Merge branches 'x86-alternatives-for-linus', 'x86-fpu-for-linus', 'x86-hwmon-for...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / ncr53c8xx.c
1 /******************************************************************************
2 ** Device driver for the PCI-SCSI NCR538XX controller family.
3 **
4 ** Copyright (C) 1994 Wolfgang Stanglmeier
5 **
6 ** This program is free software; you can redistribute it and/or modify
7 ** it under the terms of the GNU General Public License as published by
8 ** the Free Software Foundation; either version 2 of the License, or
9 ** (at your option) any later version.
10 **
11 ** This program is distributed in the hope that it will be useful,
12 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ** GNU General Public License for more details.
15 **
16 ** You should have received a copy of the GNU General Public License
17 ** along with this program; if not, write to the Free Software
18 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 **
20 **-----------------------------------------------------------------------------
21 **
22 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23 ** and is currently maintained by
24 **
25 ** Gerard Roudier <groudier@free.fr>
26 **
27 ** Being given that this driver originates from the FreeBSD version, and
28 ** in order to keep synergy on both, any suggested enhancements and corrections
29 ** received on Linux are automatically a potential candidate for the FreeBSD
30 ** version.
31 **
32 ** The original driver has been written for 386bsd and FreeBSD by
33 ** Wolfgang Stanglmeier <wolf@cologne.de>
34 ** Stefan Esser <se@mi.Uni-Koeln.de>
35 **
36 ** And has been ported to NetBSD by
37 ** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
38 **
39 **-----------------------------------------------------------------------------
40 **
41 ** Brief history
42 **
43 ** December 10 1995 by Gerard Roudier:
44 ** Initial port to Linux.
45 **
46 ** June 23 1996 by Gerard Roudier:
47 ** Support for 64 bits architectures (Alpha).
48 **
49 ** November 30 1996 by Gerard Roudier:
50 ** Support for Fast-20 scsi.
51 ** Support for large DMA fifo and 128 dwords bursting.
52 **
53 ** February 27 1997 by Gerard Roudier:
54 ** Support for Fast-40 scsi.
55 ** Support for on-Board RAM.
56 **
57 ** May 3 1997 by Gerard Roudier:
58 ** Full support for scsi scripts instructions pre-fetching.
59 **
60 ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61 ** Support for NvRAM detection and reading.
62 **
63 ** August 18 1997 by Cort <cort@cs.nmt.edu>:
64 ** Support for Power/PC (Big Endian).
65 **
66 ** June 20 1998 by Gerard Roudier
67 ** Support for up to 64 tags per lun.
68 ** O(1) everywhere (C and SCRIPTS) for normal cases.
69 ** Low PCI traffic for command handling when on-chip RAM is present.
70 ** Aggressive SCSI SCRIPTS optimizations.
71 **
72 ** 2005 by Matthew Wilcox and James Bottomley
73 ** PCI-ectomy. This driver now supports only the 720 chip (see the
74 ** NCR_Q720 and zalon drivers for the bus probe logic).
75 **
76 *******************************************************************************
77 */
78
79 /*
80 ** Supported SCSI-II features:
81 ** Synchronous negotiation
82 ** Wide negotiation (depends on the NCR Chip)
83 ** Enable disconnection
84 ** Tagged command queuing
85 ** Parity checking
86 ** Etc...
87 **
88 ** Supported NCR/SYMBIOS chips:
89 ** 53C720 (Wide, Fast SCSI-2, intfly problems)
90 */
91
92 /* Name and version of the driver */
93 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
94
95 #define SCSI_NCR_DEBUG_FLAGS (0)
96
97 #include <linux/blkdev.h>
98 #include <linux/delay.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/errno.h>
101 #include <linux/gfp.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/ioport.h>
105 #include <linux/mm.h>
106 #include <linux/module.h>
107 #include <linux/sched.h>
108 #include <linux/signal.h>
109 #include <linux/spinlock.h>
110 #include <linux/stat.h>
111 #include <linux/string.h>
112 #include <linux/time.h>
113 #include <linux/timer.h>
114 #include <linux/types.h>
115
116 #include <asm/dma.h>
117 #include <asm/io.h>
118 #include <asm/system.h>
119
120 #include <scsi/scsi.h>
121 #include <scsi/scsi_cmnd.h>
122 #include <scsi/scsi_dbg.h>
123 #include <scsi/scsi_device.h>
124 #include <scsi/scsi_tcq.h>
125 #include <scsi/scsi_transport.h>
126 #include <scsi/scsi_transport_spi.h>
127
128 #include "ncr53c8xx.h"
129
130 #define NAME53C8XX "ncr53c8xx"
131
132 /*==========================================================
133 **
134 ** Debugging tags
135 **
136 **==========================================================
137 */
138
139 #define DEBUG_ALLOC (0x0001)
140 #define DEBUG_PHASE (0x0002)
141 #define DEBUG_QUEUE (0x0008)
142 #define DEBUG_RESULT (0x0010)
143 #define DEBUG_POINTER (0x0020)
144 #define DEBUG_SCRIPT (0x0040)
145 #define DEBUG_TINY (0x0080)
146 #define DEBUG_TIMING (0x0100)
147 #define DEBUG_NEGO (0x0200)
148 #define DEBUG_TAGS (0x0400)
149 #define DEBUG_SCATTER (0x0800)
150 #define DEBUG_IC (0x1000)
151
152 /*
153 ** Enable/Disable debug messages.
154 ** Can be changed at runtime too.
155 */
156
157 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
158 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
159 #define DEBUG_FLAGS ncr_debug
160 #else
161 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
162 #endif
163
164 static inline struct list_head *ncr_list_pop(struct list_head *head)
165 {
166 if (!list_empty(head)) {
167 struct list_head *elem = head->next;
168
169 list_del(elem);
170 return elem;
171 }
172
173 return NULL;
174 }
175
176 /*==========================================================
177 **
178 ** Simple power of two buddy-like allocator.
179 **
180 ** This simple code is not intended to be fast, but to
181 ** provide power of 2 aligned memory allocations.
182 ** Since the SCRIPTS processor only supplies 8 bit
183 ** arithmetic, this allocator allows simple and fast
184 ** address calculations from the SCRIPTS code.
185 ** In addition, cache line alignment is guaranteed for
186 ** power of 2 cache line size.
187 ** Enhanced in linux-2.3.44 to provide a memory pool
188 ** per pcidev to support dynamic dma mapping. (I would
189 ** have preferred a real bus abstraction, btw).
190 **
191 **==========================================================
192 */
193
194 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
195 #if PAGE_SIZE >= 8192
196 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
197 #else
198 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
199 #endif
200 #define MEMO_FREE_UNUSED /* Free unused pages immediately */
201 #define MEMO_WARN 1
202 #define MEMO_GFP_FLAGS GFP_ATOMIC
203 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
204 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
205 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
206
207 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
208 typedef struct device *m_bush_t; /* Something that addresses DMAable */
209
210 typedef struct m_link { /* Link between free memory chunks */
211 struct m_link *next;
212 } m_link_s;
213
214 typedef struct m_vtob { /* Virtual to Bus address translation */
215 struct m_vtob *next;
216 m_addr_t vaddr;
217 m_addr_t baddr;
218 } m_vtob_s;
219 #define VTOB_HASH_SHIFT 5
220 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
221 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
222 #define VTOB_HASH_CODE(m) \
223 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
224
225 typedef struct m_pool { /* Memory pool of a given kind */
226 m_bush_t bush;
227 m_addr_t (*getp)(struct m_pool *);
228 void (*freep)(struct m_pool *, m_addr_t);
229 int nump;
230 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
231 struct m_pool *next;
232 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
233 } m_pool_s;
234
235 static void *___m_alloc(m_pool_s *mp, int size)
236 {
237 int i = 0;
238 int s = (1 << MEMO_SHIFT);
239 int j;
240 m_addr_t a;
241 m_link_s *h = mp->h;
242
243 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
244 return NULL;
245
246 while (size > s) {
247 s <<= 1;
248 ++i;
249 }
250
251 j = i;
252 while (!h[j].next) {
253 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
254 h[j].next = (m_link_s *)mp->getp(mp);
255 if (h[j].next)
256 h[j].next->next = NULL;
257 break;
258 }
259 ++j;
260 s <<= 1;
261 }
262 a = (m_addr_t) h[j].next;
263 if (a) {
264 h[j].next = h[j].next->next;
265 while (j > i) {
266 j -= 1;
267 s >>= 1;
268 h[j].next = (m_link_s *) (a+s);
269 h[j].next->next = NULL;
270 }
271 }
272 #ifdef DEBUG
273 printk("___m_alloc(%d) = %p\n", size, (void *) a);
274 #endif
275 return (void *) a;
276 }
277
278 static void ___m_free(m_pool_s *mp, void *ptr, int size)
279 {
280 int i = 0;
281 int s = (1 << MEMO_SHIFT);
282 m_link_s *q;
283 m_addr_t a, b;
284 m_link_s *h = mp->h;
285
286 #ifdef DEBUG
287 printk("___m_free(%p, %d)\n", ptr, size);
288 #endif
289
290 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
291 return;
292
293 while (size > s) {
294 s <<= 1;
295 ++i;
296 }
297
298 a = (m_addr_t) ptr;
299
300 while (1) {
301 #ifdef MEMO_FREE_UNUSED
302 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
303 mp->freep(mp, a);
304 break;
305 }
306 #endif
307 b = a ^ s;
308 q = &h[i];
309 while (q->next && q->next != (m_link_s *) b) {
310 q = q->next;
311 }
312 if (!q->next) {
313 ((m_link_s *) a)->next = h[i].next;
314 h[i].next = (m_link_s *) a;
315 break;
316 }
317 q->next = q->next->next;
318 a = a & b;
319 s <<= 1;
320 ++i;
321 }
322 }
323
324 static DEFINE_SPINLOCK(ncr53c8xx_lock);
325
326 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
327 {
328 void *p;
329
330 p = ___m_alloc(mp, size);
331
332 if (DEBUG_FLAGS & DEBUG_ALLOC)
333 printk ("new %-10s[%4d] @%p.\n", name, size, p);
334
335 if (p)
336 memset(p, 0, size);
337 else if (uflags & MEMO_WARN)
338 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
339
340 return p;
341 }
342
343 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
344
345 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
346 {
347 if (DEBUG_FLAGS & DEBUG_ALLOC)
348 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
349
350 ___m_free(mp, ptr, size);
351
352 }
353
354 /*
355 * With pci bus iommu support, we use a default pool of unmapped memory
356 * for memory we donnot need to DMA from/to and one pool per pcidev for
357 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
358 */
359
360 static m_addr_t ___mp0_getp(m_pool_s *mp)
361 {
362 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
363 if (m)
364 ++mp->nump;
365 return m;
366 }
367
368 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
369 {
370 free_pages(m, MEMO_PAGE_ORDER);
371 --mp->nump;
372 }
373
374 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
375
376 /*
377 * DMAable pools.
378 */
379
380 /*
381 * With pci bus iommu support, we maintain one pool per pcidev and a
382 * hashed reverse table for virtual to bus physical address translations.
383 */
384 static m_addr_t ___dma_getp(m_pool_s *mp)
385 {
386 m_addr_t vp;
387 m_vtob_s *vbp;
388
389 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
390 if (vbp) {
391 dma_addr_t daddr;
392 vp = (m_addr_t) dma_alloc_coherent(mp->bush,
393 PAGE_SIZE<<MEMO_PAGE_ORDER,
394 &daddr, GFP_ATOMIC);
395 if (vp) {
396 int hc = VTOB_HASH_CODE(vp);
397 vbp->vaddr = vp;
398 vbp->baddr = daddr;
399 vbp->next = mp->vtob[hc];
400 mp->vtob[hc] = vbp;
401 ++mp->nump;
402 return vp;
403 }
404 }
405 if (vbp)
406 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
407 return 0;
408 }
409
410 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
411 {
412 m_vtob_s **vbpp, *vbp;
413 int hc = VTOB_HASH_CODE(m);
414
415 vbpp = &mp->vtob[hc];
416 while (*vbpp && (*vbpp)->vaddr != m)
417 vbpp = &(*vbpp)->next;
418 if (*vbpp) {
419 vbp = *vbpp;
420 *vbpp = (*vbpp)->next;
421 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
422 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
423 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
424 --mp->nump;
425 }
426 }
427
428 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
429 {
430 m_pool_s *mp;
431 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
432 return mp;
433 }
434
435 static m_pool_s *___cre_dma_pool(m_bush_t bush)
436 {
437 m_pool_s *mp;
438 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
439 if (mp) {
440 memset(mp, 0, sizeof(*mp));
441 mp->bush = bush;
442 mp->getp = ___dma_getp;
443 mp->freep = ___dma_freep;
444 mp->next = mp0.next;
445 mp0.next = mp;
446 }
447 return mp;
448 }
449
450 static void ___del_dma_pool(m_pool_s *p)
451 {
452 struct m_pool **pp = &mp0.next;
453
454 while (*pp && *pp != p)
455 pp = &(*pp)->next;
456 if (*pp) {
457 *pp = (*pp)->next;
458 __m_free(&mp0, p, sizeof(*p), "MPOOL");
459 }
460 }
461
462 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
463 {
464 u_long flags;
465 struct m_pool *mp;
466 void *m = NULL;
467
468 spin_lock_irqsave(&ncr53c8xx_lock, flags);
469 mp = ___get_dma_pool(bush);
470 if (!mp)
471 mp = ___cre_dma_pool(bush);
472 if (mp)
473 m = __m_calloc(mp, size, name);
474 if (mp && !mp->nump)
475 ___del_dma_pool(mp);
476 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
477
478 return m;
479 }
480
481 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
482 {
483 u_long flags;
484 struct m_pool *mp;
485
486 spin_lock_irqsave(&ncr53c8xx_lock, flags);
487 mp = ___get_dma_pool(bush);
488 if (mp)
489 __m_free(mp, m, size, name);
490 if (mp && !mp->nump)
491 ___del_dma_pool(mp);
492 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
493 }
494
495 static m_addr_t __vtobus(m_bush_t bush, void *m)
496 {
497 u_long flags;
498 m_pool_s *mp;
499 int hc = VTOB_HASH_CODE(m);
500 m_vtob_s *vp = NULL;
501 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
502
503 spin_lock_irqsave(&ncr53c8xx_lock, flags);
504 mp = ___get_dma_pool(bush);
505 if (mp) {
506 vp = mp->vtob[hc];
507 while (vp && (m_addr_t) vp->vaddr != a)
508 vp = vp->next;
509 }
510 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
511 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
512 }
513
514 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
515 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
516 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
517 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
518 #define _vtobus(np, p) __vtobus(np->dev, p)
519 #define vtobus(p) _vtobus(np, p)
520
521 /*
522 * Deal with DMA mapping/unmapping.
523 */
524
525 /* To keep track of the dma mapping (sg/single) that has been set */
526 #define __data_mapped SCp.phase
527 #define __data_mapping SCp.have_data_in
528
529 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
530 {
531 switch(cmd->__data_mapped) {
532 case 2:
533 scsi_dma_unmap(cmd);
534 break;
535 }
536 cmd->__data_mapped = 0;
537 }
538
539 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
540 {
541 int use_sg;
542
543 use_sg = scsi_dma_map(cmd);
544 if (!use_sg)
545 return 0;
546
547 cmd->__data_mapped = 2;
548 cmd->__data_mapping = use_sg;
549
550 return use_sg;
551 }
552
553 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
554 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
555
556 /*==========================================================
557 **
558 ** Driver setup.
559 **
560 ** This structure is initialized from linux config
561 ** options. It can be overridden at boot-up by the boot
562 ** command line.
563 **
564 **==========================================================
565 */
566 static struct ncr_driver_setup
567 driver_setup = SCSI_NCR_DRIVER_SETUP;
568
569 #ifndef MODULE
570 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
571 static struct ncr_driver_setup
572 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
573 #endif
574 #endif /* !MODULE */
575
576 #define initverbose (driver_setup.verbose)
577 #define bootverbose (np->verbose)
578
579
580 /*===================================================================
581 **
582 ** Driver setup from the boot command line
583 **
584 **===================================================================
585 */
586
587 #ifdef MODULE
588 #define ARG_SEP ' '
589 #else
590 #define ARG_SEP ','
591 #endif
592
593 #define OPT_TAGS 1
594 #define OPT_MASTER_PARITY 2
595 #define OPT_SCSI_PARITY 3
596 #define OPT_DISCONNECTION 4
597 #define OPT_SPECIAL_FEATURES 5
598 #define OPT_UNUSED_1 6
599 #define OPT_FORCE_SYNC_NEGO 7
600 #define OPT_REVERSE_PROBE 8
601 #define OPT_DEFAULT_SYNC 9
602 #define OPT_VERBOSE 10
603 #define OPT_DEBUG 11
604 #define OPT_BURST_MAX 12
605 #define OPT_LED_PIN 13
606 #define OPT_MAX_WIDE 14
607 #define OPT_SETTLE_DELAY 15
608 #define OPT_DIFF_SUPPORT 16
609 #define OPT_IRQM 17
610 #define OPT_PCI_FIX_UP 18
611 #define OPT_BUS_CHECK 19
612 #define OPT_OPTIMIZE 20
613 #define OPT_RECOVERY 21
614 #define OPT_SAFE_SETUP 22
615 #define OPT_USE_NVRAM 23
616 #define OPT_EXCLUDE 24
617 #define OPT_HOST_ID 25
618
619 #ifdef SCSI_NCR_IARB_SUPPORT
620 #define OPT_IARB 26
621 #endif
622
623 #ifdef MODULE
624 #define ARG_SEP ' '
625 #else
626 #define ARG_SEP ','
627 #endif
628
629 #ifndef MODULE
630 static char setup_token[] __initdata =
631 "tags:" "mpar:"
632 "spar:" "disc:"
633 "specf:" "ultra:"
634 "fsn:" "revprob:"
635 "sync:" "verb:"
636 "debug:" "burst:"
637 "led:" "wide:"
638 "settle:" "diff:"
639 "irqm:" "pcifix:"
640 "buschk:" "optim:"
641 "recovery:"
642 "safe:" "nvram:"
643 "excl:" "hostid:"
644 #ifdef SCSI_NCR_IARB_SUPPORT
645 "iarb:"
646 #endif
647 ; /* DONNOT REMOVE THIS ';' */
648
649 static int __init get_setup_token(char *p)
650 {
651 char *cur = setup_token;
652 char *pc;
653 int i = 0;
654
655 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
656 ++pc;
657 ++i;
658 if (!strncmp(p, cur, pc - cur))
659 return i;
660 cur = pc;
661 }
662 return 0;
663 }
664
665 static int __init sym53c8xx__setup(char *str)
666 {
667 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
668 char *cur = str;
669 char *pc, *pv;
670 int i, val, c;
671 int xi = 0;
672
673 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
674 char *pe;
675
676 val = 0;
677 pv = pc;
678 c = *++pv;
679
680 if (c == 'n')
681 val = 0;
682 else if (c == 'y')
683 val = 1;
684 else
685 val = (int) simple_strtoul(pv, &pe, 0);
686
687 switch (get_setup_token(cur)) {
688 case OPT_TAGS:
689 driver_setup.default_tags = val;
690 if (pe && *pe == '/') {
691 i = 0;
692 while (*pe && *pe != ARG_SEP &&
693 i < sizeof(driver_setup.tag_ctrl)-1) {
694 driver_setup.tag_ctrl[i++] = *pe++;
695 }
696 driver_setup.tag_ctrl[i] = '\0';
697 }
698 break;
699 case OPT_MASTER_PARITY:
700 driver_setup.master_parity = val;
701 break;
702 case OPT_SCSI_PARITY:
703 driver_setup.scsi_parity = val;
704 break;
705 case OPT_DISCONNECTION:
706 driver_setup.disconnection = val;
707 break;
708 case OPT_SPECIAL_FEATURES:
709 driver_setup.special_features = val;
710 break;
711 case OPT_FORCE_SYNC_NEGO:
712 driver_setup.force_sync_nego = val;
713 break;
714 case OPT_REVERSE_PROBE:
715 driver_setup.reverse_probe = val;
716 break;
717 case OPT_DEFAULT_SYNC:
718 driver_setup.default_sync = val;
719 break;
720 case OPT_VERBOSE:
721 driver_setup.verbose = val;
722 break;
723 case OPT_DEBUG:
724 driver_setup.debug = val;
725 break;
726 case OPT_BURST_MAX:
727 driver_setup.burst_max = val;
728 break;
729 case OPT_LED_PIN:
730 driver_setup.led_pin = val;
731 break;
732 case OPT_MAX_WIDE:
733 driver_setup.max_wide = val? 1:0;
734 break;
735 case OPT_SETTLE_DELAY:
736 driver_setup.settle_delay = val;
737 break;
738 case OPT_DIFF_SUPPORT:
739 driver_setup.diff_support = val;
740 break;
741 case OPT_IRQM:
742 driver_setup.irqm = val;
743 break;
744 case OPT_PCI_FIX_UP:
745 driver_setup.pci_fix_up = val;
746 break;
747 case OPT_BUS_CHECK:
748 driver_setup.bus_check = val;
749 break;
750 case OPT_OPTIMIZE:
751 driver_setup.optimize = val;
752 break;
753 case OPT_RECOVERY:
754 driver_setup.recovery = val;
755 break;
756 case OPT_USE_NVRAM:
757 driver_setup.use_nvram = val;
758 break;
759 case OPT_SAFE_SETUP:
760 memcpy(&driver_setup, &driver_safe_setup,
761 sizeof(driver_setup));
762 break;
763 case OPT_EXCLUDE:
764 if (xi < SCSI_NCR_MAX_EXCLUDES)
765 driver_setup.excludes[xi++] = val;
766 break;
767 case OPT_HOST_ID:
768 driver_setup.host_id = val;
769 break;
770 #ifdef SCSI_NCR_IARB_SUPPORT
771 case OPT_IARB:
772 driver_setup.iarb = val;
773 break;
774 #endif
775 default:
776 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
777 break;
778 }
779
780 if ((cur = strchr(cur, ARG_SEP)) != NULL)
781 ++cur;
782 }
783 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
784 return 1;
785 }
786 #endif /* !MODULE */
787
788 /*===================================================================
789 **
790 ** Get device queue depth from boot command line.
791 **
792 **===================================================================
793 */
794 #define DEF_DEPTH (driver_setup.default_tags)
795 #define ALL_TARGETS -2
796 #define NO_TARGET -1
797 #define ALL_LUNS -2
798 #define NO_LUN -1
799
800 static int device_queue_depth(int unit, int target, int lun)
801 {
802 int c, h, t, u, v;
803 char *p = driver_setup.tag_ctrl;
804 char *ep;
805
806 h = -1;
807 t = NO_TARGET;
808 u = NO_LUN;
809 while ((c = *p++) != 0) {
810 v = simple_strtoul(p, &ep, 0);
811 switch(c) {
812 case '/':
813 ++h;
814 t = ALL_TARGETS;
815 u = ALL_LUNS;
816 break;
817 case 't':
818 if (t != target)
819 t = (target == v) ? v : NO_TARGET;
820 u = ALL_LUNS;
821 break;
822 case 'u':
823 if (u != lun)
824 u = (lun == v) ? v : NO_LUN;
825 break;
826 case 'q':
827 if (h == unit &&
828 (t == ALL_TARGETS || t == target) &&
829 (u == ALL_LUNS || u == lun))
830 return v;
831 break;
832 case '-':
833 t = ALL_TARGETS;
834 u = ALL_LUNS;
835 break;
836 default:
837 break;
838 }
839 p = ep;
840 }
841 return DEF_DEPTH;
842 }
843
844
845 /*==========================================================
846 **
847 ** The CCB done queue uses an array of CCB virtual
848 ** addresses. Empty entries are flagged using the bogus
849 ** virtual address 0xffffffff.
850 **
851 ** Since PCI ensures that only aligned DWORDs are accessed
852 ** atomically, 64 bit little-endian architecture requires
853 ** to test the high order DWORD of the entry to determine
854 ** if it is empty or valid.
855 **
856 ** BTW, I will make things differently as soon as I will
857 ** have a better idea, but this is simple and should work.
858 **
859 **==========================================================
860 */
861
862 #define SCSI_NCR_CCB_DONE_SUPPORT
863 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
864
865 #define MAX_DONE 24
866 #define CCB_DONE_EMPTY 0xffffffffUL
867
868 /* All 32 bit architectures */
869 #if BITS_PER_LONG == 32
870 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
871
872 /* All > 32 bit (64 bit) architectures regardless endian-ness */
873 #else
874 #define CCB_DONE_VALID(cp) \
875 ((((u_long) cp) & 0xffffffff00000000ul) && \
876 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
877 #endif
878
879 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
880
881 /*==========================================================
882 **
883 ** Configuration and Debugging
884 **
885 **==========================================================
886 */
887
888 /*
889 ** SCSI address of this device.
890 ** The boot routines should have set it.
891 ** If not, use this.
892 */
893
894 #ifndef SCSI_NCR_MYADDR
895 #define SCSI_NCR_MYADDR (7)
896 #endif
897
898 /*
899 ** The maximum number of tags per logic unit.
900 ** Used only for disk devices that support tags.
901 */
902
903 #ifndef SCSI_NCR_MAX_TAGS
904 #define SCSI_NCR_MAX_TAGS (8)
905 #endif
906
907 /*
908 ** TAGS are actually limited to 64 tags/lun.
909 ** We need to deal with power of 2, for alignment constraints.
910 */
911 #if SCSI_NCR_MAX_TAGS > 64
912 #define MAX_TAGS (64)
913 #else
914 #define MAX_TAGS SCSI_NCR_MAX_TAGS
915 #endif
916
917 #define NO_TAG (255)
918
919 /*
920 ** Choose appropriate type for tag bitmap.
921 */
922 #if MAX_TAGS > 32
923 typedef u64 tagmap_t;
924 #else
925 typedef u32 tagmap_t;
926 #endif
927
928 /*
929 ** Number of targets supported by the driver.
930 ** n permits target numbers 0..n-1.
931 ** Default is 16, meaning targets #0..#15.
932 ** #7 .. is myself.
933 */
934
935 #ifdef SCSI_NCR_MAX_TARGET
936 #define MAX_TARGET (SCSI_NCR_MAX_TARGET)
937 #else
938 #define MAX_TARGET (16)
939 #endif
940
941 /*
942 ** Number of logic units supported by the driver.
943 ** n enables logic unit numbers 0..n-1.
944 ** The common SCSI devices require only
945 ** one lun, so take 1 as the default.
946 */
947
948 #ifdef SCSI_NCR_MAX_LUN
949 #define MAX_LUN SCSI_NCR_MAX_LUN
950 #else
951 #define MAX_LUN (1)
952 #endif
953
954 /*
955 ** Asynchronous pre-scaler (ns). Shall be 40
956 */
957
958 #ifndef SCSI_NCR_MIN_ASYNC
959 #define SCSI_NCR_MIN_ASYNC (40)
960 #endif
961
962 /*
963 ** The maximum number of jobs scheduled for starting.
964 ** There should be one slot per target, and one slot
965 ** for each tag of each target in use.
966 ** The calculation below is actually quite silly ...
967 */
968
969 #ifdef SCSI_NCR_CAN_QUEUE
970 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
971 #else
972 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
973 #endif
974
975 /*
976 ** We limit the max number of pending IO to 250.
977 ** since we donnot want to allocate more than 1
978 ** PAGE for 'scripth'.
979 */
980 #if MAX_START > 250
981 #undef MAX_START
982 #define MAX_START 250
983 #endif
984
985 /*
986 ** The maximum number of segments a transfer is split into.
987 ** We support up to 127 segments for both read and write.
988 ** The data scripts are broken into 2 sub-scripts.
989 ** 80 (MAX_SCATTERL) segments are moved from a sub-script
990 ** in on-chip RAM. This makes data transfers shorter than
991 ** 80k (assuming 1k fs) as fast as possible.
992 */
993
994 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
995
996 #if (MAX_SCATTER > 80)
997 #define MAX_SCATTERL 80
998 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
999 #else
1000 #define MAX_SCATTERL (MAX_SCATTER-1)
1001 #define MAX_SCATTERH 1
1002 #endif
1003
1004 /*
1005 ** other
1006 */
1007
1008 #define NCR_SNOOP_TIMEOUT (1000000)
1009
1010 /*
1011 ** Other definitions
1012 */
1013
1014 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1015
1016 #define initverbose (driver_setup.verbose)
1017 #define bootverbose (np->verbose)
1018
1019 /*==========================================================
1020 **
1021 ** Command control block states.
1022 **
1023 **==========================================================
1024 */
1025
1026 #define HS_IDLE (0)
1027 #define HS_BUSY (1)
1028 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1029 #define HS_DISCONNECT (3) /* Disconnected by target */
1030
1031 #define HS_DONEMASK (0x80)
1032 #define HS_COMPLETE (4|HS_DONEMASK)
1033 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1034 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1035 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1036 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1037 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1038 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1039
1040 /*
1041 ** Invalid host status values used by the SCRIPTS processor
1042 ** when the nexus is not fully identified.
1043 ** Shall never appear in a CCB.
1044 */
1045
1046 #define HS_INVALMASK (0x40)
1047 #define HS_SELECTING (0|HS_INVALMASK)
1048 #define HS_IN_RESELECT (1|HS_INVALMASK)
1049 #define HS_STARTING (2|HS_INVALMASK)
1050
1051 /*
1052 ** Flags set by the SCRIPT processor for commands
1053 ** that have been skipped.
1054 */
1055 #define HS_SKIPMASK (0x20)
1056
1057 /*==========================================================
1058 **
1059 ** Software Interrupt Codes
1060 **
1061 **==========================================================
1062 */
1063
1064 #define SIR_BAD_STATUS (1)
1065 #define SIR_XXXXXXXXXX (2)
1066 #define SIR_NEGO_SYNC (3)
1067 #define SIR_NEGO_WIDE (4)
1068 #define SIR_NEGO_FAILED (5)
1069 #define SIR_NEGO_PROTO (6)
1070 #define SIR_REJECT_RECEIVED (7)
1071 #define SIR_REJECT_SENT (8)
1072 #define SIR_IGN_RESIDUE (9)
1073 #define SIR_MISSING_SAVE (10)
1074 #define SIR_RESEL_NO_MSG_IN (11)
1075 #define SIR_RESEL_NO_IDENTIFY (12)
1076 #define SIR_RESEL_BAD_LUN (13)
1077 #define SIR_RESEL_BAD_TARGET (14)
1078 #define SIR_RESEL_BAD_I_T_L (15)
1079 #define SIR_RESEL_BAD_I_T_L_Q (16)
1080 #define SIR_DONE_OVERFLOW (17)
1081 #define SIR_INTFLY (18)
1082 #define SIR_MAX (18)
1083
1084 /*==========================================================
1085 **
1086 ** Extended error codes.
1087 ** xerr_status field of struct ccb.
1088 **
1089 **==========================================================
1090 */
1091
1092 #define XE_OK (0)
1093 #define XE_EXTRA_DATA (1) /* unexpected data phase */
1094 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1095
1096 /*==========================================================
1097 **
1098 ** Negotiation status.
1099 ** nego_status field of struct ccb.
1100 **
1101 **==========================================================
1102 */
1103
1104 #define NS_NOCHANGE (0)
1105 #define NS_SYNC (1)
1106 #define NS_WIDE (2)
1107 #define NS_PPR (4)
1108
1109 /*==========================================================
1110 **
1111 ** Misc.
1112 **
1113 **==========================================================
1114 */
1115
1116 #define CCB_MAGIC (0xf2691ad2)
1117
1118 /*==========================================================
1119 **
1120 ** Declaration of structs.
1121 **
1122 **==========================================================
1123 */
1124
1125 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1126
1127 struct tcb;
1128 struct lcb;
1129 struct ccb;
1130 struct ncb;
1131 struct script;
1132
1133 struct link {
1134 ncrcmd l_cmd;
1135 ncrcmd l_paddr;
1136 };
1137
1138 struct usrcmd {
1139 u_long target;
1140 u_long lun;
1141 u_long data;
1142 u_long cmd;
1143 };
1144
1145 #define UC_SETSYNC 10
1146 #define UC_SETTAGS 11
1147 #define UC_SETDEBUG 12
1148 #define UC_SETORDER 13
1149 #define UC_SETWIDE 14
1150 #define UC_SETFLAG 15
1151 #define UC_SETVERBOSE 17
1152
1153 #define UF_TRACE (0x01)
1154 #define UF_NODISC (0x02)
1155 #define UF_NOSCAN (0x04)
1156
1157 /*========================================================================
1158 **
1159 ** Declaration of structs: target control block
1160 **
1161 **========================================================================
1162 */
1163 struct tcb {
1164 /*----------------------------------------------------------------
1165 ** During reselection the ncr jumps to this point with SFBR
1166 ** set to the encoded target number with bit 7 set.
1167 ** if it's not this target, jump to the next.
1168 **
1169 ** JUMP IF (SFBR != #target#), @(next tcb)
1170 **----------------------------------------------------------------
1171 */
1172 struct link jump_tcb;
1173
1174 /*----------------------------------------------------------------
1175 ** Load the actual values for the sxfer and the scntl3
1176 ** register (sync/wide mode).
1177 **
1178 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1179 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1180 **----------------------------------------------------------------
1181 */
1182 ncrcmd getscr[6];
1183
1184 /*----------------------------------------------------------------
1185 ** Get the IDENTIFY message and load the LUN to SFBR.
1186 **
1187 ** CALL, <RESEL_LUN>
1188 **----------------------------------------------------------------
1189 */
1190 struct link call_lun;
1191
1192 /*----------------------------------------------------------------
1193 ** Now look for the right lun.
1194 **
1195 ** For i = 0 to 3
1196 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1197 **
1198 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1199 ** It is kind of hashcoding.
1200 **----------------------------------------------------------------
1201 */
1202 struct link jump_lcb[4]; /* JUMPs for reselection */
1203 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1204
1205 /*----------------------------------------------------------------
1206 ** Pointer to the ccb used for negotiation.
1207 ** Prevent from starting a negotiation for all queued commands
1208 ** when tagged command queuing is enabled.
1209 **----------------------------------------------------------------
1210 */
1211 struct ccb * nego_cp;
1212
1213 /*----------------------------------------------------------------
1214 ** statistical data
1215 **----------------------------------------------------------------
1216 */
1217 u_long transfers;
1218 u_long bytes;
1219
1220 /*----------------------------------------------------------------
1221 ** negotiation of wide and synch transfer and device quirks.
1222 **----------------------------------------------------------------
1223 */
1224 #ifdef SCSI_NCR_BIG_ENDIAN
1225 /*0*/ u16 period;
1226 /*2*/ u_char sval;
1227 /*3*/ u_char minsync;
1228 /*0*/ u_char wval;
1229 /*1*/ u_char widedone;
1230 /*2*/ u_char quirks;
1231 /*3*/ u_char maxoffs;
1232 #else
1233 /*0*/ u_char minsync;
1234 /*1*/ u_char sval;
1235 /*2*/ u16 period;
1236 /*0*/ u_char maxoffs;
1237 /*1*/ u_char quirks;
1238 /*2*/ u_char widedone;
1239 /*3*/ u_char wval;
1240 #endif
1241
1242 /* User settable limits and options. */
1243 u_char usrsync;
1244 u_char usrwide;
1245 u_char usrtags;
1246 u_char usrflag;
1247 struct scsi_target *starget;
1248 };
1249
1250 /*========================================================================
1251 **
1252 ** Declaration of structs: lun control block
1253 **
1254 **========================================================================
1255 */
1256 struct lcb {
1257 /*----------------------------------------------------------------
1258 ** During reselection the ncr jumps to this point
1259 ** with SFBR set to the "Identify" message.
1260 ** if it's not this lun, jump to the next.
1261 **
1262 ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1263 **
1264 ** It is this lun. Load TEMP with the nexus jumps table
1265 ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1266 **
1267 ** SCR_COPY (4), p_jump_ccb, TEMP,
1268 ** SCR_JUMP, <RESEL_TAG>
1269 **----------------------------------------------------------------
1270 */
1271 struct link jump_lcb;
1272 ncrcmd load_jump_ccb[3];
1273 struct link jump_tag;
1274 ncrcmd p_jump_ccb; /* Jump table bus address */
1275
1276 /*----------------------------------------------------------------
1277 ** Jump table used by the script processor to directly jump
1278 ** to the CCB corresponding to the reselected nexus.
1279 ** Address is allocated on 256 bytes boundary in order to
1280 ** allow 8 bit calculation of the tag jump entry for up to
1281 ** 64 possible tags.
1282 **----------------------------------------------------------------
1283 */
1284 u32 jump_ccb_0; /* Default table if no tags */
1285 u32 *jump_ccb; /* Virtual address */
1286
1287 /*----------------------------------------------------------------
1288 ** CCB queue management.
1289 **----------------------------------------------------------------
1290 */
1291 struct list_head free_ccbq; /* Queue of available CCBs */
1292 struct list_head busy_ccbq; /* Queue of busy CCBs */
1293 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1294 struct list_head skip_ccbq; /* Queue of skipped CCBs */
1295 u_char actccbs; /* Number of allocated CCBs */
1296 u_char busyccbs; /* CCBs busy for this lun */
1297 u_char queuedccbs; /* CCBs queued to the controller*/
1298 u_char queuedepth; /* Queue depth for this lun */
1299 u_char scdev_depth; /* SCSI device queue depth */
1300 u_char maxnxs; /* Max possible nexuses */
1301
1302 /*----------------------------------------------------------------
1303 ** Control of tagged command queuing.
1304 ** Tags allocation is performed using a circular buffer.
1305 ** This avoids using a loop for tag allocation.
1306 **----------------------------------------------------------------
1307 */
1308 u_char ia_tag; /* Allocation index */
1309 u_char if_tag; /* Freeing index */
1310 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1311 u_char usetags; /* Command queuing is active */
1312 u_char maxtags; /* Max nr of tags asked by user */
1313 u_char numtags; /* Current number of tags */
1314
1315 /*----------------------------------------------------------------
1316 ** QUEUE FULL control and ORDERED tag control.
1317 **----------------------------------------------------------------
1318 */
1319 /*----------------------------------------------------------------
1320 ** QUEUE FULL and ORDERED tag control.
1321 **----------------------------------------------------------------
1322 */
1323 u16 num_good; /* Nr of GOOD since QUEUE FULL */
1324 tagmap_t tags_umap; /* Used tags bitmap */
1325 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1326 u_long tags_stime; /* Last time we set smap=umap */
1327 struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1328 };
1329
1330 /*========================================================================
1331 **
1332 ** Declaration of structs: the launch script.
1333 **
1334 **========================================================================
1335 **
1336 ** It is part of the CCB and is called by the scripts processor to
1337 ** start or restart the data structure (nexus).
1338 ** This 6 DWORDs mini script makes use of prefetching.
1339 **
1340 **------------------------------------------------------------------------
1341 */
1342 struct launch {
1343 /*----------------------------------------------------------------
1344 ** SCR_COPY(4), @(p_phys), @(dsa register)
1345 ** SCR_JUMP, @(scheduler_point)
1346 **----------------------------------------------------------------
1347 */
1348 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1349 struct link schedule; /* Jump to scheduler point */
1350 ncrcmd p_phys; /* 'phys' header bus address */
1351 };
1352
1353 /*========================================================================
1354 **
1355 ** Declaration of structs: global HEADER.
1356 **
1357 **========================================================================
1358 **
1359 ** This substructure is copied from the ccb to a global address after
1360 ** selection (or reselection) and copied back before disconnect.
1361 **
1362 ** These fields are accessible to the script processor.
1363 **
1364 **------------------------------------------------------------------------
1365 */
1366
1367 struct head {
1368 /*----------------------------------------------------------------
1369 ** Saved data pointer.
1370 ** Points to the position in the script responsible for the
1371 ** actual transfer transfer of data.
1372 ** It's written after reception of a SAVE_DATA_POINTER message.
1373 ** The goalpointer points after the last transfer command.
1374 **----------------------------------------------------------------
1375 */
1376 u32 savep;
1377 u32 lastp;
1378 u32 goalp;
1379
1380 /*----------------------------------------------------------------
1381 ** Alternate data pointer.
1382 ** They are copied back to savep/lastp/goalp by the SCRIPTS
1383 ** when the direction is unknown and the device claims data out.
1384 **----------------------------------------------------------------
1385 */
1386 u32 wlastp;
1387 u32 wgoalp;
1388
1389 /*----------------------------------------------------------------
1390 ** The virtual address of the ccb containing this header.
1391 **----------------------------------------------------------------
1392 */
1393 struct ccb * cp;
1394
1395 /*----------------------------------------------------------------
1396 ** Status fields.
1397 **----------------------------------------------------------------
1398 */
1399 u_char scr_st[4]; /* script status */
1400 u_char status[4]; /* host status. must be the */
1401 /* last DWORD of the header. */
1402 };
1403
1404 /*
1405 ** The status bytes are used by the host and the script processor.
1406 **
1407 ** The byte corresponding to the host_status must be stored in the
1408 ** last DWORD of the CCB header since it is used for command
1409 ** completion (ncr_wakeup()). Doing so, we are sure that the header
1410 ** has been entirely copied back to the CCB when the host_status is
1411 ** seen complete by the CPU.
1412 **
1413 ** The last four bytes (status[4]) are copied to the scratchb register
1414 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1415 ** and copied back just after disconnecting.
1416 ** Inside the script the XX_REG are used.
1417 **
1418 ** The first four bytes (scr_st[4]) are used inside the script by
1419 ** "COPY" commands.
1420 ** Because source and destination must have the same alignment
1421 ** in a DWORD, the fields HAVE to be at the chosen offsets.
1422 ** xerr_st 0 (0x34) scratcha
1423 ** sync_st 1 (0x05) sxfer
1424 ** wide_st 3 (0x03) scntl3
1425 */
1426
1427 /*
1428 ** Last four bytes (script)
1429 */
1430 #define QU_REG scr0
1431 #define HS_REG scr1
1432 #define HS_PRT nc_scr1
1433 #define SS_REG scr2
1434 #define SS_PRT nc_scr2
1435 #define PS_REG scr3
1436
1437 /*
1438 ** Last four bytes (host)
1439 */
1440 #ifdef SCSI_NCR_BIG_ENDIAN
1441 #define actualquirks phys.header.status[3]
1442 #define host_status phys.header.status[2]
1443 #define scsi_status phys.header.status[1]
1444 #define parity_status phys.header.status[0]
1445 #else
1446 #define actualquirks phys.header.status[0]
1447 #define host_status phys.header.status[1]
1448 #define scsi_status phys.header.status[2]
1449 #define parity_status phys.header.status[3]
1450 #endif
1451
1452 /*
1453 ** First four bytes (script)
1454 */
1455 #define xerr_st header.scr_st[0]
1456 #define sync_st header.scr_st[1]
1457 #define nego_st header.scr_st[2]
1458 #define wide_st header.scr_st[3]
1459
1460 /*
1461 ** First four bytes (host)
1462 */
1463 #define xerr_status phys.xerr_st
1464 #define nego_status phys.nego_st
1465
1466 #if 0
1467 #define sync_status phys.sync_st
1468 #define wide_status phys.wide_st
1469 #endif
1470
1471 /*==========================================================
1472 **
1473 ** Declaration of structs: Data structure block
1474 **
1475 **==========================================================
1476 **
1477 ** During execution of a ccb by the script processor,
1478 ** the DSA (data structure address) register points
1479 ** to this substructure of the ccb.
1480 ** This substructure contains the header with
1481 ** the script-processor-changeable data and
1482 ** data blocks for the indirect move commands.
1483 **
1484 **----------------------------------------------------------
1485 */
1486
1487 struct dsb {
1488
1489 /*
1490 ** Header.
1491 */
1492
1493 struct head header;
1494
1495 /*
1496 ** Table data for Script
1497 */
1498
1499 struct scr_tblsel select;
1500 struct scr_tblmove smsg ;
1501 struct scr_tblmove cmd ;
1502 struct scr_tblmove sense ;
1503 struct scr_tblmove data[MAX_SCATTER];
1504 };
1505
1506
1507 /*========================================================================
1508 **
1509 ** Declaration of structs: Command control block.
1510 **
1511 **========================================================================
1512 */
1513 struct ccb {
1514 /*----------------------------------------------------------------
1515 ** This is the data structure which is pointed by the DSA
1516 ** register when it is executed by the script processor.
1517 ** It must be the first entry because it contains the header
1518 ** as first entry that must be cache line aligned.
1519 **----------------------------------------------------------------
1520 */
1521 struct dsb phys;
1522
1523 /*----------------------------------------------------------------
1524 ** Mini-script used at CCB execution start-up.
1525 ** Load the DSA with the data structure address (phys) and
1526 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1527 **----------------------------------------------------------------
1528 */
1529 struct launch start;
1530
1531 /*----------------------------------------------------------------
1532 ** Mini-script used at CCB relection to restart the nexus.
1533 ** Load the DSA with the data structure address (phys) and
1534 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1535 **----------------------------------------------------------------
1536 */
1537 struct launch restart;
1538
1539 /*----------------------------------------------------------------
1540 ** If a data transfer phase is terminated too early
1541 ** (after reception of a message (i.e. DISCONNECT)),
1542 ** we have to prepare a mini script to transfer
1543 ** the rest of the data.
1544 **----------------------------------------------------------------
1545 */
1546 ncrcmd patch[8];
1547
1548 /*----------------------------------------------------------------
1549 ** The general SCSI driver provides a
1550 ** pointer to a control block.
1551 **----------------------------------------------------------------
1552 */
1553 struct scsi_cmnd *cmd; /* SCSI command */
1554 u_char cdb_buf[16]; /* Copy of CDB */
1555 u_char sense_buf[64];
1556 int data_len; /* Total data length */
1557
1558 /*----------------------------------------------------------------
1559 ** Message areas.
1560 ** We prepare a message to be sent after selection.
1561 ** We may use a second one if the command is rescheduled
1562 ** due to GETCC or QFULL.
1563 ** Contents are IDENTIFY and SIMPLE_TAG.
1564 ** While negotiating sync or wide transfer,
1565 ** a SDTR or WDTR message is appended.
1566 **----------------------------------------------------------------
1567 */
1568 u_char scsi_smsg [8];
1569 u_char scsi_smsg2[8];
1570
1571 /*----------------------------------------------------------------
1572 ** Other fields.
1573 **----------------------------------------------------------------
1574 */
1575 u_long p_ccb; /* BUS address of this CCB */
1576 u_char sensecmd[6]; /* Sense command */
1577 u_char tag; /* Tag for this transfer */
1578 /* 255 means no tag */
1579 u_char target;
1580 u_char lun;
1581 u_char queued;
1582 u_char auto_sense;
1583 struct ccb * link_ccb; /* Host adapter CCB chain */
1584 struct list_head link_ccbq; /* Link to unit CCB queue */
1585 u32 startp; /* Initial data pointer */
1586 u_long magic; /* Free / busy CCB flag */
1587 };
1588
1589 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1590
1591
1592 /*========================================================================
1593 **
1594 ** Declaration of structs: NCR device descriptor
1595 **
1596 **========================================================================
1597 */
1598 struct ncb {
1599 /*----------------------------------------------------------------
1600 ** The global header.
1601 ** It is accessible to both the host and the script processor.
1602 ** Must be cache line size aligned (32 for x86) in order to
1603 ** allow cache line bursting when it is copied to/from CCB.
1604 **----------------------------------------------------------------
1605 */
1606 struct head header;
1607
1608 /*----------------------------------------------------------------
1609 ** CCBs management queues.
1610 **----------------------------------------------------------------
1611 */
1612 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1613 /* when lcb is not allocated. */
1614 struct scsi_cmnd *done_list; /* Commands waiting for done() */
1615 /* callback to be invoked. */
1616 spinlock_t smp_lock; /* Lock for SMP threading */
1617
1618 /*----------------------------------------------------------------
1619 ** Chip and controller indentification.
1620 **----------------------------------------------------------------
1621 */
1622 int unit; /* Unit number */
1623 char inst_name[16]; /* ncb instance name */
1624
1625 /*----------------------------------------------------------------
1626 ** Initial value of some IO register bits.
1627 ** These values are assumed to have been set by BIOS, and may
1628 ** be used for probing adapter implementation differences.
1629 **----------------------------------------------------------------
1630 */
1631 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1632 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1633
1634 /*----------------------------------------------------------------
1635 ** Actual initial value of IO register bits used by the
1636 ** driver. They are loaded at initialisation according to
1637 ** features that are to be enabled.
1638 **----------------------------------------------------------------
1639 */
1640 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1641 rv_ctest4, rv_ctest5, rv_stest2;
1642
1643 /*----------------------------------------------------------------
1644 ** Targets management.
1645 ** During reselection the ncr jumps to jump_tcb.
1646 ** The SFBR register is loaded with the encoded target id.
1647 ** For i = 0 to 3
1648 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1649 **
1650 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1651 ** It is kind of hashcoding.
1652 **----------------------------------------------------------------
1653 */
1654 struct link jump_tcb[4]; /* JUMPs for reselection */
1655 struct tcb target[MAX_TARGET]; /* Target data */
1656
1657 /*----------------------------------------------------------------
1658 ** Virtual and physical bus addresses of the chip.
1659 **----------------------------------------------------------------
1660 */
1661 void __iomem *vaddr; /* Virtual and bus address of */
1662 unsigned long paddr; /* chip's IO registers. */
1663 unsigned long paddr2; /* On-chip RAM bus address. */
1664 volatile /* Pointer to volatile for */
1665 struct ncr_reg __iomem *reg; /* memory mapped IO. */
1666
1667 /*----------------------------------------------------------------
1668 ** SCRIPTS virtual and physical bus addresses.
1669 ** 'script' is loaded in the on-chip RAM if present.
1670 ** 'scripth' stays in main memory.
1671 **----------------------------------------------------------------
1672 */
1673 struct script *script0; /* Copies of script and scripth */
1674 struct scripth *scripth0; /* relocated for this ncb. */
1675 struct scripth *scripth; /* Actual scripth virt. address */
1676 u_long p_script; /* Actual script and scripth */
1677 u_long p_scripth; /* bus addresses. */
1678
1679 /*----------------------------------------------------------------
1680 ** General controller parameters and configuration.
1681 **----------------------------------------------------------------
1682 */
1683 struct device *dev;
1684 u_char revision_id; /* PCI device revision id */
1685 u32 irq; /* IRQ level */
1686 u32 features; /* Chip features map */
1687 u_char myaddr; /* SCSI id of the adapter */
1688 u_char maxburst; /* log base 2 of dwords burst */
1689 u_char maxwide; /* Maximum transfer width */
1690 u_char minsync; /* Minimum sync period factor */
1691 u_char maxsync; /* Maximum sync period factor */
1692 u_char maxoffs; /* Max scsi offset */
1693 u_char multiplier; /* Clock multiplier (1,2,4) */
1694 u_char clock_divn; /* Number of clock divisors */
1695 u_long clock_khz; /* SCSI clock frequency in KHz */
1696
1697 /*----------------------------------------------------------------
1698 ** Start queue management.
1699 ** It is filled up by the host processor and accessed by the
1700 ** SCRIPTS processor in order to start SCSI commands.
1701 **----------------------------------------------------------------
1702 */
1703 u16 squeueput; /* Next free slot of the queue */
1704 u16 actccbs; /* Number of allocated CCBs */
1705 u16 queuedccbs; /* Number of CCBs in start queue*/
1706 u16 queuedepth; /* Start queue depth */
1707
1708 /*----------------------------------------------------------------
1709 ** Timeout handler.
1710 **----------------------------------------------------------------
1711 */
1712 struct timer_list timer; /* Timer handler link header */
1713 u_long lasttime;
1714 u_long settle_time; /* Resetting the SCSI BUS */
1715
1716 /*----------------------------------------------------------------
1717 ** Debugging and profiling.
1718 **----------------------------------------------------------------
1719 */
1720 struct ncr_reg regdump; /* Register dump */
1721 u_long regtime; /* Time it has been done */
1722
1723 /*----------------------------------------------------------------
1724 ** Miscellaneous buffers accessed by the scripts-processor.
1725 ** They shall be DWORD aligned, because they may be read or
1726 ** written with a SCR_COPY script command.
1727 **----------------------------------------------------------------
1728 */
1729 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1730 u_char msgin [8]; /* Buffer for MESSAGE IN */
1731 u32 lastmsg; /* Last SCSI message sent */
1732 u_char scratch; /* Scratch for SCSI receive */
1733
1734 /*----------------------------------------------------------------
1735 ** Miscellaneous configuration and status parameters.
1736 **----------------------------------------------------------------
1737 */
1738 u_char disc; /* Diconnection allowed */
1739 u_char scsi_mode; /* Current SCSI BUS mode */
1740 u_char order; /* Tag order to use */
1741 u_char verbose; /* Verbosity for this controller*/
1742 int ncr_cache; /* Used for cache test at init. */
1743 u_long p_ncb; /* BUS address of this NCB */
1744
1745 /*----------------------------------------------------------------
1746 ** Command completion handling.
1747 **----------------------------------------------------------------
1748 */
1749 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1750 struct ccb *(ccb_done[MAX_DONE]);
1751 int ccb_done_ic;
1752 #endif
1753 /*----------------------------------------------------------------
1754 ** Fields that should be removed or changed.
1755 **----------------------------------------------------------------
1756 */
1757 struct ccb *ccb; /* Global CCB */
1758 struct usrcmd user; /* Command from user */
1759 volatile u_char release_stage; /* Synchronisation stage on release */
1760 };
1761
1762 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1763 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1764
1765 /*==========================================================
1766 **
1767 **
1768 ** Script for NCR-Processor.
1769 **
1770 ** Use ncr_script_fill() to create the variable parts.
1771 ** Use ncr_script_copy_and_bind() to make a copy and
1772 ** bind to physical addresses.
1773 **
1774 **
1775 **==========================================================
1776 **
1777 ** We have to know the offsets of all labels before
1778 ** we reach them (for forward jumps).
1779 ** Therefore we declare a struct here.
1780 ** If you make changes inside the script,
1781 ** DONT FORGET TO CHANGE THE LENGTHS HERE!
1782 **
1783 **----------------------------------------------------------
1784 */
1785
1786 /*
1787 ** For HP Zalon/53c720 systems, the Zalon interface
1788 ** between CPU and 53c720 does prefetches, which causes
1789 ** problems with self modifying scripts. The problem
1790 ** is overcome by calling a dummy subroutine after each
1791 ** modification, to force a refetch of the script on
1792 ** return from the subroutine.
1793 */
1794
1795 #ifdef CONFIG_NCR53C8XX_PREFETCH
1796 #define PREFETCH_FLUSH_CNT 2
1797 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1798 #else
1799 #define PREFETCH_FLUSH_CNT 0
1800 #define PREFETCH_FLUSH
1801 #endif
1802
1803 /*
1804 ** Script fragments which are loaded into the on-chip RAM
1805 ** of 825A, 875 and 895 chips.
1806 */
1807 struct script {
1808 ncrcmd start [ 5];
1809 ncrcmd startpos [ 1];
1810 ncrcmd select [ 6];
1811 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
1812 ncrcmd loadpos [ 4];
1813 ncrcmd send_ident [ 9];
1814 ncrcmd prepare [ 6];
1815 ncrcmd prepare2 [ 7];
1816 ncrcmd command [ 6];
1817 ncrcmd dispatch [ 32];
1818 ncrcmd clrack [ 4];
1819 ncrcmd no_data [ 17];
1820 ncrcmd status [ 8];
1821 ncrcmd msg_in [ 2];
1822 ncrcmd msg_in2 [ 16];
1823 ncrcmd msg_bad [ 4];
1824 ncrcmd setmsg [ 7];
1825 ncrcmd cleanup [ 6];
1826 ncrcmd complete [ 9];
1827 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
1828 ncrcmd cleanup0 [ 1];
1829 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1830 ncrcmd signal [ 12];
1831 #else
1832 ncrcmd signal [ 9];
1833 ncrcmd done_pos [ 1];
1834 ncrcmd done_plug [ 2];
1835 ncrcmd done_end [ 7];
1836 #endif
1837 ncrcmd save_dp [ 7];
1838 ncrcmd restore_dp [ 5];
1839 ncrcmd disconnect [ 10];
1840 ncrcmd msg_out [ 9];
1841 ncrcmd msg_out_done [ 7];
1842 ncrcmd idle [ 2];
1843 ncrcmd reselect [ 8];
1844 ncrcmd reselected [ 8];
1845 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
1846 ncrcmd loadpos1 [ 4];
1847 ncrcmd resel_lun [ 6];
1848 ncrcmd resel_tag [ 6];
1849 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
1850 ncrcmd nexus_indirect [ 4];
1851 ncrcmd resel_notag [ 4];
1852 ncrcmd data_in [MAX_SCATTERL * 4];
1853 ncrcmd data_in2 [ 4];
1854 ncrcmd data_out [MAX_SCATTERL * 4];
1855 ncrcmd data_out2 [ 4];
1856 };
1857
1858 /*
1859 ** Script fragments which stay in main memory for all chips.
1860 */
1861 struct scripth {
1862 ncrcmd tryloop [MAX_START*2];
1863 ncrcmd tryloop2 [ 2];
1864 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1865 ncrcmd done_queue [MAX_DONE*5];
1866 ncrcmd done_queue2 [ 2];
1867 #endif
1868 ncrcmd select_no_atn [ 8];
1869 ncrcmd cancel [ 4];
1870 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
1871 ncrcmd skip2 [ 19];
1872 ncrcmd par_err_data_in [ 6];
1873 ncrcmd par_err_other [ 4];
1874 ncrcmd msg_reject [ 8];
1875 ncrcmd msg_ign_residue [ 24];
1876 ncrcmd msg_extended [ 10];
1877 ncrcmd msg_ext_2 [ 10];
1878 ncrcmd msg_wdtr [ 14];
1879 ncrcmd send_wdtr [ 7];
1880 ncrcmd msg_ext_3 [ 10];
1881 ncrcmd msg_sdtr [ 14];
1882 ncrcmd send_sdtr [ 7];
1883 ncrcmd nego_bad_phase [ 4];
1884 ncrcmd msg_out_abort [ 10];
1885 ncrcmd hdata_in [MAX_SCATTERH * 4];
1886 ncrcmd hdata_in2 [ 2];
1887 ncrcmd hdata_out [MAX_SCATTERH * 4];
1888 ncrcmd hdata_out2 [ 2];
1889 ncrcmd reset [ 4];
1890 ncrcmd aborttag [ 4];
1891 ncrcmd abort [ 2];
1892 ncrcmd abort_resel [ 20];
1893 ncrcmd resend_ident [ 4];
1894 ncrcmd clratn_go_on [ 3];
1895 ncrcmd nxtdsp_go_on [ 1];
1896 ncrcmd sdata_in [ 8];
1897 ncrcmd data_io [ 18];
1898 ncrcmd bad_identify [ 12];
1899 ncrcmd bad_i_t_l [ 4];
1900 ncrcmd bad_i_t_l_q [ 4];
1901 ncrcmd bad_target [ 8];
1902 ncrcmd bad_status [ 8];
1903 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
1904 ncrcmd start_ram0 [ 4];
1905 ncrcmd sto_restart [ 5];
1906 ncrcmd wait_dma [ 2];
1907 ncrcmd snooptest [ 9];
1908 ncrcmd snoopend [ 2];
1909 };
1910
1911 /*==========================================================
1912 **
1913 **
1914 ** Function headers.
1915 **
1916 **
1917 **==========================================================
1918 */
1919
1920 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1921 static void ncr_complete (struct ncb *np, struct ccb *cp);
1922 static void ncr_exception (struct ncb *np);
1923 static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1924 static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1925 static void ncr_init_tcb (struct ncb *np, u_char tn);
1926 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1927 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1928 static void ncr_getclock (struct ncb *np, int mult);
1929 static void ncr_selectclock (struct ncb *np, u_char scntl3);
1930 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1931 static void ncr_chip_reset (struct ncb *np, int delay);
1932 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1933 static int ncr_int_sbmc (struct ncb *np);
1934 static int ncr_int_par (struct ncb *np);
1935 static void ncr_int_ma (struct ncb *np);
1936 static void ncr_int_sir (struct ncb *np);
1937 static void ncr_int_sto (struct ncb *np);
1938 static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1939 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1940
1941 static void ncr_script_copy_and_bind
1942 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1943 static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1944 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1945 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1946 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1947 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1948 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1949 static int ncr_snooptest (struct ncb *np);
1950 static void ncr_timeout (struct ncb *np);
1951 static void ncr_wakeup (struct ncb *np, u_long code);
1952 static void ncr_wakeup_done (struct ncb *np);
1953 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1954 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1955
1956 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1957 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1958 static void process_waiting_list(struct ncb *np, int sts);
1959
1960 #define remove_from_waiting_list(np, cmd) \
1961 retrieve_from_waiting_list(1, (np), (cmd))
1962 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1963 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1964
1965 static inline char *ncr_name (struct ncb *np)
1966 {
1967 return np->inst_name;
1968 }
1969
1970
1971 /*==========================================================
1972 **
1973 **
1974 ** Scripts for NCR-Processor.
1975 **
1976 ** Use ncr_script_bind for binding to physical addresses.
1977 **
1978 **
1979 **==========================================================
1980 **
1981 ** NADDR generates a reference to a field of the controller data.
1982 ** PADDR generates a reference to another part of the script.
1983 ** RADDR generates a reference to a script processor register.
1984 ** FADDR generates a reference to a script processor register
1985 ** with offset.
1986 **
1987 **----------------------------------------------------------
1988 */
1989
1990 #define RELOC_SOFTC 0x40000000
1991 #define RELOC_LABEL 0x50000000
1992 #define RELOC_REGISTER 0x60000000
1993 #if 0
1994 #define RELOC_KVAR 0x70000000
1995 #endif
1996 #define RELOC_LABELH 0x80000000
1997 #define RELOC_MASK 0xf0000000
1998
1999 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
2000 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
2001 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
2002 #define RADDR(label) (RELOC_REGISTER | REG(label))
2003 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2004 #if 0
2005 #define KVAR(which) (RELOC_KVAR | (which))
2006 #endif
2007
2008 #if 0
2009 #define SCRIPT_KVAR_JIFFIES (0)
2010 #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
2011 #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
2012 /*
2013 * Kernel variables referenced in the scripts.
2014 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2015 */
2016 static void *script_kvars[] __initdata =
2017 { (void *)&jiffies };
2018 #endif
2019
2020 static struct script script0 __initdata = {
2021 /*--------------------------< START >-----------------------*/ {
2022 /*
2023 ** This NOP will be patched with LED ON
2024 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2025 */
2026 SCR_NO_OP,
2027 0,
2028 /*
2029 ** Clear SIGP.
2030 */
2031 SCR_FROM_REG (ctest2),
2032 0,
2033 /*
2034 ** Then jump to a certain point in tryloop.
2035 ** Due to the lack of indirect addressing the code
2036 ** is self modifying here.
2037 */
2038 SCR_JUMP,
2039 }/*-------------------------< STARTPOS >--------------------*/,{
2040 PADDRH(tryloop),
2041
2042 }/*-------------------------< SELECT >----------------------*/,{
2043 /*
2044 ** DSA contains the address of a scheduled
2045 ** data structure.
2046 **
2047 ** SCRATCHA contains the address of the script,
2048 ** which starts the next entry.
2049 **
2050 ** Set Initiator mode.
2051 **
2052 ** (Target mode is left as an exercise for the reader)
2053 */
2054
2055 SCR_CLR (SCR_TRG),
2056 0,
2057 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2058 0,
2059
2060 /*
2061 ** And try to select this target.
2062 */
2063 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2064 PADDR (reselect),
2065
2066 }/*-------------------------< SELECT2 >----------------------*/,{
2067 /*
2068 ** Now there are 4 possibilities:
2069 **
2070 ** (1) The ncr loses arbitration.
2071 ** This is ok, because it will try again,
2072 ** when the bus becomes idle.
2073 ** (But beware of the timeout function!)
2074 **
2075 ** (2) The ncr is reselected.
2076 ** Then the script processor takes the jump
2077 ** to the RESELECT label.
2078 **
2079 ** (3) The ncr wins arbitration.
2080 ** Then it will execute SCRIPTS instruction until
2081 ** the next instruction that checks SCSI phase.
2082 ** Then will stop and wait for selection to be
2083 ** complete or selection time-out to occur.
2084 ** As a result the SCRIPTS instructions until
2085 ** LOADPOS + 2 should be executed in parallel with
2086 ** the SCSI core performing selection.
2087 */
2088
2089 /*
2090 ** The MESSAGE_REJECT problem seems to be due to a selection
2091 ** timing problem.
2092 ** Wait immediately for the selection to complete.
2093 ** (2.5x behaves so)
2094 */
2095 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2096 0,
2097
2098 /*
2099 ** Next time use the next slot.
2100 */
2101 SCR_COPY (4),
2102 RADDR (temp),
2103 PADDR (startpos),
2104 /*
2105 ** The ncr doesn't have an indirect load
2106 ** or store command. So we have to
2107 ** copy part of the control block to a
2108 ** fixed place, where we can access it.
2109 **
2110 ** We patch the address part of a
2111 ** COPY command with the DSA-register.
2112 */
2113 SCR_COPY_F (4),
2114 RADDR (dsa),
2115 PADDR (loadpos),
2116 /*
2117 ** Flush script prefetch if required
2118 */
2119 PREFETCH_FLUSH
2120 /*
2121 ** then we do the actual copy.
2122 */
2123 SCR_COPY (sizeof (struct head)),
2124 /*
2125 ** continued after the next label ...
2126 */
2127 }/*-------------------------< LOADPOS >---------------------*/,{
2128 0,
2129 NADDR (header),
2130 /*
2131 ** Wait for the next phase or the selection
2132 ** to complete or time-out.
2133 */
2134 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2135 PADDR (prepare),
2136
2137 }/*-------------------------< SEND_IDENT >----------------------*/,{
2138 /*
2139 ** Selection complete.
2140 ** Send the IDENTIFY and SIMPLE_TAG messages
2141 ** (and the EXTENDED_SDTR message)
2142 */
2143 SCR_MOVE_TBL ^ SCR_MSG_OUT,
2144 offsetof (struct dsb, smsg),
2145 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2146 PADDRH (resend_ident),
2147 SCR_LOAD_REG (scratcha, 0x80),
2148 0,
2149 SCR_COPY (1),
2150 RADDR (scratcha),
2151 NADDR (lastmsg),
2152 }/*-------------------------< PREPARE >----------------------*/,{
2153 /*
2154 ** load the savep (saved pointer) into
2155 ** the TEMP register (actual pointer)
2156 */
2157 SCR_COPY (4),
2158 NADDR (header.savep),
2159 RADDR (temp),
2160 /*
2161 ** Initialize the status registers
2162 */
2163 SCR_COPY (4),
2164 NADDR (header.status),
2165 RADDR (scr0),
2166 }/*-------------------------< PREPARE2 >---------------------*/,{
2167 /*
2168 ** Initialize the msgout buffer with a NOOP message.
2169 */
2170 SCR_LOAD_REG (scratcha, NOP),
2171 0,
2172 SCR_COPY (1),
2173 RADDR (scratcha),
2174 NADDR (msgout),
2175 #if 0
2176 SCR_COPY (1),
2177 RADDR (scratcha),
2178 NADDR (msgin),
2179 #endif
2180 /*
2181 ** Anticipate the COMMAND phase.
2182 ** This is the normal case for initial selection.
2183 */
2184 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2185 PADDR (dispatch),
2186
2187 }/*-------------------------< COMMAND >--------------------*/,{
2188 /*
2189 ** ... and send the command
2190 */
2191 SCR_MOVE_TBL ^ SCR_COMMAND,
2192 offsetof (struct dsb, cmd),
2193 /*
2194 ** If status is still HS_NEGOTIATE, negotiation failed.
2195 ** We check this here, since we want to do that
2196 ** only once.
2197 */
2198 SCR_FROM_REG (HS_REG),
2199 0,
2200 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2201 SIR_NEGO_FAILED,
2202
2203 }/*-----------------------< DISPATCH >----------------------*/,{
2204 /*
2205 ** MSG_IN is the only phase that shall be
2206 ** entered at least once for each (re)selection.
2207 ** So we test it first.
2208 */
2209 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2210 PADDR (msg_in),
2211
2212 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2213 0,
2214 /*
2215 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2216 ** Possible data corruption during Memory Write and Invalidate.
2217 ** This work-around resets the addressing logic prior to the
2218 ** start of the first MOVE of a DATA IN phase.
2219 ** (See Documentation/scsi/ncr53c8xx.txt for more information)
2220 */
2221 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2222 20,
2223 SCR_COPY (4),
2224 RADDR (scratcha),
2225 RADDR (scratcha),
2226 SCR_RETURN,
2227 0,
2228 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2229 PADDR (status),
2230 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2231 PADDR (command),
2232 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2233 PADDR (msg_out),
2234 /*
2235 ** Discard one illegal phase byte, if required.
2236 */
2237 SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2238 0,
2239 SCR_COPY (1),
2240 RADDR (scratcha),
2241 NADDR (xerr_st),
2242 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2243 8,
2244 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2245 NADDR (scratch),
2246 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2247 8,
2248 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2249 NADDR (scratch),
2250 SCR_JUMP,
2251 PADDR (dispatch),
2252
2253 }/*-------------------------< CLRACK >----------------------*/,{
2254 /*
2255 ** Terminate possible pending message phase.
2256 */
2257 SCR_CLR (SCR_ACK),
2258 0,
2259 SCR_JUMP,
2260 PADDR (dispatch),
2261
2262 }/*-------------------------< NO_DATA >--------------------*/,{
2263 /*
2264 ** The target wants to tranfer too much data
2265 ** or in the wrong direction.
2266 ** Remember that in extended error.
2267 */
2268 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2269 0,
2270 SCR_COPY (1),
2271 RADDR (scratcha),
2272 NADDR (xerr_st),
2273 /*
2274 ** Discard one data byte, if required.
2275 */
2276 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2277 8,
2278 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2279 NADDR (scratch),
2280 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2281 8,
2282 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2283 NADDR (scratch),
2284 /*
2285 ** .. and repeat as required.
2286 */
2287 SCR_CALL,
2288 PADDR (dispatch),
2289 SCR_JUMP,
2290 PADDR (no_data),
2291
2292 }/*-------------------------< STATUS >--------------------*/,{
2293 /*
2294 ** get the status
2295 */
2296 SCR_MOVE_ABS (1) ^ SCR_STATUS,
2297 NADDR (scratch),
2298 /*
2299 ** save status to scsi_status.
2300 ** mark as complete.
2301 */
2302 SCR_TO_REG (SS_REG),
2303 0,
2304 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2305 0,
2306 SCR_JUMP,
2307 PADDR (dispatch),
2308 }/*-------------------------< MSG_IN >--------------------*/,{
2309 /*
2310 ** Get the first byte of the message
2311 ** and save it to SCRATCHA.
2312 **
2313 ** The script processor doesn't negate the
2314 ** ACK signal after this transfer.
2315 */
2316 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2317 NADDR (msgin[0]),
2318 }/*-------------------------< MSG_IN2 >--------------------*/,{
2319 /*
2320 ** Handle this message.
2321 */
2322 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2323 PADDR (complete),
2324 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2325 PADDR (disconnect),
2326 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2327 PADDR (save_dp),
2328 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2329 PADDR (restore_dp),
2330 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2331 PADDRH (msg_extended),
2332 SCR_JUMP ^ IFTRUE (DATA (NOP)),
2333 PADDR (clrack),
2334 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2335 PADDRH (msg_reject),
2336 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2337 PADDRH (msg_ign_residue),
2338 /*
2339 ** Rest of the messages left as
2340 ** an exercise ...
2341 **
2342 ** Unimplemented messages:
2343 ** fall through to MSG_BAD.
2344 */
2345 }/*-------------------------< MSG_BAD >------------------*/,{
2346 /*
2347 ** unimplemented message - reject it.
2348 */
2349 SCR_INT,
2350 SIR_REJECT_SENT,
2351 SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2352 0,
2353 }/*-------------------------< SETMSG >----------------------*/,{
2354 SCR_COPY (1),
2355 RADDR (scratcha),
2356 NADDR (msgout),
2357 SCR_SET (SCR_ATN),
2358 0,
2359 SCR_JUMP,
2360 PADDR (clrack),
2361 }/*-------------------------< CLEANUP >-------------------*/,{
2362 /*
2363 ** dsa: Pointer to ccb
2364 ** or xxxxxxFF (no ccb)
2365 **
2366 ** HS_REG: Host-Status (<>0!)
2367 */
2368 SCR_FROM_REG (dsa),
2369 0,
2370 SCR_JUMP ^ IFTRUE (DATA (0xff)),
2371 PADDR (start),
2372 /*
2373 ** dsa is valid.
2374 ** complete the cleanup.
2375 */
2376 SCR_JUMP,
2377 PADDR (cleanup_ok),
2378
2379 }/*-------------------------< COMPLETE >-----------------*/,{
2380 /*
2381 ** Complete message.
2382 **
2383 ** Copy TEMP register to LASTP in header.
2384 */
2385 SCR_COPY (4),
2386 RADDR (temp),
2387 NADDR (header.lastp),
2388 /*
2389 ** When we terminate the cycle by clearing ACK,
2390 ** the target may disconnect immediately.
2391 **
2392 ** We don't want to be told of an
2393 ** "unexpected disconnect",
2394 ** so we disable this feature.
2395 */
2396 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2397 0,
2398 /*
2399 ** Terminate cycle ...
2400 */
2401 SCR_CLR (SCR_ACK|SCR_ATN),
2402 0,
2403 /*
2404 ** ... and wait for the disconnect.
2405 */
2406 SCR_WAIT_DISC,
2407 0,
2408 }/*-------------------------< CLEANUP_OK >----------------*/,{
2409 /*
2410 ** Save host status to header.
2411 */
2412 SCR_COPY (4),
2413 RADDR (scr0),
2414 NADDR (header.status),
2415 /*
2416 ** and copy back the header to the ccb.
2417 */
2418 SCR_COPY_F (4),
2419 RADDR (dsa),
2420 PADDR (cleanup0),
2421 /*
2422 ** Flush script prefetch if required
2423 */
2424 PREFETCH_FLUSH
2425 SCR_COPY (sizeof (struct head)),
2426 NADDR (header),
2427 }/*-------------------------< CLEANUP0 >--------------------*/,{
2428 0,
2429 }/*-------------------------< SIGNAL >----------------------*/,{
2430 /*
2431 ** if job not completed ...
2432 */
2433 SCR_FROM_REG (HS_REG),
2434 0,
2435 /*
2436 ** ... start the next command.
2437 */
2438 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2439 PADDR(start),
2440 /*
2441 ** If command resulted in not GOOD status,
2442 ** call the C code if needed.
2443 */
2444 SCR_FROM_REG (SS_REG),
2445 0,
2446 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2447 PADDRH (bad_status),
2448
2449 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
2450
2451 /*
2452 ** ... signal completion to the host
2453 */
2454 SCR_INT,
2455 SIR_INTFLY,
2456 /*
2457 ** Auf zu neuen Schandtaten!
2458 */
2459 SCR_JUMP,
2460 PADDR(start),
2461
2462 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2463
2464 /*
2465 ** ... signal completion to the host
2466 */
2467 SCR_JUMP,
2468 }/*------------------------< DONE_POS >---------------------*/,{
2469 PADDRH (done_queue),
2470 }/*------------------------< DONE_PLUG >--------------------*/,{
2471 SCR_INT,
2472 SIR_DONE_OVERFLOW,
2473 }/*------------------------< DONE_END >---------------------*/,{
2474 SCR_INT,
2475 SIR_INTFLY,
2476 SCR_COPY (4),
2477 RADDR (temp),
2478 PADDR (done_pos),
2479 SCR_JUMP,
2480 PADDR (start),
2481
2482 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2483
2484 }/*-------------------------< SAVE_DP >------------------*/,{
2485 /*
2486 ** SAVE_DP message:
2487 ** Copy TEMP register to SAVEP in header.
2488 */
2489 SCR_COPY (4),
2490 RADDR (temp),
2491 NADDR (header.savep),
2492 SCR_CLR (SCR_ACK),
2493 0,
2494 SCR_JUMP,
2495 PADDR (dispatch),
2496 }/*-------------------------< RESTORE_DP >---------------*/,{
2497 /*
2498 ** RESTORE_DP message:
2499 ** Copy SAVEP in header to TEMP register.
2500 */
2501 SCR_COPY (4),
2502 NADDR (header.savep),
2503 RADDR (temp),
2504 SCR_JUMP,
2505 PADDR (clrack),
2506
2507 }/*-------------------------< DISCONNECT >---------------*/,{
2508 /*
2509 ** DISCONNECTing ...
2510 **
2511 ** disable the "unexpected disconnect" feature,
2512 ** and remove the ACK signal.
2513 */
2514 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2515 0,
2516 SCR_CLR (SCR_ACK|SCR_ATN),
2517 0,
2518 /*
2519 ** Wait for the disconnect.
2520 */
2521 SCR_WAIT_DISC,
2522 0,
2523 /*
2524 ** Status is: DISCONNECTED.
2525 */
2526 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2527 0,
2528 SCR_JUMP,
2529 PADDR (cleanup_ok),
2530
2531 }/*-------------------------< MSG_OUT >-------------------*/,{
2532 /*
2533 ** The target requests a message.
2534 */
2535 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2536 NADDR (msgout),
2537 SCR_COPY (1),
2538 NADDR (msgout),
2539 NADDR (lastmsg),
2540 /*
2541 ** If it was no ABORT message ...
2542 */
2543 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2544 PADDRH (msg_out_abort),
2545 /*
2546 ** ... wait for the next phase
2547 ** if it's a message out, send it again, ...
2548 */
2549 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2550 PADDR (msg_out),
2551 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2552 /*
2553 ** ... else clear the message ...
2554 */
2555 SCR_LOAD_REG (scratcha, NOP),
2556 0,
2557 SCR_COPY (4),
2558 RADDR (scratcha),
2559 NADDR (msgout),
2560 /*
2561 ** ... and process the next phase
2562 */
2563 SCR_JUMP,
2564 PADDR (dispatch),
2565 }/*-------------------------< IDLE >------------------------*/,{
2566 /*
2567 ** Nothing to do?
2568 ** Wait for reselect.
2569 ** This NOP will be patched with LED OFF
2570 ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2571 */
2572 SCR_NO_OP,
2573 0,
2574 }/*-------------------------< RESELECT >--------------------*/,{
2575 /*
2576 ** make the DSA invalid.
2577 */
2578 SCR_LOAD_REG (dsa, 0xff),
2579 0,
2580 SCR_CLR (SCR_TRG),
2581 0,
2582 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2583 0,
2584 /*
2585 ** Sleep waiting for a reselection.
2586 ** If SIGP is set, special treatment.
2587 **
2588 ** Zu allem bereit ..
2589 */
2590 SCR_WAIT_RESEL,
2591 PADDR(start),
2592 }/*-------------------------< RESELECTED >------------------*/,{
2593 /*
2594 ** This NOP will be patched with LED ON
2595 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2596 */
2597 SCR_NO_OP,
2598 0,
2599 /*
2600 ** ... zu nichts zu gebrauchen ?
2601 **
2602 ** load the target id into the SFBR
2603 ** and jump to the control block.
2604 **
2605 ** Look at the declarations of
2606 ** - struct ncb
2607 ** - struct tcb
2608 ** - struct lcb
2609 ** - struct ccb
2610 ** to understand what's going on.
2611 */
2612 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2613 0,
2614 SCR_TO_REG (sdid),
2615 0,
2616 SCR_JUMP,
2617 NADDR (jump_tcb),
2618
2619 }/*-------------------------< RESEL_DSA >-------------------*/,{
2620 /*
2621 ** Ack the IDENTIFY or TAG previously received.
2622 */
2623 SCR_CLR (SCR_ACK),
2624 0,
2625 /*
2626 ** The ncr doesn't have an indirect load
2627 ** or store command. So we have to
2628 ** copy part of the control block to a
2629 ** fixed place, where we can access it.
2630 **
2631 ** We patch the address part of a
2632 ** COPY command with the DSA-register.
2633 */
2634 SCR_COPY_F (4),
2635 RADDR (dsa),
2636 PADDR (loadpos1),
2637 /*
2638 ** Flush script prefetch if required
2639 */
2640 PREFETCH_FLUSH
2641 /*
2642 ** then we do the actual copy.
2643 */
2644 SCR_COPY (sizeof (struct head)),
2645 /*
2646 ** continued after the next label ...
2647 */
2648
2649 }/*-------------------------< LOADPOS1 >-------------------*/,{
2650 0,
2651 NADDR (header),
2652 /*
2653 ** The DSA contains the data structure address.
2654 */
2655 SCR_JUMP,
2656 PADDR (prepare),
2657
2658 }/*-------------------------< RESEL_LUN >-------------------*/,{
2659 /*
2660 ** come back to this point
2661 ** to get an IDENTIFY message
2662 ** Wait for a msg_in phase.
2663 */
2664 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2665 SIR_RESEL_NO_MSG_IN,
2666 /*
2667 ** message phase.
2668 ** Read the data directly from the BUS DATA lines.
2669 ** This helps to support very old SCSI devices that
2670 ** may reselect without sending an IDENTIFY.
2671 */
2672 SCR_FROM_REG (sbdl),
2673 0,
2674 /*
2675 ** It should be an Identify message.
2676 */
2677 SCR_RETURN,
2678 0,
2679 }/*-------------------------< RESEL_TAG >-------------------*/,{
2680 /*
2681 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2682 ** Agressive optimization, is'nt it?
2683 ** No need to test the SIMPLE TAG message, since the
2684 ** driver only supports conformant devices for tags. ;-)
2685 */
2686 SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2687 NADDR (msgin),
2688 /*
2689 ** Read the TAG from the SIDL.
2690 ** Still an aggressive optimization. ;-)
2691 ** Compute the CCB indirect jump address which
2692 ** is (#TAG*2 & 0xfc) due to tag numbering using
2693 ** 1,3,5..MAXTAGS*2+1 actual values.
2694 */
2695 SCR_REG_SFBR (sidl, SCR_SHL, 0),
2696 0,
2697 SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2698 0,
2699 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2700 SCR_COPY_F (4),
2701 RADDR (temp),
2702 PADDR (nexus_indirect),
2703 /*
2704 ** Flush script prefetch if required
2705 */
2706 PREFETCH_FLUSH
2707 SCR_COPY (4),
2708 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2709 0,
2710 RADDR (temp),
2711 SCR_RETURN,
2712 0,
2713 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2714 /*
2715 ** No tag expected.
2716 ** Read an throw away the IDENTIFY.
2717 */
2718 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2719 NADDR (msgin),
2720 SCR_JUMP,
2721 PADDR (jump_to_nexus),
2722 }/*-------------------------< DATA_IN >--------------------*/,{
2723 /*
2724 ** Because the size depends on the
2725 ** #define MAX_SCATTERL parameter,
2726 ** it is filled in at runtime.
2727 **
2728 ** ##===========< i=0; i<MAX_SCATTERL >=========
2729 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2730 ** || PADDR (dispatch),
2731 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2732 ** || offsetof (struct dsb, data[ i]),
2733 ** ##==========================================
2734 **
2735 **---------------------------------------------------------
2736 */
2737 0
2738 }/*-------------------------< DATA_IN2 >-------------------*/,{
2739 SCR_CALL,
2740 PADDR (dispatch),
2741 SCR_JUMP,
2742 PADDR (no_data),
2743 }/*-------------------------< DATA_OUT >--------------------*/,{
2744 /*
2745 ** Because the size depends on the
2746 ** #define MAX_SCATTERL parameter,
2747 ** it is filled in at runtime.
2748 **
2749 ** ##===========< i=0; i<MAX_SCATTERL >=========
2750 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2751 ** || PADDR (dispatch),
2752 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2753 ** || offsetof (struct dsb, data[ i]),
2754 ** ##==========================================
2755 **
2756 **---------------------------------------------------------
2757 */
2758 0
2759 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2760 SCR_CALL,
2761 PADDR (dispatch),
2762 SCR_JUMP,
2763 PADDR (no_data),
2764 }/*--------------------------------------------------------*/
2765 };
2766
2767 static struct scripth scripth0 __initdata = {
2768 /*-------------------------< TRYLOOP >---------------------*/{
2769 /*
2770 ** Start the next entry.
2771 ** Called addresses point to the launch script in the CCB.
2772 ** They are patched by the main processor.
2773 **
2774 ** Because the size depends on the
2775 ** #define MAX_START parameter, it is filled
2776 ** in at runtime.
2777 **
2778 **-----------------------------------------------------------
2779 **
2780 ** ##===========< I=0; i<MAX_START >===========
2781 ** || SCR_CALL,
2782 ** || PADDR (idle),
2783 ** ##==========================================
2784 **
2785 **-----------------------------------------------------------
2786 */
2787 0
2788 }/*------------------------< TRYLOOP2 >---------------------*/,{
2789 SCR_JUMP,
2790 PADDRH(tryloop),
2791
2792 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2793
2794 }/*------------------------< DONE_QUEUE >-------------------*/,{
2795 /*
2796 ** Copy the CCB address to the next done entry.
2797 ** Because the size depends on the
2798 ** #define MAX_DONE parameter, it is filled
2799 ** in at runtime.
2800 **
2801 **-----------------------------------------------------------
2802 **
2803 ** ##===========< I=0; i<MAX_DONE >===========
2804 ** || SCR_COPY (sizeof(struct ccb *),
2805 ** || NADDR (header.cp),
2806 ** || NADDR (ccb_done[i]),
2807 ** || SCR_CALL,
2808 ** || PADDR (done_end),
2809 ** ##==========================================
2810 **
2811 **-----------------------------------------------------------
2812 */
2813 0
2814 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2815 SCR_JUMP,
2816 PADDRH (done_queue),
2817
2818 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2819 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2820 /*
2821 ** Set Initiator mode.
2822 ** And try to select this target without ATN.
2823 */
2824
2825 SCR_CLR (SCR_TRG),
2826 0,
2827 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2828 0,
2829 SCR_SEL_TBL ^ offsetof (struct dsb, select),
2830 PADDR (reselect),
2831 SCR_JUMP,
2832 PADDR (select2),
2833
2834 }/*-------------------------< CANCEL >------------------------*/,{
2835
2836 SCR_LOAD_REG (scratcha, HS_ABORTED),
2837 0,
2838 SCR_JUMPR,
2839 8,
2840 }/*-------------------------< SKIP >------------------------*/,{
2841 SCR_LOAD_REG (scratcha, 0),
2842 0,
2843 /*
2844 ** This entry has been canceled.
2845 ** Next time use the next slot.
2846 */
2847 SCR_COPY (4),
2848 RADDR (temp),
2849 PADDR (startpos),
2850 /*
2851 ** The ncr doesn't have an indirect load
2852 ** or store command. So we have to
2853 ** copy part of the control block to a
2854 ** fixed place, where we can access it.
2855 **
2856 ** We patch the address part of a
2857 ** COPY command with the DSA-register.
2858 */
2859 SCR_COPY_F (4),
2860 RADDR (dsa),
2861 PADDRH (skip2),
2862 /*
2863 ** Flush script prefetch if required
2864 */
2865 PREFETCH_FLUSH
2866 /*
2867 ** then we do the actual copy.
2868 */
2869 SCR_COPY (sizeof (struct head)),
2870 /*
2871 ** continued after the next label ...
2872 */
2873 }/*-------------------------< SKIP2 >---------------------*/,{
2874 0,
2875 NADDR (header),
2876 /*
2877 ** Initialize the status registers
2878 */
2879 SCR_COPY (4),
2880 NADDR (header.status),
2881 RADDR (scr0),
2882 /*
2883 ** Force host status.
2884 */
2885 SCR_FROM_REG (scratcha),
2886 0,
2887 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2888 16,
2889 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2890 0,
2891 SCR_JUMPR,
2892 8,
2893 SCR_TO_REG (HS_REG),
2894 0,
2895 SCR_LOAD_REG (SS_REG, S_GOOD),
2896 0,
2897 SCR_JUMP,
2898 PADDR (cleanup_ok),
2899
2900 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2901 /*
2902 ** Ignore all data in byte, until next phase
2903 */
2904 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2905 PADDRH (par_err_other),
2906 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2907 NADDR (scratch),
2908 SCR_JUMPR,
2909 -24,
2910 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2911 /*
2912 ** count it.
2913 */
2914 SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2915 0,
2916 /*
2917 ** jump to dispatcher.
2918 */
2919 SCR_JUMP,
2920 PADDR (dispatch),
2921 }/*-------------------------< MSG_REJECT >---------------*/,{
2922 /*
2923 ** If a negotiation was in progress,
2924 ** negotiation failed.
2925 ** Otherwise, let the C code print
2926 ** some message.
2927 */
2928 SCR_FROM_REG (HS_REG),
2929 0,
2930 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2931 SIR_REJECT_RECEIVED,
2932 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2933 SIR_NEGO_FAILED,
2934 SCR_JUMP,
2935 PADDR (clrack),
2936
2937 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2938 /*
2939 ** Terminate cycle
2940 */
2941 SCR_CLR (SCR_ACK),
2942 0,
2943 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2944 PADDR (dispatch),
2945 /*
2946 ** get residue size.
2947 */
2948 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2949 NADDR (msgin[1]),
2950 /*
2951 ** Size is 0 .. ignore message.
2952 */
2953 SCR_JUMP ^ IFTRUE (DATA (0)),
2954 PADDR (clrack),
2955 /*
2956 ** Size is not 1 .. have to interrupt.
2957 */
2958 SCR_JUMPR ^ IFFALSE (DATA (1)),
2959 40,
2960 /*
2961 ** Check for residue byte in swide register
2962 */
2963 SCR_FROM_REG (scntl2),
2964 0,
2965 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2966 16,
2967 /*
2968 ** There IS data in the swide register.
2969 ** Discard it.
2970 */
2971 SCR_REG_REG (scntl2, SCR_OR, WSR),
2972 0,
2973 SCR_JUMP,
2974 PADDR (clrack),
2975 /*
2976 ** Load again the size to the sfbr register.
2977 */
2978 SCR_FROM_REG (scratcha),
2979 0,
2980 SCR_INT,
2981 SIR_IGN_RESIDUE,
2982 SCR_JUMP,
2983 PADDR (clrack),
2984
2985 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2986 /*
2987 ** Terminate cycle
2988 */
2989 SCR_CLR (SCR_ACK),
2990 0,
2991 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2992 PADDR (dispatch),
2993 /*
2994 ** get length.
2995 */
2996 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2997 NADDR (msgin[1]),
2998 /*
2999 */
3000 SCR_JUMP ^ IFTRUE (DATA (3)),
3001 PADDRH (msg_ext_3),
3002 SCR_JUMP ^ IFFALSE (DATA (2)),
3003 PADDR (msg_bad),
3004 }/*-------------------------< MSG_EXT_2 >----------------*/,{
3005 SCR_CLR (SCR_ACK),
3006 0,
3007 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3008 PADDR (dispatch),
3009 /*
3010 ** get extended message code.
3011 */
3012 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3013 NADDR (msgin[2]),
3014 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3015 PADDRH (msg_wdtr),
3016 /*
3017 ** unknown extended message
3018 */
3019 SCR_JUMP,
3020 PADDR (msg_bad)
3021 }/*-------------------------< MSG_WDTR >-----------------*/,{
3022 SCR_CLR (SCR_ACK),
3023 0,
3024 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3025 PADDR (dispatch),
3026 /*
3027 ** get data bus width
3028 */
3029 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3030 NADDR (msgin[3]),
3031 /*
3032 ** let the host do the real work.
3033 */
3034 SCR_INT,
3035 SIR_NEGO_WIDE,
3036 /*
3037 ** let the target fetch our answer.
3038 */
3039 SCR_SET (SCR_ATN),
3040 0,
3041 SCR_CLR (SCR_ACK),
3042 0,
3043 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3044 PADDRH (nego_bad_phase),
3045
3046 }/*-------------------------< SEND_WDTR >----------------*/,{
3047 /*
3048 ** Send the EXTENDED_WDTR
3049 */
3050 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3051 NADDR (msgout),
3052 SCR_COPY (1),
3053 NADDR (msgout),
3054 NADDR (lastmsg),
3055 SCR_JUMP,
3056 PADDR (msg_out_done),
3057
3058 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3059 SCR_CLR (SCR_ACK),
3060 0,
3061 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3062 PADDR (dispatch),
3063 /*
3064 ** get extended message code.
3065 */
3066 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3067 NADDR (msgin[2]),
3068 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3069 PADDRH (msg_sdtr),
3070 /*
3071 ** unknown extended message
3072 */
3073 SCR_JUMP,
3074 PADDR (msg_bad)
3075
3076 }/*-------------------------< MSG_SDTR >-----------------*/,{
3077 SCR_CLR (SCR_ACK),
3078 0,
3079 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3080 PADDR (dispatch),
3081 /*
3082 ** get period and offset
3083 */
3084 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3085 NADDR (msgin[3]),
3086 /*
3087 ** let the host do the real work.
3088 */
3089 SCR_INT,
3090 SIR_NEGO_SYNC,
3091 /*
3092 ** let the target fetch our answer.
3093 */
3094 SCR_SET (SCR_ATN),
3095 0,
3096 SCR_CLR (SCR_ACK),
3097 0,
3098 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3099 PADDRH (nego_bad_phase),
3100
3101 }/*-------------------------< SEND_SDTR >-------------*/,{
3102 /*
3103 ** Send the EXTENDED_SDTR
3104 */
3105 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3106 NADDR (msgout),
3107 SCR_COPY (1),
3108 NADDR (msgout),
3109 NADDR (lastmsg),
3110 SCR_JUMP,
3111 PADDR (msg_out_done),
3112
3113 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3114 SCR_INT,
3115 SIR_NEGO_PROTO,
3116 SCR_JUMP,
3117 PADDR (dispatch),
3118
3119 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3120 /*
3121 ** After ABORT message,
3122 **
3123 ** expect an immediate disconnect, ...
3124 */
3125 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3126 0,
3127 SCR_CLR (SCR_ACK|SCR_ATN),
3128 0,
3129 SCR_WAIT_DISC,
3130 0,
3131 /*
3132 ** ... and set the status to "ABORTED"
3133 */
3134 SCR_LOAD_REG (HS_REG, HS_ABORTED),
3135 0,
3136 SCR_JUMP,
3137 PADDR (cleanup),
3138
3139 }/*-------------------------< HDATA_IN >-------------------*/,{
3140 /*
3141 ** Because the size depends on the
3142 ** #define MAX_SCATTERH parameter,
3143 ** it is filled in at runtime.
3144 **
3145 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3146 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3147 ** || PADDR (dispatch),
3148 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3149 ** || offsetof (struct dsb, data[ i]),
3150 ** ##===================================================
3151 **
3152 **---------------------------------------------------------
3153 */
3154 0
3155 }/*-------------------------< HDATA_IN2 >------------------*/,{
3156 SCR_JUMP,
3157 PADDR (data_in),
3158
3159 }/*-------------------------< HDATA_OUT >-------------------*/,{
3160 /*
3161 ** Because the size depends on the
3162 ** #define MAX_SCATTERH parameter,
3163 ** it is filled in at runtime.
3164 **
3165 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3166 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3167 ** || PADDR (dispatch),
3168 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3169 ** || offsetof (struct dsb, data[ i]),
3170 ** ##===================================================
3171 **
3172 **---------------------------------------------------------
3173 */
3174 0
3175 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3176 SCR_JUMP,
3177 PADDR (data_out),
3178
3179 }/*-------------------------< RESET >----------------------*/,{
3180 /*
3181 ** Send a TARGET_RESET message if bad IDENTIFY
3182 ** received on reselection.
3183 */
3184 SCR_LOAD_REG (scratcha, ABORT_TASK),
3185 0,
3186 SCR_JUMP,
3187 PADDRH (abort_resel),
3188 }/*-------------------------< ABORTTAG >-------------------*/,{
3189 /*
3190 ** Abort a wrong tag received on reselection.
3191 */
3192 SCR_LOAD_REG (scratcha, ABORT_TASK),
3193 0,
3194 SCR_JUMP,
3195 PADDRH (abort_resel),
3196 }/*-------------------------< ABORT >----------------------*/,{
3197 /*
3198 ** Abort a reselection when no active CCB.
3199 */
3200 SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3201 0,
3202 }/*-------------------------< ABORT_RESEL >----------------*/,{
3203 SCR_COPY (1),
3204 RADDR (scratcha),
3205 NADDR (msgout),
3206 SCR_SET (SCR_ATN),
3207 0,
3208 SCR_CLR (SCR_ACK),
3209 0,
3210 /*
3211 ** and send it.
3212 ** we expect an immediate disconnect
3213 */
3214 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3215 0,
3216 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3217 NADDR (msgout),
3218 SCR_COPY (1),
3219 NADDR (msgout),
3220 NADDR (lastmsg),
3221 SCR_CLR (SCR_ACK|SCR_ATN),
3222 0,
3223 SCR_WAIT_DISC,
3224 0,
3225 SCR_JUMP,
3226 PADDR (start),
3227 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3228 /*
3229 ** The target stays in MSG OUT phase after having acked
3230 ** Identify [+ Tag [+ Extended message ]]. Targets shall
3231 ** behave this way on parity error.
3232 ** We must send it again all the messages.
3233 */
3234 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3235 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3236 SCR_JUMP,
3237 PADDR (send_ident),
3238 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3239 SCR_CLR (SCR_ATN),
3240 0,
3241 SCR_JUMP,
3242 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3243 0,
3244 }/*-------------------------< SDATA_IN >-------------------*/,{
3245 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3246 PADDR (dispatch),
3247 SCR_MOVE_TBL ^ SCR_DATA_IN,
3248 offsetof (struct dsb, sense),
3249 SCR_CALL,
3250 PADDR (dispatch),
3251 SCR_JUMP,
3252 PADDR (no_data),
3253 }/*-------------------------< DATA_IO >--------------------*/,{
3254 /*
3255 ** We jump here if the data direction was unknown at the
3256 ** time we had to queue the command to the scripts processor.
3257 ** Pointers had been set as follow in this situation:
3258 ** savep --> DATA_IO
3259 ** lastp --> start pointer when DATA_IN
3260 ** goalp --> goal pointer when DATA_IN
3261 ** wlastp --> start pointer when DATA_OUT
3262 ** wgoalp --> goal pointer when DATA_OUT
3263 ** This script sets savep/lastp/goalp according to the
3264 ** direction chosen by the target.
3265 */
3266 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3267 32,
3268 /*
3269 ** Direction is DATA IN.
3270 ** Warning: we jump here, even when phase is DATA OUT.
3271 */
3272 SCR_COPY (4),
3273 NADDR (header.lastp),
3274 NADDR (header.savep),
3275
3276 /*
3277 ** Jump to the SCRIPTS according to actual direction.
3278 */
3279 SCR_COPY (4),
3280 NADDR (header.savep),
3281 RADDR (temp),
3282 SCR_RETURN,
3283 0,
3284 /*
3285 ** Direction is DATA OUT.
3286 */
3287 SCR_COPY (4),
3288 NADDR (header.wlastp),
3289 NADDR (header.lastp),
3290 SCR_COPY (4),
3291 NADDR (header.wgoalp),
3292 NADDR (header.goalp),
3293 SCR_JUMPR,
3294 -64,
3295 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3296 /*
3297 ** If message phase but not an IDENTIFY,
3298 ** get some help from the C code.
3299 ** Old SCSI device may behave so.
3300 */
3301 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3302 16,
3303 SCR_INT,
3304 SIR_RESEL_NO_IDENTIFY,
3305 SCR_JUMP,
3306 PADDRH (reset),
3307 /*
3308 ** Message is an IDENTIFY, but lun is unknown.
3309 ** Read the message, since we got it directly
3310 ** from the SCSI BUS data lines.
3311 ** Signal problem to C code for logging the event.
3312 ** Send an ABORT_TASK_SET to clear all pending tasks.
3313 */
3314 SCR_INT,
3315 SIR_RESEL_BAD_LUN,
3316 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3317 NADDR (msgin),
3318 SCR_JUMP,
3319 PADDRH (abort),
3320 }/*-------------------------< BAD_I_T_L >------------------*/,{
3321 /*
3322 ** We donnot have a task for that I_T_L.
3323 ** Signal problem to C code for logging the event.
3324 ** Send an ABORT_TASK_SET message.
3325 */
3326 SCR_INT,
3327 SIR_RESEL_BAD_I_T_L,
3328 SCR_JUMP,
3329 PADDRH (abort),
3330 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3331 /*
3332 ** We donnot have a task that matches the tag.
3333 ** Signal problem to C code for logging the event.
3334 ** Send an ABORT_TASK message.
3335 */
3336 SCR_INT,
3337 SIR_RESEL_BAD_I_T_L_Q,
3338 SCR_JUMP,
3339 PADDRH (aborttag),
3340 }/*-------------------------< BAD_TARGET >-----------------*/,{
3341 /*
3342 ** We donnot know the target that reselected us.
3343 ** Grab the first message if any (IDENTIFY).
3344 ** Signal problem to C code for logging the event.
3345 ** TARGET_RESET message.
3346 */
3347 SCR_INT,
3348 SIR_RESEL_BAD_TARGET,
3349 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3350 8,
3351 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3352 NADDR (msgin),
3353 SCR_JUMP,
3354 PADDRH (reset),
3355 }/*-------------------------< BAD_STATUS >-----------------*/,{
3356 /*
3357 ** If command resulted in either QUEUE FULL,
3358 ** CHECK CONDITION or COMMAND TERMINATED,
3359 ** call the C code.
3360 */
3361 SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3362 SIR_BAD_STATUS,
3363 SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3364 SIR_BAD_STATUS,
3365 SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3366 SIR_BAD_STATUS,
3367 SCR_RETURN,
3368 0,
3369 }/*-------------------------< START_RAM >-------------------*/,{
3370 /*
3371 ** Load the script into on-chip RAM,
3372 ** and jump to start point.
3373 */
3374 SCR_COPY_F (4),
3375 RADDR (scratcha),
3376 PADDRH (start_ram0),
3377 /*
3378 ** Flush script prefetch if required
3379 */
3380 PREFETCH_FLUSH
3381 SCR_COPY (sizeof (struct script)),
3382 }/*-------------------------< START_RAM0 >--------------------*/,{
3383 0,
3384 PADDR (start),
3385 SCR_JUMP,
3386 PADDR (start),
3387 }/*-------------------------< STO_RESTART >-------------------*/,{
3388 /*
3389 **
3390 ** Repair start queue (e.g. next time use the next slot)
3391 ** and jump to start point.
3392 */
3393 SCR_COPY (4),
3394 RADDR (temp),
3395 PADDR (startpos),
3396 SCR_JUMP,
3397 PADDR (start),
3398 }/*-------------------------< WAIT_DMA >-------------------*/,{
3399 /*
3400 ** For HP Zalon/53c720 systems, the Zalon interface
3401 ** between CPU and 53c720 does prefetches, which causes
3402 ** problems with self modifying scripts. The problem
3403 ** is overcome by calling a dummy subroutine after each
3404 ** modification, to force a refetch of the script on
3405 ** return from the subroutine.
3406 */
3407 SCR_RETURN,
3408 0,
3409 }/*-------------------------< SNOOPTEST >-------------------*/,{
3410 /*
3411 ** Read the variable.
3412 */
3413 SCR_COPY (4),
3414 NADDR(ncr_cache),
3415 RADDR (scratcha),
3416 /*
3417 ** Write the variable.
3418 */
3419 SCR_COPY (4),
3420 RADDR (temp),
3421 NADDR(ncr_cache),
3422 /*
3423 ** Read back the variable.
3424 */
3425 SCR_COPY (4),
3426 NADDR(ncr_cache),
3427 RADDR (temp),
3428 }/*-------------------------< SNOOPEND >-------------------*/,{
3429 /*
3430 ** And stop.
3431 */
3432 SCR_INT,
3433 99,
3434 }/*--------------------------------------------------------*/
3435 };
3436
3437 /*==========================================================
3438 **
3439 **
3440 ** Fill in #define dependent parts of the script
3441 **
3442 **
3443 **==========================================================
3444 */
3445
3446 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3447 {
3448 int i;
3449 ncrcmd *p;
3450
3451 p = scrh->tryloop;
3452 for (i=0; i<MAX_START; i++) {
3453 *p++ =SCR_CALL;
3454 *p++ =PADDR (idle);
3455 }
3456
3457 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3458
3459 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3460
3461 p = scrh->done_queue;
3462 for (i = 0; i<MAX_DONE; i++) {
3463 *p++ =SCR_COPY (sizeof(struct ccb *));
3464 *p++ =NADDR (header.cp);
3465 *p++ =NADDR (ccb_done[i]);
3466 *p++ =SCR_CALL;
3467 *p++ =PADDR (done_end);
3468 }
3469
3470 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3471
3472 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3473
3474 p = scrh->hdata_in;
3475 for (i=0; i<MAX_SCATTERH; i++) {
3476 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3477 *p++ =PADDR (dispatch);
3478 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3479 *p++ =offsetof (struct dsb, data[i]);
3480 }
3481
3482 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3483
3484 p = scr->data_in;
3485 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3486 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3487 *p++ =PADDR (dispatch);
3488 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3489 *p++ =offsetof (struct dsb, data[i]);
3490 }
3491
3492 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3493
3494 p = scrh->hdata_out;
3495 for (i=0; i<MAX_SCATTERH; i++) {
3496 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3497 *p++ =PADDR (dispatch);
3498 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3499 *p++ =offsetof (struct dsb, data[i]);
3500 }
3501
3502 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3503
3504 p = scr->data_out;
3505 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3506 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3507 *p++ =PADDR (dispatch);
3508 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3509 *p++ =offsetof (struct dsb, data[i]);
3510 }
3511
3512 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3513 }
3514
3515 /*==========================================================
3516 **
3517 **
3518 ** Copy and rebind a script.
3519 **
3520 **
3521 **==========================================================
3522 */
3523
3524 static void __init
3525 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3526 {
3527 ncrcmd opcode, new, old, tmp1, tmp2;
3528 ncrcmd *start, *end;
3529 int relocs;
3530 int opchanged = 0;
3531
3532 start = src;
3533 end = src + len/4;
3534
3535 while (src < end) {
3536
3537 opcode = *src++;
3538 *dst++ = cpu_to_scr(opcode);
3539
3540 /*
3541 ** If we forget to change the length
3542 ** in struct script, a field will be
3543 ** padded with 0. This is an illegal
3544 ** command.
3545 */
3546
3547 if (opcode == 0) {
3548 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3549 ncr_name(np), (int) (src-start-1));
3550 mdelay(1000);
3551 }
3552
3553 if (DEBUG_FLAGS & DEBUG_SCRIPT)
3554 printk (KERN_DEBUG "%p: <%x>\n",
3555 (src-1), (unsigned)opcode);
3556
3557 /*
3558 ** We don't have to decode ALL commands
3559 */
3560 switch (opcode >> 28) {
3561
3562 case 0xc:
3563 /*
3564 ** COPY has TWO arguments.
3565 */
3566 relocs = 2;
3567 tmp1 = src[0];
3568 #ifdef RELOC_KVAR
3569 if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3570 tmp1 = 0;
3571 #endif
3572 tmp2 = src[1];
3573 #ifdef RELOC_KVAR
3574 if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3575 tmp2 = 0;
3576 #endif
3577 if ((tmp1 ^ tmp2) & 3) {
3578 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3579 ncr_name(np), (int) (src-start-1));
3580 mdelay(1000);
3581 }
3582 /*
3583 ** If PREFETCH feature not enabled, remove
3584 ** the NO FLUSH bit if present.
3585 */
3586 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3587 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3588 ++opchanged;
3589 }
3590 break;
3591
3592 case 0x0:
3593 /*
3594 ** MOVE (absolute address)
3595 */
3596 relocs = 1;
3597 break;
3598
3599 case 0x8:
3600 /*
3601 ** JUMP / CALL
3602 ** don't relocate if relative :-)
3603 */
3604 if (opcode & 0x00800000)
3605 relocs = 0;
3606 else
3607 relocs = 1;
3608 break;
3609
3610 case 0x4:
3611 case 0x5:
3612 case 0x6:
3613 case 0x7:
3614 relocs = 1;
3615 break;
3616
3617 default:
3618 relocs = 0;
3619 break;
3620 }
3621
3622 if (relocs) {
3623 while (relocs--) {
3624 old = *src++;
3625
3626 switch (old & RELOC_MASK) {
3627 case RELOC_REGISTER:
3628 new = (old & ~RELOC_MASK) + np->paddr;
3629 break;
3630 case RELOC_LABEL:
3631 new = (old & ~RELOC_MASK) + np->p_script;
3632 break;
3633 case RELOC_LABELH:
3634 new = (old & ~RELOC_MASK) + np->p_scripth;
3635 break;
3636 case RELOC_SOFTC:
3637 new = (old & ~RELOC_MASK) + np->p_ncb;
3638 break;
3639 #ifdef RELOC_KVAR
3640 case RELOC_KVAR:
3641 if (((old & ~RELOC_MASK) <
3642 SCRIPT_KVAR_FIRST) ||
3643 ((old & ~RELOC_MASK) >
3644 SCRIPT_KVAR_LAST))
3645 panic("ncr KVAR out of range");
3646 new = vtophys(script_kvars[old &
3647 ~RELOC_MASK]);
3648 break;
3649 #endif
3650 case 0:
3651 /* Don't relocate a 0 address. */
3652 if (old == 0) {
3653 new = old;
3654 break;
3655 }
3656 /* fall through */
3657 default:
3658 panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3659 break;
3660 }
3661
3662 *dst++ = cpu_to_scr(new);
3663 }
3664 } else
3665 *dst++ = cpu_to_scr(*src++);
3666
3667 }
3668 }
3669
3670 /*
3671 ** Linux host data structure
3672 */
3673
3674 struct host_data {
3675 struct ncb *ncb;
3676 };
3677
3678 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3679
3680 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3681 {
3682 PRINT_ADDR(cp->cmd, "%s: ", label);
3683
3684 spi_print_msg(msg);
3685 printk("\n");
3686 }
3687
3688 /*==========================================================
3689 **
3690 ** NCR chip clock divisor table.
3691 ** Divisors are multiplied by 10,000,000 in order to make
3692 ** calculations more simple.
3693 **
3694 **==========================================================
3695 */
3696
3697 #define _5M 5000000
3698 static u_long div_10M[] =
3699 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3700
3701
3702 /*===============================================================
3703 **
3704 ** Prepare io register values used by ncr_init() according
3705 ** to selected and supported features.
3706 **
3707 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3708 ** transfers. 32,64,128 are only supported by 875 and 895 chips.
3709 ** We use log base 2 (burst length) as internal code, with
3710 ** value 0 meaning "burst disabled".
3711 **
3712 **===============================================================
3713 */
3714
3715 /*
3716 * Burst length from burst code.
3717 */
3718 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3719
3720 /*
3721 * Burst code from io register bits. Burst enable is ctest0 for c720
3722 */
3723 #define burst_code(dmode, ctest0) \
3724 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3725
3726 /*
3727 * Set initial io register bits from burst code.
3728 */
3729 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3730 {
3731 u_char *be = &np->rv_ctest0;
3732 *be &= ~0x80;
3733 np->rv_dmode &= ~(0x3 << 6);
3734 np->rv_ctest5 &= ~0x4;
3735
3736 if (!bc) {
3737 *be |= 0x80;
3738 } else {
3739 --bc;
3740 np->rv_dmode |= ((bc & 0x3) << 6);
3741 np->rv_ctest5 |= (bc & 0x4);
3742 }
3743 }
3744
3745 static void __init ncr_prepare_setting(struct ncb *np)
3746 {
3747 u_char burst_max;
3748 u_long period;
3749 int i;
3750
3751 /*
3752 ** Save assumed BIOS setting
3753 */
3754
3755 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3756 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3757 np->sv_dmode = INB(nc_dmode) & 0xce;
3758 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3759 np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3760 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3761 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3762 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3763 np->sv_gpcntl = INB(nc_gpcntl);
3764 np->sv_stest2 = INB(nc_stest2) & 0x20;
3765 np->sv_stest4 = INB(nc_stest4);
3766
3767 /*
3768 ** Wide ?
3769 */
3770
3771 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3772
3773 /*
3774 * Guess the frequency of the chip's clock.
3775 */
3776 if (np->features & FE_ULTRA)
3777 np->clock_khz = 80000;
3778 else
3779 np->clock_khz = 40000;
3780
3781 /*
3782 * Get the clock multiplier factor.
3783 */
3784 if (np->features & FE_QUAD)
3785 np->multiplier = 4;
3786 else if (np->features & FE_DBLR)
3787 np->multiplier = 2;
3788 else
3789 np->multiplier = 1;
3790
3791 /*
3792 * Measure SCSI clock frequency for chips
3793 * it may vary from assumed one.
3794 */
3795 if (np->features & FE_VARCLK)
3796 ncr_getclock(np, np->multiplier);
3797
3798 /*
3799 * Divisor to be used for async (timer pre-scaler).
3800 */
3801 i = np->clock_divn - 1;
3802 while (--i >= 0) {
3803 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3804 ++i;
3805 break;
3806 }
3807 }
3808 np->rv_scntl3 = i+1;
3809
3810 /*
3811 * Minimum synchronous period factor supported by the chip.
3812 * Btw, 'period' is in tenths of nanoseconds.
3813 */
3814
3815 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3816 if (period <= 250) np->minsync = 10;
3817 else if (period <= 303) np->minsync = 11;
3818 else if (period <= 500) np->minsync = 12;
3819 else np->minsync = (period + 40 - 1) / 40;
3820
3821 /*
3822 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3823 */
3824
3825 if (np->minsync < 25 && !(np->features & FE_ULTRA))
3826 np->minsync = 25;
3827
3828 /*
3829 * Maximum synchronous period factor supported by the chip.
3830 */
3831
3832 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3833 np->maxsync = period > 2540 ? 254 : period / 10;
3834
3835 /*
3836 ** Prepare initial value of other IO registers
3837 */
3838 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3839 np->rv_scntl0 = np->sv_scntl0;
3840 np->rv_dmode = np->sv_dmode;
3841 np->rv_dcntl = np->sv_dcntl;
3842 np->rv_ctest0 = np->sv_ctest0;
3843 np->rv_ctest3 = np->sv_ctest3;
3844 np->rv_ctest4 = np->sv_ctest4;
3845 np->rv_ctest5 = np->sv_ctest5;
3846 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3847 #else
3848
3849 /*
3850 ** Select burst length (dwords)
3851 */
3852 burst_max = driver_setup.burst_max;
3853 if (burst_max == 255)
3854 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3855 if (burst_max > 7)
3856 burst_max = 7;
3857 if (burst_max > np->maxburst)
3858 burst_max = np->maxburst;
3859
3860 /*
3861 ** Select all supported special features
3862 */
3863 if (np->features & FE_ERL)
3864 np->rv_dmode |= ERL; /* Enable Read Line */
3865 if (np->features & FE_BOF)
3866 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3867 if (np->features & FE_ERMP)
3868 np->rv_dmode |= ERMP; /* Enable Read Multiple */
3869 if (np->features & FE_PFEN)
3870 np->rv_dcntl |= PFEN; /* Prefetch Enable */
3871 if (np->features & FE_CLSE)
3872 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3873 if (np->features & FE_WRIE)
3874 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3875 if (np->features & FE_DFS)
3876 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3877 if (np->features & FE_MUX)
3878 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3879 if (np->features & FE_EA)
3880 np->rv_dcntl |= EA; /* Enable ACK */
3881 if (np->features & FE_EHP)
3882 np->rv_ctest0 |= EHP; /* Even host parity */
3883
3884 /*
3885 ** Select some other
3886 */
3887 if (driver_setup.master_parity)
3888 np->rv_ctest4 |= MPEE; /* Master parity checking */
3889 if (driver_setup.scsi_parity)
3890 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3891
3892 /*
3893 ** Get SCSI addr of host adapter (set by bios?).
3894 */
3895 if (np->myaddr == 255) {
3896 np->myaddr = INB(nc_scid) & 0x07;
3897 if (!np->myaddr)
3898 np->myaddr = SCSI_NCR_MYADDR;
3899 }
3900
3901 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3902
3903 /*
3904 * Prepare initial io register bits for burst length
3905 */
3906 ncr_init_burst(np, burst_max);
3907
3908 /*
3909 ** Set SCSI BUS mode.
3910 **
3911 ** - ULTRA2 chips (895/895A/896) report the current
3912 ** BUS mode through the STEST4 IO register.
3913 ** - For previous generation chips (825/825A/875),
3914 ** user has to tell us how to check against HVD,
3915 ** since a 100% safe algorithm is not possible.
3916 */
3917 np->scsi_mode = SMODE_SE;
3918 if (np->features & FE_DIFF) {
3919 switch(driver_setup.diff_support) {
3920 case 4: /* Trust previous settings if present, then GPIO3 */
3921 if (np->sv_scntl3) {
3922 if (np->sv_stest2 & 0x20)
3923 np->scsi_mode = SMODE_HVD;
3924 break;
3925 }
3926 case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3927 if (INB(nc_gpreg) & 0x08)
3928 break;
3929 case 2: /* Set HVD unconditionally */
3930 np->scsi_mode = SMODE_HVD;
3931 case 1: /* Trust previous settings for HVD */
3932 if (np->sv_stest2 & 0x20)
3933 np->scsi_mode = SMODE_HVD;
3934 break;
3935 default:/* Don't care about HVD */
3936 break;
3937 }
3938 }
3939 if (np->scsi_mode == SMODE_HVD)
3940 np->rv_stest2 |= 0x20;
3941
3942 /*
3943 ** Set LED support from SCRIPTS.
3944 ** Ignore this feature for boards known to use a
3945 ** specific GPIO wiring and for the 895A or 896
3946 ** that drive the LED directly.
3947 ** Also probe initial setting of GPIO0 as output.
3948 */
3949 if ((driver_setup.led_pin) &&
3950 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3951 np->features |= FE_LED0;
3952
3953 /*
3954 ** Set irq mode.
3955 */
3956 switch(driver_setup.irqm & 3) {
3957 case 2:
3958 np->rv_dcntl |= IRQM;
3959 break;
3960 case 1:
3961 np->rv_dcntl |= (np->sv_dcntl & IRQM);
3962 break;
3963 default:
3964 break;
3965 }
3966
3967 /*
3968 ** Configure targets according to driver setup.
3969 ** Allow to override sync, wide and NOSCAN from
3970 ** boot command line.
3971 */
3972 for (i = 0 ; i < MAX_TARGET ; i++) {
3973 struct tcb *tp = &np->target[i];
3974
3975 tp->usrsync = driver_setup.default_sync;
3976 tp->usrwide = driver_setup.max_wide;
3977 tp->usrtags = MAX_TAGS;
3978 tp->period = 0xffff;
3979 if (!driver_setup.disconnection)
3980 np->target[i].usrflag = UF_NODISC;
3981 }
3982
3983 /*
3984 ** Announce all that stuff to user.
3985 */
3986
3987 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3988 np->myaddr,
3989 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3990 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
3991 (np->rv_stest2 & 0x20) ? ", Differential" : "");
3992
3993 if (bootverbose > 1) {
3994 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3995 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3996 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3997 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3998
3999 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4000 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4001 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4002 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4003 }
4004
4005 if (bootverbose && np->paddr2)
4006 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4007 ncr_name(np), np->paddr2);
4008 }
4009
4010 /*==========================================================
4011 **
4012 **
4013 ** Done SCSI commands list management.
4014 **
4015 ** We donnot enter the scsi_done() callback immediately
4016 ** after a command has been seen as completed but we
4017 ** insert it into a list which is flushed outside any kind
4018 ** of driver critical section.
4019 ** This allows to do minimal stuff under interrupt and
4020 ** inside critical sections and to also avoid locking up
4021 ** on recursive calls to driver entry points under SMP.
4022 ** In fact, the only kernel point which is entered by the
4023 ** driver with a driver lock set is kmalloc(GFP_ATOMIC)
4024 ** that shall not reenter the driver under any circumstances,
4025 ** AFAIK.
4026 **
4027 **==========================================================
4028 */
4029 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4030 {
4031 unmap_scsi_data(np, cmd);
4032 cmd->host_scribble = (char *) np->done_list;
4033 np->done_list = cmd;
4034 }
4035
4036 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4037 {
4038 struct scsi_cmnd *cmd;
4039
4040 while (lcmd) {
4041 cmd = lcmd;
4042 lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4043 cmd->scsi_done(cmd);
4044 }
4045 }
4046
4047 /*==========================================================
4048 **
4049 **
4050 ** Prepare the next negotiation message if needed.
4051 **
4052 ** Fill in the part of message buffer that contains the
4053 ** negotiation and the nego_status field of the CCB.
4054 ** Returns the size of the message in bytes.
4055 **
4056 **
4057 **==========================================================
4058 */
4059
4060
4061 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4062 {
4063 struct tcb *tp = &np->target[cp->target];
4064 int msglen = 0;
4065 int nego = 0;
4066 struct scsi_target *starget = tp->starget;
4067
4068 /* negotiate wide transfers ? */
4069 if (!tp->widedone) {
4070 if (spi_support_wide(starget)) {
4071 nego = NS_WIDE;
4072 } else
4073 tp->widedone=1;
4074 }
4075
4076 /* negotiate synchronous transfers? */
4077 if (!nego && !tp->period) {
4078 if (spi_support_sync(starget)) {
4079 nego = NS_SYNC;
4080 } else {
4081 tp->period =0xffff;
4082 dev_info(&starget->dev, "target did not report SYNC.\n");
4083 }
4084 }
4085
4086 switch (nego) {
4087 case NS_SYNC:
4088 msglen += spi_populate_sync_msg(msgptr + msglen,
4089 tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4090 break;
4091 case NS_WIDE:
4092 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4093 break;
4094 }
4095
4096 cp->nego_status = nego;
4097
4098 if (nego) {
4099 tp->nego_cp = cp;
4100 if (DEBUG_FLAGS & DEBUG_NEGO) {
4101 ncr_print_msg(cp, nego == NS_WIDE ?
4102 "wide msgout":"sync_msgout", msgptr);
4103 }
4104 }
4105
4106 return msglen;
4107 }
4108
4109
4110
4111 /*==========================================================
4112 **
4113 **
4114 ** Start execution of a SCSI command.
4115 ** This is called from the generic SCSI driver.
4116 **
4117 **
4118 **==========================================================
4119 */
4120 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4121 {
4122 struct scsi_device *sdev = cmd->device;
4123 struct tcb *tp = &np->target[sdev->id];
4124 struct lcb *lp = tp->lp[sdev->lun];
4125 struct ccb *cp;
4126
4127 int segments;
4128 u_char idmsg, *msgptr;
4129 u32 msglen;
4130 int direction;
4131 u32 lastp, goalp;
4132
4133 /*---------------------------------------------
4134 **
4135 ** Some shortcuts ...
4136 **
4137 **---------------------------------------------
4138 */
4139 if ((sdev->id == np->myaddr ) ||
4140 (sdev->id >= MAX_TARGET) ||
4141 (sdev->lun >= MAX_LUN )) {
4142 return(DID_BAD_TARGET);
4143 }
4144
4145 /*---------------------------------------------
4146 **
4147 ** Complete the 1st TEST UNIT READY command
4148 ** with error condition if the device is
4149 ** flagged NOSCAN, in order to speed up
4150 ** the boot.
4151 **
4152 **---------------------------------------------
4153 */
4154 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4155 (tp->usrflag & UF_NOSCAN)) {
4156 tp->usrflag &= ~UF_NOSCAN;
4157 return DID_BAD_TARGET;
4158 }
4159
4160 if (DEBUG_FLAGS & DEBUG_TINY) {
4161 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4162 }
4163
4164 /*---------------------------------------------------
4165 **
4166 ** Assign a ccb / bind cmd.
4167 ** If resetting, shorten settle_time if necessary
4168 ** in order to avoid spurious timeouts.
4169 ** If resetting or no free ccb,
4170 ** insert cmd into the waiting list.
4171 **
4172 **----------------------------------------------------
4173 */
4174 if (np->settle_time && cmd->request->timeout >= HZ) {
4175 u_long tlimit = jiffies + cmd->request->timeout - HZ;
4176 if (time_after(np->settle_time, tlimit))
4177 np->settle_time = tlimit;
4178 }
4179
4180 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4181 insert_into_waiting_list(np, cmd);
4182 return(DID_OK);
4183 }
4184 cp->cmd = cmd;
4185
4186 /*----------------------------------------------------
4187 **
4188 ** Build the identify / tag / sdtr message
4189 **
4190 **----------------------------------------------------
4191 */
4192
4193 idmsg = IDENTIFY(0, sdev->lun);
4194
4195 if (cp ->tag != NO_TAG ||
4196 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4197 idmsg |= 0x40;
4198
4199 msgptr = cp->scsi_smsg;
4200 msglen = 0;
4201 msgptr[msglen++] = idmsg;
4202
4203 if (cp->tag != NO_TAG) {
4204 char order = np->order;
4205
4206 /*
4207 ** Force ordered tag if necessary to avoid timeouts
4208 ** and to preserve interactivity.
4209 */
4210 if (lp && time_after(jiffies, lp->tags_stime)) {
4211 if (lp->tags_smap) {
4212 order = ORDERED_QUEUE_TAG;
4213 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4214 PRINT_ADDR(cmd,
4215 "ordered tag forced.\n");
4216 }
4217 }
4218 lp->tags_stime = jiffies + 3*HZ;
4219 lp->tags_smap = lp->tags_umap;
4220 }
4221
4222 if (order == 0) {
4223 /*
4224 ** Ordered write ops, unordered read ops.
4225 */
4226 switch (cmd->cmnd[0]) {
4227 case 0x08: /* READ_SMALL (6) */
4228 case 0x28: /* READ_BIG (10) */
4229 case 0xa8: /* READ_HUGE (12) */
4230 order = SIMPLE_QUEUE_TAG;
4231 break;
4232 default:
4233 order = ORDERED_QUEUE_TAG;
4234 }
4235 }
4236 msgptr[msglen++] = order;
4237 /*
4238 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4239 ** since we may have to deal with devices that have
4240 ** problems with #TAG 0 or too great #TAG numbers.
4241 */
4242 msgptr[msglen++] = (cp->tag << 1) + 1;
4243 }
4244
4245 /*----------------------------------------------------
4246 **
4247 ** Build the data descriptors
4248 **
4249 **----------------------------------------------------
4250 */
4251
4252 direction = cmd->sc_data_direction;
4253 if (direction != DMA_NONE) {
4254 segments = ncr_scatter(np, cp, cp->cmd);
4255 if (segments < 0) {
4256 ncr_free_ccb(np, cp);
4257 return(DID_ERROR);
4258 }
4259 }
4260 else {
4261 cp->data_len = 0;
4262 segments = 0;
4263 }
4264
4265 /*---------------------------------------------------
4266 **
4267 ** negotiation required?
4268 **
4269 ** (nego_status is filled by ncr_prepare_nego())
4270 **
4271 **---------------------------------------------------
4272 */
4273
4274 cp->nego_status = 0;
4275
4276 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4277 msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4278 }
4279
4280 /*----------------------------------------------------
4281 **
4282 ** Determine xfer direction.
4283 **
4284 **----------------------------------------------------
4285 */
4286 if (!cp->data_len)
4287 direction = DMA_NONE;
4288
4289 /*
4290 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4291 ** but prepare alternate pointers for TO_DEVICE in case
4292 ** of our speculation will be just wrong.
4293 ** SCRIPTS will swap values if needed.
4294 */
4295 switch(direction) {
4296 case DMA_BIDIRECTIONAL:
4297 case DMA_TO_DEVICE:
4298 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4299 if (segments <= MAX_SCATTERL)
4300 lastp = goalp - 8 - (segments * 16);
4301 else {
4302 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4303 lastp -= (segments - MAX_SCATTERL) * 16;
4304 }
4305 if (direction != DMA_BIDIRECTIONAL)
4306 break;
4307 cp->phys.header.wgoalp = cpu_to_scr(goalp);
4308 cp->phys.header.wlastp = cpu_to_scr(lastp);
4309 /* fall through */
4310 case DMA_FROM_DEVICE:
4311 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4312 if (segments <= MAX_SCATTERL)
4313 lastp = goalp - 8 - (segments * 16);
4314 else {
4315 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4316 lastp -= (segments - MAX_SCATTERL) * 16;
4317 }
4318 break;
4319 default:
4320 case DMA_NONE:
4321 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4322 break;
4323 }
4324
4325 /*
4326 ** Set all pointers values needed by SCRIPTS.
4327 ** If direction is unknown, start at data_io.
4328 */
4329 cp->phys.header.lastp = cpu_to_scr(lastp);
4330 cp->phys.header.goalp = cpu_to_scr(goalp);
4331
4332 if (direction == DMA_BIDIRECTIONAL)
4333 cp->phys.header.savep =
4334 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4335 else
4336 cp->phys.header.savep= cpu_to_scr(lastp);
4337
4338 /*
4339 ** Save the initial data pointer in order to be able
4340 ** to redo the command.
4341 */
4342 cp->startp = cp->phys.header.savep;
4343
4344 /*----------------------------------------------------
4345 **
4346 ** fill in ccb
4347 **
4348 **----------------------------------------------------
4349 **
4350 **
4351 ** physical -> virtual backlink
4352 ** Generic SCSI command
4353 */
4354
4355 /*
4356 ** Startqueue
4357 */
4358 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4359 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4360 /*
4361 ** select
4362 */
4363 cp->phys.select.sel_id = sdev_id(sdev);
4364 cp->phys.select.sel_scntl3 = tp->wval;
4365 cp->phys.select.sel_sxfer = tp->sval;
4366 /*
4367 ** message
4368 */
4369 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4370 cp->phys.smsg.size = cpu_to_scr(msglen);
4371
4372 /*
4373 ** command
4374 */
4375 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4376 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4377 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4378
4379 /*
4380 ** status
4381 */
4382 cp->actualquirks = 0;
4383 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4384 cp->scsi_status = S_ILLEGAL;
4385 cp->parity_status = 0;
4386
4387 cp->xerr_status = XE_OK;
4388 #if 0
4389 cp->sync_status = tp->sval;
4390 cp->wide_status = tp->wval;
4391 #endif
4392
4393 /*----------------------------------------------------
4394 **
4395 ** Critical region: start this job.
4396 **
4397 **----------------------------------------------------
4398 */
4399
4400 /* activate this job. */
4401 cp->magic = CCB_MAGIC;
4402
4403 /*
4404 ** insert next CCBs into start queue.
4405 ** 2 max at a time is enough to flush the CCB wait queue.
4406 */
4407 cp->auto_sense = 0;
4408 if (lp)
4409 ncr_start_next_ccb(np, lp, 2);
4410 else
4411 ncr_put_start_queue(np, cp);
4412
4413 /* Command is successfully queued. */
4414
4415 return DID_OK;
4416 }
4417
4418
4419 /*==========================================================
4420 **
4421 **
4422 ** Insert a CCB into the start queue and wake up the
4423 ** SCRIPTS processor.
4424 **
4425 **
4426 **==========================================================
4427 */
4428
4429 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4430 {
4431 struct list_head *qp;
4432 struct ccb *cp;
4433
4434 if (lp->held_ccb)
4435 return;
4436
4437 while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4438 qp = ncr_list_pop(&lp->wait_ccbq);
4439 if (!qp)
4440 break;
4441 ++lp->queuedccbs;
4442 cp = list_entry(qp, struct ccb, link_ccbq);
4443 list_add_tail(qp, &lp->busy_ccbq);
4444 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4445 cpu_to_scr(CCB_PHYS (cp, restart));
4446 ncr_put_start_queue(np, cp);
4447 }
4448 }
4449
4450 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4451 {
4452 u16 qidx;
4453
4454 /*
4455 ** insert into start queue.
4456 */
4457 if (!np->squeueput) np->squeueput = 1;
4458 qidx = np->squeueput + 2;
4459 if (qidx >= MAX_START + MAX_START) qidx = 1;
4460
4461 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4462 MEMORY_BARRIER();
4463 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4464
4465 np->squeueput = qidx;
4466 ++np->queuedccbs;
4467 cp->queued = 1;
4468
4469 if (DEBUG_FLAGS & DEBUG_QUEUE)
4470 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4471
4472 /*
4473 ** Script processor may be waiting for reselect.
4474 ** Wake it up.
4475 */
4476 MEMORY_BARRIER();
4477 OUTB (nc_istat, SIGP);
4478 }
4479
4480
4481 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4482 {
4483 u32 term;
4484 int retv = 0;
4485
4486 np->settle_time = jiffies + settle_delay * HZ;
4487
4488 if (bootverbose > 1)
4489 printk("%s: resetting, "
4490 "command processing suspended for %d seconds\n",
4491 ncr_name(np), settle_delay);
4492
4493 ncr_chip_reset(np, 100);
4494 udelay(2000); /* The 895 needs time for the bus mode to settle */
4495 if (enab_int)
4496 OUTW (nc_sien, RST);
4497 /*
4498 ** Enable Tolerant, reset IRQD if present and
4499 ** properly set IRQ mode, prior to resetting the bus.
4500 */
4501 OUTB (nc_stest3, TE);
4502 OUTB (nc_scntl1, CRST);
4503 udelay(200);
4504
4505 if (!driver_setup.bus_check)
4506 goto out;
4507 /*
4508 ** Check for no terminators or SCSI bus shorts to ground.
4509 ** Read SCSI data bus, data parity bits and control signals.
4510 ** We are expecting RESET to be TRUE and other signals to be
4511 ** FALSE.
4512 */
4513
4514 term = INB(nc_sstat0);
4515 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4516 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4517 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4518 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4519 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4520
4521 if (!(np->features & FE_WIDE))
4522 term &= 0x3ffff;
4523
4524 if (term != (2<<7)) {
4525 printk("%s: suspicious SCSI data while resetting the BUS.\n",
4526 ncr_name(np));
4527 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4528 "0x%lx, expecting 0x%lx\n",
4529 ncr_name(np),
4530 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4531 (u_long)term, (u_long)(2<<7));
4532 if (driver_setup.bus_check == 1)
4533 retv = 1;
4534 }
4535 out:
4536 OUTB (nc_scntl1, 0);
4537 return retv;
4538 }
4539
4540 /*
4541 * Start reset process.
4542 * If reset in progress do nothing.
4543 * The interrupt handler will reinitialize the chip.
4544 * The timeout handler will wait for settle_time before
4545 * clearing it and so resuming command processing.
4546 */
4547 static void ncr_start_reset(struct ncb *np)
4548 {
4549 if (!np->settle_time) {
4550 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4551 }
4552 }
4553
4554 /*==========================================================
4555 **
4556 **
4557 ** Reset the SCSI BUS.
4558 ** This is called from the generic SCSI driver.
4559 **
4560 **
4561 **==========================================================
4562 */
4563 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4564 {
4565 /* struct scsi_device *device = cmd->device; */
4566 struct ccb *cp;
4567 int found;
4568
4569 /*
4570 * Return immediately if reset is in progress.
4571 */
4572 if (np->settle_time) {
4573 return FAILED;
4574 }
4575 /*
4576 * Start the reset process.
4577 * The script processor is then assumed to be stopped.
4578 * Commands will now be queued in the waiting list until a settle
4579 * delay of 2 seconds will be completed.
4580 */
4581 ncr_start_reset(np);
4582 /*
4583 * First, look in the wakeup list
4584 */
4585 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4586 /*
4587 ** look for the ccb of this command.
4588 */
4589 if (cp->host_status == HS_IDLE) continue;
4590 if (cp->cmd == cmd) {
4591 found = 1;
4592 break;
4593 }
4594 }
4595 /*
4596 * Then, look in the waiting list
4597 */
4598 if (!found && retrieve_from_waiting_list(0, np, cmd))
4599 found = 1;
4600 /*
4601 * Wake-up all awaiting commands with DID_RESET.
4602 */
4603 reset_waiting_list(np);
4604 /*
4605 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4606 */
4607 ncr_wakeup(np, HS_RESET);
4608 /*
4609 * If the involved command was not in a driver queue, and the
4610 * scsi driver told us reset is synchronous, and the command is not
4611 * currently in the waiting list, complete it with DID_RESET status,
4612 * in order to keep it alive.
4613 */
4614 if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4615 cmd->result = ScsiResult(DID_RESET, 0);
4616 ncr_queue_done_cmd(np, cmd);
4617 }
4618
4619 return SUCCESS;
4620 }
4621
4622 #if 0 /* unused and broken.. */
4623 /*==========================================================
4624 **
4625 **
4626 ** Abort an SCSI command.
4627 ** This is called from the generic SCSI driver.
4628 **
4629 **
4630 **==========================================================
4631 */
4632 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4633 {
4634 /* struct scsi_device *device = cmd->device; */
4635 struct ccb *cp;
4636 int found;
4637 int retv;
4638
4639 /*
4640 * First, look for the scsi command in the waiting list
4641 */
4642 if (remove_from_waiting_list(np, cmd)) {
4643 cmd->result = ScsiResult(DID_ABORT, 0);
4644 ncr_queue_done_cmd(np, cmd);
4645 return SCSI_ABORT_SUCCESS;
4646 }
4647
4648 /*
4649 * Then, look in the wakeup list
4650 */
4651 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4652 /*
4653 ** look for the ccb of this command.
4654 */
4655 if (cp->host_status == HS_IDLE) continue;
4656 if (cp->cmd == cmd) {
4657 found = 1;
4658 break;
4659 }
4660 }
4661
4662 if (!found) {
4663 return SCSI_ABORT_NOT_RUNNING;
4664 }
4665
4666 if (np->settle_time) {
4667 return SCSI_ABORT_SNOOZE;
4668 }
4669
4670 /*
4671 ** If the CCB is active, patch schedule jumps for the
4672 ** script to abort the command.
4673 */
4674
4675 switch(cp->host_status) {
4676 case HS_BUSY:
4677 case HS_NEGOTIATE:
4678 printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4679 cp->start.schedule.l_paddr =
4680 cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4681 retv = SCSI_ABORT_PENDING;
4682 break;
4683 case HS_DISCONNECT:
4684 cp->restart.schedule.l_paddr =
4685 cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4686 retv = SCSI_ABORT_PENDING;
4687 break;
4688 default:
4689 retv = SCSI_ABORT_NOT_RUNNING;
4690 break;
4691
4692 }
4693
4694 /*
4695 ** If there are no requests, the script
4696 ** processor will sleep on SEL_WAIT_RESEL.
4697 ** Let's wake it up, since it may have to work.
4698 */
4699 OUTB (nc_istat, SIGP);
4700
4701 return retv;
4702 }
4703 #endif
4704
4705 static void ncr_detach(struct ncb *np)
4706 {
4707 struct ccb *cp;
4708 struct tcb *tp;
4709 struct lcb *lp;
4710 int target, lun;
4711 int i;
4712 char inst_name[16];
4713
4714 /* Local copy so we don't access np after freeing it! */
4715 strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4716
4717 printk("%s: releasing host resources\n", ncr_name(np));
4718
4719 /*
4720 ** Stop the ncr_timeout process
4721 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4722 */
4723
4724 #ifdef DEBUG_NCR53C8XX
4725 printk("%s: stopping the timer\n", ncr_name(np));
4726 #endif
4727 np->release_stage = 1;
4728 for (i = 50 ; i && np->release_stage != 2 ; i--)
4729 mdelay(100);
4730 if (np->release_stage != 2)
4731 printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4732 else np->release_stage = 2;
4733
4734 /*
4735 ** Disable chip interrupts
4736 */
4737
4738 #ifdef DEBUG_NCR53C8XX
4739 printk("%s: disabling chip interrupts\n", ncr_name(np));
4740 #endif
4741 OUTW (nc_sien , 0);
4742 OUTB (nc_dien , 0);
4743
4744 /*
4745 ** Reset NCR chip
4746 ** Restore bios setting for automatic clock detection.
4747 */
4748
4749 printk("%s: resetting chip\n", ncr_name(np));
4750 ncr_chip_reset(np, 100);
4751
4752 OUTB(nc_dmode, np->sv_dmode);
4753 OUTB(nc_dcntl, np->sv_dcntl);
4754 OUTB(nc_ctest0, np->sv_ctest0);
4755 OUTB(nc_ctest3, np->sv_ctest3);
4756 OUTB(nc_ctest4, np->sv_ctest4);
4757 OUTB(nc_ctest5, np->sv_ctest5);
4758 OUTB(nc_gpcntl, np->sv_gpcntl);
4759 OUTB(nc_stest2, np->sv_stest2);
4760
4761 ncr_selectclock(np, np->sv_scntl3);
4762
4763 /*
4764 ** Free allocated ccb(s)
4765 */
4766
4767 while ((cp=np->ccb->link_ccb) != NULL) {
4768 np->ccb->link_ccb = cp->link_ccb;
4769 if (cp->host_status) {
4770 printk("%s: shall free an active ccb (host_status=%d)\n",
4771 ncr_name(np), cp->host_status);
4772 }
4773 #ifdef DEBUG_NCR53C8XX
4774 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4775 #endif
4776 m_free_dma(cp, sizeof(*cp), "CCB");
4777 }
4778
4779 /* Free allocated tp(s) */
4780
4781 for (target = 0; target < MAX_TARGET ; target++) {
4782 tp=&np->target[target];
4783 for (lun = 0 ; lun < MAX_LUN ; lun++) {
4784 lp = tp->lp[lun];
4785 if (lp) {
4786 #ifdef DEBUG_NCR53C8XX
4787 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4788 #endif
4789 if (lp->jump_ccb != &lp->jump_ccb_0)
4790 m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4791 m_free_dma(lp, sizeof(*lp), "LCB");
4792 }
4793 }
4794 }
4795
4796 if (np->scripth0)
4797 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4798 if (np->script0)
4799 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4800 if (np->ccb)
4801 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4802 m_free_dma(np, sizeof(struct ncb), "NCB");
4803
4804 printk("%s: host resources successfully released\n", inst_name);
4805 }
4806
4807 /*==========================================================
4808 **
4809 **
4810 ** Complete execution of a SCSI command.
4811 ** Signal completion to the generic SCSI driver.
4812 **
4813 **
4814 **==========================================================
4815 */
4816
4817 void ncr_complete (struct ncb *np, struct ccb *cp)
4818 {
4819 struct scsi_cmnd *cmd;
4820 struct tcb *tp;
4821 struct lcb *lp;
4822
4823 /*
4824 ** Sanity check
4825 */
4826
4827 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4828 return;
4829
4830 /*
4831 ** Print minimal debug information.
4832 */
4833
4834 if (DEBUG_FLAGS & DEBUG_TINY)
4835 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4836 cp->host_status,cp->scsi_status);
4837
4838 /*
4839 ** Get command, target and lun pointers.
4840 */
4841
4842 cmd = cp->cmd;
4843 cp->cmd = NULL;
4844 tp = &np->target[cmd->device->id];
4845 lp = tp->lp[cmd->device->lun];
4846
4847 /*
4848 ** We donnot queue more than 1 ccb per target
4849 ** with negotiation at any time. If this ccb was
4850 ** used for negotiation, clear this info in the tcb.
4851 */
4852
4853 if (cp == tp->nego_cp)
4854 tp->nego_cp = NULL;
4855
4856 /*
4857 ** If auto-sense performed, change scsi status.
4858 */
4859 if (cp->auto_sense) {
4860 cp->scsi_status = cp->auto_sense;
4861 }
4862
4863 /*
4864 ** If we were recovering from queue full or performing
4865 ** auto-sense, requeue skipped CCBs to the wait queue.
4866 */
4867
4868 if (lp && lp->held_ccb) {
4869 if (cp == lp->held_ccb) {
4870 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4871 lp->held_ccb = NULL;
4872 }
4873 }
4874
4875 /*
4876 ** Check for parity errors.
4877 */
4878
4879 if (cp->parity_status > 1) {
4880 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4881 }
4882
4883 /*
4884 ** Check for extended errors.
4885 */
4886
4887 if (cp->xerr_status != XE_OK) {
4888 switch (cp->xerr_status) {
4889 case XE_EXTRA_DATA:
4890 PRINT_ADDR(cmd, "extraneous data discarded.\n");
4891 break;
4892 case XE_BAD_PHASE:
4893 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4894 break;
4895 default:
4896 PRINT_ADDR(cmd, "extended error %d.\n",
4897 cp->xerr_status);
4898 break;
4899 }
4900 if (cp->host_status==HS_COMPLETE)
4901 cp->host_status = HS_FAIL;
4902 }
4903
4904 /*
4905 ** Print out any error for debugging purpose.
4906 */
4907 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4908 if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4909 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4910 "scsi_status=%x\n", cmd->cmnd[0],
4911 cp->host_status, cp->scsi_status);
4912 }
4913 }
4914
4915 /*
4916 ** Check the status.
4917 */
4918 if ( (cp->host_status == HS_COMPLETE)
4919 && (cp->scsi_status == S_GOOD ||
4920 cp->scsi_status == S_COND_MET)) {
4921 /*
4922 * All went well (GOOD status).
4923 * CONDITION MET status is returned on
4924 * `Pre-Fetch' or `Search data' success.
4925 */
4926 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4927
4928 /*
4929 ** @RESID@
4930 ** Could dig out the correct value for resid,
4931 ** but it would be quite complicated.
4932 */
4933 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4934
4935 /*
4936 ** Allocate the lcb if not yet.
4937 */
4938 if (!lp)
4939 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4940
4941 tp->bytes += cp->data_len;
4942 tp->transfers ++;
4943
4944 /*
4945 ** If tags was reduced due to queue full,
4946 ** increase tags if 1000 good status received.
4947 */
4948 if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4949 ++lp->num_good;
4950 if (lp->num_good >= 1000) {
4951 lp->num_good = 0;
4952 ++lp->numtags;
4953 ncr_setup_tags (np, cmd->device);
4954 }
4955 }
4956 } else if ((cp->host_status == HS_COMPLETE)
4957 && (cp->scsi_status == S_CHECK_COND)) {
4958 /*
4959 ** Check condition code
4960 */
4961 cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
4962
4963 /*
4964 ** Copy back sense data to caller's buffer.
4965 */
4966 memcpy(cmd->sense_buffer, cp->sense_buf,
4967 min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4968 sizeof(cp->sense_buf)));
4969
4970 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4971 u_char *p = cmd->sense_buffer;
4972 int i;
4973 PRINT_ADDR(cmd, "sense data:");
4974 for (i=0; i<14; i++) printk (" %x", *p++);
4975 printk (".\n");
4976 }
4977 } else if ((cp->host_status == HS_COMPLETE)
4978 && (cp->scsi_status == S_CONFLICT)) {
4979 /*
4980 ** Reservation Conflict condition code
4981 */
4982 cmd->result = ScsiResult(DID_OK, S_CONFLICT);
4983
4984 } else if ((cp->host_status == HS_COMPLETE)
4985 && (cp->scsi_status == S_BUSY ||
4986 cp->scsi_status == S_QUEUE_FULL)) {
4987
4988 /*
4989 ** Target is busy.
4990 */
4991 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4992
4993 } else if ((cp->host_status == HS_SEL_TIMEOUT)
4994 || (cp->host_status == HS_TIMEOUT)) {
4995
4996 /*
4997 ** No response
4998 */
4999 cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
5000
5001 } else if (cp->host_status == HS_RESET) {
5002
5003 /*
5004 ** SCSI bus reset
5005 */
5006 cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5007
5008 } else if (cp->host_status == HS_ABORTED) {
5009
5010 /*
5011 ** Transfer aborted
5012 */
5013 cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5014
5015 } else {
5016
5017 /*
5018 ** Other protocol messes
5019 */
5020 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5021 cp->host_status, cp->scsi_status, cp);
5022
5023 cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5024 }
5025
5026 /*
5027 ** trace output
5028 */
5029
5030 if (tp->usrflag & UF_TRACE) {
5031 u_char * p;
5032 int i;
5033 PRINT_ADDR(cmd, " CMD:");
5034 p = (u_char*) &cmd->cmnd[0];
5035 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5036
5037 if (cp->host_status==HS_COMPLETE) {
5038 switch (cp->scsi_status) {
5039 case S_GOOD:
5040 printk (" GOOD");
5041 break;
5042 case S_CHECK_COND:
5043 printk (" SENSE:");
5044 p = (u_char*) &cmd->sense_buffer;
5045 for (i=0; i<14; i++)
5046 printk (" %x", *p++);
5047 break;
5048 default:
5049 printk (" STAT: %x\n", cp->scsi_status);
5050 break;
5051 }
5052 } else printk (" HOSTERROR: %x", cp->host_status);
5053 printk ("\n");
5054 }
5055
5056 /*
5057 ** Free this ccb
5058 */
5059 ncr_free_ccb (np, cp);
5060
5061 /*
5062 ** requeue awaiting scsi commands for this lun.
5063 */
5064 if (lp && lp->queuedccbs < lp->queuedepth &&
5065 !list_empty(&lp->wait_ccbq))
5066 ncr_start_next_ccb(np, lp, 2);
5067
5068 /*
5069 ** requeue awaiting scsi commands for this controller.
5070 */
5071 if (np->waiting_list)
5072 requeue_waiting_list(np);
5073
5074 /*
5075 ** signal completion to generic driver.
5076 */
5077 ncr_queue_done_cmd(np, cmd);
5078 }
5079
5080 /*==========================================================
5081 **
5082 **
5083 ** Signal all (or one) control block done.
5084 **
5085 **
5086 **==========================================================
5087 */
5088
5089 /*
5090 ** This CCB has been skipped by the NCR.
5091 ** Queue it in the corresponding unit queue.
5092 */
5093 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5094 {
5095 struct tcb *tp = &np->target[cp->target];
5096 struct lcb *lp = tp->lp[cp->lun];
5097
5098 if (lp && cp != np->ccb) {
5099 cp->host_status &= ~HS_SKIPMASK;
5100 cp->start.schedule.l_paddr =
5101 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5102 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5103 if (cp->queued) {
5104 --lp->queuedccbs;
5105 }
5106 }
5107 if (cp->queued) {
5108 --np->queuedccbs;
5109 cp->queued = 0;
5110 }
5111 }
5112
5113 /*
5114 ** The NCR has completed CCBs.
5115 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5116 */
5117 void ncr_wakeup_done (struct ncb *np)
5118 {
5119 struct ccb *cp;
5120 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5121 int i, j;
5122
5123 i = np->ccb_done_ic;
5124 while (1) {
5125 j = i+1;
5126 if (j >= MAX_DONE)
5127 j = 0;
5128
5129 cp = np->ccb_done[j];
5130 if (!CCB_DONE_VALID(cp))
5131 break;
5132
5133 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5134 np->scripth->done_queue[5*j + 4] =
5135 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5136 MEMORY_BARRIER();
5137 np->scripth->done_queue[5*i + 4] =
5138 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5139
5140 if (cp->host_status & HS_DONEMASK)
5141 ncr_complete (np, cp);
5142 else if (cp->host_status & HS_SKIPMASK)
5143 ncr_ccb_skipped (np, cp);
5144
5145 i = j;
5146 }
5147 np->ccb_done_ic = i;
5148 #else
5149 cp = np->ccb;
5150 while (cp) {
5151 if (cp->host_status & HS_DONEMASK)
5152 ncr_complete (np, cp);
5153 else if (cp->host_status & HS_SKIPMASK)
5154 ncr_ccb_skipped (np, cp);
5155 cp = cp->link_ccb;
5156 }
5157 #endif
5158 }
5159
5160 /*
5161 ** Complete all active CCBs.
5162 */
5163 void ncr_wakeup (struct ncb *np, u_long code)
5164 {
5165 struct ccb *cp = np->ccb;
5166
5167 while (cp) {
5168 if (cp->host_status != HS_IDLE) {
5169 cp->host_status = code;
5170 ncr_complete (np, cp);
5171 }
5172 cp = cp->link_ccb;
5173 }
5174 }
5175
5176 /*
5177 ** Reset ncr chip.
5178 */
5179
5180 /* Some initialisation must be done immediately following reset, for 53c720,
5181 * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5182 * the _detect function.
5183 */
5184 static void ncr_chip_reset(struct ncb *np, int delay)
5185 {
5186 OUTB (nc_istat, SRST);
5187 udelay(delay);
5188 OUTB (nc_istat, 0 );
5189
5190 if (np->features & FE_EHP)
5191 OUTB (nc_ctest0, EHP);
5192 if (np->features & FE_MUX)
5193 OUTB (nc_ctest4, MUX);
5194 }
5195
5196
5197 /*==========================================================
5198 **
5199 **
5200 ** Start NCR chip.
5201 **
5202 **
5203 **==========================================================
5204 */
5205
5206 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5207 {
5208 int i;
5209
5210 /*
5211 ** Reset chip if asked, otherwise just clear fifos.
5212 */
5213
5214 if (reset) {
5215 OUTB (nc_istat, SRST);
5216 udelay(100);
5217 }
5218 else {
5219 OUTB (nc_stest3, TE|CSF);
5220 OUTONB (nc_ctest3, CLF);
5221 }
5222
5223 /*
5224 ** Message.
5225 */
5226
5227 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5228
5229 /*
5230 ** Clear Start Queue
5231 */
5232 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5233 for (i = 1; i < MAX_START + MAX_START; i += 2)
5234 np->scripth0->tryloop[i] =
5235 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5236
5237 /*
5238 ** Start at first entry.
5239 */
5240 np->squeueput = 0;
5241 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5242
5243 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5244 /*
5245 ** Clear Done Queue
5246 */
5247 for (i = 0; i < MAX_DONE; i++) {
5248 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5249 np->scripth0->done_queue[5*i + 4] =
5250 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5251 }
5252 #endif
5253
5254 /*
5255 ** Start at first entry.
5256 */
5257 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5258 np->ccb_done_ic = MAX_DONE-1;
5259 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5260 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5261
5262 /*
5263 ** Wakeup all pending jobs.
5264 */
5265 ncr_wakeup (np, code);
5266
5267 /*
5268 ** Init chip.
5269 */
5270
5271 /*
5272 ** Remove reset; big delay because the 895 needs time for the
5273 ** bus mode to settle
5274 */
5275 ncr_chip_reset(np, 2000);
5276
5277 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5278 /* full arb., ena parity, par->ATN */
5279 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5280
5281 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5282
5283 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5284 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5285 OUTB (nc_istat , SIGP ); /* Signal Process */
5286 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5287 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5288
5289 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5290 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5291 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5292 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5293
5294 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5295 OUTB (nc_stest3, TE); /* TolerANT enable */
5296 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5297
5298 /*
5299 ** Disable disconnects.
5300 */
5301
5302 np->disc = 0;
5303
5304 /*
5305 ** Enable GPIO0 pin for writing if LED support.
5306 */
5307
5308 if (np->features & FE_LED0) {
5309 OUTOFFB (nc_gpcntl, 0x01);
5310 }
5311
5312 /*
5313 ** enable ints
5314 */
5315
5316 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5317 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5318
5319 /*
5320 ** Fill in target structure.
5321 ** Reinitialize usrsync.
5322 ** Reinitialize usrwide.
5323 ** Prepare sync negotiation according to actual SCSI bus mode.
5324 */
5325
5326 for (i=0;i<MAX_TARGET;i++) {
5327 struct tcb *tp = &np->target[i];
5328
5329 tp->sval = 0;
5330 tp->wval = np->rv_scntl3;
5331
5332 if (tp->usrsync != 255) {
5333 if (tp->usrsync <= np->maxsync) {
5334 if (tp->usrsync < np->minsync) {
5335 tp->usrsync = np->minsync;
5336 }
5337 }
5338 else
5339 tp->usrsync = 255;
5340 }
5341
5342 if (tp->usrwide > np->maxwide)
5343 tp->usrwide = np->maxwide;
5344
5345 }
5346
5347 /*
5348 ** Start script processor.
5349 */
5350 if (np->paddr2) {
5351 if (bootverbose)
5352 printk ("%s: Downloading SCSI SCRIPTS.\n",
5353 ncr_name(np));
5354 OUTL (nc_scratcha, vtobus(np->script0));
5355 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5356 }
5357 else
5358 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5359 }
5360
5361 /*==========================================================
5362 **
5363 ** Prepare the negotiation values for wide and
5364 ** synchronous transfers.
5365 **
5366 **==========================================================
5367 */
5368
5369 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5370 {
5371 /*
5372 ** minsync unit is 4ns !
5373 */
5374
5375 u_long minsync = tp->usrsync;
5376
5377 /*
5378 ** SCSI bus mode limit
5379 */
5380
5381 if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5382 if (minsync < 12) minsync = 12;
5383 }
5384
5385 /*
5386 ** our limit ..
5387 */
5388
5389 if (minsync < np->minsync)
5390 minsync = np->minsync;
5391
5392 /*
5393 ** divider limit
5394 */
5395
5396 if (minsync > np->maxsync)
5397 minsync = 255;
5398
5399 if (tp->maxoffs > np->maxoffs)
5400 tp->maxoffs = np->maxoffs;
5401
5402 tp->minsync = minsync;
5403 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5404
5405 /*
5406 ** period=0: has to negotiate sync transfer
5407 */
5408
5409 tp->period=0;
5410
5411 /*
5412 ** widedone=0: has to negotiate wide transfer
5413 */
5414 tp->widedone=0;
5415 }
5416
5417 /*==========================================================
5418 **
5419 ** Get clock factor and sync divisor for a given
5420 ** synchronous factor period.
5421 ** Returns the clock factor (in sxfer) and scntl3
5422 ** synchronous divisor field.
5423 **
5424 **==========================================================
5425 */
5426
5427 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5428 {
5429 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5430 int div = np->clock_divn; /* Number of divisors supported */
5431 u_long fak; /* Sync factor in sxfer */
5432 u_long per; /* Period in tenths of ns */
5433 u_long kpc; /* (per * clk) */
5434
5435 /*
5436 ** Compute the synchronous period in tenths of nano-seconds
5437 */
5438 if (sfac <= 10) per = 250;
5439 else if (sfac == 11) per = 303;
5440 else if (sfac == 12) per = 500;
5441 else per = 40 * sfac;
5442
5443 /*
5444 ** Look for the greatest clock divisor that allows an
5445 ** input speed faster than the period.
5446 */
5447 kpc = per * clk;
5448 while (--div > 0)
5449 if (kpc >= (div_10M[div] << 2)) break;
5450
5451 /*
5452 ** Calculate the lowest clock factor that allows an output
5453 ** speed not faster than the period.
5454 */
5455 fak = (kpc - 1) / div_10M[div] + 1;
5456
5457 #if 0 /* This optimization does not seem very useful */
5458
5459 per = (fak * div_10M[div]) / clk;
5460
5461 /*
5462 ** Why not to try the immediate lower divisor and to choose
5463 ** the one that allows the fastest output speed ?
5464 ** We don't want input speed too much greater than output speed.
5465 */
5466 if (div >= 1 && fak < 8) {
5467 u_long fak2, per2;
5468 fak2 = (kpc - 1) / div_10M[div-1] + 1;
5469 per2 = (fak2 * div_10M[div-1]) / clk;
5470 if (per2 < per && fak2 <= 8) {
5471 fak = fak2;
5472 per = per2;
5473 --div;
5474 }
5475 }
5476 #endif
5477
5478 if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5479
5480 /*
5481 ** Compute and return sync parameters for the ncr
5482 */
5483 *fakp = fak - 4;
5484 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5485 }
5486
5487
5488 /*==========================================================
5489 **
5490 ** Set actual values, sync status and patch all ccbs of
5491 ** a target according to new sync/wide agreement.
5492 **
5493 **==========================================================
5494 */
5495
5496 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5497 {
5498 struct ccb *cp;
5499 struct tcb *tp = &np->target[target];
5500
5501 /*
5502 ** set actual value and sync_status
5503 */
5504 OUTB (nc_sxfer, tp->sval);
5505 np->sync_st = tp->sval;
5506 OUTB (nc_scntl3, tp->wval);
5507 np->wide_st = tp->wval;
5508
5509 /*
5510 ** patch ALL ccbs of this target.
5511 */
5512 for (cp = np->ccb; cp; cp = cp->link_ccb) {
5513 if (!cp->cmd) continue;
5514 if (scmd_id(cp->cmd) != target) continue;
5515 #if 0
5516 cp->sync_status = tp->sval;
5517 cp->wide_status = tp->wval;
5518 #endif
5519 cp->phys.select.sel_scntl3 = tp->wval;
5520 cp->phys.select.sel_sxfer = tp->sval;
5521 }
5522 }
5523
5524 /*==========================================================
5525 **
5526 ** Switch sync mode for current job and it's target
5527 **
5528 **==========================================================
5529 */
5530
5531 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5532 {
5533 struct scsi_cmnd *cmd = cp->cmd;
5534 struct tcb *tp;
5535 u_char target = INB (nc_sdid) & 0x0f;
5536 u_char idiv;
5537
5538 BUG_ON(target != (scmd_id(cmd) & 0xf));
5539
5540 tp = &np->target[target];
5541
5542 if (!scntl3 || !(sxfer & 0x1f))
5543 scntl3 = np->rv_scntl3;
5544 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5545
5546 /*
5547 ** Deduce the value of controller sync period from scntl3.
5548 ** period is in tenths of nano-seconds.
5549 */
5550
5551 idiv = ((scntl3 >> 4) & 0x7);
5552 if ((sxfer & 0x1f) && idiv)
5553 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5554 else
5555 tp->period = 0xffff;
5556
5557 /* Stop there if sync parameters are unchanged */
5558 if (tp->sval == sxfer && tp->wval == scntl3)
5559 return;
5560 tp->sval = sxfer;
5561 tp->wval = scntl3;
5562
5563 if (sxfer & 0x01f) {
5564 /* Disable extended Sreq/Sack filtering */
5565 if (tp->period <= 2000)
5566 OUTOFFB(nc_stest2, EXT);
5567 }
5568
5569 spi_display_xfer_agreement(tp->starget);
5570
5571 /*
5572 ** set actual value and sync_status
5573 ** patch ALL ccbs of this target.
5574 */
5575 ncr_set_sync_wide_status(np, target);
5576 }
5577
5578 /*==========================================================
5579 **
5580 ** Switch wide mode for current job and it's target
5581 ** SCSI specs say: a SCSI device that accepts a WDTR
5582 ** message shall reset the synchronous agreement to
5583 ** asynchronous mode.
5584 **
5585 **==========================================================
5586 */
5587
5588 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5589 {
5590 struct scsi_cmnd *cmd = cp->cmd;
5591 u16 target = INB (nc_sdid) & 0x0f;
5592 struct tcb *tp;
5593 u_char scntl3;
5594 u_char sxfer;
5595
5596 BUG_ON(target != (scmd_id(cmd) & 0xf));
5597
5598 tp = &np->target[target];
5599 tp->widedone = wide+1;
5600 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5601
5602 sxfer = ack ? 0 : tp->sval;
5603
5604 /*
5605 ** Stop there if sync/wide parameters are unchanged
5606 */
5607 if (tp->sval == sxfer && tp->wval == scntl3) return;
5608 tp->sval = sxfer;
5609 tp->wval = scntl3;
5610
5611 /*
5612 ** Bells and whistles ;-)
5613 */
5614 if (bootverbose >= 2) {
5615 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5616 (scntl3 & EWS) ? "en" : "dis");
5617 }
5618
5619 /*
5620 ** set actual value and sync_status
5621 ** patch ALL ccbs of this target.
5622 */
5623 ncr_set_sync_wide_status(np, target);
5624 }
5625
5626 /*==========================================================
5627 **
5628 ** Switch tagged mode for a target.
5629 **
5630 **==========================================================
5631 */
5632
5633 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5634 {
5635 unsigned char tn = sdev->id, ln = sdev->lun;
5636 struct tcb *tp = &np->target[tn];
5637 struct lcb *lp = tp->lp[ln];
5638 u_char reqtags, maxdepth;
5639
5640 /*
5641 ** Just in case ...
5642 */
5643 if ((!tp) || (!lp) || !sdev)
5644 return;
5645
5646 /*
5647 ** If SCSI device queue depth is not yet set, leave here.
5648 */
5649 if (!lp->scdev_depth)
5650 return;
5651
5652 /*
5653 ** Donnot allow more tags than the SCSI driver can queue
5654 ** for this device.
5655 ** Donnot allow more tags than we can handle.
5656 */
5657 maxdepth = lp->scdev_depth;
5658 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5659 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5660 if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5661
5662 /*
5663 ** only devices conformant to ANSI Version >= 2
5664 ** only devices capable of tagged commands
5665 ** only if enabled by user ..
5666 */
5667 if (sdev->tagged_supported && lp->numtags > 1) {
5668 reqtags = lp->numtags;
5669 } else {
5670 reqtags = 1;
5671 }
5672
5673 /*
5674 ** Update max number of tags
5675 */
5676 lp->numtags = reqtags;
5677 if (lp->numtags > lp->maxtags)
5678 lp->maxtags = lp->numtags;
5679
5680 /*
5681 ** If we want to switch tag mode, we must wait
5682 ** for no CCB to be active.
5683 */
5684 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5685 if (lp->queuedepth == reqtags) /* Already announced */
5686 return;
5687 lp->queuedepth = reqtags;
5688 }
5689 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5690 lp->queuedepth = reqtags;
5691 return;
5692 }
5693 else { /* Want to switch tag mode */
5694 if (lp->busyccbs) /* If not yet safe, return */
5695 return;
5696 lp->queuedepth = reqtags;
5697 lp->usetags = reqtags > 1 ? 1 : 0;
5698 }
5699
5700 /*
5701 ** Patch the lun mini-script, according to tag mode.
5702 */
5703 lp->jump_tag.l_paddr = lp->usetags?
5704 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5705 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5706
5707 /*
5708 ** Announce change to user.
5709 */
5710 if (bootverbose) {
5711 if (lp->usetags) {
5712 dev_info(&sdev->sdev_gendev,
5713 "tagged command queue depth set to %d\n",
5714 reqtags);
5715 } else {
5716 dev_info(&sdev->sdev_gendev,
5717 "tagged command queueing disabled\n");
5718 }
5719 }
5720 }
5721
5722 /*==========================================================
5723 **
5724 **
5725 ** ncr timeout handler.
5726 **
5727 **
5728 **==========================================================
5729 **
5730 ** Misused to keep the driver running when
5731 ** interrupts are not configured correctly.
5732 **
5733 **----------------------------------------------------------
5734 */
5735
5736 static void ncr_timeout (struct ncb *np)
5737 {
5738 u_long thistime = jiffies;
5739
5740 /*
5741 ** If release process in progress, let's go
5742 ** Set the release stage from 1 to 2 to synchronize
5743 ** with the release process.
5744 */
5745
5746 if (np->release_stage) {
5747 if (np->release_stage == 1) np->release_stage = 2;
5748 return;
5749 }
5750
5751 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5752 add_timer(&np->timer);
5753
5754 /*
5755 ** If we are resetting the ncr, wait for settle_time before
5756 ** clearing it. Then command processing will be resumed.
5757 */
5758 if (np->settle_time) {
5759 if (np->settle_time <= thistime) {
5760 if (bootverbose > 1)
5761 printk("%s: command processing resumed\n", ncr_name(np));
5762 np->settle_time = 0;
5763 np->disc = 1;
5764 requeue_waiting_list(np);
5765 }
5766 return;
5767 }
5768
5769 /*
5770 ** Since the generic scsi driver only allows us 0.5 second
5771 ** to perform abort of a command, we must look at ccbs about
5772 ** every 0.25 second.
5773 */
5774 if (np->lasttime + 4*HZ < thistime) {
5775 /*
5776 ** block ncr interrupts
5777 */
5778 np->lasttime = thistime;
5779 }
5780
5781 #ifdef SCSI_NCR_BROKEN_INTR
5782 if (INB(nc_istat) & (INTF|SIP|DIP)) {
5783
5784 /*
5785 ** Process pending interrupts.
5786 */
5787 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5788 ncr_exception (np);
5789 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5790 }
5791 #endif /* SCSI_NCR_BROKEN_INTR */
5792 }
5793
5794 /*==========================================================
5795 **
5796 ** log message for real hard errors
5797 **
5798 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5799 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5800 **
5801 ** exception register:
5802 ** ds: dstat
5803 ** si: sist
5804 **
5805 ** SCSI bus lines:
5806 ** so: control lines as driver by NCR.
5807 ** si: control lines as seen by NCR.
5808 ** sd: scsi data lines as seen by NCR.
5809 **
5810 ** wide/fastmode:
5811 ** sxfer: (see the manual)
5812 ** scntl3: (see the manual)
5813 **
5814 ** current script command:
5815 ** dsp: script address (relative to start of script).
5816 ** dbc: first word of script command.
5817 **
5818 ** First 16 register of the chip:
5819 ** r0..rf
5820 **
5821 **==========================================================
5822 */
5823
5824 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5825 {
5826 u32 dsp;
5827 int script_ofs;
5828 int script_size;
5829 char *script_name;
5830 u_char *script_base;
5831 int i;
5832
5833 dsp = INL (nc_dsp);
5834
5835 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5836 script_ofs = dsp - np->p_script;
5837 script_size = sizeof(struct script);
5838 script_base = (u_char *) np->script0;
5839 script_name = "script";
5840 }
5841 else if (np->p_scripth < dsp &&
5842 dsp <= np->p_scripth + sizeof(struct scripth)) {
5843 script_ofs = dsp - np->p_scripth;
5844 script_size = sizeof(struct scripth);
5845 script_base = (u_char *) np->scripth0;
5846 script_name = "scripth";
5847 } else {
5848 script_ofs = dsp;
5849 script_size = 0;
5850 script_base = NULL;
5851 script_name = "mem";
5852 }
5853
5854 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5855 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5856 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5857 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5858 (unsigned)INL (nc_dbc));
5859
5860 if (((script_ofs & 3) == 0) &&
5861 (unsigned)script_ofs < script_size) {
5862 printk ("%s: script cmd = %08x\n", ncr_name(np),
5863 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5864 }
5865
5866 printk ("%s: regdump:", ncr_name(np));
5867 for (i=0; i<16;i++)
5868 printk (" %02x", (unsigned)INB_OFF(i));
5869 printk (".\n");
5870 }
5871
5872 /*============================================================
5873 **
5874 ** ncr chip exception handler.
5875 **
5876 **============================================================
5877 **
5878 ** In normal cases, interrupt conditions occur one at a
5879 ** time. The ncr is able to stack in some extra registers
5880 ** other interrupts that will occur after the first one.
5881 ** But, several interrupts may occur at the same time.
5882 **
5883 ** We probably should only try to deal with the normal
5884 ** case, but it seems that multiple interrupts occur in
5885 ** some cases that are not abnormal at all.
5886 **
5887 ** The most frequent interrupt condition is Phase Mismatch.
5888 ** We should want to service this interrupt quickly.
5889 ** A SCSI parity error may be delivered at the same time.
5890 ** The SIR interrupt is not very frequent in this driver,
5891 ** since the INTFLY is likely used for command completion
5892 ** signaling.
5893 ** The Selection Timeout interrupt may be triggered with
5894 ** IID and/or UDC.
5895 ** The SBMC interrupt (SCSI Bus Mode Change) may probably
5896 ** occur at any time.
5897 **
5898 ** This handler try to deal as cleverly as possible with all
5899 ** the above.
5900 **
5901 **============================================================
5902 */
5903
5904 void ncr_exception (struct ncb *np)
5905 {
5906 u_char istat, dstat;
5907 u16 sist;
5908 int i;
5909
5910 /*
5911 ** interrupt on the fly ?
5912 ** Since the global header may be copied back to a CCB
5913 ** using a posted PCI memory write, the last operation on
5914 ** the istat register is a READ in order to flush posted
5915 ** PCI write commands.
5916 */
5917 istat = INB (nc_istat);
5918 if (istat & INTF) {
5919 OUTB (nc_istat, (istat & SIGP) | INTF);
5920 istat = INB (nc_istat);
5921 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5922 ncr_wakeup_done (np);
5923 }
5924
5925 if (!(istat & (SIP|DIP)))
5926 return;
5927
5928 if (istat & CABRT)
5929 OUTB (nc_istat, CABRT);
5930
5931 /*
5932 ** Steinbach's Guideline for Systems Programming:
5933 ** Never test for an error condition you don't know how to handle.
5934 */
5935
5936 sist = (istat & SIP) ? INW (nc_sist) : 0;
5937 dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5938
5939 if (DEBUG_FLAGS & DEBUG_TINY)
5940 printk ("<%d|%x:%x|%x:%x>",
5941 (int)INB(nc_scr0),
5942 dstat,sist,
5943 (unsigned)INL(nc_dsp),
5944 (unsigned)INL(nc_dbc));
5945
5946 /*========================================================
5947 ** First, interrupts we want to service cleanly.
5948 **
5949 ** Phase mismatch is the most frequent interrupt, and
5950 ** so we have to service it as quickly and as cleanly
5951 ** as possible.
5952 ** Programmed interrupts are rarely used in this driver,
5953 ** but we must handle them cleanly anyway.
5954 ** We try to deal with PAR and SBMC combined with
5955 ** some other interrupt(s).
5956 **=========================================================
5957 */
5958
5959 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5960 !(dstat & (MDPE|BF|ABRT|IID))) {
5961 if ((sist & SBMC) && ncr_int_sbmc (np))
5962 return;
5963 if ((sist & PAR) && ncr_int_par (np))
5964 return;
5965 if (sist & MA) {
5966 ncr_int_ma (np);
5967 return;
5968 }
5969 if (dstat & SIR) {
5970 ncr_int_sir (np);
5971 return;
5972 }
5973 /*
5974 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5975 */
5976 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5977 printk( "%s: unknown interrupt(s) ignored, "
5978 "ISTAT=%x DSTAT=%x SIST=%x\n",
5979 ncr_name(np), istat, dstat, sist);
5980 return;
5981 }
5982 OUTONB_STD ();
5983 return;
5984 }
5985
5986 /*========================================================
5987 ** Now, interrupts that need some fixing up.
5988 ** Order and multiple interrupts is so less important.
5989 **
5990 ** If SRST has been asserted, we just reset the chip.
5991 **
5992 ** Selection is intirely handled by the chip. If the
5993 ** chip says STO, we trust it. Seems some other
5994 ** interrupts may occur at the same time (UDC, IID), so
5995 ** we ignore them. In any case we do enough fix-up
5996 ** in the service routine.
5997 ** We just exclude some fatal dma errors.
5998 **=========================================================
5999 */
6000
6001 if (sist & RST) {
6002 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6003 return;
6004 }
6005
6006 if ((sist & STO) &&
6007 !(dstat & (MDPE|BF|ABRT))) {
6008 /*
6009 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6010 */
6011 OUTONB (nc_ctest3, CLF);
6012
6013 ncr_int_sto (np);
6014 return;
6015 }
6016
6017 /*=========================================================
6018 ** Now, interrupts we are not able to recover cleanly.
6019 ** (At least for the moment).
6020 **
6021 ** Do the register dump.
6022 ** Log message for real hard errors.
6023 ** Clear all fifos.
6024 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6025 ** BUS and the chip.
6026 ** We are more soft for UDC.
6027 **=========================================================
6028 */
6029
6030 if (time_after(jiffies, np->regtime)) {
6031 np->regtime = jiffies + 10*HZ;
6032 for (i = 0; i<sizeof(np->regdump); i++)
6033 ((char*)&np->regdump)[i] = INB_OFF(i);
6034 np->regdump.nc_dstat = dstat;
6035 np->regdump.nc_sist = sist;
6036 }
6037
6038 ncr_log_hard_error(np, sist, dstat);
6039
6040 printk ("%s: have to clear fifos.\n", ncr_name (np));
6041 OUTB (nc_stest3, TE|CSF);
6042 OUTONB (nc_ctest3, CLF);
6043
6044 if ((sist & (SGE)) ||
6045 (dstat & (MDPE|BF|ABRT|IID))) {
6046 ncr_start_reset(np);
6047 return;
6048 }
6049
6050 if (sist & HTH) {
6051 printk ("%s: handshake timeout\n", ncr_name(np));
6052 ncr_start_reset(np);
6053 return;
6054 }
6055
6056 if (sist & UDC) {
6057 printk ("%s: unexpected disconnect\n", ncr_name(np));
6058 OUTB (HS_PRT, HS_UNEXPECTED);
6059 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6060 return;
6061 }
6062
6063 /*=========================================================
6064 ** We just miss the cause of the interrupt. :(
6065 ** Print a message. The timeout will do the real work.
6066 **=========================================================
6067 */
6068 printk ("%s: unknown interrupt\n", ncr_name(np));
6069 }
6070
6071 /*==========================================================
6072 **
6073 ** ncr chip exception handler for selection timeout
6074 **
6075 **==========================================================
6076 **
6077 ** There seems to be a bug in the 53c810.
6078 ** Although a STO-Interrupt is pending,
6079 ** it continues executing script commands.
6080 ** But it will fail and interrupt (IID) on
6081 ** the next instruction where it's looking
6082 ** for a valid phase.
6083 **
6084 **----------------------------------------------------------
6085 */
6086
6087 void ncr_int_sto (struct ncb *np)
6088 {
6089 u_long dsa;
6090 struct ccb *cp;
6091 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6092
6093 /*
6094 ** look for ccb and set the status.
6095 */
6096
6097 dsa = INL (nc_dsa);
6098 cp = np->ccb;
6099 while (cp && (CCB_PHYS (cp, phys) != dsa))
6100 cp = cp->link_ccb;
6101
6102 if (cp) {
6103 cp-> host_status = HS_SEL_TIMEOUT;
6104 ncr_complete (np, cp);
6105 }
6106
6107 /*
6108 ** repair start queue and jump to start point.
6109 */
6110
6111 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6112 return;
6113 }
6114
6115 /*==========================================================
6116 **
6117 ** ncr chip exception handler for SCSI bus mode change
6118 **
6119 **==========================================================
6120 **
6121 ** spi2-r12 11.2.3 says a transceiver mode change must
6122 ** generate a reset event and a device that detects a reset
6123 ** event shall initiate a hard reset. It says also that a
6124 ** device that detects a mode change shall set data transfer
6125 ** mode to eight bit asynchronous, etc...
6126 ** So, just resetting should be enough.
6127 **
6128 **
6129 **----------------------------------------------------------
6130 */
6131
6132 static int ncr_int_sbmc (struct ncb *np)
6133 {
6134 u_char scsi_mode = INB (nc_stest4) & SMODE;
6135
6136 if (scsi_mode != np->scsi_mode) {
6137 printk("%s: SCSI bus mode change from %x to %x.\n",
6138 ncr_name(np), np->scsi_mode, scsi_mode);
6139
6140 np->scsi_mode = scsi_mode;
6141
6142
6143 /*
6144 ** Suspend command processing for 1 second and
6145 ** reinitialize all except the chip.
6146 */
6147 np->settle_time = jiffies + HZ;
6148 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6149 return 1;
6150 }
6151 return 0;
6152 }
6153
6154 /*==========================================================
6155 **
6156 ** ncr chip exception handler for SCSI parity error.
6157 **
6158 **==========================================================
6159 **
6160 **
6161 **----------------------------------------------------------
6162 */
6163
6164 static int ncr_int_par (struct ncb *np)
6165 {
6166 u_char hsts = INB (HS_PRT);
6167 u32 dbc = INL (nc_dbc);
6168 u_char sstat1 = INB (nc_sstat1);
6169 int phase = -1;
6170 int msg = -1;
6171 u32 jmp;
6172
6173 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6174 ncr_name(np), hsts, dbc, sstat1);
6175
6176 /*
6177 * Ignore the interrupt if the NCR is not connected
6178 * to the SCSI bus, since the right work should have
6179 * been done on unexpected disconnection handling.
6180 */
6181 if (!(INB (nc_scntl1) & ISCON))
6182 return 0;
6183
6184 /*
6185 * If the nexus is not clearly identified, reset the bus.
6186 * We will try to do better later.
6187 */
6188 if (hsts & HS_INVALMASK)
6189 goto reset_all;
6190
6191 /*
6192 * If the SCSI parity error occurs in MSG IN phase, prepare a
6193 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6194 * ERROR message and let the device decide to retry the command
6195 * or to terminate with check condition. If we were in MSG IN
6196 * phase waiting for the response of a negotiation, we will
6197 * get SIR_NEGO_FAILED at dispatch.
6198 */
6199 if (!(dbc & 0xc0000000))
6200 phase = (dbc >> 24) & 7;
6201 if (phase == 7)
6202 msg = MSG_PARITY_ERROR;
6203 else
6204 msg = INITIATOR_ERROR;
6205
6206
6207 /*
6208 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6209 * script that will ignore all data in bytes until phase
6210 * change, since we are not sure the chip will wait the phase
6211 * change prior to delivering the interrupt.
6212 */
6213 if (phase == 1)
6214 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6215 else
6216 jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6217
6218 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6219 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6220
6221 np->msgout[0] = msg;
6222 OUTL_DSP (jmp);
6223 return 1;
6224
6225 reset_all:
6226 ncr_start_reset(np);
6227 return 1;
6228 }
6229
6230 /*==========================================================
6231 **
6232 **
6233 ** ncr chip exception handler for phase errors.
6234 **
6235 **
6236 **==========================================================
6237 **
6238 ** We have to construct a new transfer descriptor,
6239 ** to transfer the rest of the current block.
6240 **
6241 **----------------------------------------------------------
6242 */
6243
6244 static void ncr_int_ma (struct ncb *np)
6245 {
6246 u32 dbc;
6247 u32 rest;
6248 u32 dsp;
6249 u32 dsa;
6250 u32 nxtdsp;
6251 u32 newtmp;
6252 u32 *vdsp;
6253 u32 oadr, olen;
6254 u32 *tblp;
6255 ncrcmd *newcmd;
6256 u_char cmd, sbcl;
6257 struct ccb *cp;
6258
6259 dsp = INL (nc_dsp);
6260 dbc = INL (nc_dbc);
6261 sbcl = INB (nc_sbcl);
6262
6263 cmd = dbc >> 24;
6264 rest = dbc & 0xffffff;
6265
6266 /*
6267 ** Take into account dma fifo and various buffers and latches,
6268 ** only if the interrupted phase is an OUTPUT phase.
6269 */
6270
6271 if ((cmd & 1) == 0) {
6272 u_char ctest5, ss0, ss2;
6273 u16 delta;
6274
6275 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6276 if (ctest5 & DFS)
6277 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6278 else
6279 delta=(INB (nc_dfifo) - rest) & 0x7f;
6280
6281 /*
6282 ** The data in the dma fifo has not been transferred to
6283 ** the target -> add the amount to the rest
6284 ** and clear the data.
6285 ** Check the sstat2 register in case of wide transfer.
6286 */
6287
6288 rest += delta;
6289 ss0 = INB (nc_sstat0);
6290 if (ss0 & OLF) rest++;
6291 if (ss0 & ORF) rest++;
6292 if (INB(nc_scntl3) & EWS) {
6293 ss2 = INB (nc_sstat2);
6294 if (ss2 & OLF1) rest++;
6295 if (ss2 & ORF1) rest++;
6296 }
6297
6298 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6299 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6300 (unsigned) rest, (unsigned) delta, ss0);
6301
6302 } else {
6303 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6304 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6305 }
6306
6307 /*
6308 ** Clear fifos.
6309 */
6310 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6311 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6312
6313 /*
6314 ** locate matching cp.
6315 ** if the interrupted phase is DATA IN or DATA OUT,
6316 ** trust the global header.
6317 */
6318 dsa = INL (nc_dsa);
6319 if (!(cmd & 6)) {
6320 cp = np->header.cp;
6321 if (CCB_PHYS(cp, phys) != dsa)
6322 cp = NULL;
6323 } else {
6324 cp = np->ccb;
6325 while (cp && (CCB_PHYS (cp, phys) != dsa))
6326 cp = cp->link_ccb;
6327 }
6328
6329 /*
6330 ** try to find the interrupted script command,
6331 ** and the address at which to continue.
6332 */
6333 vdsp = NULL;
6334 nxtdsp = 0;
6335 if (dsp > np->p_script &&
6336 dsp <= np->p_script + sizeof(struct script)) {
6337 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6338 nxtdsp = dsp;
6339 }
6340 else if (dsp > np->p_scripth &&
6341 dsp <= np->p_scripth + sizeof(struct scripth)) {
6342 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6343 nxtdsp = dsp;
6344 }
6345 else if (cp) {
6346 if (dsp == CCB_PHYS (cp, patch[2])) {
6347 vdsp = &cp->patch[0];
6348 nxtdsp = scr_to_cpu(vdsp[3]);
6349 }
6350 else if (dsp == CCB_PHYS (cp, patch[6])) {
6351 vdsp = &cp->patch[4];
6352 nxtdsp = scr_to_cpu(vdsp[3]);
6353 }
6354 }
6355
6356 /*
6357 ** log the information
6358 */
6359
6360 if (DEBUG_FLAGS & DEBUG_PHASE) {
6361 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6362 cp, np->header.cp,
6363 (unsigned)dsp,
6364 (unsigned)nxtdsp, vdsp, cmd);
6365 }
6366
6367 /*
6368 ** cp=0 means that the DSA does not point to a valid control
6369 ** block. This should not happen since we donnot use multi-byte
6370 ** move while we are being reselected ot after command complete.
6371 ** We are not able to recover from such a phase error.
6372 */
6373 if (!cp) {
6374 printk ("%s: SCSI phase error fixup: "
6375 "CCB already dequeued (0x%08lx)\n",
6376 ncr_name (np), (u_long) np->header.cp);
6377 goto reset_all;
6378 }
6379
6380 /*
6381 ** get old startaddress and old length.
6382 */
6383
6384 oadr = scr_to_cpu(vdsp[1]);
6385
6386 if (cmd & 0x10) { /* Table indirect */
6387 tblp = (u32 *) ((char*) &cp->phys + oadr);
6388 olen = scr_to_cpu(tblp[0]);
6389 oadr = scr_to_cpu(tblp[1]);
6390 } else {
6391 tblp = (u32 *) 0;
6392 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6393 }
6394
6395 if (DEBUG_FLAGS & DEBUG_PHASE) {
6396 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6397 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6398 tblp,
6399 (unsigned) olen,
6400 (unsigned) oadr);
6401 }
6402
6403 /*
6404 ** check cmd against assumed interrupted script command.
6405 */
6406
6407 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6408 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6409 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6410
6411 goto reset_all;
6412 }
6413
6414 /*
6415 ** cp != np->header.cp means that the header of the CCB
6416 ** currently being processed has not yet been copied to
6417 ** the global header area. That may happen if the device did
6418 ** not accept all our messages after having been selected.
6419 */
6420 if (cp != np->header.cp) {
6421 printk ("%s: SCSI phase error fixup: "
6422 "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6423 ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6424 }
6425
6426 /*
6427 ** if old phase not dataphase, leave here.
6428 */
6429
6430 if (cmd & 0x06) {
6431 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6432 cmd&7, sbcl&7, (unsigned)olen,
6433 (unsigned)oadr, (unsigned)rest);
6434 goto unexpected_phase;
6435 }
6436
6437 /*
6438 ** choose the correct patch area.
6439 ** if savep points to one, choose the other.
6440 */
6441
6442 newcmd = cp->patch;
6443 newtmp = CCB_PHYS (cp, patch);
6444 if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6445 newcmd = &cp->patch[4];
6446 newtmp = CCB_PHYS (cp, patch[4]);
6447 }
6448
6449 /*
6450 ** fillin the commands
6451 */
6452
6453 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6454 newcmd[1] = cpu_to_scr(oadr + olen - rest);
6455 newcmd[2] = cpu_to_scr(SCR_JUMP);
6456 newcmd[3] = cpu_to_scr(nxtdsp);
6457
6458 if (DEBUG_FLAGS & DEBUG_PHASE) {
6459 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6460 (int) (newcmd - cp->patch),
6461 (unsigned)scr_to_cpu(newcmd[0]),
6462 (unsigned)scr_to_cpu(newcmd[1]),
6463 (unsigned)scr_to_cpu(newcmd[2]),
6464 (unsigned)scr_to_cpu(newcmd[3]));
6465 }
6466 /*
6467 ** fake the return address (to the patch).
6468 ** and restart script processor at dispatcher.
6469 */
6470 OUTL (nc_temp, newtmp);
6471 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6472 return;
6473
6474 /*
6475 ** Unexpected phase changes that occurs when the current phase
6476 ** is not a DATA IN or DATA OUT phase are due to error conditions.
6477 ** Such event may only happen when the SCRIPTS is using a
6478 ** multibyte SCSI MOVE.
6479 **
6480 ** Phase change Some possible cause
6481 **
6482 ** COMMAND --> MSG IN SCSI parity error detected by target.
6483 ** COMMAND --> STATUS Bad command or refused by target.
6484 ** MSG OUT --> MSG IN Message rejected by target.
6485 ** MSG OUT --> COMMAND Bogus target that discards extended
6486 ** negotiation messages.
6487 **
6488 ** The code below does not care of the new phase and so
6489 ** trusts the target. Why to annoy it ?
6490 ** If the interrupted phase is COMMAND phase, we restart at
6491 ** dispatcher.
6492 ** If a target does not get all the messages after selection,
6493 ** the code assumes blindly that the target discards extended
6494 ** messages and clears the negotiation status.
6495 ** If the target does not want all our response to negotiation,
6496 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6497 ** bloat for such a should_not_happen situation).
6498 ** In all other situation, we reset the BUS.
6499 ** Are these assumptions reasonable ? (Wait and see ...)
6500 */
6501 unexpected_phase:
6502 dsp -= 8;
6503 nxtdsp = 0;
6504
6505 switch (cmd & 7) {
6506 case 2: /* COMMAND phase */
6507 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6508 break;
6509 #if 0
6510 case 3: /* STATUS phase */
6511 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6512 break;
6513 #endif
6514 case 6: /* MSG OUT phase */
6515 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6516 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6517 cp->host_status = HS_BUSY;
6518 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6519 }
6520 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6521 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6522 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6523 }
6524 break;
6525 #if 0
6526 case 7: /* MSG IN phase */
6527 nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6528 break;
6529 #endif
6530 }
6531
6532 if (nxtdsp) {
6533 OUTL_DSP (nxtdsp);
6534 return;
6535 }
6536
6537 reset_all:
6538 ncr_start_reset(np);
6539 }
6540
6541
6542 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6543 {
6544 struct scsi_cmnd *cmd = cp->cmd;
6545 struct tcb *tp = &np->target[cmd->device->id];
6546 struct lcb *lp = tp->lp[cmd->device->lun];
6547 struct list_head *qp;
6548 struct ccb * cp2;
6549 int disc_cnt = 0;
6550 int busy_cnt = 0;
6551 u32 startp;
6552 u_char s_status = INB (SS_PRT);
6553
6554 /*
6555 ** Let the SCRIPTS processor skip all not yet started CCBs,
6556 ** and count disconnected CCBs. Since the busy queue is in
6557 ** the same order as the chip start queue, disconnected CCBs
6558 ** are before cp and busy ones after.
6559 */
6560 if (lp) {
6561 qp = lp->busy_ccbq.prev;
6562 while (qp != &lp->busy_ccbq) {
6563 cp2 = list_entry(qp, struct ccb, link_ccbq);
6564 qp = qp->prev;
6565 ++busy_cnt;
6566 if (cp2 == cp)
6567 break;
6568 cp2->start.schedule.l_paddr =
6569 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6570 }
6571 lp->held_ccb = cp; /* Requeue when this one completes */
6572 disc_cnt = lp->queuedccbs - busy_cnt;
6573 }
6574
6575 switch(s_status) {
6576 default: /* Just for safety, should never happen */
6577 case S_QUEUE_FULL:
6578 /*
6579 ** Decrease number of tags to the number of
6580 ** disconnected commands.
6581 */
6582 if (!lp)
6583 goto out;
6584 if (bootverbose >= 1) {
6585 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6586 "CCBs\n", busy_cnt, disc_cnt);
6587 }
6588 if (disc_cnt < lp->numtags) {
6589 lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6590 lp->num_good = 0;
6591 ncr_setup_tags (np, cmd->device);
6592 }
6593 /*
6594 ** Requeue the command to the start queue.
6595 ** If any disconnected commands,
6596 ** Clear SIGP.
6597 ** Jump to reselect.
6598 */
6599 cp->phys.header.savep = cp->startp;
6600 cp->host_status = HS_BUSY;
6601 cp->scsi_status = S_ILLEGAL;
6602
6603 ncr_put_start_queue(np, cp);
6604 if (disc_cnt)
6605 INB (nc_ctest2); /* Clear SIGP */
6606 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6607 return;
6608 case S_TERMINATED:
6609 case S_CHECK_COND:
6610 /*
6611 ** If we were requesting sense, give up.
6612 */
6613 if (cp->auto_sense)
6614 goto out;
6615
6616 /*
6617 ** Device returned CHECK CONDITION status.
6618 ** Prepare all needed data strutures for getting
6619 ** sense data.
6620 **
6621 ** identify message
6622 */
6623 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6624 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6625 cp->phys.smsg.size = cpu_to_scr(1);
6626
6627 /*
6628 ** sense command
6629 */
6630 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6631 cp->phys.cmd.size = cpu_to_scr(6);
6632
6633 /*
6634 ** patch requested size into sense command
6635 */
6636 cp->sensecmd[0] = 0x03;
6637 cp->sensecmd[1] = cmd->device->lun << 5;
6638 cp->sensecmd[4] = sizeof(cp->sense_buf);
6639
6640 /*
6641 ** sense data
6642 */
6643 memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6644 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6645 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6646
6647 /*
6648 ** requeue the command.
6649 */
6650 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6651
6652 cp->phys.header.savep = startp;
6653 cp->phys.header.goalp = startp + 24;
6654 cp->phys.header.lastp = startp;
6655 cp->phys.header.wgoalp = startp + 24;
6656 cp->phys.header.wlastp = startp;
6657
6658 cp->host_status = HS_BUSY;
6659 cp->scsi_status = S_ILLEGAL;
6660 cp->auto_sense = s_status;
6661
6662 cp->start.schedule.l_paddr =
6663 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6664
6665 /*
6666 ** Select without ATN for quirky devices.
6667 */
6668 if (cmd->device->select_no_atn)
6669 cp->start.schedule.l_paddr =
6670 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6671
6672 ncr_put_start_queue(np, cp);
6673
6674 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6675 return;
6676 }
6677
6678 out:
6679 OUTONB_STD ();
6680 return;
6681 }
6682
6683
6684 /*==========================================================
6685 **
6686 **
6687 ** ncr chip exception handler for programmed interrupts.
6688 **
6689 **
6690 **==========================================================
6691 */
6692
6693 void ncr_int_sir (struct ncb *np)
6694 {
6695 u_char scntl3;
6696 u_char chg, ofs, per, fak, wide;
6697 u_char num = INB (nc_dsps);
6698 struct ccb *cp=NULL;
6699 u_long dsa = INL (nc_dsa);
6700 u_char target = INB (nc_sdid) & 0x0f;
6701 struct tcb *tp = &np->target[target];
6702 struct scsi_target *starget = tp->starget;
6703
6704 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6705
6706 switch (num) {
6707 case SIR_INTFLY:
6708 /*
6709 ** This is used for HP Zalon/53c720 where INTFLY
6710 ** operation is currently broken.
6711 */
6712 ncr_wakeup_done(np);
6713 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6714 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6715 #else
6716 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6717 #endif
6718 return;
6719 case SIR_RESEL_NO_MSG_IN:
6720 case SIR_RESEL_NO_IDENTIFY:
6721 /*
6722 ** If devices reselecting without sending an IDENTIFY
6723 ** message still exist, this should help.
6724 ** We just assume lun=0, 1 CCB, no tag.
6725 */
6726 if (tp->lp[0]) {
6727 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6728 return;
6729 }
6730 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6731 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6732 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6733 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6734 printk ("%s:%d: SIR %d, "
6735 "incorrect nexus identification on reselection\n",
6736 ncr_name (np), target, num);
6737 goto out;
6738 case SIR_DONE_OVERFLOW:
6739 printk ("%s:%d: SIR %d, "
6740 "CCB done queue overflow\n",
6741 ncr_name (np), target, num);
6742 goto out;
6743 case SIR_BAD_STATUS:
6744 cp = np->header.cp;
6745 if (!cp || CCB_PHYS (cp, phys) != dsa)
6746 goto out;
6747 ncr_sir_to_redo(np, num, cp);
6748 return;
6749 default:
6750 /*
6751 ** lookup the ccb
6752 */
6753 cp = np->ccb;
6754 while (cp && (CCB_PHYS (cp, phys) != dsa))
6755 cp = cp->link_ccb;
6756
6757 BUG_ON(!cp);
6758 BUG_ON(cp != np->header.cp);
6759
6760 if (!cp || cp != np->header.cp)
6761 goto out;
6762 }
6763
6764 switch (num) {
6765 /*-----------------------------------------------------------------------------
6766 **
6767 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6768 ** ("Everything you've always wanted to know about transfer mode
6769 ** negotiation")
6770 **
6771 ** We try to negotiate sync and wide transfer only after
6772 ** a successful inquire command. We look at byte 7 of the
6773 ** inquire data to determine the capabilities of the target.
6774 **
6775 ** When we try to negotiate, we append the negotiation message
6776 ** to the identify and (maybe) simple tag message.
6777 ** The host status field is set to HS_NEGOTIATE to mark this
6778 ** situation.
6779 **
6780 ** If the target doesn't answer this message immediately
6781 ** (as required by the standard), the SIR_NEGO_FAIL interrupt
6782 ** will be raised eventually.
6783 ** The handler removes the HS_NEGOTIATE status, and sets the
6784 ** negotiated value to the default (async / nowide).
6785 **
6786 ** If we receive a matching answer immediately, we check it
6787 ** for validity, and set the values.
6788 **
6789 ** If we receive a Reject message immediately, we assume the
6790 ** negotiation has failed, and fall back to standard values.
6791 **
6792 ** If we receive a negotiation message while not in HS_NEGOTIATE
6793 ** state, it's a target initiated negotiation. We prepare a
6794 ** (hopefully) valid answer, set our parameters, and send back
6795 ** this answer to the target.
6796 **
6797 ** If the target doesn't fetch the answer (no message out phase),
6798 ** we assume the negotiation has failed, and fall back to default
6799 ** settings.
6800 **
6801 ** When we set the values, we adjust them in all ccbs belonging
6802 ** to this target, in the controller's register, and in the "phys"
6803 ** field of the controller's struct ncb.
6804 **
6805 ** Possible cases: hs sir msg_in value send goto
6806 ** We try to negotiate:
6807 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6808 ** -> target rejected our msg NEG FAIL reject defa. - dispatch
6809 ** -> target answered (ok) NEG SYNC sdtr set - clrack
6810 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6811 ** -> target answered (ok) NEG WIDE wdtr set - clrack
6812 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6813 ** -> any other msgin NEG FAIL noop defa. - dispatch
6814 **
6815 ** Target tries to negotiate:
6816 ** -> incoming message --- SYNC sdtr set SDTR -
6817 ** -> incoming message --- WIDE wdtr set WDTR -
6818 ** We sent our answer:
6819 ** -> target doesn't msgout --- PROTO ? defa. - dispatch
6820 **
6821 **-----------------------------------------------------------------------------
6822 */
6823
6824 case SIR_NEGO_FAILED:
6825 /*-------------------------------------------------------
6826 **
6827 ** Negotiation failed.
6828 ** Target doesn't send an answer message,
6829 ** or target rejected our message.
6830 **
6831 ** Remove negotiation request.
6832 **
6833 **-------------------------------------------------------
6834 */
6835 OUTB (HS_PRT, HS_BUSY);
6836
6837 /* fall through */
6838
6839 case SIR_NEGO_PROTO:
6840 /*-------------------------------------------------------
6841 **
6842 ** Negotiation failed.
6843 ** Target doesn't fetch the answer message.
6844 **
6845 **-------------------------------------------------------
6846 */
6847
6848 if (DEBUG_FLAGS & DEBUG_NEGO) {
6849 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6850 "status=%x.\n", num, cp->nego_status);
6851 }
6852
6853 /*
6854 ** any error in negotiation:
6855 ** fall back to default mode.
6856 */
6857 switch (cp->nego_status) {
6858
6859 case NS_SYNC:
6860 spi_period(starget) = 0;
6861 spi_offset(starget) = 0;
6862 ncr_setsync (np, cp, 0, 0xe0);
6863 break;
6864
6865 case NS_WIDE:
6866 spi_width(starget) = 0;
6867 ncr_setwide (np, cp, 0, 0);
6868 break;
6869
6870 }
6871 np->msgin [0] = NOP;
6872 np->msgout[0] = NOP;
6873 cp->nego_status = 0;
6874 break;
6875
6876 case SIR_NEGO_SYNC:
6877 if (DEBUG_FLAGS & DEBUG_NEGO) {
6878 ncr_print_msg(cp, "sync msgin", np->msgin);
6879 }
6880
6881 chg = 0;
6882 per = np->msgin[3];
6883 ofs = np->msgin[4];
6884 if (ofs==0) per=255;
6885
6886 /*
6887 ** if target sends SDTR message,
6888 ** it CAN transfer synch.
6889 */
6890
6891 if (ofs && starget)
6892 spi_support_sync(starget) = 1;
6893
6894 /*
6895 ** check values against driver limits.
6896 */
6897
6898 if (per < np->minsync)
6899 {chg = 1; per = np->minsync;}
6900 if (per < tp->minsync)
6901 {chg = 1; per = tp->minsync;}
6902 if (ofs > tp->maxoffs)
6903 {chg = 1; ofs = tp->maxoffs;}
6904
6905 /*
6906 ** Check against controller limits.
6907 */
6908 fak = 7;
6909 scntl3 = 0;
6910 if (ofs != 0) {
6911 ncr_getsync(np, per, &fak, &scntl3);
6912 if (fak > 7) {
6913 chg = 1;
6914 ofs = 0;
6915 }
6916 }
6917 if (ofs == 0) {
6918 fak = 7;
6919 per = 0;
6920 scntl3 = 0;
6921 tp->minsync = 0;
6922 }
6923
6924 if (DEBUG_FLAGS & DEBUG_NEGO) {
6925 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6926 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6927 }
6928
6929 if (INB (HS_PRT) == HS_NEGOTIATE) {
6930 OUTB (HS_PRT, HS_BUSY);
6931 switch (cp->nego_status) {
6932
6933 case NS_SYNC:
6934 /* This was an answer message */
6935 if (chg) {
6936 /* Answer wasn't acceptable. */
6937 spi_period(starget) = 0;
6938 spi_offset(starget) = 0;
6939 ncr_setsync(np, cp, 0, 0xe0);
6940 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6941 } else {
6942 /* Answer is ok. */
6943 spi_period(starget) = per;
6944 spi_offset(starget) = ofs;
6945 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6946 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6947 }
6948 return;
6949
6950 case NS_WIDE:
6951 spi_width(starget) = 0;
6952 ncr_setwide(np, cp, 0, 0);
6953 break;
6954 }
6955 }
6956
6957 /*
6958 ** It was a request. Set value and
6959 ** prepare an answer message
6960 */
6961
6962 spi_period(starget) = per;
6963 spi_offset(starget) = ofs;
6964 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6965
6966 spi_populate_sync_msg(np->msgout, per, ofs);
6967 cp->nego_status = NS_SYNC;
6968
6969 if (DEBUG_FLAGS & DEBUG_NEGO) {
6970 ncr_print_msg(cp, "sync msgout", np->msgout);
6971 }
6972
6973 if (!ofs) {
6974 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6975 return;
6976 }
6977 np->msgin [0] = NOP;
6978
6979 break;
6980
6981 case SIR_NEGO_WIDE:
6982 /*
6983 ** Wide request message received.
6984 */
6985 if (DEBUG_FLAGS & DEBUG_NEGO) {
6986 ncr_print_msg(cp, "wide msgin", np->msgin);
6987 }
6988
6989 /*
6990 ** get requested values.
6991 */
6992
6993 chg = 0;
6994 wide = np->msgin[3];
6995
6996 /*
6997 ** if target sends WDTR message,
6998 ** it CAN transfer wide.
6999 */
7000
7001 if (wide && starget)
7002 spi_support_wide(starget) = 1;
7003
7004 /*
7005 ** check values against driver limits.
7006 */
7007
7008 if (wide > tp->usrwide)
7009 {chg = 1; wide = tp->usrwide;}
7010
7011 if (DEBUG_FLAGS & DEBUG_NEGO) {
7012 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7013 chg);
7014 }
7015
7016 if (INB (HS_PRT) == HS_NEGOTIATE) {
7017 OUTB (HS_PRT, HS_BUSY);
7018 switch (cp->nego_status) {
7019
7020 case NS_WIDE:
7021 /*
7022 ** This was an answer message
7023 */
7024 if (chg) {
7025 /* Answer wasn't acceptable. */
7026 spi_width(starget) = 0;
7027 ncr_setwide(np, cp, 0, 1);
7028 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7029 } else {
7030 /* Answer is ok. */
7031 spi_width(starget) = wide;
7032 ncr_setwide(np, cp, wide, 1);
7033 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7034 }
7035 return;
7036
7037 case NS_SYNC:
7038 spi_period(starget) = 0;
7039 spi_offset(starget) = 0;
7040 ncr_setsync(np, cp, 0, 0xe0);
7041 break;
7042 }
7043 }
7044
7045 /*
7046 ** It was a request, set value and
7047 ** prepare an answer message
7048 */
7049
7050 spi_width(starget) = wide;
7051 ncr_setwide(np, cp, wide, 1);
7052 spi_populate_width_msg(np->msgout, wide);
7053
7054 np->msgin [0] = NOP;
7055
7056 cp->nego_status = NS_WIDE;
7057
7058 if (DEBUG_FLAGS & DEBUG_NEGO) {
7059 ncr_print_msg(cp, "wide msgout", np->msgin);
7060 }
7061 break;
7062
7063 /*--------------------------------------------------------------------
7064 **
7065 ** Processing of special messages
7066 **
7067 **--------------------------------------------------------------------
7068 */
7069
7070 case SIR_REJECT_RECEIVED:
7071 /*-----------------------------------------------
7072 **
7073 ** We received a MESSAGE_REJECT.
7074 **
7075 **-----------------------------------------------
7076 */
7077
7078 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7079 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7080 break;
7081
7082 case SIR_REJECT_SENT:
7083 /*-----------------------------------------------
7084 **
7085 ** We received an unknown message
7086 **
7087 **-----------------------------------------------
7088 */
7089
7090 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7091 break;
7092
7093 /*--------------------------------------------------------------------
7094 **
7095 ** Processing of special messages
7096 **
7097 **--------------------------------------------------------------------
7098 */
7099
7100 case SIR_IGN_RESIDUE:
7101 /*-----------------------------------------------
7102 **
7103 ** We received an IGNORE RESIDUE message,
7104 ** which couldn't be handled by the script.
7105 **
7106 **-----------------------------------------------
7107 */
7108
7109 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7110 "implemented.\n");
7111 break;
7112 #if 0
7113 case SIR_MISSING_SAVE:
7114 /*-----------------------------------------------
7115 **
7116 ** We received an DISCONNECT message,
7117 ** but the datapointer wasn't saved before.
7118 **
7119 **-----------------------------------------------
7120 */
7121
7122 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7123 "not saved: data=%x save=%x goal=%x.\n",
7124 (unsigned) INL (nc_temp),
7125 (unsigned) scr_to_cpu(np->header.savep),
7126 (unsigned) scr_to_cpu(np->header.goalp));
7127 break;
7128 #endif
7129 }
7130
7131 out:
7132 OUTONB_STD ();
7133 }
7134
7135 /*==========================================================
7136 **
7137 **
7138 ** Acquire a control block
7139 **
7140 **
7141 **==========================================================
7142 */
7143
7144 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7145 {
7146 u_char tn = cmd->device->id;
7147 u_char ln = cmd->device->lun;
7148 struct tcb *tp = &np->target[tn];
7149 struct lcb *lp = tp->lp[ln];
7150 u_char tag = NO_TAG;
7151 struct ccb *cp = NULL;
7152
7153 /*
7154 ** Lun structure available ?
7155 */
7156 if (lp) {
7157 struct list_head *qp;
7158 /*
7159 ** Keep from using more tags than we can handle.
7160 */
7161 if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7162 return NULL;
7163
7164 /*
7165 ** Allocate a new CCB if needed.
7166 */
7167 if (list_empty(&lp->free_ccbq))
7168 ncr_alloc_ccb(np, tn, ln);
7169
7170 /*
7171 ** Look for free CCB
7172 */
7173 qp = ncr_list_pop(&lp->free_ccbq);
7174 if (qp) {
7175 cp = list_entry(qp, struct ccb, link_ccbq);
7176 if (cp->magic) {
7177 PRINT_ADDR(cmd, "ccb free list corrupted "
7178 "(@%p)\n", cp);
7179 cp = NULL;
7180 } else {
7181 list_add_tail(qp, &lp->wait_ccbq);
7182 ++lp->busyccbs;
7183 }
7184 }
7185
7186 /*
7187 ** If a CCB is available,
7188 ** Get a tag for this nexus if required.
7189 */
7190 if (cp) {
7191 if (lp->usetags)
7192 tag = lp->cb_tags[lp->ia_tag];
7193 }
7194 else if (lp->actccbs > 0)
7195 return NULL;
7196 }
7197
7198 /*
7199 ** if nothing available, take the default.
7200 */
7201 if (!cp)
7202 cp = np->ccb;
7203
7204 /*
7205 ** Wait until available.
7206 */
7207 #if 0
7208 while (cp->magic) {
7209 if (flags & SCSI_NOSLEEP) break;
7210 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7211 break;
7212 }
7213 #endif
7214
7215 if (cp->magic)
7216 return NULL;
7217
7218 cp->magic = 1;
7219
7220 /*
7221 ** Move to next available tag if tag used.
7222 */
7223 if (lp) {
7224 if (tag != NO_TAG) {
7225 ++lp->ia_tag;
7226 if (lp->ia_tag == MAX_TAGS)
7227 lp->ia_tag = 0;
7228 lp->tags_umap |= (((tagmap_t) 1) << tag);
7229 }
7230 }
7231
7232 /*
7233 ** Remember all informations needed to free this CCB.
7234 */
7235 cp->tag = tag;
7236 cp->target = tn;
7237 cp->lun = ln;
7238
7239 if (DEBUG_FLAGS & DEBUG_TAGS) {
7240 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7241 }
7242
7243 return cp;
7244 }
7245
7246 /*==========================================================
7247 **
7248 **
7249 ** Release one control block
7250 **
7251 **
7252 **==========================================================
7253 */
7254
7255 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7256 {
7257 struct tcb *tp = &np->target[cp->target];
7258 struct lcb *lp = tp->lp[cp->lun];
7259
7260 if (DEBUG_FLAGS & DEBUG_TAGS) {
7261 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7262 }
7263
7264 /*
7265 ** If lun control block available,
7266 ** decrement active commands and increment credit,
7267 ** free the tag if any and remove the JUMP for reselect.
7268 */
7269 if (lp) {
7270 if (cp->tag != NO_TAG) {
7271 lp->cb_tags[lp->if_tag++] = cp->tag;
7272 if (lp->if_tag == MAX_TAGS)
7273 lp->if_tag = 0;
7274 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7275 lp->tags_smap &= lp->tags_umap;
7276 lp->jump_ccb[cp->tag] =
7277 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7278 } else {
7279 lp->jump_ccb[0] =
7280 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7281 }
7282 }
7283
7284 /*
7285 ** Make this CCB available.
7286 */
7287
7288 if (lp) {
7289 if (cp != np->ccb)
7290 list_move(&cp->link_ccbq, &lp->free_ccbq);
7291 --lp->busyccbs;
7292 if (cp->queued) {
7293 --lp->queuedccbs;
7294 }
7295 }
7296 cp -> host_status = HS_IDLE;
7297 cp -> magic = 0;
7298 if (cp->queued) {
7299 --np->queuedccbs;
7300 cp->queued = 0;
7301 }
7302
7303 #if 0
7304 if (cp == np->ccb)
7305 wakeup ((caddr_t) cp);
7306 #endif
7307 }
7308
7309
7310 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7311
7312 /*------------------------------------------------------------------------
7313 ** Initialize the fixed part of a CCB structure.
7314 **------------------------------------------------------------------------
7315 **------------------------------------------------------------------------
7316 */
7317 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7318 {
7319 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7320
7321 /*
7322 ** Remember virtual and bus address of this ccb.
7323 */
7324 cp->p_ccb = vtobus(cp);
7325 cp->phys.header.cp = cp;
7326
7327 /*
7328 ** This allows list_del to work for the default ccb.
7329 */
7330 INIT_LIST_HEAD(&cp->link_ccbq);
7331
7332 /*
7333 ** Initialyze the start and restart launch script.
7334 **
7335 ** COPY(4) @(...p_phys), @(dsa)
7336 ** JUMP @(sched_point)
7337 */
7338 cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7339 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7340 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7341 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7342 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7343
7344 memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7345
7346 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7347 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7348 }
7349
7350
7351 /*------------------------------------------------------------------------
7352 ** Allocate a CCB and initialize its fixed part.
7353 **------------------------------------------------------------------------
7354 **------------------------------------------------------------------------
7355 */
7356 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7357 {
7358 struct tcb *tp = &np->target[tn];
7359 struct lcb *lp = tp->lp[ln];
7360 struct ccb *cp = NULL;
7361
7362 /*
7363 ** Allocate memory for this CCB.
7364 */
7365 cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7366 if (!cp)
7367 return;
7368
7369 /*
7370 ** Count it and initialyze it.
7371 */
7372 lp->actccbs++;
7373 np->actccbs++;
7374 memset(cp, 0, sizeof (*cp));
7375 ncr_init_ccb(np, cp);
7376
7377 /*
7378 ** Chain into wakeup list and free ccb queue and take it
7379 ** into account for tagged commands.
7380 */
7381 cp->link_ccb = np->ccb->link_ccb;
7382 np->ccb->link_ccb = cp;
7383
7384 list_add(&cp->link_ccbq, &lp->free_ccbq);
7385 }
7386
7387 /*==========================================================
7388 **
7389 **
7390 ** Allocation of resources for Targets/Luns/Tags.
7391 **
7392 **
7393 **==========================================================
7394 */
7395
7396
7397 /*------------------------------------------------------------------------
7398 ** Target control block initialisation.
7399 **------------------------------------------------------------------------
7400 ** This data structure is fully initialized after a SCSI command
7401 ** has been successfully completed for this target.
7402 ** It contains a SCRIPT that is called on target reselection.
7403 **------------------------------------------------------------------------
7404 */
7405 static void ncr_init_tcb (struct ncb *np, u_char tn)
7406 {
7407 struct tcb *tp = &np->target[tn];
7408 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7409 int th = tn & 3;
7410 int i;
7411
7412 /*
7413 ** Jump to next tcb if SFBR does not match this target.
7414 ** JUMP IF (SFBR != #target#), @(next tcb)
7415 */
7416 tp->jump_tcb.l_cmd =
7417 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7418 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7419
7420 /*
7421 ** Load the synchronous transfer register.
7422 ** COPY @(tp->sval), @(sxfer)
7423 */
7424 tp->getscr[0] = cpu_to_scr(copy_1);
7425 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7426 #ifdef SCSI_NCR_BIG_ENDIAN
7427 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7428 #else
7429 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7430 #endif
7431
7432 /*
7433 ** Load the timing register.
7434 ** COPY @(tp->wval), @(scntl3)
7435 */
7436 tp->getscr[3] = cpu_to_scr(copy_1);
7437 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7438 #ifdef SCSI_NCR_BIG_ENDIAN
7439 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7440 #else
7441 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7442 #endif
7443
7444 /*
7445 ** Get the IDENTIFY message and the lun.
7446 ** CALL @script(resel_lun)
7447 */
7448 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7449 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7450
7451 /*
7452 ** Look for the lun control block of this nexus.
7453 ** For i = 0 to 3
7454 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7455 */
7456 for (i = 0 ; i < 4 ; i++) {
7457 tp->jump_lcb[i].l_cmd =
7458 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7459 tp->jump_lcb[i].l_paddr =
7460 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7461 }
7462
7463 /*
7464 ** Link this target control block to the JUMP chain.
7465 */
7466 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7467
7468 /*
7469 ** These assert's should be moved at driver initialisations.
7470 */
7471 #ifdef SCSI_NCR_BIG_ENDIAN
7472 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7473 offsetof(struct tcb , sval )) &3) != 3);
7474 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7475 offsetof(struct tcb , wval )) &3) != 3);
7476 #else
7477 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7478 offsetof(struct tcb , sval )) &3) != 0);
7479 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7480 offsetof(struct tcb , wval )) &3) != 0);
7481 #endif
7482 }
7483
7484
7485 /*------------------------------------------------------------------------
7486 ** Lun control block allocation and initialization.
7487 **------------------------------------------------------------------------
7488 ** This data structure is allocated and initialized after a SCSI
7489 ** command has been successfully completed for this target/lun.
7490 **------------------------------------------------------------------------
7491 */
7492 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7493 {
7494 struct tcb *tp = &np->target[tn];
7495 struct lcb *lp = tp->lp[ln];
7496 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7497 int lh = ln & 3;
7498
7499 /*
7500 ** Already done, return.
7501 */
7502 if (lp)
7503 return lp;
7504
7505 /*
7506 ** Allocate the lcb.
7507 */
7508 lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7509 if (!lp)
7510 goto fail;
7511 memset(lp, 0, sizeof(*lp));
7512 tp->lp[ln] = lp;
7513
7514 /*
7515 ** Initialize the target control block if not yet.
7516 */
7517 if (!tp->jump_tcb.l_cmd)
7518 ncr_init_tcb(np, tn);
7519
7520 /*
7521 ** Initialize the CCB queue headers.
7522 */
7523 INIT_LIST_HEAD(&lp->free_ccbq);
7524 INIT_LIST_HEAD(&lp->busy_ccbq);
7525 INIT_LIST_HEAD(&lp->wait_ccbq);
7526 INIT_LIST_HEAD(&lp->skip_ccbq);
7527
7528 /*
7529 ** Set max CCBs to 1 and use the default 1 entry
7530 ** jump table by default.
7531 */
7532 lp->maxnxs = 1;
7533 lp->jump_ccb = &lp->jump_ccb_0;
7534 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7535
7536 /*
7537 ** Initilialyze the reselect script:
7538 **
7539 ** Jump to next lcb if SFBR does not match this lun.
7540 ** Load TEMP with the CCB direct jump table bus address.
7541 ** Get the SIMPLE TAG message and the tag.
7542 **
7543 ** JUMP IF (SFBR != #lun#), @(next lcb)
7544 ** COPY @(lp->p_jump_ccb), @(temp)
7545 ** JUMP @script(resel_notag)
7546 */
7547 lp->jump_lcb.l_cmd =
7548 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7549 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7550
7551 lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7552 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7553 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7554
7555 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7556 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7557
7558 /*
7559 ** Link this lun control block to the JUMP chain.
7560 */
7561 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7562
7563 /*
7564 ** Initialize command queuing control.
7565 */
7566 lp->busyccbs = 1;
7567 lp->queuedccbs = 1;
7568 lp->queuedepth = 1;
7569 fail:
7570 return lp;
7571 }
7572
7573
7574 /*------------------------------------------------------------------------
7575 ** Lun control block setup on INQUIRY data received.
7576 **------------------------------------------------------------------------
7577 ** We only support WIDE, SYNC for targets and CMDQ for logical units.
7578 ** This setup is done on each INQUIRY since we are expecting user
7579 ** will play with CHANGE DEFINITION commands. :-)
7580 **------------------------------------------------------------------------
7581 */
7582 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7583 {
7584 unsigned char tn = sdev->id, ln = sdev->lun;
7585 struct tcb *tp = &np->target[tn];
7586 struct lcb *lp = tp->lp[ln];
7587
7588 /* If no lcb, try to allocate it. */
7589 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7590 goto fail;
7591
7592 /*
7593 ** If unit supports tagged commands, allocate the
7594 ** CCB JUMP table if not yet.
7595 */
7596 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7597 int i;
7598 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7599 if (!lp->jump_ccb) {
7600 lp->jump_ccb = &lp->jump_ccb_0;
7601 goto fail;
7602 }
7603 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7604 for (i = 0 ; i < 64 ; i++)
7605 lp->jump_ccb[i] =
7606 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7607 for (i = 0 ; i < MAX_TAGS ; i++)
7608 lp->cb_tags[i] = i;
7609 lp->maxnxs = MAX_TAGS;
7610 lp->tags_stime = jiffies + 3*HZ;
7611 ncr_setup_tags (np, sdev);
7612 }
7613
7614
7615 fail:
7616 return lp;
7617 }
7618
7619 /*==========================================================
7620 **
7621 **
7622 ** Build Scatter Gather Block
7623 **
7624 **
7625 **==========================================================
7626 **
7627 ** The transfer area may be scattered among
7628 ** several non adjacent physical pages.
7629 **
7630 ** We may use MAX_SCATTER blocks.
7631 **
7632 **----------------------------------------------------------
7633 */
7634
7635 /*
7636 ** We try to reduce the number of interrupts caused
7637 ** by unexpected phase changes due to disconnects.
7638 ** A typical harddisk may disconnect before ANY block.
7639 ** If we wanted to avoid unexpected phase changes at all
7640 ** we had to use a break point every 512 bytes.
7641 ** Of course the number of scatter/gather blocks is
7642 ** limited.
7643 ** Under Linux, the scatter/gatter blocks are provided by
7644 ** the generic driver. We just have to copy addresses and
7645 ** sizes to the data segment array.
7646 */
7647
7648 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7649 {
7650 int segment = 0;
7651 int use_sg = scsi_sg_count(cmd);
7652
7653 cp->data_len = 0;
7654
7655 use_sg = map_scsi_sg_data(np, cmd);
7656 if (use_sg > 0) {
7657 struct scatterlist *sg;
7658 struct scr_tblmove *data;
7659
7660 if (use_sg > MAX_SCATTER) {
7661 unmap_scsi_data(np, cmd);
7662 return -1;
7663 }
7664
7665 data = &cp->phys.data[MAX_SCATTER - use_sg];
7666
7667 scsi_for_each_sg(cmd, sg, use_sg, segment) {
7668 dma_addr_t baddr = sg_dma_address(sg);
7669 unsigned int len = sg_dma_len(sg);
7670
7671 ncr_build_sge(np, &data[segment], baddr, len);
7672 cp->data_len += len;
7673 }
7674 } else
7675 segment = -2;
7676
7677 return segment;
7678 }
7679
7680 /*==========================================================
7681 **
7682 **
7683 ** Test the bus snoop logic :-(
7684 **
7685 ** Has to be called with interrupts disabled.
7686 **
7687 **
7688 **==========================================================
7689 */
7690
7691 static int __init ncr_regtest (struct ncb* np)
7692 {
7693 register volatile u32 data;
7694 /*
7695 ** ncr registers may NOT be cached.
7696 ** write 0xffffffff to a read only register area,
7697 ** and try to read it back.
7698 */
7699 data = 0xffffffff;
7700 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7701 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7702 #if 1
7703 if (data == 0xffffffff) {
7704 #else
7705 if ((data & 0xe2f0fffd) != 0x02000080) {
7706 #endif
7707 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7708 (unsigned) data);
7709 return (0x10);
7710 }
7711 return (0);
7712 }
7713
7714 static int __init ncr_snooptest (struct ncb* np)
7715 {
7716 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7717 int i, err=0;
7718 if (np->reg) {
7719 err |= ncr_regtest (np);
7720 if (err)
7721 return (err);
7722 }
7723
7724 /* init */
7725 pc = NCB_SCRIPTH_PHYS (np, snooptest);
7726 host_wr = 1;
7727 ncr_wr = 2;
7728 /*
7729 ** Set memory and register.
7730 */
7731 np->ncr_cache = cpu_to_scr(host_wr);
7732 OUTL (nc_temp, ncr_wr);
7733 /*
7734 ** Start script (exchange values)
7735 */
7736 OUTL_DSP (pc);
7737 /*
7738 ** Wait 'til done (with timeout)
7739 */
7740 for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7741 if (INB(nc_istat) & (INTF|SIP|DIP))
7742 break;
7743 /*
7744 ** Save termination position.
7745 */
7746 pc = INL (nc_dsp);
7747 /*
7748 ** Read memory and register.
7749 */
7750 host_rd = scr_to_cpu(np->ncr_cache);
7751 ncr_rd = INL (nc_scratcha);
7752 ncr_bk = INL (nc_temp);
7753 /*
7754 ** Reset ncr chip
7755 */
7756 ncr_chip_reset(np, 100);
7757 /*
7758 ** check for timeout
7759 */
7760 if (i>=NCR_SNOOP_TIMEOUT) {
7761 printk ("CACHE TEST FAILED: timeout.\n");
7762 return (0x20);
7763 }
7764 /*
7765 ** Check termination position.
7766 */
7767 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7768 printk ("CACHE TEST FAILED: script execution failed.\n");
7769 printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7770 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7771 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7772 return (0x40);
7773 }
7774 /*
7775 ** Show results.
7776 */
7777 if (host_wr != ncr_rd) {
7778 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7779 (int) host_wr, (int) ncr_rd);
7780 err |= 1;
7781 }
7782 if (host_rd != ncr_wr) {
7783 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7784 (int) ncr_wr, (int) host_rd);
7785 err |= 2;
7786 }
7787 if (ncr_bk != ncr_wr) {
7788 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7789 (int) ncr_wr, (int) ncr_bk);
7790 err |= 4;
7791 }
7792 return (err);
7793 }
7794
7795 /*==========================================================
7796 **
7797 ** Determine the ncr's clock frequency.
7798 ** This is essential for the negotiation
7799 ** of the synchronous transfer rate.
7800 **
7801 **==========================================================
7802 **
7803 ** Note: we have to return the correct value.
7804 ** THERE IS NO SAFE DEFAULT VALUE.
7805 **
7806 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7807 ** 53C860 and 53C875 rev. 1 support fast20 transfers but
7808 ** do not have a clock doubler and so are provided with a
7809 ** 80 MHz clock. All other fast20 boards incorporate a doubler
7810 ** and so should be delivered with a 40 MHz clock.
7811 ** The future fast40 chips (895/895) use a 40 Mhz base clock
7812 ** and provide a clock quadrupler (160 Mhz). The code below
7813 ** tries to deal as cleverly as possible with all this stuff.
7814 **
7815 **----------------------------------------------------------
7816 */
7817
7818 /*
7819 * Select NCR SCSI clock frequency
7820 */
7821 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7822 {
7823 if (np->multiplier < 2) {
7824 OUTB(nc_scntl3, scntl3);
7825 return;
7826 }
7827
7828 if (bootverbose >= 2)
7829 printk ("%s: enabling clock multiplier\n", ncr_name(np));
7830
7831 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7832 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7833 int i = 20;
7834 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7835 udelay(20);
7836 if (!i)
7837 printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7838 } else /* Wait 20 micro-seconds for doubler */
7839 udelay(20);
7840 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7841 OUTB(nc_scntl3, scntl3);
7842 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7843 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7844 }
7845
7846
7847 /*
7848 * calculate NCR SCSI clock frequency (in KHz)
7849 */
7850 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7851 {
7852 unsigned ms = 0;
7853 char count = 0;
7854
7855 /*
7856 * Measure GEN timer delay in order
7857 * to calculate SCSI clock frequency
7858 *
7859 * This code will never execute too
7860 * many loop iterations (if DELAY is
7861 * reasonably correct). It could get
7862 * too low a delay (too high a freq.)
7863 * if the CPU is slow executing the
7864 * loop for some reason (an NMI, for
7865 * example). For this reason we will
7866 * if multiple measurements are to be
7867 * performed trust the higher delay
7868 * (lower frequency returned).
7869 */
7870 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7871 OUTW (nc_sien , 0); /* mask all scsi interrupts */
7872 (void) INW (nc_sist); /* clear pending scsi interrupt */
7873 OUTB (nc_dien , 0); /* mask all dma interrupts */
7874 (void) INW (nc_sist); /* another one, just to be sure :) */
7875 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7876 OUTB (nc_stime1, 0); /* disable general purpose timer */
7877 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7878 while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7879 for (count = 0; count < 10; count ++)
7880 udelay(100); /* count ms */
7881 }
7882 OUTB (nc_stime1, 0); /* disable general purpose timer */
7883 /*
7884 * set prescaler to divide by whatever 0 means
7885 * 0 ought to choose divide by 2, but appears
7886 * to set divide by 3.5 mode in my 53c810 ...
7887 */
7888 OUTB (nc_scntl3, 0);
7889
7890 if (bootverbose >= 2)
7891 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7892 /*
7893 * adjust for prescaler, and convert into KHz
7894 */
7895 return ms ? ((1 << gen) * 4340) / ms : 0;
7896 }
7897
7898 /*
7899 * Get/probe NCR SCSI clock frequency
7900 */
7901 static void __init ncr_getclock (struct ncb *np, int mult)
7902 {
7903 unsigned char scntl3 = INB(nc_scntl3);
7904 unsigned char stest1 = INB(nc_stest1);
7905 unsigned f1;
7906
7907 np->multiplier = 1;
7908 f1 = 40000;
7909
7910 /*
7911 ** True with 875 or 895 with clock multiplier selected
7912 */
7913 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7914 if (bootverbose >= 2)
7915 printk ("%s: clock multiplier found\n", ncr_name(np));
7916 np->multiplier = mult;
7917 }
7918
7919 /*
7920 ** If multiplier not found or scntl3 not 7,5,3,
7921 ** reset chip and get frequency from general purpose timer.
7922 ** Otherwise trust scntl3 BIOS setting.
7923 */
7924 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7925 unsigned f2;
7926
7927 ncr_chip_reset(np, 5);
7928
7929 (void) ncrgetfreq (np, 11); /* throw away first result */
7930 f1 = ncrgetfreq (np, 11);
7931 f2 = ncrgetfreq (np, 11);
7932
7933 if(bootverbose)
7934 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7935
7936 if (f1 > f2) f1 = f2; /* trust lower result */
7937
7938 if (f1 < 45000) f1 = 40000;
7939 else if (f1 < 55000) f1 = 50000;
7940 else f1 = 80000;
7941
7942 if (f1 < 80000 && mult > 1) {
7943 if (bootverbose >= 2)
7944 printk ("%s: clock multiplier assumed\n", ncr_name(np));
7945 np->multiplier = mult;
7946 }
7947 } else {
7948 if ((scntl3 & 7) == 3) f1 = 40000;
7949 else if ((scntl3 & 7) == 5) f1 = 80000;
7950 else f1 = 160000;
7951
7952 f1 /= np->multiplier;
7953 }
7954
7955 /*
7956 ** Compute controller synchronous parameters.
7957 */
7958 f1 *= np->multiplier;
7959 np->clock_khz = f1;
7960 }
7961
7962 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7963
7964 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7965 {
7966 struct Scsi_Host *host = device->host;
7967 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7968 struct tcb *tp = &np->target[device->id];
7969 tp->starget = device->sdev_target;
7970
7971 return 0;
7972 }
7973
7974 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7975 {
7976 struct Scsi_Host *host = device->host;
7977 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7978 struct tcb *tp = &np->target[device->id];
7979 struct lcb *lp = tp->lp[device->lun];
7980 int numtags, depth_to_use;
7981
7982 ncr_setup_lcb(np, device);
7983
7984 /*
7985 ** Select queue depth from driver setup.
7986 ** Donnot use more than configured by user.
7987 ** Use at least 2.
7988 ** Donnot use more than our maximum.
7989 */
7990 numtags = device_queue_depth(np->unit, device->id, device->lun);
7991 if (numtags > tp->usrtags)
7992 numtags = tp->usrtags;
7993 if (!device->tagged_supported)
7994 numtags = 1;
7995 depth_to_use = numtags;
7996 if (depth_to_use < 2)
7997 depth_to_use = 2;
7998 if (depth_to_use > MAX_TAGS)
7999 depth_to_use = MAX_TAGS;
8000
8001 scsi_adjust_queue_depth(device,
8002 (device->tagged_supported ?
8003 MSG_SIMPLE_TAG : 0),
8004 depth_to_use);
8005
8006 /*
8007 ** Since the queue depth is not tunable under Linux,
8008 ** we need to know this value in order not to
8009 ** announce stupid things to user.
8010 **
8011 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8012 ** In fact we just tuned it, or did I miss
8013 ** something important? :)
8014 */
8015 if (lp) {
8016 lp->numtags = lp->maxtags = numtags;
8017 lp->scdev_depth = depth_to_use;
8018 }
8019 ncr_setup_tags (np, device);
8020
8021 #ifdef DEBUG_NCR53C8XX
8022 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8023 np->unit, device->id, device->lun, depth_to_use);
8024 #endif
8025
8026 if (spi_support_sync(device->sdev_target) &&
8027 !spi_initial_dv(device->sdev_target))
8028 spi_dv_device(device);
8029 return 0;
8030 }
8031
8032 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
8033 {
8034 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8035 unsigned long flags;
8036 int sts;
8037
8038 #ifdef DEBUG_NCR53C8XX
8039 printk("ncr53c8xx_queue_command\n");
8040 #endif
8041
8042 cmd->scsi_done = done;
8043 cmd->host_scribble = NULL;
8044 cmd->__data_mapped = 0;
8045 cmd->__data_mapping = 0;
8046
8047 spin_lock_irqsave(&np->smp_lock, flags);
8048
8049 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8050 cmd->result = ScsiResult(sts, 0);
8051 #ifdef DEBUG_NCR53C8XX
8052 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8053 #endif
8054 }
8055 #ifdef DEBUG_NCR53C8XX
8056 else
8057 printk("ncr53c8xx : command successfully queued\n");
8058 #endif
8059
8060 spin_unlock_irqrestore(&np->smp_lock, flags);
8061
8062 if (sts != DID_OK) {
8063 unmap_scsi_data(np, cmd);
8064 done(cmd);
8065 sts = 0;
8066 }
8067
8068 return sts;
8069 }
8070
8071 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
8072
8073 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8074 {
8075 unsigned long flags;
8076 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8077 struct host_data *host_data = (struct host_data *)shost->hostdata;
8078 struct ncb *np = host_data->ncb;
8079 struct scsi_cmnd *done_list;
8080
8081 #ifdef DEBUG_NCR53C8XX
8082 printk("ncr53c8xx : interrupt received\n");
8083 #endif
8084
8085 if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8086
8087 spin_lock_irqsave(&np->smp_lock, flags);
8088 ncr_exception(np);
8089 done_list = np->done_list;
8090 np->done_list = NULL;
8091 spin_unlock_irqrestore(&np->smp_lock, flags);
8092
8093 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8094
8095 if (done_list)
8096 ncr_flush_done_cmds(done_list);
8097 return IRQ_HANDLED;
8098 }
8099
8100 static void ncr53c8xx_timeout(unsigned long npref)
8101 {
8102 struct ncb *np = (struct ncb *) npref;
8103 unsigned long flags;
8104 struct scsi_cmnd *done_list;
8105
8106 spin_lock_irqsave(&np->smp_lock, flags);
8107 ncr_timeout(np);
8108 done_list = np->done_list;
8109 np->done_list = NULL;
8110 spin_unlock_irqrestore(&np->smp_lock, flags);
8111
8112 if (done_list)
8113 ncr_flush_done_cmds(done_list);
8114 }
8115
8116 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8117 {
8118 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8119 int sts;
8120 unsigned long flags;
8121 struct scsi_cmnd *done_list;
8122
8123 /*
8124 * If the mid-level driver told us reset is synchronous, it seems
8125 * that we must call the done() callback for the involved command,
8126 * even if this command was not queued to the low-level driver,
8127 * before returning SUCCESS.
8128 */
8129
8130 spin_lock_irqsave(&np->smp_lock, flags);
8131 sts = ncr_reset_bus(np, cmd, 1);
8132
8133 done_list = np->done_list;
8134 np->done_list = NULL;
8135 spin_unlock_irqrestore(&np->smp_lock, flags);
8136
8137 ncr_flush_done_cmds(done_list);
8138
8139 return sts;
8140 }
8141
8142 #if 0 /* unused and broken */
8143 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8144 {
8145 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8146 int sts;
8147 unsigned long flags;
8148 struct scsi_cmnd *done_list;
8149
8150 printk("ncr53c8xx_abort: command pid %lu\n", cmd->serial_number);
8151
8152 NCR_LOCK_NCB(np, flags);
8153
8154 sts = ncr_abort_command(np, cmd);
8155 out:
8156 done_list = np->done_list;
8157 np->done_list = NULL;
8158 NCR_UNLOCK_NCB(np, flags);
8159
8160 ncr_flush_done_cmds(done_list);
8161
8162 return sts;
8163 }
8164 #endif
8165
8166
8167 /*
8168 ** Scsi command waiting list management.
8169 **
8170 ** It may happen that we cannot insert a scsi command into the start queue,
8171 ** in the following circumstances.
8172 ** Too few preallocated ccb(s),
8173 ** maxtags < cmd_per_lun of the Linux host control block,
8174 ** etc...
8175 ** Such scsi commands are inserted into a waiting list.
8176 ** When a scsi command complete, we try to requeue the commands of the
8177 ** waiting list.
8178 */
8179
8180 #define next_wcmd host_scribble
8181
8182 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8183 {
8184 struct scsi_cmnd *wcmd;
8185
8186 #ifdef DEBUG_WAITING_LIST
8187 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8188 #endif
8189 cmd->next_wcmd = NULL;
8190 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8191 else {
8192 while (wcmd->next_wcmd)
8193 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8194 wcmd->next_wcmd = (char *) cmd;
8195 }
8196 }
8197
8198 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8199 {
8200 struct scsi_cmnd **pcmd = &np->waiting_list;
8201
8202 while (*pcmd) {
8203 if (cmd == *pcmd) {
8204 if (to_remove) {
8205 *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8206 cmd->next_wcmd = NULL;
8207 }
8208 #ifdef DEBUG_WAITING_LIST
8209 printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8210 #endif
8211 return cmd;
8212 }
8213 pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8214 }
8215 return NULL;
8216 }
8217
8218 static void process_waiting_list(struct ncb *np, int sts)
8219 {
8220 struct scsi_cmnd *waiting_list, *wcmd;
8221
8222 waiting_list = np->waiting_list;
8223 np->waiting_list = NULL;
8224
8225 #ifdef DEBUG_WAITING_LIST
8226 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8227 #endif
8228 while ((wcmd = waiting_list) != NULL) {
8229 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8230 wcmd->next_wcmd = NULL;
8231 if (sts == DID_OK) {
8232 #ifdef DEBUG_WAITING_LIST
8233 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8234 #endif
8235 sts = ncr_queue_command(np, wcmd);
8236 }
8237 if (sts != DID_OK) {
8238 #ifdef DEBUG_WAITING_LIST
8239 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8240 #endif
8241 wcmd->result = ScsiResult(sts, 0);
8242 ncr_queue_done_cmd(np, wcmd);
8243 }
8244 }
8245 }
8246
8247 #undef next_wcmd
8248
8249 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8250 struct device_attribute *attr, char *buf)
8251 {
8252 struct Scsi_Host *host = class_to_shost(dev);
8253 struct host_data *host_data = (struct host_data *)host->hostdata;
8254
8255 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8256 }
8257
8258 static struct device_attribute ncr53c8xx_revision_attr = {
8259 .attr = { .name = "revision", .mode = S_IRUGO, },
8260 .show = show_ncr53c8xx_revision,
8261 };
8262
8263 static struct device_attribute *ncr53c8xx_host_attrs[] = {
8264 &ncr53c8xx_revision_attr,
8265 NULL
8266 };
8267
8268 /*==========================================================
8269 **
8270 ** Boot command line.
8271 **
8272 **==========================================================
8273 */
8274 #ifdef MODULE
8275 char *ncr53c8xx; /* command line passed by insmod */
8276 module_param(ncr53c8xx, charp, 0);
8277 #endif
8278
8279 #ifndef MODULE
8280 static int __init ncr53c8xx_setup(char *str)
8281 {
8282 return sym53c8xx__setup(str);
8283 }
8284
8285 __setup("ncr53c8xx=", ncr53c8xx_setup);
8286 #endif
8287
8288
8289 /*
8290 * Host attach and initialisations.
8291 *
8292 * Allocate host data and ncb structure.
8293 * Request IO region and remap MMIO region.
8294 * Do chip initialization.
8295 * If all is OK, install interrupt handling and
8296 * start the timer daemon.
8297 */
8298 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8299 int unit, struct ncr_device *device)
8300 {
8301 struct host_data *host_data;
8302 struct ncb *np = NULL;
8303 struct Scsi_Host *instance = NULL;
8304 u_long flags = 0;
8305 int i;
8306
8307 if (!tpnt->name)
8308 tpnt->name = SCSI_NCR_DRIVER_NAME;
8309 if (!tpnt->shost_attrs)
8310 tpnt->shost_attrs = ncr53c8xx_host_attrs;
8311
8312 tpnt->queuecommand = ncr53c8xx_queue_command;
8313 tpnt->slave_configure = ncr53c8xx_slave_configure;
8314 tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8315 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8316 tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8317 tpnt->this_id = 7;
8318 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
8319 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
8320 tpnt->use_clustering = ENABLE_CLUSTERING;
8321
8322 if (device->differential)
8323 driver_setup.diff_support = device->differential;
8324
8325 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8326 unit, device->chip.revision_id, device->slot.irq);
8327
8328 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8329 if (!instance)
8330 goto attach_error;
8331 host_data = (struct host_data *) instance->hostdata;
8332
8333 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8334 if (!np)
8335 goto attach_error;
8336 spin_lock_init(&np->smp_lock);
8337 np->dev = device->dev;
8338 np->p_ncb = vtobus(np);
8339 host_data->ncb = np;
8340
8341 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8342 if (!np->ccb)
8343 goto attach_error;
8344
8345 /* Store input information in the host data structure. */
8346 np->unit = unit;
8347 np->verbose = driver_setup.verbose;
8348 sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8349 np->revision_id = device->chip.revision_id;
8350 np->features = device->chip.features;
8351 np->clock_divn = device->chip.nr_divisor;
8352 np->maxoffs = device->chip.offset_max;
8353 np->maxburst = device->chip.burst_max;
8354 np->myaddr = device->host_id;
8355
8356 /* Allocate SCRIPTS areas. */
8357 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8358 if (!np->script0)
8359 goto attach_error;
8360 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8361 if (!np->scripth0)
8362 goto attach_error;
8363
8364 init_timer(&np->timer);
8365 np->timer.data = (unsigned long) np;
8366 np->timer.function = ncr53c8xx_timeout;
8367
8368 /* Try to map the controller chip to virtual and physical memory. */
8369
8370 np->paddr = device->slot.base;
8371 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8372
8373 if (device->slot.base_v)
8374 np->vaddr = device->slot.base_v;
8375 else
8376 np->vaddr = ioremap(device->slot.base_c, 128);
8377
8378 if (!np->vaddr) {
8379 printk(KERN_ERR
8380 "%s: can't map memory mapped IO region\n",ncr_name(np));
8381 goto attach_error;
8382 } else {
8383 if (bootverbose > 1)
8384 printk(KERN_INFO
8385 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8386 }
8387
8388 /* Make the controller's registers available. Now the INB INW INL
8389 * OUTB OUTW OUTL macros can be used safely.
8390 */
8391
8392 np->reg = (struct ncr_reg __iomem *)np->vaddr;
8393
8394 /* Do chip dependent initialization. */
8395 ncr_prepare_setting(np);
8396
8397 if (np->paddr2 && sizeof(struct script) > 4096) {
8398 np->paddr2 = 0;
8399 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8400 ncr_name(np));
8401 }
8402
8403 instance->max_channel = 0;
8404 instance->this_id = np->myaddr;
8405 instance->max_id = np->maxwide ? 16 : 8;
8406 instance->max_lun = SCSI_NCR_MAX_LUN;
8407 instance->base = (unsigned long) np->reg;
8408 instance->irq = device->slot.irq;
8409 instance->unique_id = device->slot.base;
8410 instance->dma_channel = 0;
8411 instance->cmd_per_lun = MAX_TAGS;
8412 instance->can_queue = (MAX_START-4);
8413 /* This can happen if you forget to call ncr53c8xx_init from
8414 * your module_init */
8415 BUG_ON(!ncr53c8xx_transport_template);
8416 instance->transportt = ncr53c8xx_transport_template;
8417
8418 /* Patch script to physical addresses */
8419 ncr_script_fill(&script0, &scripth0);
8420
8421 np->scripth = np->scripth0;
8422 np->p_scripth = vtobus(np->scripth);
8423 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8424
8425 ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8426 (ncrcmd *) np->script0, sizeof(struct script));
8427 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8428 (ncrcmd *) np->scripth0, sizeof(struct scripth));
8429 np->ccb->p_ccb = vtobus (np->ccb);
8430
8431 /* Patch the script for LED support. */
8432
8433 if (np->features & FE_LED0) {
8434 np->script0->idle[0] =
8435 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8436 np->script0->reselected[0] =
8437 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8438 np->script0->start[0] =
8439 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8440 }
8441
8442 /*
8443 * Look for the target control block of this nexus.
8444 * For i = 0 to 3
8445 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8446 */
8447 for (i = 0 ; i < 4 ; i++) {
8448 np->jump_tcb[i].l_cmd =
8449 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8450 np->jump_tcb[i].l_paddr =
8451 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8452 }
8453
8454 ncr_chip_reset(np, 100);
8455
8456 /* Now check the cache handling of the chipset. */
8457
8458 if (ncr_snooptest(np)) {
8459 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8460 goto attach_error;
8461 }
8462
8463 /* Install the interrupt handler. */
8464 np->irq = device->slot.irq;
8465
8466 /* Initialize the fixed part of the default ccb. */
8467 ncr_init_ccb(np, np->ccb);
8468
8469 /*
8470 * After SCSI devices have been opened, we cannot reset the bus
8471 * safely, so we do it here. Interrupt handler does the real work.
8472 * Process the reset exception if interrupts are not enabled yet.
8473 * Then enable disconnects.
8474 */
8475 spin_lock_irqsave(&np->smp_lock, flags);
8476 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8477 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8478
8479 spin_unlock_irqrestore(&np->smp_lock, flags);
8480 goto attach_error;
8481 }
8482 ncr_exception(np);
8483
8484 np->disc = 1;
8485
8486 /*
8487 * The middle-level SCSI driver does not wait for devices to settle.
8488 * Wait synchronously if more than 2 seconds.
8489 */
8490 if (driver_setup.settle_delay > 2) {
8491 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8492 ncr_name(np), driver_setup.settle_delay);
8493 mdelay(1000 * driver_setup.settle_delay);
8494 }
8495
8496 /* start the timeout daemon */
8497 np->lasttime=0;
8498 ncr_timeout (np);
8499
8500 /* use SIMPLE TAG messages by default */
8501 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8502 np->order = SIMPLE_QUEUE_TAG;
8503 #endif
8504
8505 spin_unlock_irqrestore(&np->smp_lock, flags);
8506
8507 return instance;
8508
8509 attach_error:
8510 if (!instance)
8511 return NULL;
8512 printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8513 if (!np)
8514 goto unregister;
8515 if (np->scripth0)
8516 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8517 if (np->script0)
8518 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8519 if (np->ccb)
8520 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8521 m_free_dma(np, sizeof(struct ncb), "NCB");
8522 host_data->ncb = NULL;
8523
8524 unregister:
8525 scsi_host_put(instance);
8526
8527 return NULL;
8528 }
8529
8530
8531 void ncr53c8xx_release(struct Scsi_Host *host)
8532 {
8533 struct host_data *host_data = shost_priv(host);
8534 #ifdef DEBUG_NCR53C8XX
8535 printk("ncr53c8xx: release\n");
8536 #endif
8537 if (host_data->ncb)
8538 ncr_detach(host_data->ncb);
8539 scsi_host_put(host);
8540 }
8541
8542 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8543 {
8544 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8545 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8546 struct tcb *tp = &np->target[starget->id];
8547
8548 if (period > np->maxsync)
8549 period = np->maxsync;
8550 else if (period < np->minsync)
8551 period = np->minsync;
8552
8553 tp->usrsync = period;
8554
8555 ncr_negotiate(np, tp);
8556 }
8557
8558 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8559 {
8560 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8561 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8562 struct tcb *tp = &np->target[starget->id];
8563
8564 if (offset > np->maxoffs)
8565 offset = np->maxoffs;
8566 else if (offset < 0)
8567 offset = 0;
8568
8569 tp->maxoffs = offset;
8570
8571 ncr_negotiate(np, tp);
8572 }
8573
8574 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8575 {
8576 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8577 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8578 struct tcb *tp = &np->target[starget->id];
8579
8580 if (width > np->maxwide)
8581 width = np->maxwide;
8582 else if (width < 0)
8583 width = 0;
8584
8585 tp->usrwide = width;
8586
8587 ncr_negotiate(np, tp);
8588 }
8589
8590 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8591 {
8592 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8593 enum spi_signal_type type;
8594
8595 switch (np->scsi_mode) {
8596 case SMODE_SE:
8597 type = SPI_SIGNAL_SE;
8598 break;
8599 case SMODE_HVD:
8600 type = SPI_SIGNAL_HVD;
8601 break;
8602 default:
8603 type = SPI_SIGNAL_UNKNOWN;
8604 break;
8605 }
8606 spi_signalling(shost) = type;
8607 }
8608
8609 static struct spi_function_template ncr53c8xx_transport_functions = {
8610 .set_period = ncr53c8xx_set_period,
8611 .show_period = 1,
8612 .set_offset = ncr53c8xx_set_offset,
8613 .show_offset = 1,
8614 .set_width = ncr53c8xx_set_width,
8615 .show_width = 1,
8616 .get_signalling = ncr53c8xx_get_signalling,
8617 };
8618
8619 int __init ncr53c8xx_init(void)
8620 {
8621 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8622 if (!ncr53c8xx_transport_template)
8623 return -ENODEV;
8624 return 0;
8625 }
8626
8627 void ncr53c8xx_exit(void)
8628 {
8629 spi_release_transport(ncr53c8xx_transport_template);
8630 }