969 spin_lock_irqsave(&ha->hardware_lock, flags);
970 if (ha->pio_address) {
971 gpio_enable = RD_REG_WORD_PIO(&reg->gpioe);
972 gpio_data = RD_REG_WORD_PIO(&reg->gpiod);
973 } else {
974 gpio_enable = RD_REG_WORD(&reg->gpioe);
975 gpio_data = RD_REG_WORD(&reg->gpiod);
976 }
977 gpio_enable |= GPIO_LED_MASK;
978
979 /* Set the modified gpio_enable values. */
980 if (ha->pio_address) {
981 WRT_REG_WORD_PIO(&reg->gpioe, gpio_enable);
982 } else {
983 WRT_REG_WORD(&reg->gpioe, gpio_enable);
984 RD_REG_WORD(&reg->gpioe);
985 }
986
987 /* Clear out previously set LED colour. */
988 gpio_data &= ~GPIO_LED_MASK;
989 if (ha->pio_address) {
990 WRT_REG_WORD_PIO(&reg->gpiod, gpio_data);
991 } else {
992 WRT_REG_WORD(&reg->gpiod, gpio_data);
993 RD_REG_WORD(&reg->gpiod);
994 }
995 spin_unlock_irqrestore(&ha->hardware_lock, flags);
996
997 /*
998 * Let the per HBA timer kick off the blinking process based on
999 * the following flags. No need to do anything else now.
1000 */
1001 ha->beacon_blink_led = 1;
1002 ha->beacon_color_state = 0;
1003
1004 return QLA_SUCCESS;
1005 }
1006
1007 int
1008 qla2x00_beacon_off(struct scsi_qla_host *ha)
1009 {
1010 int rval = QLA_SUCCESS;
1011
1012 ha->beacon_blink_led = 0;
1013
1014 /* Set the on flag so when it gets flipped it will be off. */
1015 if (IS_QLA2322(ha))
1016 ha->beacon_color_state = QLA_LED_ALL_ON;
1017 else
1018 ha->beacon_color_state = QLA_LED_GRN_ON;
1019
1020 ha->isp_ops->beacon_blink(ha); /* This turns green LED off */
1021
1022 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1023 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1024
1025 rval = qla2x00_set_fw_options(ha, ha->fw_options);
1026 if (rval != QLA_SUCCESS)
1027 qla_printk(KERN_WARNING, ha,
1028 "Unable to update fw options (beacon off).\n");
1029 return rval;
1030 }
1031
1032
1033 static inline void
1034 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1035 {
1036 /* Flip all colors. */
1037 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1038 /* Turn off. */
1039 ha->beacon_color_state = 0;
1040 *pflags = 0;
1041 } else {
1042 /* Turn on. */
1043 ha->beacon_color_state = QLA_LED_ALL_ON;
1044 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1045 }
1046 }
1047
1048 void
1049 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1050 {
1051 uint16_t led_color = 0;
1052 uint32_t gpio_data;
1053 unsigned long flags;
1054 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1055
1056 /* Save the Original GPIOD. */
1057 spin_lock_irqsave(&ha->hardware_lock, flags);
1058 gpio_data = RD_REG_DWORD(&reg->gpiod);
1059
1060 /* Enable the gpio_data reg for update. */
1061 gpio_data |= GPDX_LED_UPDATE_MASK;
1062
1063 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1064 gpio_data = RD_REG_DWORD(&reg->gpiod);
1065
1066 /* Set the color bits. */
1067 qla24xx_flip_colors(ha, &led_color);
1068
1069 /* Clear out any previously set LED color. */
1070 gpio_data &= ~GPDX_LED_COLOR_MASK;
1071
1072 /* Set the new input LED color to GPIOD. */
1073 gpio_data |= led_color;
1074
1075 /* Set the modified gpio_data values. */
1076 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1077 gpio_data = RD_REG_DWORD(&reg->gpiod);
1078 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1079 }
1080
1081 int
1082 qla24xx_beacon_on(struct scsi_qla_host *ha)
1083 {
1084 uint32_t gpio_data;
1085 unsigned long flags;
1086 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1087
1088 if (ha->beacon_blink_led == 0) {
1089 /* Enable firmware for update */
1090 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1091
1092 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1093 return QLA_FUNCTION_FAILED;
1094
1095 if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1096 QLA_SUCCESS) {
1097 qla_printk(KERN_WARNING, ha,
1098 "Unable to update fw options (beacon on).\n");
1099 return QLA_FUNCTION_FAILED;
1100 }
1101
1102 spin_lock_irqsave(&ha->hardware_lock, flags);
1103 gpio_data = RD_REG_DWORD(&reg->gpiod);
1104
1105 /* Enable the gpio_data reg for update. */
1106 gpio_data |= GPDX_LED_UPDATE_MASK;
1107 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1108 RD_REG_DWORD(&reg->gpiod);
1109
1110 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1111 }
1112
1113 /* So all colors blink together. */
1114 ha->beacon_color_state = 0;
1115
1116 /* Let the per HBA timer kick off the blinking process. */
1117 ha->beacon_blink_led = 1;
1118
1119 return QLA_SUCCESS;
1120 }
1121
1122 int
1123 qla24xx_beacon_off(struct scsi_qla_host *ha)
1124 {
1125 uint32_t gpio_data;
1126 unsigned long flags;
1127 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1128
1129 ha->beacon_blink_led = 0;
1130 ha->beacon_color_state = QLA_LED_ALL_ON;
1131
1132 ha->isp_ops->beacon_blink(ha); /* Will flip to all off. */
1133
1134 /* Give control back to firmware. */
1135 spin_lock_irqsave(&ha->hardware_lock, flags);
1136 gpio_data = RD_REG_DWORD(&reg->gpiod);
1137
1138 /* Disable the gpio_data reg for update. */
1139 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1140 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1141 RD_REG_DWORD(&reg->gpiod);
1142 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1143
1144 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1145
1146 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1147 qla_printk(KERN_WARNING, ha,
1148 "Unable to update fw options (beacon off).\n");
1149 return QLA_FUNCTION_FAILED;
1150 }
1151
1152 if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1153 qla_printk(KERN_WARNING, ha,
1154 "Unable to get fw options (beacon off).\n");
1155 return QLA_FUNCTION_FAILED;
1156 }
1157
1158 return QLA_SUCCESS;
1159 }
1160
1161
1162 /*
1163 * Flash support routines
1164 */
1165
1166 /**
1167 * qla2x00_flash_enable() - Setup flash for reading and writing.
1168 * @ha: HA context
1169 */
1170 static void
1171 qla2x00_flash_enable(scsi_qla_host_t *ha)
1172 {
1173 uint16_t data;
1174 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1175
1176 data = RD_REG_WORD(&reg->ctrl_status);
1177 data |= CSR_FLASH_ENABLE;
1178 WRT_REG_WORD(&reg->ctrl_status, data);
1179 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1180 }
1181
1182 /**
1183 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1184 * @ha: HA context
1185 */
1186 static void
1187 qla2x00_flash_disable(scsi_qla_host_t *ha)
1188 {
1189 uint16_t data;
1190 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1191
1192 data = RD_REG_WORD(&reg->ctrl_status);
1193 data &= ~(CSR_FLASH_ENABLE);
1194 WRT_REG_WORD(&reg->ctrl_status, data);
1195 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1196 }
1197
1198 /**
1199 * qla2x00_read_flash_byte() - Reads a byte from flash
1200 * @ha: HA context
1201 * @addr: Address in flash to read
1202 *
1203 * A word is read from the chip, but, only the lower byte is valid.
1204 *
1205 * Returns the byte read from flash @addr.
1206 */
1207 static uint8_t
1208 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1209 {
1210 uint16_t data;
1211 uint16_t bank_select;
1212 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1213
1214 bank_select = RD_REG_WORD(&reg->ctrl_status);
1215
1216 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1217 /* Specify 64K address range: */
1218 /* clear out Module Select and Flash Address bits [19:16]. */
1219 bank_select &= ~0xf8;
1220 bank_select |= addr >> 12 & 0xf0;
1221 bank_select |= CSR_FLASH_64K_BANK;
1222 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1223 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1224
1225 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1226 data = RD_REG_WORD(&reg->flash_data);
1227
1228 return (uint8_t)data;
1229 }
1230
1231 /* Setup bit 16 of flash address. */
1232 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1233 bank_select |= CSR_FLASH_64K_BANK;
1234 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1235 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1236 } else if (((addr & BIT_16) == 0) &&
1237 (bank_select & CSR_FLASH_64K_BANK)) {
1238 bank_select &= ~(CSR_FLASH_64K_BANK);
1239 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1240 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1241 }
1242
1243 /* Always perform IO mapped accesses to the FLASH registers. */
1244 if (ha->pio_address) {
1245 uint16_t data2;
1246
1247 reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
1248 WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
1249 do {
1250 data = RD_REG_WORD_PIO(&reg->flash_data);
1251 barrier();
1252 cpu_relax();
1253 data2 = RD_REG_WORD_PIO(&reg->flash_data);
1254 } while (data != data2);
1255 } else {
1256 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1257 data = qla2x00_debounce_register(&reg->flash_data);
1258 }
1259
1260 return (uint8_t)data;
1261 }
1262
1263 /**
1264 * qla2x00_write_flash_byte() - Write a byte to flash
1265 * @ha: HA context
1266 * @addr: Address in flash to write
1267 * @data: Data to write
1268 */
1269 static void
1270 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1271 {
1272 uint16_t bank_select;
1273 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1274
1275 bank_select = RD_REG_WORD(&reg->ctrl_status);
1276 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1277 /* Specify 64K address range: */
1278 /* clear out Module Select and Flash Address bits [19:16]. */
1279 bank_select &= ~0xf8;
1280 bank_select |= addr >> 12 & 0xf0;
1281 bank_select |= CSR_FLASH_64K_BANK;
1282 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1283 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1284
1285 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1286 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1287 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1288 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1289
1290 return;
1291 }
1292
1293 /* Setup bit 16 of flash address. */
1294 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1295 bank_select |= CSR_FLASH_64K_BANK;
1296 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1297 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1298 } else if (((addr & BIT_16) == 0) &&
1299 (bank_select & CSR_FLASH_64K_BANK)) {
1300 bank_select &= ~(CSR_FLASH_64K_BANK);
1301 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1302 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1303 }
1304
1305 /* Always perform IO mapped accesses to the FLASH registers. */
1306 if (ha->pio_address) {
1307 reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
1308 WRT_REG_WORD_PIO(&reg->flash_address, (uint16_t)addr);
1309 WRT_REG_WORD_PIO(&reg->flash_data, (uint16_t)data);
1310 } else {
1311 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1312 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1313 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1314 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1315 }
1316 }
1317
1318 /**
1319 * qla2x00_poll_flash() - Polls flash for completion.
1320 * @ha: HA context
1321 * @addr: Address in flash to poll
1322 * @poll_data: Data to be polled
1323 * @man_id: Flash manufacturer ID
1324 * @flash_id: Flash ID
1325 *
1326 * This function polls the device until bit 7 of what is read matches data
1327 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1328 * out (a fatal error). The flash book recommeds reading bit 7 again after
1329 * reading bit 5 as a 1.
1330 *
1331 * Returns 0 on success, else non-zero.
1332 */
1333 static int
1334 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1335 uint8_t man_id, uint8_t flash_id)
1336 {
1337 int status;
1338 uint8_t flash_data;
1339 uint32_t cnt;
1340
1341 status = 1;
1342
1343 /* Wait for 30 seconds for command to finish. */
1344 poll_data &= BIT_7;
1345 for (cnt = 3000000; cnt; cnt--) {
1346 flash_data = qla2x00_read_flash_byte(ha, addr);
1347 if ((flash_data & BIT_7) == poll_data) {
1348 status = 0;
1349 break;
1350 }
1351
1352 if (man_id != 0x40 && man_id != 0xda) {
1353 if ((flash_data & BIT_5) && cnt > 2)
1354 cnt = 2;
1355 }
1356 udelay(10);
1357 barrier();
1358 cond_resched();
1359 }
1360 return status;
1361 }
1362
1363 /**
1364 * qla2x00_program_flash_address() - Programs a flash address
1365 * @ha: HA context
1366 * @addr: Address in flash to program
1367 * @data: Data to be written in flash
1368 * @man_id: Flash manufacturer ID
1369 * @flash_id: Flash ID
1370 *
1371 * Returns 0 on success, else non-zero.
1372 */
1373 static int
1374 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1375 uint8_t man_id, uint8_t flash_id)
1376 {
1377 /* Write Program Command Sequence. */
1378 if (IS_OEM_001(ha)) {
1379 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1380 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1381 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1382 qla2x00_write_flash_byte(ha, addr, data);
1383 } else {
1384 if (man_id == 0xda && flash_id == 0xc1) {
1385 qla2x00_write_flash_byte(ha, addr, data);
1386 if (addr & 0x7e)
1387 return 0;
1388 } else {
1389 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1390 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1391 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1392 qla2x00_write_flash_byte(ha, addr, data);
1393 }
1394 }
1395
1396 udelay(150);
1397
1398 /* Wait for write to complete. */
1399 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1400 }
1401
1402 /**
1403 * qla2x00_erase_flash() - Erase the flash.
1404 * @ha: HA context
1405 * @man_id: Flash manufacturer ID
1406 * @flash_id: Flash ID
1407 *
1408 * Returns 0 on success, else non-zero.
1409 */
1410 static int
1411 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1412 {
1413 /* Individual Sector Erase Command Sequence */
1414 if (IS_OEM_001(ha)) {
1415 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1416 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1417 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1418 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1419 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1420 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1421 } else {
1422 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1423 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1424 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1425 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1426 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1427 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1428 }
1429
1430 udelay(150);
1431
1432 /* Wait for erase to complete. */
1433 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1434 }
1435
1436 /**
1437 * qla2x00_erase_flash_sector() - Erase a flash sector.
1438 * @ha: HA context
1439 * @addr: Flash sector to erase
1440 * @sec_mask: Sector address mask
1441 * @man_id: Flash manufacturer ID
1442 * @flash_id: Flash ID
1443 *
1444 * Returns 0 on success, else non-zero.
1445 */
1446 static int
1447 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1448 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1449 {
1450 /* Individual Sector Erase Command Sequence */
1451 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1452 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1453 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1454 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1455 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1456 if (man_id == 0x1f && flash_id == 0x13)
1457 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1458 else
1459 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1460
1461 udelay(150);
1462
1463 /* Wait for erase to complete. */
1464 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1465 }
1466
1467 /**
1468 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1469 * @man_id: Flash manufacturer ID
1470 * @flash_id: Flash ID
1471 */
1472 static void
1473 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1474 uint8_t *flash_id)
1475 {
1476 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1477 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1478 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1479 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1480 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1481 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1482 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1483 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1484 }
1485
1486 static void
1487 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1488 uint32_t length)
1489 {
1490 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1491 uint32_t midpoint, ilength;
1492 uint8_t data;
1493
1494 midpoint = length / 2;
1495
1496 WRT_REG_WORD(&reg->nvram, 0);
1497 RD_REG_WORD(&reg->nvram);
1498 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1499 if (ilength == midpoint) {
1500 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1501 RD_REG_WORD(&reg->nvram);
1502 }
1503 data = qla2x00_read_flash_byte(ha, saddr);
1504 if (saddr % 100)
1505 udelay(10);
1506 *tmp_buf = data;
1507 cond_resched();
1508 }
1509 }
1510
1511 static inline void
1512 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1513 {
1514 int cnt;
1515 unsigned long flags;
1516 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1517
1518 /* Suspend HBA. */
1519 scsi_block_requests(ha->host);
1520 ha->isp_ops->disable_intrs(ha);
1521 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1522
1523 /* Pause RISC. */
1524 spin_lock_irqsave(&ha->hardware_lock, flags);
1525 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1526 RD_REG_WORD(&reg->hccr);
1527 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1528 for (cnt = 0; cnt < 30000; cnt++) {
1529 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1530 break;
1531 udelay(100);
1532 }
1533 } else {
1534 udelay(10);
1535 }
1536 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1537 }
1538
1539 static inline void
1540 qla2x00_resume_hba(struct scsi_qla_host *ha)
1541 {
1542 /* Resume HBA. */
1543 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1544 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1545 qla2xxx_wake_dpc(ha);
1546 qla2x00_wait_for_hba_online(ha);
1547 scsi_unblock_requests(ha->host);
1548 }
1549
1550 uint8_t *
1551 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1552 uint32_t offset, uint32_t length)
1553 {
1554 uint32_t addr, midpoint;
1555 uint8_t *data;
1556 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1557
1558 /* Suspend HBA. */
1559 qla2x00_suspend_hba(ha);
1560
1561 /* Go with read. */
1562 midpoint = ha->optrom_size / 2;
1563
1564 qla2x00_flash_enable(ha);
1565 WRT_REG_WORD(&reg->nvram, 0);
1566 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1567 for (addr = offset, data = buf; addr < length; addr++, data++) {
1568 if (addr == midpoint) {
1569 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1570 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1571 }
1572
1573 *data = qla2x00_read_flash_byte(ha, addr);
1574 }
1575 qla2x00_flash_disable(ha);
1576
1577 /* Resume HBA. */
1578 qla2x00_resume_hba(ha);
1579
1580 return buf;
1581 }
1582
1583 int
1584 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1585 uint32_t offset, uint32_t length)
1586 {
1587
1588 int rval;
1589 uint8_t man_id, flash_id, sec_number, data;
1590 uint16_t wd;
1591 uint32_t addr, liter, sec_mask, rest_addr;
1592 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1593
1594 /* Suspend HBA. */
1595 qla2x00_suspend_hba(ha);
1596
1597 rval = QLA_SUCCESS;
1598 sec_number = 0;
1599
1600 /* Reset ISP chip. */
1601 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1602 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1603
1604 /* Go with write. */
1605 qla2x00_flash_enable(ha);
1606 do { /* Loop once to provide quick error exit */
1607 /* Structure of flash memory based on manufacturer */
1608 if (IS_OEM_001(ha)) {
1609 /* OEM variant with special flash part. */
1610 man_id = flash_id = 0;
1611 rest_addr = 0xffff;
1612 sec_mask = 0x10000;
1613 goto update_flash;
1614 }
1615 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1616 switch (man_id) {
1617 case 0x20: /* ST flash. */
1618 if (flash_id == 0xd2 || flash_id == 0xe3) {
1619 /*
1620 * ST m29w008at part - 64kb sector size with
1621 * 32kb,8kb,8kb,16kb sectors at memory address
1622 * 0xf0000.
1623 */
1624 rest_addr = 0xffff;
1625 sec_mask = 0x10000;
1626 break;
1627 }
1628 /*
1629 * ST m29w010b part - 16kb sector size
1630 * Default to 16kb sectors
1631 */
1632 rest_addr = 0x3fff;
1633 sec_mask = 0x1c000;
1634 break;
1635 case 0x40: /* Mostel flash. */
1636 /* Mostel v29c51001 part - 512 byte sector size. */
1637 rest_addr = 0x1ff;
1638 sec_mask = 0x1fe00;
1639 break;
1640 case 0xbf: /* SST flash. */
1641 /* SST39sf10 part - 4kb sector size. */
1642 rest_addr = 0xfff;
1643 sec_mask = 0x1f000;
1644 break;
1645 case 0xda: /* Winbond flash. */
1646 /* Winbond W29EE011 part - 256 byte sector size. */
1647 rest_addr = 0x7f;
1648 sec_mask = 0x1ff80;
1649 break;
1650 case 0xc2: /* Macronix flash. */
1651 /* 64k sector size. */
1652 if (flash_id == 0x38 || flash_id == 0x4f) {
1653 rest_addr = 0xffff;
1654 sec_mask = 0x10000;
1655 break;
1656 }
1657 /* Fall through... */
1658
1659 case 0x1f: /* Atmel flash. */
1660 /* 512k sector size. */
1661 if (flash_id == 0x13) {
1662 rest_addr = 0x7fffffff;
1663 sec_mask = 0x80000000;
1664 break;
1665 }
1666 /* Fall through... */
1667
1668 case 0x01: /* AMD flash. */
1669 if (flash_id == 0x38 || flash_id == 0x40 ||
1670 flash_id == 0x4f) {
1671 /* Am29LV081 part - 64kb sector size. */
1672 /* Am29LV002BT part - 64kb sector size. */
1673 rest_addr = 0xffff;
1674 sec_mask = 0x10000;
1675 break;
1676 } else if (flash_id == 0x3e) {
1677 /*
1678 * Am29LV008b part - 64kb sector size with
1679 * 32kb,8kb,8kb,16kb sector at memory address
1680 * h0xf0000.
1681 */
1682 rest_addr = 0xffff;
1683 sec_mask = 0x10000;
1684 break;
1685 } else if (flash_id == 0x20 || flash_id == 0x6e) {
1686 /*
1687 * Am29LV010 part or AM29f010 - 16kb sector
1688 * size.
1689 */
1690 rest_addr = 0x3fff;
1691 sec_mask = 0x1c000;
1692 break;
1693 } else if (flash_id == 0x6d) {
1694 /* Am29LV001 part - 8kb sector size. */
1695 rest_addr = 0x1fff;
1696 sec_mask = 0x1e000;
1697 break;
1698 }
1699 default:
1700 /* Default to 16 kb sector size. */
1701 rest_addr = 0x3fff;
1702 sec_mask = 0x1c000;
1703 break;
1704 }
1705
1706 update_flash:
1707 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1708 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
1709 rval = QLA_FUNCTION_FAILED;
1710 break;
1711 }
1712 }
1713
1714 for (addr = offset, liter = 0; liter < length; liter++,
1715 addr++) {
1716 data = buf[liter];
1717 /* Are we at the beginning of a sector? */
1718 if ((addr & rest_addr) == 0) {
1719 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1720 if (addr >= 0x10000UL) {
1721 if (((addr >> 12) & 0xf0) &&
1722 ((man_id == 0x01 &&
1723 flash_id == 0x3e) ||
1724 (man_id == 0x20 &&
1725 flash_id == 0xd2))) {
1726 sec_number++;
1727 if (sec_number == 1) {
1728 rest_addr =
1729 0x7fff;
1730 sec_mask =
1731 0x18000;
1732 } else if (
1733 sec_number == 2 ||
1734 sec_number == 3) {
1735 rest_addr =
1736 0x1fff;
1737 sec_mask =
1738 0x1e000;
1739 } else if (
1740 sec_number == 4) {
1741 rest_addr =
1742 0x3fff;
1743 sec_mask =
1744 0x1c000;
1745 }
1746 }
1747 }
1748 } else if (addr == ha->optrom_size / 2) {
1749 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1750 RD_REG_WORD(&reg->nvram);
1751 }
1752
1753 if (flash_id == 0xda && man_id == 0xc1) {
1754 qla2x00_write_flash_byte(ha, 0x5555,
1755 0xaa);
1756 qla2x00_write_flash_byte(ha, 0x2aaa,
1757 0x55);
1758 qla2x00_write_flash_byte(ha, 0x5555,
1759 0xa0);
1760 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
1761 /* Then erase it */
1762 if (qla2x00_erase_flash_sector(ha,
1763 addr, sec_mask, man_id,
1764 flash_id)) {
1765 rval = QLA_FUNCTION_FAILED;
1766 break;
1767 }
1768 if (man_id == 0x01 && flash_id == 0x6d)
1769 sec_number++;
1770 }
1771 }
1772
1773 if (man_id == 0x01 && flash_id == 0x6d) {
1774 if (sec_number == 1 &&
1775 addr == (rest_addr - 1)) {
1776 rest_addr = 0x0fff;
1777 sec_mask = 0x1f000;
1778 } else if (sec_number == 3 && (addr & 0x7ffe)) {
1779 rest_addr = 0x3fff;
1780 sec_mask = 0x1c000;
1781 }
1782 }
1783
1784 if (qla2x00_program_flash_address(ha, addr, data,
1785 man_id, flash_id)) {
1786 rval = QLA_FUNCTION_FAILED;
1787 break;
1788 }
1789 cond_resched();
1790 }
1791 } while (0);
1792 qla2x00_flash_disable(ha);
1793
1794 /* Resume HBA. */
1795 qla2x00_resume_hba(ha);
1796
1797 return rval;
1798 }
1799
1800 uint8_t *
1801 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1802 uint32_t offset, uint32_t length)
1803 {
1804 /* Suspend HBA. */
1805 scsi_block_requests(ha->host);
1806 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1807
1808 /* Go with read. */
1809 qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
1810
1811 /* Resume HBA. */
1812 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1813 scsi_unblock_requests(ha->host);
1814
1815 return buf;
1816 }
1817
1818 int
1819 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1820 uint32_t offset, uint32_t length)
1821 {
1822 int rval;
1823
1824 /* Suspend HBA. */
1825 scsi_block_requests(ha->host);
1826 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1827
1828 /* Go with write. */
1829 rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
1830 length >> 2);
1831
1832 /* Resume HBA -- RISC reset needed. */
1833 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1834 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1835 qla2xxx_wake_dpc(ha);
1836 qla2x00_wait_for_hba_online(ha);
1837 scsi_unblock_requests(ha->host);
1838
1839 return rval;
1840 }
1841
1842 uint8_t *
1843 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1844 uint32_t offset, uint32_t length)
1845 {
1846 int rval;
1847 dma_addr_t optrom_dma;
1848 void *optrom;
1849 uint8_t *pbuf;
1850 uint32_t faddr, left, burst;
1851
1852 if (offset & 0xfff)
1853 goto slow_read;
1854 if (length < OPTROM_BURST_SIZE)
1855 goto slow_read;
1856
1857 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1858 &optrom_dma, GFP_KERNEL);
1859 if (!optrom) {
1860 qla_printk(KERN_DEBUG, ha,
1861 "Unable to allocate memory for optrom burst read "
1862 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1863
1864 goto slow_read;
1865 }
1866
1867 pbuf = buf;
1868 faddr = offset >> 2;
1869 left = length >> 2;
1870 burst = OPTROM_BURST_DWORDS;
1871 while (left != 0) {
1872 if (burst > left)
1873 burst = left;
1874
1875 rval = qla2x00_dump_ram(ha, optrom_dma,
1876 flash_data_to_access_addr(faddr), burst);
1877 if (rval) {
1878 qla_printk(KERN_WARNING, ha,
1879 "Unable to burst-read optrom segment "
1880 "(%x/%x/%llx).\n", rval,
1881 flash_data_to_access_addr(faddr),
1882 (unsigned long long)optrom_dma);
1883 qla_printk(KERN_WARNING, ha,
1884 "Reverting to slow-read.\n");
1885
1886 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1887 optrom, optrom_dma);
1888 goto slow_read;
1889 }
1890
1891 memcpy(pbuf, optrom, burst * 4);
1892
1893 left -= burst;
1894 faddr += burst;
1895 pbuf += burst * 4;
1896 }
1897
1898 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
1899 optrom_dma);
1900
1901 return buf;
1902
1903 slow_read:
1904 return qla24xx_read_optrom_data(ha, buf, offset, length);
1905 }
1906
1907 /**
1908 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
1909 * @ha: HA context
1910 * @pcids: Pointer to the FCODE PCI data structure
1911 *
1912 * The process of retrieving the FCODE version information is at best
1913 * described as interesting.
1914 *
1915 * Within the first 100h bytes of the image an ASCII string is present
1916 * which contains several pieces of information including the FCODE
1917 * version. Unfortunately it seems the only reliable way to retrieve
1918 * the version is by scanning for another sentinel within the string,
1919 * the FCODE build date:
1920 *
1921 * ... 2.00.02 10/17/02 ...
1922 *
1923 * Returns QLA_SUCCESS on successful retrieval of version.
1924 */
1925 static void
1926 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
1927 {
1928 int ret = QLA_FUNCTION_FAILED;
1929 uint32_t istart, iend, iter, vend;
1930 uint8_t do_next, rbyte, *vbyte;
1931
1932 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1933
1934 /* Skip the PCI data structure. */
1935 istart = pcids +
1936 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
1937 qla2x00_read_flash_byte(ha, pcids + 0x0A));
1938 iend = istart + 0x100;
1939 do {
1940 /* Scan for the sentinel date string...eeewww. */
1941 do_next = 0;
1942 iter = istart;
1943 while ((iter < iend) && !do_next) {
1944 iter++;
1945 if (qla2x00_read_flash_byte(ha, iter) == '/') {
1946 if (qla2x00_read_flash_byte(ha, iter + 2) ==
1947 '/')
1948 do_next++;
1949 else if (qla2x00_read_flash_byte(ha,
1950 iter + 3) == '/')
1951 do_next++;
1952 }
1953 }
1954 if (!do_next)
1955 break;
1956
1957 /* Backtrack to previous ' ' (space). */
1958 do_next = 0;
1959 while ((iter > istart) && !do_next) {
1960 iter--;
1961 if (qla2x00_read_flash_byte(ha, iter) == ' ')
1962 do_next++;
1963 }
1964 if (!do_next)
1965 break;
1966
1967 /*
1968 * Mark end of version tag, and find previous ' ' (space) or
1969 * string length (recent FCODE images -- major hack ahead!!!).
1970 */
1971 vend = iter - 1;
1972 do_next = 0;
1973 while ((iter > istart) && !do_next) {
1974 iter--;
1975 rbyte = qla2x00_read_flash_byte(ha, iter);
1976 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
1977 do_next++;
1978 }
1979 if (!do_next)
1980 break;
1981
1982 /* Mark beginning of version tag, and copy data. */
1983 iter++;
1984 if ((vend - iter) &&
1985 ((vend - iter) < sizeof(ha->fcode_revision))) {
1986 vbyte = ha->fcode_revision;
1987 while (iter <= vend) {
1988 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
1989 iter++;
1990 }
1991 ret = QLA_SUCCESS;
1992 }
1993 } while (0);
1994
1995 if (ret != QLA_SUCCESS)
1996 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1997 }
1998
1999 int
2000 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2001 {
2002 int ret = QLA_SUCCESS;
2003 uint8_t code_type, last_image;
2004 uint32_t pcihdr, pcids;
2005 uint8_t *dbyte;
2006 uint16_t *dcode;
2007
2008 if (!ha->pio_address || !mbuf)
2009 return QLA_FUNCTION_FAILED;
2010
2011 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2012 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2013 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2014 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2015
2016 qla2x00_flash_enable(ha);
2017
2018 /* Begin with first PCI expansion ROM header. */
2019 pcihdr = 0;
2020 last_image = 1;
2021 do {
2022 /* Verify PCI expansion ROM header. */
2023 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2024 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2025 /* No signature */
2026 DEBUG2(printk("scsi(%ld): No matching ROM "
2027 "signature.\n", ha->host_no));
2028 ret = QLA_FUNCTION_FAILED;
2029 break;
2030 }
2031
2032 /* Locate PCI data structure. */
2033 pcids = pcihdr +
2034 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2035 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2036
2037 /* Validate signature of PCI data structure. */
2038 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2039 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2040 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2041 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2042 /* Incorrect header. */
2043 DEBUG2(printk("%s(): PCI data struct not found "
2044 "pcir_adr=%x.\n", __func__, pcids));
2045 ret = QLA_FUNCTION_FAILED;
2046 break;
2047 }
2048
2049 /* Read version */
2050 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2051 switch (code_type) {
2052 case ROM_CODE_TYPE_BIOS:
2053 /* Intel x86, PC-AT compatible. */
2054 ha->bios_revision[0] =
2055 qla2x00_read_flash_byte(ha, pcids + 0x12);
2056 ha->bios_revision[1] =
2057 qla2x00_read_flash_byte(ha, pcids + 0x13);
2058 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2059 ha->bios_revision[1], ha->bios_revision[0]));
2060 break;
2061 case ROM_CODE_TYPE_FCODE:
2062 /* Open Firmware standard for PCI (FCode). */
2063 /* Eeeewww... */
2064 qla2x00_get_fcode_version(ha, pcids);
2065 break;
2066 case ROM_CODE_TYPE_EFI:
2067 /* Extensible Firmware Interface (EFI). */
2068 ha->efi_revision[0] =
2069 qla2x00_read_flash_byte(ha, pcids + 0x12);
2070 ha->efi_revision[1] =
2071 qla2x00_read_flash_byte(ha, pcids + 0x13);
2072 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2073 ha->efi_revision[1], ha->efi_revision[0]));
2074 break;
2075 default:
2076 DEBUG2(printk("%s(): Unrecognized code type %x at "
2077 "pcids %x.\n", __func__, code_type, pcids));
2078 break;
2079 }
2080
2081 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2082
2083 /* Locate next PCI expansion ROM. */
2084 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2085 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2086 } while (!last_image);
2087
2088 if (IS_QLA2322(ha)) {
2089 /* Read firmware image information. */
2090 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2091 dbyte = mbuf;
2092 memset(dbyte, 0, 8);
2093 dcode = (uint16_t *)dbyte;
2094
2095 qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
2096 8);
2097 DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2098 __func__, ha->host_no));
2099 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2100
2101 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2102 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2103 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2104 dcode[3] == 0)) {
2105 DEBUG2(printk("%s(): Unrecognized fw revision at "
2106 "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
2107 } else {
2108 /* values are in big endian */
2109 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2110 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2111 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2112 }
2113 }
2114
2115 qla2x00_flash_disable(ha);
2116
2117 return ret;
2118 }
2119
2120 int
2121 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2122 {
2123 int ret = QLA_SUCCESS;
2124 uint32_t pcihdr, pcids;
2125 uint32_t *dcode;
2126 uint8_t *bcode;
2127 uint8_t code_type, last_image;
2128 int i;
2129
2130 if (!mbuf)
2131 return QLA_FUNCTION_FAILED;
2132
2133 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2134 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2135 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2136 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2137
2138 dcode = mbuf;
2139
2140 /* Begin with first PCI expansion ROM header. */
2141 pcihdr = 0;
2142 last_image = 1;
2143 do {
2144 /* Verify PCI expansion ROM header. */
2145 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2146 bcode = mbuf + (pcihdr % 4);
2147 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2148 /* No signature */
2149 DEBUG2(printk("scsi(%ld): No matching ROM "
2150 "signature.\n", ha->host_no));
2151 ret = QLA_FUNCTION_FAILED;
2152 break;
2153 }
2154
2155 /* Locate PCI data structure. */
2156 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2157
2158 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2159 bcode = mbuf + (pcihdr % 4);
2160
2161 /* Validate signature of PCI data structure. */
2162 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2163 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2164 /* Incorrect header. */
2165 DEBUG2(printk("%s(): PCI data struct not found "
2166 "pcir_adr=%x.\n", __func__, pcids));
2167 ret = QLA_FUNCTION_FAILED;
2168 break;
2169 }
2170
2171 /* Read version */
2172 code_type = bcode[0x14];
2173 switch (code_type) {
2174 case ROM_CODE_TYPE_BIOS:
2175 /* Intel x86, PC-AT compatible. */
2176 ha->bios_revision[0] = bcode[0x12];
2177 ha->bios_revision[1] = bcode[0x13];
2178 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2179 ha->bios_revision[1], ha->bios_revision[0]));
2180 break;
2181 case ROM_CODE_TYPE_FCODE:
2182 /* Open Firmware standard for PCI (FCode). */
2183 ha->fcode_revision[0] = bcode[0x12];
2184 ha->fcode_revision[1] = bcode[0x13];
2185 DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2186 ha->fcode_revision[1], ha->fcode_revision[0]));
2187 break;
2188 case ROM_CODE_TYPE_EFI:
2189 /* Extensible Firmware Interface (EFI). */
2190 ha->efi_revision[0] = bcode[0x12];
2191 ha->efi_revision[1] = bcode[0x13];
2192 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2193 ha->efi_revision[1], ha->efi_revision[0]));
2194 break;
2195 default:
2196 DEBUG2(printk("%s(): Unrecognized code type %x at "
2197 "pcids %x.\n", __func__, code_type, pcids));
2198 break;
2199 }
2200
2201 last_image = bcode[0x15] & BIT_7;
2202
2203 /* Locate next PCI expansion ROM. */
2204 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2205 } while (!last_image);
2206
2207 /* Read firmware image information. */
2208 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2209 dcode = mbuf;
2210
2211 qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
2212 for (i = 0; i < 4; i++)
2213 dcode[i] = be32_to_cpu(dcode[i]);
2214
2215 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2216 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2217 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2218 dcode[3] == 0)) {
2219 DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2220 __func__, FA_RISC_CODE_ADDR));
2221 } else {
2222 ha->fw_revision[0] = dcode[0];
2223 ha->fw_revision[1] = dcode[1];
2224 ha->fw_revision[2] = dcode[2];
2225 ha->fw_revision[3] = dcode[3];
2226 }
2227
2228 return ret;
2229 }