ARM: 7709/1: mcpm: Add explicit AFLAGS to support v6/v7 multiplatform kernels
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54 complete(&task->slow_task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59 if (!del_timer(&task->slow_task->timer))
60 return;
61 complete(&task->slow_task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
69 {
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
80 }
81
82 task = sas_alloc_slow_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
86 }
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92 task->task_done = smp_task_done;
93
94 task->slow_task->timer.data = (unsigned long) task;
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
98
99 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166 return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
183 }
184 }
185
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
190 */
191 if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SATA_PENDING;
194 else
195 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200 enum sas_dev_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
211
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
219 }
220
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
231 }
232
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238 phy->attached_dev_type = to_dev_type(dr);
239 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240 goto out;
241 phy->phy_id = phy_id;
242 phy->linkrate = dr->linkrate;
243 phy->attached_sata_host = dr->attached_sata_host;
244 phy->attached_sata_dev = dr->attached_sata_dev;
245 phy->attached_sata_ps = dr->attached_sata_ps;
246 phy->attached_iproto = dr->iproto << 1;
247 phy->attached_tproto = dr->tproto << 1;
248 /* help some expanders that fail to zero sas_address in the 'no
249 * device' case
250 */
251 if (phy->attached_dev_type == NO_DEVICE ||
252 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254 else
255 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256 phy->attached_phy_id = dr->attached_phy_id;
257 phy->phy_change_count = dr->change_count;
258 phy->routing_attr = dr->routing_attr;
259 phy->virtual = dr->virtual;
260 phy->last_da_index = -1;
261
262 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263 phy->phy->identify.device_type = dr->attached_dev_type;
264 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265 phy->phy->identify.target_port_protocols = phy->attached_tproto;
266 if (!phy->attached_tproto && dr->attached_sata_dev)
267 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268 phy->phy->identify.phy_identifier = phy_id;
269 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271 phy->phy->minimum_linkrate = dr->pmin_linkrate;
272 phy->phy->maximum_linkrate = dr->pmax_linkrate;
273 phy->phy->negotiated_linkrate = phy->linkrate;
274
275 if (new_phy)
276 if (sas_phy_add(phy->phy)) {
277 sas_phy_free(phy->phy);
278 return;
279 }
280
281 out:
282 switch (phy->attached_dev_type) {
283 case SATA_PENDING:
284 type = "stp pending";
285 break;
286 case NO_DEVICE:
287 type = "no device";
288 break;
289 case SAS_END_DEV:
290 if (phy->attached_iproto) {
291 if (phy->attached_tproto)
292 type = "host+target";
293 else
294 type = "host";
295 } else {
296 if (dr->attached_sata_dev)
297 type = "stp";
298 else
299 type = "ssp";
300 }
301 break;
302 case EDGE_DEV:
303 case FANOUT_DEV:
304 type = "smp";
305 break;
306 default:
307 type = "unknown";
308 }
309
310 /* this routine is polled by libata error recovery so filter
311 * unimportant messages
312 */
313 if (new_phy || phy->attached_dev_type != dev_type ||
314 phy->linkrate != linkrate ||
315 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316 /* pass */;
317 else
318 return;
319
320 /* if the attached device type changed and ata_eh is active,
321 * make sure we run revalidation when eh completes (see:
322 * sas_enable_revalidation)
323 */
324 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326
327 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329 SAS_ADDR(dev->sas_addr), phy->phy_id,
330 sas_route_char(dev, phy), phy->linkrate,
331 SAS_ADDR(phy->attached_sas_addr), type);
332 }
333
334 /* check if we have an existing attached ata device on this expander phy */
335 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336 {
337 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338 struct domain_device *dev;
339 struct sas_rphy *rphy;
340
341 if (!ex_phy->port)
342 return NULL;
343
344 rphy = ex_phy->port->rphy;
345 if (!rphy)
346 return NULL;
347
348 dev = sas_find_dev_by_rphy(rphy);
349
350 if (dev && dev_is_sata(dev))
351 return dev;
352
353 return NULL;
354 }
355
356 #define DISCOVER_REQ_SIZE 16
357 #define DISCOVER_RESP_SIZE 56
358
359 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360 u8 *disc_resp, int single)
361 {
362 struct discover_resp *dr;
363 int res;
364
365 disc_req[9] = single;
366
367 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368 disc_resp, DISCOVER_RESP_SIZE);
369 if (res)
370 return res;
371 dr = &((struct smp_resp *)disc_resp)->disc;
372 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373 sas_printk("Found loopback topology, just ignore it!\n");
374 return 0;
375 }
376 sas_set_ex_phy(dev, single, disc_resp);
377 return 0;
378 }
379
380 int sas_ex_phy_discover(struct domain_device *dev, int single)
381 {
382 struct expander_device *ex = &dev->ex_dev;
383 int res = 0;
384 u8 *disc_req;
385 u8 *disc_resp;
386
387 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388 if (!disc_req)
389 return -ENOMEM;
390
391 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392 if (!disc_resp) {
393 kfree(disc_req);
394 return -ENOMEM;
395 }
396
397 disc_req[1] = SMP_DISCOVER;
398
399 if (0 <= single && single < ex->num_phys) {
400 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401 } else {
402 int i;
403
404 for (i = 0; i < ex->num_phys; i++) {
405 res = sas_ex_phy_discover_helper(dev, disc_req,
406 disc_resp, i);
407 if (res)
408 goto out_err;
409 }
410 }
411 out_err:
412 kfree(disc_resp);
413 kfree(disc_req);
414 return res;
415 }
416
417 static int sas_expander_discover(struct domain_device *dev)
418 {
419 struct expander_device *ex = &dev->ex_dev;
420 int res = -ENOMEM;
421
422 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423 if (!ex->ex_phy)
424 return -ENOMEM;
425
426 res = sas_ex_phy_discover(dev, -1);
427 if (res)
428 goto out_err;
429
430 return 0;
431 out_err:
432 kfree(ex->ex_phy);
433 ex->ex_phy = NULL;
434 return res;
435 }
436
437 #define MAX_EXPANDER_PHYS 128
438
439 static void ex_assign_report_general(struct domain_device *dev,
440 struct smp_resp *resp)
441 {
442 struct report_general_resp *rg = &resp->rg;
443
444 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447 dev->ex_dev.t2t_supp = rg->t2t_supp;
448 dev->ex_dev.conf_route_table = rg->conf_route_table;
449 dev->ex_dev.configuring = rg->configuring;
450 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451 }
452
453 #define RG_REQ_SIZE 8
454 #define RG_RESP_SIZE 32
455
456 static int sas_ex_general(struct domain_device *dev)
457 {
458 u8 *rg_req;
459 struct smp_resp *rg_resp;
460 int res;
461 int i;
462
463 rg_req = alloc_smp_req(RG_REQ_SIZE);
464 if (!rg_req)
465 return -ENOMEM;
466
467 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468 if (!rg_resp) {
469 kfree(rg_req);
470 return -ENOMEM;
471 }
472
473 rg_req[1] = SMP_REPORT_GENERAL;
474
475 for (i = 0; i < 5; i++) {
476 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477 RG_RESP_SIZE);
478
479 if (res) {
480 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481 SAS_ADDR(dev->sas_addr), res);
482 goto out;
483 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485 SAS_ADDR(dev->sas_addr), rg_resp->result);
486 res = rg_resp->result;
487 goto out;
488 }
489
490 ex_assign_report_general(dev, rg_resp);
491
492 if (dev->ex_dev.configuring) {
493 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494 SAS_ADDR(dev->sas_addr));
495 schedule_timeout_interruptible(5*HZ);
496 } else
497 break;
498 }
499 out:
500 kfree(rg_req);
501 kfree(rg_resp);
502 return res;
503 }
504
505 static void ex_assign_manuf_info(struct domain_device *dev, void
506 *_mi_resp)
507 {
508 u8 *mi_resp = _mi_resp;
509 struct sas_rphy *rphy = dev->rphy;
510 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511
512 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514 memcpy(edev->product_rev, mi_resp + 36,
515 SAS_EXPANDER_PRODUCT_REV_LEN);
516
517 if (mi_resp[8] & 1) {
518 memcpy(edev->component_vendor_id, mi_resp + 40,
519 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521 edev->component_revision_id = mi_resp[50];
522 }
523 }
524
525 #define MI_REQ_SIZE 8
526 #define MI_RESP_SIZE 64
527
528 static int sas_ex_manuf_info(struct domain_device *dev)
529 {
530 u8 *mi_req;
531 u8 *mi_resp;
532 int res;
533
534 mi_req = alloc_smp_req(MI_REQ_SIZE);
535 if (!mi_req)
536 return -ENOMEM;
537
538 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539 if (!mi_resp) {
540 kfree(mi_req);
541 return -ENOMEM;
542 }
543
544 mi_req[1] = SMP_REPORT_MANUF_INFO;
545
546 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547 if (res) {
548 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549 SAS_ADDR(dev->sas_addr), res);
550 goto out;
551 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553 SAS_ADDR(dev->sas_addr), mi_resp[2]);
554 goto out;
555 }
556
557 ex_assign_manuf_info(dev, mi_resp);
558 out:
559 kfree(mi_req);
560 kfree(mi_resp);
561 return res;
562 }
563
564 #define PC_REQ_SIZE 44
565 #define PC_RESP_SIZE 8
566
567 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568 enum phy_func phy_func,
569 struct sas_phy_linkrates *rates)
570 {
571 u8 *pc_req;
572 u8 *pc_resp;
573 int res;
574
575 pc_req = alloc_smp_req(PC_REQ_SIZE);
576 if (!pc_req)
577 return -ENOMEM;
578
579 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580 if (!pc_resp) {
581 kfree(pc_req);
582 return -ENOMEM;
583 }
584
585 pc_req[1] = SMP_PHY_CONTROL;
586 pc_req[9] = phy_id;
587 pc_req[10]= phy_func;
588 if (rates) {
589 pc_req[32] = rates->minimum_linkrate << 4;
590 pc_req[33] = rates->maximum_linkrate << 4;
591 }
592
593 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594
595 kfree(pc_resp);
596 kfree(pc_req);
597 return res;
598 }
599
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602 struct expander_device *ex = &dev->ex_dev;
603 struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 phy->linkrate = SAS_PHY_DISABLED;
607 }
608
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611 struct expander_device *ex = &dev->ex_dev;
612 int i;
613
614 for (i = 0; i < ex->num_phys; i++) {
615 struct ex_phy *phy = &ex->ex_phy[i];
616
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
620
621 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 sas_ex_disable_phy(dev, i);
623 }
624 }
625
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 u8 *sas_addr)
628 {
629 struct domain_device *dev;
630
631 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 return 1;
633 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 return 1;
636 }
637 return 0;
638 }
639
640 #define RPEL_REQ_SIZE 16
641 #define RPEL_RESP_SIZE 32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644 int res;
645 u8 *req;
646 u8 *resp;
647 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650 req = alloc_smp_req(RPEL_REQ_SIZE);
651 if (!req)
652 return -ENOMEM;
653
654 resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 if (!resp) {
656 kfree(req);
657 return -ENOMEM;
658 }
659
660 req[1] = SMP_REPORT_PHY_ERR_LOG;
661 req[9] = phy->number;
662
663 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 resp, RPEL_RESP_SIZE);
665
666 if (!res)
667 goto out;
668
669 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673
674 out:
675 kfree(resp);
676 return res;
677
678 }
679
680 #ifdef CONFIG_SCSI_SAS_ATA
681
682 #define RPS_REQ_SIZE 16
683 #define RPS_RESP_SIZE 60
684
685 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686 struct smp_resp *rps_resp)
687 {
688 int res;
689 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690 u8 *resp = (u8 *)rps_resp;
691
692 if (!rps_req)
693 return -ENOMEM;
694
695 rps_req[1] = SMP_REPORT_PHY_SATA;
696 rps_req[9] = phy_id;
697
698 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699 rps_resp, RPS_RESP_SIZE);
700
701 /* 0x34 is the FIS type for the D2H fis. There's a potential
702 * standards cockup here. sas-2 explicitly specifies the FIS
703 * should be encoded so that FIS type is in resp[24].
704 * However, some expanders endian reverse this. Undo the
705 * reversal here */
706 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707 int i;
708
709 for (i = 0; i < 5; i++) {
710 int j = 24 + (i*4);
711 u8 a, b;
712 a = resp[j + 0];
713 b = resp[j + 1];
714 resp[j + 0] = resp[j + 3];
715 resp[j + 1] = resp[j + 2];
716 resp[j + 2] = b;
717 resp[j + 3] = a;
718 }
719 }
720
721 kfree(rps_req);
722 return res;
723 }
724 #endif
725
726 static void sas_ex_get_linkrate(struct domain_device *parent,
727 struct domain_device *child,
728 struct ex_phy *parent_phy)
729 {
730 struct expander_device *parent_ex = &parent->ex_dev;
731 struct sas_port *port;
732 int i;
733
734 child->pathways = 0;
735
736 port = parent_phy->port;
737
738 for (i = 0; i < parent_ex->num_phys; i++) {
739 struct ex_phy *phy = &parent_ex->ex_phy[i];
740
741 if (phy->phy_state == PHY_VACANT ||
742 phy->phy_state == PHY_NOT_PRESENT)
743 continue;
744
745 if (SAS_ADDR(phy->attached_sas_addr) ==
746 SAS_ADDR(child->sas_addr)) {
747
748 child->min_linkrate = min(parent->min_linkrate,
749 phy->linkrate);
750 child->max_linkrate = max(parent->max_linkrate,
751 phy->linkrate);
752 child->pathways++;
753 sas_port_add_phy(port, phy->phy);
754 }
755 }
756 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757 child->pathways = min(child->pathways, parent->pathways);
758 }
759
760 static struct domain_device *sas_ex_discover_end_dev(
761 struct domain_device *parent, int phy_id)
762 {
763 struct expander_device *parent_ex = &parent->ex_dev;
764 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765 struct domain_device *child = NULL;
766 struct sas_rphy *rphy;
767 int res;
768
769 if (phy->attached_sata_host || phy->attached_sata_ps)
770 return NULL;
771
772 child = sas_alloc_device();
773 if (!child)
774 return NULL;
775
776 kref_get(&parent->kref);
777 child->parent = parent;
778 child->port = parent->port;
779 child->iproto = phy->attached_iproto;
780 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782 if (!phy->port) {
783 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784 if (unlikely(!phy->port))
785 goto out_err;
786 if (unlikely(sas_port_add(phy->port) != 0)) {
787 sas_port_free(phy->port);
788 goto out_err;
789 }
790 }
791 sas_ex_get_linkrate(parent, child, phy);
792 sas_device_set_phy(child, phy->port);
793
794 #ifdef CONFIG_SCSI_SAS_ATA
795 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796 res = sas_get_ata_info(child, phy);
797 if (res)
798 goto out_free;
799
800 sas_init_dev(child);
801 res = sas_ata_init(child);
802 if (res)
803 goto out_free;
804 rphy = sas_end_device_alloc(phy->port);
805 if (!rphy)
806 goto out_free;
807
808 child->rphy = rphy;
809 get_device(&rphy->dev);
810
811 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812
813 res = sas_discover_sata(child);
814 if (res) {
815 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816 "%016llx:0x%x returned 0x%x\n",
817 SAS_ADDR(child->sas_addr),
818 SAS_ADDR(parent->sas_addr), phy_id, res);
819 goto out_list_del;
820 }
821 } else
822 #endif
823 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 child->dev_type = SAS_END_DEV;
825 rphy = sas_end_device_alloc(phy->port);
826 /* FIXME: error handling */
827 if (unlikely(!rphy))
828 goto out_free;
829 child->tproto = phy->attached_tproto;
830 sas_init_dev(child);
831
832 child->rphy = rphy;
833 get_device(&rphy->dev);
834 sas_fill_in_rphy(child, rphy);
835
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838 res = sas_discover_end_dev(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841 "at %016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
845 }
846 } else {
847 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849 phy_id);
850 goto out_free;
851 }
852
853 list_add_tail(&child->siblings, &parent_ex->children);
854 return child;
855
856 out_list_del:
857 sas_rphy_free(child->rphy);
858 list_del(&child->disco_list_node);
859 spin_lock_irq(&parent->port->dev_list_lock);
860 list_del(&child->dev_list_node);
861 spin_unlock_irq(&parent->port->dev_list_lock);
862 out_free:
863 sas_port_delete(phy->port);
864 out_err:
865 phy->port = NULL;
866 sas_put_device(child);
867 return NULL;
868 }
869
870 /* See if this phy is part of a wide port */
871 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872 {
873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874 int i;
875
876 for (i = 0; i < parent->ex_dev.num_phys; i++) {
877 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878
879 if (ephy == phy)
880 continue;
881
882 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883 SAS_ADDR_SIZE) && ephy->port) {
884 sas_port_add_phy(ephy->port, phy->phy);
885 phy->port = ephy->port;
886 phy->phy_state = PHY_DEVICE_DISCOVERED;
887 return true;
888 }
889 }
890
891 return false;
892 }
893
894 static struct domain_device *sas_ex_discover_expander(
895 struct domain_device *parent, int phy_id)
896 {
897 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 struct domain_device *child = NULL;
900 struct sas_rphy *rphy;
901 struct sas_expander_device *edev;
902 struct asd_sas_port *port;
903 int res;
904
905 if (phy->routing_attr == DIRECT_ROUTING) {
906 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907 "allowed\n",
908 SAS_ADDR(parent->sas_addr), phy_id,
909 SAS_ADDR(phy->attached_sas_addr),
910 phy->attached_phy_id);
911 return NULL;
912 }
913 child = sas_alloc_device();
914 if (!child)
915 return NULL;
916
917 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918 /* FIXME: better error handling */
919 BUG_ON(sas_port_add(phy->port) != 0);
920
921
922 switch (phy->attached_dev_type) {
923 case EDGE_DEV:
924 rphy = sas_expander_alloc(phy->port,
925 SAS_EDGE_EXPANDER_DEVICE);
926 break;
927 case FANOUT_DEV:
928 rphy = sas_expander_alloc(phy->port,
929 SAS_FANOUT_EXPANDER_DEVICE);
930 break;
931 default:
932 rphy = NULL; /* shut gcc up */
933 BUG();
934 }
935 port = parent->port;
936 child->rphy = rphy;
937 get_device(&rphy->dev);
938 edev = rphy_to_expander_device(rphy);
939 child->dev_type = phy->attached_dev_type;
940 kref_get(&parent->kref);
941 child->parent = parent;
942 child->port = port;
943 child->iproto = phy->attached_iproto;
944 child->tproto = phy->attached_tproto;
945 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947 sas_ex_get_linkrate(parent, child, phy);
948 edev->level = parent_ex->level + 1;
949 parent->port->disc.max_level = max(parent->port->disc.max_level,
950 edev->level);
951 sas_init_dev(child);
952 sas_fill_in_rphy(child, rphy);
953 sas_rphy_add(rphy);
954
955 spin_lock_irq(&parent->port->dev_list_lock);
956 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957 spin_unlock_irq(&parent->port->dev_list_lock);
958
959 res = sas_discover_expander(child);
960 if (res) {
961 sas_rphy_delete(rphy);
962 spin_lock_irq(&parent->port->dev_list_lock);
963 list_del(&child->dev_list_node);
964 spin_unlock_irq(&parent->port->dev_list_lock);
965 sas_put_device(child);
966 return NULL;
967 }
968 list_add_tail(&child->siblings, &parent->ex_dev.children);
969 return child;
970 }
971
972 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973 {
974 struct expander_device *ex = &dev->ex_dev;
975 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976 struct domain_device *child = NULL;
977 int res = 0;
978
979 /* Phy state */
980 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982 res = sas_ex_phy_discover(dev, phy_id);
983 if (res)
984 return res;
985 }
986
987 /* Parent and domain coherency */
988 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989 SAS_ADDR(dev->port->sas_addr))) {
990 sas_add_parent_port(dev, phy_id);
991 return 0;
992 }
993 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994 SAS_ADDR(dev->parent->sas_addr))) {
995 sas_add_parent_port(dev, phy_id);
996 if (ex_phy->routing_attr == TABLE_ROUTING)
997 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998 return 0;
999 }
1000
1001 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004 if (ex_phy->attached_dev_type == NO_DEVICE) {
1005 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008 }
1009 return 0;
1010 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011 return 0;
1012
1013 if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014 ex_phy->attached_dev_type != FANOUT_DEV &&
1015 ex_phy->attached_dev_type != EDGE_DEV &&
1016 ex_phy->attached_dev_type != SATA_PENDING) {
1017 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018 "phy 0x%x\n", ex_phy->attached_dev_type,
1019 SAS_ADDR(dev->sas_addr),
1020 phy_id);
1021 return 0;
1022 }
1023
1024 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025 if (res) {
1026 SAS_DPRINTK("configure routing for dev %016llx "
1027 "reported 0x%x. Forgotten\n",
1028 SAS_ADDR(ex_phy->attached_sas_addr), res);
1029 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030 return res;
1031 }
1032
1033 if (sas_ex_join_wide_port(dev, phy_id)) {
1034 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036 return res;
1037 }
1038
1039 switch (ex_phy->attached_dev_type) {
1040 case SAS_END_DEV:
1041 case SATA_PENDING:
1042 child = sas_ex_discover_end_dev(dev, phy_id);
1043 break;
1044 case FANOUT_DEV:
1045 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047 "attached to ex %016llx phy 0x%x\n",
1048 SAS_ADDR(ex_phy->attached_sas_addr),
1049 ex_phy->attached_phy_id,
1050 SAS_ADDR(dev->sas_addr),
1051 phy_id);
1052 sas_ex_disable_phy(dev, phy_id);
1053 break;
1054 } else
1055 memcpy(dev->port->disc.fanout_sas_addr,
1056 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057 /* fallthrough */
1058 case EDGE_DEV:
1059 child = sas_ex_discover_expander(dev, phy_id);
1060 break;
1061 default:
1062 break;
1063 }
1064
1065 if (child) {
1066 int i;
1067
1068 for (i = 0; i < ex->num_phys; i++) {
1069 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071 continue;
1072 /*
1073 * Due to races, the phy might not get added to the
1074 * wide port, so we add the phy to the wide port here.
1075 */
1076 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077 SAS_ADDR(child->sas_addr)) {
1078 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079 if (sas_ex_join_wide_port(dev, i))
1080 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083 }
1084 }
1085 }
1086
1087 return res;
1088 }
1089
1090 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091 {
1092 struct expander_device *ex = &dev->ex_dev;
1093 int i;
1094
1095 for (i = 0; i < ex->num_phys; i++) {
1096 struct ex_phy *phy = &ex->ex_phy[i];
1097
1098 if (phy->phy_state == PHY_VACANT ||
1099 phy->phy_state == PHY_NOT_PRESENT)
1100 continue;
1101
1102 if ((phy->attached_dev_type == EDGE_DEV ||
1103 phy->attached_dev_type == FANOUT_DEV) &&
1104 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108 return 1;
1109 }
1110 }
1111 return 0;
1112 }
1113
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116 struct expander_device *ex = &dev->ex_dev;
1117 struct domain_device *child;
1118 u8 sub_addr[8] = {0, };
1119
1120 list_for_each_entry(child, &ex->children, siblings) {
1121 if (child->dev_type != EDGE_DEV &&
1122 child->dev_type != FANOUT_DEV)
1123 continue;
1124 if (sub_addr[0] == 0) {
1125 sas_find_sub_addr(child, sub_addr);
1126 continue;
1127 } else {
1128 u8 s2[8];
1129
1130 if (sas_find_sub_addr(child, s2) &&
1131 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134 "diverges from subtractive "
1135 "boundary %016llx\n",
1136 SAS_ADDR(dev->sas_addr),
1137 SAS_ADDR(child->sas_addr),
1138 SAS_ADDR(s2),
1139 SAS_ADDR(sub_addr));
1140
1141 sas_ex_disable_port(child, s2);
1142 }
1143 }
1144 }
1145 return 0;
1146 }
1147 /**
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1151 *
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1154 */
1155 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156 {
1157 struct expander_device *ex = &dev->ex_dev;
1158 int i = 0, end = ex->num_phys;
1159 int res = 0;
1160
1161 if (0 <= single && single < end) {
1162 i = single;
1163 end = i+1;
1164 }
1165
1166 for ( ; i < end; i++) {
1167 struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169 if (ex_phy->phy_state == PHY_VACANT ||
1170 ex_phy->phy_state == PHY_NOT_PRESENT ||
1171 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172 continue;
1173
1174 switch (ex_phy->linkrate) {
1175 case SAS_PHY_DISABLED:
1176 case SAS_PHY_RESET_PROBLEM:
1177 case SAS_SATA_PORT_SELECTOR:
1178 continue;
1179 default:
1180 res = sas_ex_discover_dev(dev, i);
1181 if (res)
1182 break;
1183 continue;
1184 }
1185 }
1186
1187 if (!res)
1188 sas_check_level_subtractive_boundary(dev);
1189
1190 return res;
1191 }
1192
1193 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194 {
1195 struct expander_device *ex = &dev->ex_dev;
1196 int i;
1197 u8 *sub_sas_addr = NULL;
1198
1199 if (dev->dev_type != EDGE_DEV)
1200 return 0;
1201
1202 for (i = 0; i < ex->num_phys; i++) {
1203 struct ex_phy *phy = &ex->ex_phy[i];
1204
1205 if (phy->phy_state == PHY_VACANT ||
1206 phy->phy_state == PHY_NOT_PRESENT)
1207 continue;
1208
1209 if ((phy->attached_dev_type == FANOUT_DEV ||
1210 phy->attached_dev_type == EDGE_DEV) &&
1211 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213 if (!sub_sas_addr)
1214 sub_sas_addr = &phy->attached_sas_addr[0];
1215 else if (SAS_ADDR(sub_sas_addr) !=
1216 SAS_ADDR(phy->attached_sas_addr)) {
1217
1218 SAS_DPRINTK("ex %016llx phy 0x%x "
1219 "diverges(%016llx) on subtractive "
1220 "boundary(%016llx). Disabled\n",
1221 SAS_ADDR(dev->sas_addr), i,
1222 SAS_ADDR(phy->attached_sas_addr),
1223 SAS_ADDR(sub_sas_addr));
1224 sas_ex_disable_phy(dev, i);
1225 }
1226 }
1227 }
1228 return 0;
1229 }
1230
1231 static void sas_print_parent_topology_bug(struct domain_device *child,
1232 struct ex_phy *parent_phy,
1233 struct ex_phy *child_phy)
1234 {
1235 static const char *ex_type[] = {
1236 [EDGE_DEV] = "edge",
1237 [FANOUT_DEV] = "fanout",
1238 };
1239 struct domain_device *parent = child->parent;
1240
1241 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242 "phy 0x%x has %c:%c routing link!\n",
1243
1244 ex_type[parent->dev_type],
1245 SAS_ADDR(parent->sas_addr),
1246 parent_phy->phy_id,
1247
1248 ex_type[child->dev_type],
1249 SAS_ADDR(child->sas_addr),
1250 child_phy->phy_id,
1251
1252 sas_route_char(parent, parent_phy),
1253 sas_route_char(child, child_phy));
1254 }
1255
1256 static int sas_check_eeds(struct domain_device *child,
1257 struct ex_phy *parent_phy,
1258 struct ex_phy *child_phy)
1259 {
1260 int res = 0;
1261 struct domain_device *parent = child->parent;
1262
1263 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264 res = -ENODEV;
1265 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266 "phy S:0x%x, while there is a fanout ex %016llx\n",
1267 SAS_ADDR(parent->sas_addr),
1268 parent_phy->phy_id,
1269 SAS_ADDR(child->sas_addr),
1270 child_phy->phy_id,
1271 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274 SAS_ADDR_SIZE);
1275 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276 SAS_ADDR_SIZE);
1277 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278 SAS_ADDR(parent->sas_addr)) ||
1279 (SAS_ADDR(parent->port->disc.eeds_a) ==
1280 SAS_ADDR(child->sas_addr)))
1281 &&
1282 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283 SAS_ADDR(parent->sas_addr)) ||
1284 (SAS_ADDR(parent->port->disc.eeds_b) ==
1285 SAS_ADDR(child->sas_addr))))
1286 ;
1287 else {
1288 res = -ENODEV;
1289 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290 "phy 0x%x link forms a third EEDS!\n",
1291 SAS_ADDR(parent->sas_addr),
1292 parent_phy->phy_id,
1293 SAS_ADDR(child->sas_addr),
1294 child_phy->phy_id);
1295 }
1296
1297 return res;
1298 }
1299
1300 /* Here we spill over 80 columns. It is intentional.
1301 */
1302 static int sas_check_parent_topology(struct domain_device *child)
1303 {
1304 struct expander_device *child_ex = &child->ex_dev;
1305 struct expander_device *parent_ex;
1306 int i;
1307 int res = 0;
1308
1309 if (!child->parent)
1310 return 0;
1311
1312 if (child->parent->dev_type != EDGE_DEV &&
1313 child->parent->dev_type != FANOUT_DEV)
1314 return 0;
1315
1316 parent_ex = &child->parent->ex_dev;
1317
1318 for (i = 0; i < parent_ex->num_phys; i++) {
1319 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320 struct ex_phy *child_phy;
1321
1322 if (parent_phy->phy_state == PHY_VACANT ||
1323 parent_phy->phy_state == PHY_NOT_PRESENT)
1324 continue;
1325
1326 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327 continue;
1328
1329 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331 switch (child->parent->dev_type) {
1332 case EDGE_DEV:
1333 if (child->dev_type == FANOUT_DEV) {
1334 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335 child_phy->routing_attr != TABLE_ROUTING) {
1336 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337 res = -ENODEV;
1338 }
1339 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341 res = sas_check_eeds(child, parent_phy, child_phy);
1342 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1343 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344 res = -ENODEV;
1345 }
1346 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348 (child_phy->routing_attr == TABLE_ROUTING &&
1349 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350 /* All good */;
1351 } else {
1352 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353 res = -ENODEV;
1354 }
1355 }
1356 break;
1357 case FANOUT_DEV:
1358 if (parent_phy->routing_attr != TABLE_ROUTING ||
1359 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 res = -ENODEV;
1362 }
1363 break;
1364 default:
1365 break;
1366 }
1367 }
1368
1369 return res;
1370 }
1371
1372 #define RRI_REQ_SIZE 16
1373 #define RRI_RESP_SIZE 44
1374
1375 static int sas_configure_present(struct domain_device *dev, int phy_id,
1376 u8 *sas_addr, int *index, int *present)
1377 {
1378 int i, res = 0;
1379 struct expander_device *ex = &dev->ex_dev;
1380 struct ex_phy *phy = &ex->ex_phy[phy_id];
1381 u8 *rri_req;
1382 u8 *rri_resp;
1383
1384 *present = 0;
1385 *index = 0;
1386
1387 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388 if (!rri_req)
1389 return -ENOMEM;
1390
1391 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392 if (!rri_resp) {
1393 kfree(rri_req);
1394 return -ENOMEM;
1395 }
1396
1397 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398 rri_req[9] = phy_id;
1399
1400 for (i = 0; i < ex->max_route_indexes ; i++) {
1401 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403 RRI_RESP_SIZE);
1404 if (res)
1405 goto out;
1406 res = rri_resp[2];
1407 if (res == SMP_RESP_NO_INDEX) {
1408 SAS_DPRINTK("overflow of indexes: dev %016llx "
1409 "phy 0x%x index 0x%x\n",
1410 SAS_ADDR(dev->sas_addr), phy_id, i);
1411 goto out;
1412 } else if (res != SMP_RESP_FUNC_ACC) {
1413 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414 "result 0x%x\n", __func__,
1415 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416 goto out;
1417 }
1418 if (SAS_ADDR(sas_addr) != 0) {
1419 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420 *index = i;
1421 if ((rri_resp[12] & 0x80) == 0x80)
1422 *present = 0;
1423 else
1424 *present = 1;
1425 goto out;
1426 } else if (SAS_ADDR(rri_resp+16) == 0) {
1427 *index = i;
1428 *present = 0;
1429 goto out;
1430 }
1431 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1432 phy->last_da_index < i) {
1433 phy->last_da_index = i;
1434 *index = i;
1435 *present = 0;
1436 goto out;
1437 }
1438 }
1439 res = -1;
1440 out:
1441 kfree(rri_req);
1442 kfree(rri_resp);
1443 return res;
1444 }
1445
1446 #define CRI_REQ_SIZE 44
1447 #define CRI_RESP_SIZE 8
1448
1449 static int sas_configure_set(struct domain_device *dev, int phy_id,
1450 u8 *sas_addr, int index, int include)
1451 {
1452 int res;
1453 u8 *cri_req;
1454 u8 *cri_resp;
1455
1456 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457 if (!cri_req)
1458 return -ENOMEM;
1459
1460 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461 if (!cri_resp) {
1462 kfree(cri_req);
1463 return -ENOMEM;
1464 }
1465
1466 cri_req[1] = SMP_CONF_ROUTE_INFO;
1467 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468 cri_req[9] = phy_id;
1469 if (SAS_ADDR(sas_addr) == 0 || !include)
1470 cri_req[12] |= 0x80;
1471 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474 CRI_RESP_SIZE);
1475 if (res)
1476 goto out;
1477 res = cri_resp[2];
1478 if (res == SMP_RESP_NO_INDEX) {
1479 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480 "index 0x%x\n",
1481 SAS_ADDR(dev->sas_addr), phy_id, index);
1482 }
1483 out:
1484 kfree(cri_req);
1485 kfree(cri_resp);
1486 return res;
1487 }
1488
1489 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490 u8 *sas_addr, int include)
1491 {
1492 int index;
1493 int present;
1494 int res;
1495
1496 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497 if (res)
1498 return res;
1499 if (include ^ present)
1500 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1501
1502 return res;
1503 }
1504
1505 /**
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
1510 */
1511 static int sas_configure_parent(struct domain_device *parent,
1512 struct domain_device *child,
1513 u8 *sas_addr, int include)
1514 {
1515 struct expander_device *ex_parent = &parent->ex_dev;
1516 int res = 0;
1517 int i;
1518
1519 if (parent->parent) {
1520 res = sas_configure_parent(parent->parent, parent, sas_addr,
1521 include);
1522 if (res)
1523 return res;
1524 }
1525
1526 if (ex_parent->conf_route_table == 0) {
1527 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528 SAS_ADDR(parent->sas_addr));
1529 return 0;
1530 }
1531
1532 for (i = 0; i < ex_parent->num_phys; i++) {
1533 struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535 if ((phy->routing_attr == TABLE_ROUTING) &&
1536 (SAS_ADDR(phy->attached_sas_addr) ==
1537 SAS_ADDR(child->sas_addr))) {
1538 res = sas_configure_phy(parent, i, sas_addr, include);
1539 if (res)
1540 return res;
1541 }
1542 }
1543
1544 return res;
1545 }
1546
1547 /**
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1551 */
1552 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553 {
1554 if (dev->parent)
1555 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556 return 0;
1557 }
1558
1559 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1560 {
1561 if (dev->parent)
1562 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563 return 0;
1564 }
1565
1566 /**
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1569 *
1570 * See comment in sas_discover_sata().
1571 */
1572 static int sas_discover_expander(struct domain_device *dev)
1573 {
1574 int res;
1575
1576 res = sas_notify_lldd_dev_found(dev);
1577 if (res)
1578 return res;
1579
1580 res = sas_ex_general(dev);
1581 if (res)
1582 goto out_err;
1583 res = sas_ex_manuf_info(dev);
1584 if (res)
1585 goto out_err;
1586
1587 res = sas_expander_discover(dev);
1588 if (res) {
1589 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590 SAS_ADDR(dev->sas_addr), res);
1591 goto out_err;
1592 }
1593
1594 sas_check_ex_subtractive_boundary(dev);
1595 res = sas_check_parent_topology(dev);
1596 if (res)
1597 goto out_err;
1598 return 0;
1599 out_err:
1600 sas_notify_lldd_dev_gone(dev);
1601 return res;
1602 }
1603
1604 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605 {
1606 int res = 0;
1607 struct domain_device *dev;
1608
1609 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610 if (dev->dev_type == EDGE_DEV ||
1611 dev->dev_type == FANOUT_DEV) {
1612 struct sas_expander_device *ex =
1613 rphy_to_expander_device(dev->rphy);
1614
1615 if (level == ex->level)
1616 res = sas_ex_discover_devices(dev, -1);
1617 else if (level > 0)
1618 res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620 }
1621 }
1622
1623 return res;
1624 }
1625
1626 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627 {
1628 int res;
1629 int level;
1630
1631 do {
1632 level = port->disc.max_level;
1633 res = sas_ex_level_discovery(port, level);
1634 mb();
1635 } while (level < port->disc.max_level);
1636
1637 return res;
1638 }
1639
1640 int sas_discover_root_expander(struct domain_device *dev)
1641 {
1642 int res;
1643 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645 res = sas_rphy_add(dev->rphy);
1646 if (res)
1647 goto out_err;
1648
1649 ex->level = dev->port->disc.max_level; /* 0 */
1650 res = sas_discover_expander(dev);
1651 if (res)
1652 goto out_err2;
1653
1654 sas_ex_bfs_disc(dev->port);
1655
1656 return res;
1657
1658 out_err2:
1659 sas_rphy_remove(dev->rphy);
1660 out_err:
1661 return res;
1662 }
1663
1664 /* ---------- Domain revalidation ---------- */
1665
1666 static int sas_get_phy_discover(struct domain_device *dev,
1667 int phy_id, struct smp_resp *disc_resp)
1668 {
1669 int res;
1670 u8 *disc_req;
1671
1672 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673 if (!disc_req)
1674 return -ENOMEM;
1675
1676 disc_req[1] = SMP_DISCOVER;
1677 disc_req[9] = phy_id;
1678
1679 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680 disc_resp, DISCOVER_RESP_SIZE);
1681 if (res)
1682 goto out;
1683 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684 res = disc_resp->result;
1685 goto out;
1686 }
1687 out:
1688 kfree(disc_req);
1689 return res;
1690 }
1691
1692 static int sas_get_phy_change_count(struct domain_device *dev,
1693 int phy_id, int *pcc)
1694 {
1695 int res;
1696 struct smp_resp *disc_resp;
1697
1698 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699 if (!disc_resp)
1700 return -ENOMEM;
1701
1702 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703 if (!res)
1704 *pcc = disc_resp->disc.change_count;
1705
1706 kfree(disc_resp);
1707 return res;
1708 }
1709
1710 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711 u8 *sas_addr, enum sas_dev_type *type)
1712 {
1713 int res;
1714 struct smp_resp *disc_resp;
1715 struct discover_resp *dr;
1716
1717 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718 if (!disc_resp)
1719 return -ENOMEM;
1720 dr = &disc_resp->disc;
1721
1722 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723 if (res == 0) {
1724 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725 *type = to_dev_type(dr);
1726 if (*type == 0)
1727 memset(sas_addr, 0, 8);
1728 }
1729 kfree(disc_resp);
1730 return res;
1731 }
1732
1733 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734 int from_phy, bool update)
1735 {
1736 struct expander_device *ex = &dev->ex_dev;
1737 int res = 0;
1738 int i;
1739
1740 for (i = from_phy; i < ex->num_phys; i++) {
1741 int phy_change_count = 0;
1742
1743 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744 switch (res) {
1745 case SMP_RESP_PHY_VACANT:
1746 case SMP_RESP_NO_PHY:
1747 continue;
1748 case SMP_RESP_FUNC_ACC:
1749 break;
1750 default:
1751 return res;
1752 }
1753
1754 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755 if (update)
1756 ex->ex_phy[i].phy_change_count =
1757 phy_change_count;
1758 *phy_id = i;
1759 return 0;
1760 }
1761 }
1762 return 0;
1763 }
1764
1765 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766 {
1767 int res;
1768 u8 *rg_req;
1769 struct smp_resp *rg_resp;
1770
1771 rg_req = alloc_smp_req(RG_REQ_SIZE);
1772 if (!rg_req)
1773 return -ENOMEM;
1774
1775 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776 if (!rg_resp) {
1777 kfree(rg_req);
1778 return -ENOMEM;
1779 }
1780
1781 rg_req[1] = SMP_REPORT_GENERAL;
1782
1783 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784 RG_RESP_SIZE);
1785 if (res)
1786 goto out;
1787 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788 res = rg_resp->result;
1789 goto out;
1790 }
1791
1792 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1793 out:
1794 kfree(rg_resp);
1795 kfree(rg_req);
1796 return res;
1797 }
1798 /**
1799 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1802 *
1803 * Add self-configuration expander support. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1810 * we concerned.
1811 */
1812
1813 static int sas_find_bcast_dev(struct domain_device *dev,
1814 struct domain_device **src_dev)
1815 {
1816 struct expander_device *ex = &dev->ex_dev;
1817 int ex_change_count = -1;
1818 int phy_id = -1;
1819 int res;
1820 struct domain_device *ch;
1821
1822 res = sas_get_ex_change_count(dev, &ex_change_count);
1823 if (res)
1824 goto out;
1825 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826 /* Just detect if this expander phys phy change count changed,
1827 * in order to determine if this expander originate BROADCAST,
1828 * and do not update phy change count field in our structure.
1829 */
1830 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831 if (phy_id != -1) {
1832 *src_dev = dev;
1833 ex->ex_change_count = ex_change_count;
1834 SAS_DPRINTK("Expander phy change count has changed\n");
1835 return res;
1836 } else
1837 SAS_DPRINTK("Expander phys DID NOT change\n");
1838 }
1839 list_for_each_entry(ch, &ex->children, siblings) {
1840 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841 res = sas_find_bcast_dev(ch, src_dev);
1842 if (*src_dev)
1843 return res;
1844 }
1845 }
1846 out:
1847 return res;
1848 }
1849
1850 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851 {
1852 struct expander_device *ex = &dev->ex_dev;
1853 struct domain_device *child, *n;
1854
1855 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856 set_bit(SAS_DEV_GONE, &child->state);
1857 if (child->dev_type == EDGE_DEV ||
1858 child->dev_type == FANOUT_DEV)
1859 sas_unregister_ex_tree(port, child);
1860 else
1861 sas_unregister_dev(port, child);
1862 }
1863 sas_unregister_dev(port, dev);
1864 }
1865
1866 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867 int phy_id, bool last)
1868 {
1869 struct expander_device *ex_dev = &parent->ex_dev;
1870 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871 struct domain_device *child, *n, *found = NULL;
1872 if (last) {
1873 list_for_each_entry_safe(child, n,
1874 &ex_dev->children, siblings) {
1875 if (SAS_ADDR(child->sas_addr) ==
1876 SAS_ADDR(phy->attached_sas_addr)) {
1877 set_bit(SAS_DEV_GONE, &child->state);
1878 if (child->dev_type == EDGE_DEV ||
1879 child->dev_type == FANOUT_DEV)
1880 sas_unregister_ex_tree(parent->port, child);
1881 else
1882 sas_unregister_dev(parent->port, child);
1883 found = child;
1884 break;
1885 }
1886 }
1887 sas_disable_routing(parent, phy->attached_sas_addr);
1888 }
1889 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890 if (phy->port) {
1891 sas_port_delete_phy(phy->port, phy->phy);
1892 sas_device_set_phy(found, phy->port);
1893 if (phy->port->num_phys == 0)
1894 sas_port_delete(phy->port);
1895 phy->port = NULL;
1896 }
1897 }
1898
1899 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900 const int level)
1901 {
1902 struct expander_device *ex_root = &root->ex_dev;
1903 struct domain_device *child;
1904 int res = 0;
1905
1906 list_for_each_entry(child, &ex_root->children, siblings) {
1907 if (child->dev_type == EDGE_DEV ||
1908 child->dev_type == FANOUT_DEV) {
1909 struct sas_expander_device *ex =
1910 rphy_to_expander_device(child->rphy);
1911
1912 if (level > ex->level)
1913 res = sas_discover_bfs_by_root_level(child,
1914 level);
1915 else if (level == ex->level)
1916 res = sas_ex_discover_devices(child, -1);
1917 }
1918 }
1919 return res;
1920 }
1921
1922 static int sas_discover_bfs_by_root(struct domain_device *dev)
1923 {
1924 int res;
1925 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926 int level = ex->level+1;
1927
1928 res = sas_ex_discover_devices(dev, -1);
1929 if (res)
1930 goto out;
1931 do {
1932 res = sas_discover_bfs_by_root_level(dev, level);
1933 mb();
1934 level += 1;
1935 } while (level <= dev->port->disc.max_level);
1936 out:
1937 return res;
1938 }
1939
1940 static int sas_discover_new(struct domain_device *dev, int phy_id)
1941 {
1942 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943 struct domain_device *child;
1944 int res;
1945
1946 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947 SAS_ADDR(dev->sas_addr), phy_id);
1948 res = sas_ex_phy_discover(dev, phy_id);
1949 if (res)
1950 return res;
1951
1952 if (sas_ex_join_wide_port(dev, phy_id))
1953 return 0;
1954
1955 res = sas_ex_discover_devices(dev, phy_id);
1956 if (res)
1957 return res;
1958 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959 if (SAS_ADDR(child->sas_addr) ==
1960 SAS_ADDR(ex_phy->attached_sas_addr)) {
1961 if (child->dev_type == EDGE_DEV ||
1962 child->dev_type == FANOUT_DEV)
1963 res = sas_discover_bfs_by_root(child);
1964 break;
1965 }
1966 }
1967 return res;
1968 }
1969
1970 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971 {
1972 if (old == new)
1973 return true;
1974
1975 /* treat device directed resets as flutter, if we went
1976 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977 */
1978 if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979 (old == SAS_END_DEV && new == SATA_PENDING))
1980 return true;
1981
1982 return false;
1983 }
1984
1985 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1986 {
1987 struct expander_device *ex = &dev->ex_dev;
1988 struct ex_phy *phy = &ex->ex_phy[phy_id];
1989 enum sas_dev_type type = NO_DEVICE;
1990 u8 sas_addr[8];
1991 int res;
1992
1993 memset(sas_addr, 0, 8);
1994 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1995 switch (res) {
1996 case SMP_RESP_NO_PHY:
1997 phy->phy_state = PHY_NOT_PRESENT;
1998 sas_unregister_devs_sas_addr(dev, phy_id, last);
1999 return res;
2000 case SMP_RESP_PHY_VACANT:
2001 phy->phy_state = PHY_VACANT;
2002 sas_unregister_devs_sas_addr(dev, phy_id, last);
2003 return res;
2004 case SMP_RESP_FUNC_ACC:
2005 break;
2006 case -ECOMM:
2007 break;
2008 default:
2009 return res;
2010 }
2011
2012 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2013 phy->phy_state = PHY_EMPTY;
2014 sas_unregister_devs_sas_addr(dev, phy_id, last);
2015 return res;
2016 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2017 dev_type_flutter(type, phy->attached_dev_type)) {
2018 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2019 char *action = "";
2020
2021 sas_ex_phy_discover(dev, phy_id);
2022
2023 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2024 action = ", needs recovery";
2025 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2026 SAS_ADDR(dev->sas_addr), phy_id, action);
2027 return res;
2028 }
2029
2030 /* delete the old link */
2031 if (SAS_ADDR(phy->attached_sas_addr) &&
2032 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2033 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2034 SAS_ADDR(dev->sas_addr), phy_id,
2035 SAS_ADDR(phy->attached_sas_addr));
2036 sas_unregister_devs_sas_addr(dev, phy_id, last);
2037 }
2038
2039 return sas_discover_new(dev, phy_id);
2040 }
2041
2042 /**
2043 * sas_rediscover - revalidate the domain.
2044 * @dev:domain device to be detect.
2045 * @phy_id: the phy id will be detected.
2046 *
2047 * NOTE: this process _must_ quit (return) as soon as any connection
2048 * errors are encountered. Connection recovery is done elsewhere.
2049 * Discover process only interrogates devices in order to discover the
2050 * domain.For plugging out, we un-register the device only when it is
2051 * the last phy in the port, for other phys in this port, we just delete it
2052 * from the port.For inserting, we do discovery when it is the
2053 * first phy,for other phys in this port, we add it to the port to
2054 * forming the wide-port.
2055 */
2056 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2057 {
2058 struct expander_device *ex = &dev->ex_dev;
2059 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2060 int res = 0;
2061 int i;
2062 bool last = true; /* is this the last phy of the port */
2063
2064 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2065 SAS_ADDR(dev->sas_addr), phy_id);
2066
2067 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2068 for (i = 0; i < ex->num_phys; i++) {
2069 struct ex_phy *phy = &ex->ex_phy[i];
2070
2071 if (i == phy_id)
2072 continue;
2073 if (SAS_ADDR(phy->attached_sas_addr) ==
2074 SAS_ADDR(changed_phy->attached_sas_addr)) {
2075 SAS_DPRINTK("phy%d part of wide port with "
2076 "phy%d\n", phy_id, i);
2077 last = false;
2078 break;
2079 }
2080 }
2081 res = sas_rediscover_dev(dev, phy_id, last);
2082 } else
2083 res = sas_discover_new(dev, phy_id);
2084 return res;
2085 }
2086
2087 /**
2088 * sas_revalidate_domain -- revalidate the domain
2089 * @port: port to the domain of interest
2090 *
2091 * NOTE: this process _must_ quit (return) as soon as any connection
2092 * errors are encountered. Connection recovery is done elsewhere.
2093 * Discover process only interrogates devices in order to discover the
2094 * domain.
2095 */
2096 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2097 {
2098 int res;
2099 struct domain_device *dev = NULL;
2100
2101 res = sas_find_bcast_dev(port_dev, &dev);
2102 while (res == 0 && dev) {
2103 struct expander_device *ex = &dev->ex_dev;
2104 int i = 0, phy_id;
2105
2106 do {
2107 phy_id = -1;
2108 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2109 if (phy_id == -1)
2110 break;
2111 res = sas_rediscover(dev, phy_id);
2112 i = phy_id + 1;
2113 } while (i < ex->num_phys);
2114
2115 dev = NULL;
2116 res = sas_find_bcast_dev(port_dev, &dev);
2117 }
2118 return res;
2119 }
2120
2121 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2122 struct request *req)
2123 {
2124 struct domain_device *dev;
2125 int ret, type;
2126 struct request *rsp = req->next_rq;
2127
2128 if (!rsp) {
2129 printk("%s: space for a smp response is missing\n",
2130 __func__);
2131 return -EINVAL;
2132 }
2133
2134 /* no rphy means no smp target support (ie aic94xx host) */
2135 if (!rphy)
2136 return sas_smp_host_handler(shost, req, rsp);
2137
2138 type = rphy->identify.device_type;
2139
2140 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2141 type != SAS_FANOUT_EXPANDER_DEVICE) {
2142 printk("%s: can we send a smp request to a device?\n",
2143 __func__);
2144 return -EINVAL;
2145 }
2146
2147 dev = sas_find_dev_by_rphy(rphy);
2148 if (!dev) {
2149 printk("%s: fail to find a domain_device?\n", __func__);
2150 return -EINVAL;
2151 }
2152
2153 /* do we need to support multiple segments? */
2154 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2155 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2156 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2157 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2158 return -EINVAL;
2159 }
2160
2161 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2162 bio_data(rsp->bio), blk_rq_bytes(rsp));
2163 if (ret > 0) {
2164 /* positive number is the untransferred residual */
2165 rsp->resid_len = ret;
2166 req->resid_len = 0;
2167 ret = 0;
2168 } else if (ret == 0) {
2169 rsp->resid_len = 0;
2170 req->resid_len = 0;
2171 }
2172
2173 return ret;
2174 }