drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334d},
111 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
112 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113 {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
121 */
122 static struct board_type products[] = {
123 {0x3241103C, "Smart Array P212", &SA5_access},
124 {0x3243103C, "Smart Array P410", &SA5_access},
125 {0x3245103C, "Smart Array P410i", &SA5_access},
126 {0x3247103C, "Smart Array P411", &SA5_access},
127 {0x3249103C, "Smart Array P812", &SA5_access},
128 {0x324a103C, "Smart Array P712m", &SA5_access},
129 {0x324b103C, "Smart Array P711m", &SA5_access},
130 {0x3350103C, "Smart Array P222", &SA5_access},
131 {0x3351103C, "Smart Array P420", &SA5_access},
132 {0x3352103C, "Smart Array P421", &SA5_access},
133 {0x3353103C, "Smart Array P822", &SA5_access},
134 {0x3354103C, "Smart Array P420i", &SA5_access},
135 {0x3355103C, "Smart Array P220i", &SA5_access},
136 {0x3356103C, "Smart Array P721m", &SA5_access},
137 {0x1920103C, "Smart Array", &SA5_access},
138 {0x1921103C, "Smart Array", &SA5_access},
139 {0x1922103C, "Smart Array", &SA5_access},
140 {0x1923103C, "Smart Array", &SA5_access},
141 {0x1924103C, "Smart Array", &SA5_access},
142 {0x1925103C, "Smart Array", &SA5_access},
143 {0x1926103C, "Smart Array", &SA5_access},
144 {0x1928103C, "Smart Array", &SA5_access},
145 {0x334d103C, "Smart Array P822se", &SA5_access},
146 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170 int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175 unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177 int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186 struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188 struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191 int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196 u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198 unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201 int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208 unsigned long *priv = shost_priv(sdev->host);
209 return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214 unsigned long *priv = shost_priv(sh);
215 return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219 struct CommandList *c)
220 {
221 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222 return 0;
223
224 switch (c->err_info->SenseInfo[12]) {
225 case STATE_CHANGED:
226 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227 "detected, command retried\n", h->ctlr);
228 break;
229 case LUN_FAILED:
230 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231 "detected, action required\n", h->ctlr);
232 break;
233 case REPORT_LUNS_CHANGED:
234 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235 "changed, action required\n", h->ctlr);
236 /*
237 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238 * target (array) devices.
239 */
240 break;
241 case POWER_OR_RESET:
242 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243 "or device reset detected\n", h->ctlr);
244 break;
245 case UNIT_ATTENTION_CLEARED:
246 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247 "cleared by another initiator\n", h->ctlr);
248 break;
249 default:
250 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251 "unit attention detected\n", h->ctlr);
252 break;
253 }
254 return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262 return 0;
263 dev_warn(&h->pdev->dev, HPSA "device busy");
264 return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268 struct device_attribute *attr,
269 const char *buf, size_t count)
270 {
271 struct ctlr_info *h;
272 struct Scsi_Host *shost = class_to_shost(dev);
273 h = shost_to_hba(shost);
274 hpsa_scan_start(h->scsi_host);
275 return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279 struct device_attribute *attr, char *buf)
280 {
281 struct ctlr_info *h;
282 struct Scsi_Host *shost = class_to_shost(dev);
283 unsigned char *fwrev;
284
285 h = shost_to_hba(shost);
286 if (!h->hba_inquiry_data)
287 return 0;
288 fwrev = &h->hba_inquiry_data[32];
289 return snprintf(buf, 20, "%c%c%c%c\n",
290 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294 struct device_attribute *attr, char *buf)
295 {
296 struct Scsi_Host *shost = class_to_shost(dev);
297 struct ctlr_info *h = shost_to_hba(shost);
298
299 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 struct ctlr_info *h;
306 struct Scsi_Host *shost = class_to_shost(dev);
307
308 h = shost_to_hba(shost);
309 return snprintf(buf, 20, "%s\n",
310 h->transMethod & CFGTBL_Trans_Performant ?
311 "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316 0x324a103C, /* Smart Array P712m */
317 0x324b103C, /* SmartArray P711m */
318 0x3223103C, /* Smart Array P800 */
319 0x3234103C, /* Smart Array P400 */
320 0x3235103C, /* Smart Array P400i */
321 0x3211103C, /* Smart Array E200i */
322 0x3212103C, /* Smart Array E200 */
323 0x3213103C, /* Smart Array E200i */
324 0x3214103C, /* Smart Array E200i */
325 0x3215103C, /* Smart Array E200i */
326 0x3237103C, /* Smart Array E500 */
327 0x323D103C, /* Smart Array P700m */
328 0x40800E11, /* Smart Array 5i */
329 0x409C0E11, /* Smart Array 6400 */
330 0x409D0E11, /* Smart Array 6400 EM */
331 0x40700E11, /* Smart Array 5300 */
332 0x40820E11, /* Smart Array 532 */
333 0x40830E11, /* Smart Array 5312 */
334 0x409A0E11, /* Smart Array 641 */
335 0x409B0E11, /* Smart Array 642 */
336 0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341 0x40800E11, /* Smart Array 5i */
342 0x40700E11, /* Smart Array 5300 */
343 0x40820E11, /* Smart Array 532 */
344 0x40830E11, /* Smart Array 5312 */
345 0x409A0E11, /* Smart Array 641 */
346 0x409B0E11, /* Smart Array 642 */
347 0x40910E11, /* Smart Array 6i */
348 /* Exclude 640x boards. These are two pci devices in one slot
349 * which share a battery backed cache module. One controls the
350 * cache, the other accesses the cache through the one that controls
351 * it. If we reset the one controlling the cache, the other will
352 * likely not be happy. Just forbid resetting this conjoined mess.
353 * The 640x isn't really supported by hpsa anyway.
354 */
355 0x409C0E11, /* Smart Array 6400 */
356 0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361 int i;
362
363 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364 if (unresettable_controller[i] == board_id)
365 return 0;
366 return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371 int i;
372
373 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374 if (soft_unresettable_controller[i] == board_id)
375 return 0;
376 return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381 return ctlr_is_hard_resettable(board_id) ||
382 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386 struct device_attribute *attr, char *buf)
387 {
388 struct ctlr_info *h;
389 struct Scsi_Host *shost = class_to_shost(dev);
390
391 h = shost_to_hba(shost);
392 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397 return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401 "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 ssize_t l = 0;
409 unsigned char rlevel;
410 struct ctlr_info *h;
411 struct scsi_device *sdev;
412 struct hpsa_scsi_dev_t *hdev;
413 unsigned long flags;
414
415 sdev = to_scsi_device(dev);
416 h = sdev_to_hba(sdev);
417 spin_lock_irqsave(&h->lock, flags);
418 hdev = sdev->hostdata;
419 if (!hdev) {
420 spin_unlock_irqrestore(&h->lock, flags);
421 return -ENODEV;
422 }
423
424 /* Is this even a logical drive? */
425 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426 spin_unlock_irqrestore(&h->lock, flags);
427 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428 return l;
429 }
430
431 rlevel = hdev->raid_level;
432 spin_unlock_irqrestore(&h->lock, flags);
433 if (rlevel > RAID_UNKNOWN)
434 rlevel = RAID_UNKNOWN;
435 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436 return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440 struct device_attribute *attr, char *buf)
441 {
442 struct ctlr_info *h;
443 struct scsi_device *sdev;
444 struct hpsa_scsi_dev_t *hdev;
445 unsigned long flags;
446 unsigned char lunid[8];
447
448 sdev = to_scsi_device(dev);
449 h = sdev_to_hba(sdev);
450 spin_lock_irqsave(&h->lock, flags);
451 hdev = sdev->hostdata;
452 if (!hdev) {
453 spin_unlock_irqrestore(&h->lock, flags);
454 return -ENODEV;
455 }
456 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457 spin_unlock_irqrestore(&h->lock, flags);
458 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459 lunid[0], lunid[1], lunid[2], lunid[3],
460 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct ctlr_info *h;
467 struct scsi_device *sdev;
468 struct hpsa_scsi_dev_t *hdev;
469 unsigned long flags;
470 unsigned char sn[16];
471
472 sdev = to_scsi_device(dev);
473 h = sdev_to_hba(sdev);
474 spin_lock_irqsave(&h->lock, flags);
475 hdev = sdev->hostdata;
476 if (!hdev) {
477 spin_unlock_irqrestore(&h->lock, flags);
478 return -ENODEV;
479 }
480 memcpy(sn, hdev->device_id, sizeof(sn));
481 spin_unlock_irqrestore(&h->lock, flags);
482 return snprintf(buf, 16 * 2 + 2,
483 "%02X%02X%02X%02X%02X%02X%02X%02X"
484 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485 sn[0], sn[1], sn[2], sn[3],
486 sn[4], sn[5], sn[6], sn[7],
487 sn[8], sn[9], sn[10], sn[11],
488 sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496 host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498 host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500 host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502 host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505 &dev_attr_raid_level,
506 &dev_attr_lunid,
507 &dev_attr_unique_id,
508 NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512 &dev_attr_rescan,
513 &dev_attr_firmware_revision,
514 &dev_attr_commands_outstanding,
515 &dev_attr_transport_mode,
516 &dev_attr_resettable,
517 NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521 .module = THIS_MODULE,
522 .name = HPSA,
523 .proc_name = HPSA,
524 .queuecommand = hpsa_scsi_queue_command,
525 .scan_start = hpsa_scan_start,
526 .scan_finished = hpsa_scan_finished,
527 .change_queue_depth = hpsa_change_queue_depth,
528 .this_id = -1,
529 .use_clustering = ENABLE_CLUSTERING,
530 .eh_abort_handler = hpsa_eh_abort_handler,
531 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532 .ioctl = hpsa_ioctl,
533 .slave_alloc = hpsa_slave_alloc,
534 .slave_destroy = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536 .compat_ioctl = hpsa_compat_ioctl,
537 #endif
538 .sdev_attrs = hpsa_sdev_attrs,
539 .shost_attrs = hpsa_shost_attrs,
540 .max_sectors = 8192,
541 .no_write_same = 1,
542 };
543
544
545 /* Enqueuing and dequeuing functions for cmdlists. */
546 static inline void addQ(struct list_head *list, struct CommandList *c)
547 {
548 list_add_tail(&c->list, list);
549 }
550
551 static inline u32 next_command(struct ctlr_info *h, u8 q)
552 {
553 u32 a;
554 struct reply_pool *rq = &h->reply_queue[q];
555 unsigned long flags;
556
557 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
558 return h->access.command_completed(h, q);
559
560 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
561 a = rq->head[rq->current_entry];
562 rq->current_entry++;
563 spin_lock_irqsave(&h->lock, flags);
564 h->commands_outstanding--;
565 spin_unlock_irqrestore(&h->lock, flags);
566 } else {
567 a = FIFO_EMPTY;
568 }
569 /* Check for wraparound */
570 if (rq->current_entry == h->max_commands) {
571 rq->current_entry = 0;
572 rq->wraparound ^= 1;
573 }
574 return a;
575 }
576
577 /* set_performant_mode: Modify the tag for cciss performant
578 * set bit 0 for pull model, bits 3-1 for block fetch
579 * register number
580 */
581 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
582 {
583 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
584 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
585 if (likely(h->msix_vector))
586 c->Header.ReplyQueue =
587 smp_processor_id() % h->nreply_queues;
588 }
589 }
590
591 static int is_firmware_flash_cmd(u8 *cdb)
592 {
593 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
594 }
595
596 /*
597 * During firmware flash, the heartbeat register may not update as frequently
598 * as it should. So we dial down lockup detection during firmware flash. and
599 * dial it back up when firmware flash completes.
600 */
601 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
602 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
603 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
604 struct CommandList *c)
605 {
606 if (!is_firmware_flash_cmd(c->Request.CDB))
607 return;
608 atomic_inc(&h->firmware_flash_in_progress);
609 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
610 }
611
612 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
613 struct CommandList *c)
614 {
615 if (is_firmware_flash_cmd(c->Request.CDB) &&
616 atomic_dec_and_test(&h->firmware_flash_in_progress))
617 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
618 }
619
620 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
621 struct CommandList *c)
622 {
623 unsigned long flags;
624
625 set_performant_mode(h, c);
626 dial_down_lockup_detection_during_fw_flash(h, c);
627 spin_lock_irqsave(&h->lock, flags);
628 addQ(&h->reqQ, c);
629 h->Qdepth++;
630 spin_unlock_irqrestore(&h->lock, flags);
631 start_io(h);
632 }
633
634 static inline void removeQ(struct CommandList *c)
635 {
636 if (WARN_ON(list_empty(&c->list)))
637 return;
638 list_del_init(&c->list);
639 }
640
641 static inline int is_hba_lunid(unsigned char scsi3addr[])
642 {
643 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
644 }
645
646 static inline int is_scsi_rev_5(struct ctlr_info *h)
647 {
648 if (!h->hba_inquiry_data)
649 return 0;
650 if ((h->hba_inquiry_data[2] & 0x07) == 5)
651 return 1;
652 return 0;
653 }
654
655 static int hpsa_find_target_lun(struct ctlr_info *h,
656 unsigned char scsi3addr[], int bus, int *target, int *lun)
657 {
658 /* finds an unused bus, target, lun for a new physical device
659 * assumes h->devlock is held
660 */
661 int i, found = 0;
662 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
663
664 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
665
666 for (i = 0; i < h->ndevices; i++) {
667 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
668 __set_bit(h->dev[i]->target, lun_taken);
669 }
670
671 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
672 if (i < HPSA_MAX_DEVICES) {
673 /* *bus = 1; */
674 *target = i;
675 *lun = 0;
676 found = 1;
677 }
678 return !found;
679 }
680
681 /* Add an entry into h->dev[] array. */
682 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
683 struct hpsa_scsi_dev_t *device,
684 struct hpsa_scsi_dev_t *added[], int *nadded)
685 {
686 /* assumes h->devlock is held */
687 int n = h->ndevices;
688 int i;
689 unsigned char addr1[8], addr2[8];
690 struct hpsa_scsi_dev_t *sd;
691
692 if (n >= HPSA_MAX_DEVICES) {
693 dev_err(&h->pdev->dev, "too many devices, some will be "
694 "inaccessible.\n");
695 return -1;
696 }
697
698 /* physical devices do not have lun or target assigned until now. */
699 if (device->lun != -1)
700 /* Logical device, lun is already assigned. */
701 goto lun_assigned;
702
703 /* If this device a non-zero lun of a multi-lun device
704 * byte 4 of the 8-byte LUN addr will contain the logical
705 * unit no, zero otherise.
706 */
707 if (device->scsi3addr[4] == 0) {
708 /* This is not a non-zero lun of a multi-lun device */
709 if (hpsa_find_target_lun(h, device->scsi3addr,
710 device->bus, &device->target, &device->lun) != 0)
711 return -1;
712 goto lun_assigned;
713 }
714
715 /* This is a non-zero lun of a multi-lun device.
716 * Search through our list and find the device which
717 * has the same 8 byte LUN address, excepting byte 4.
718 * Assign the same bus and target for this new LUN.
719 * Use the logical unit number from the firmware.
720 */
721 memcpy(addr1, device->scsi3addr, 8);
722 addr1[4] = 0;
723 for (i = 0; i < n; i++) {
724 sd = h->dev[i];
725 memcpy(addr2, sd->scsi3addr, 8);
726 addr2[4] = 0;
727 /* differ only in byte 4? */
728 if (memcmp(addr1, addr2, 8) == 0) {
729 device->bus = sd->bus;
730 device->target = sd->target;
731 device->lun = device->scsi3addr[4];
732 break;
733 }
734 }
735 if (device->lun == -1) {
736 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
737 " suspect firmware bug or unsupported hardware "
738 "configuration.\n");
739 return -1;
740 }
741
742 lun_assigned:
743
744 h->dev[n] = device;
745 h->ndevices++;
746 added[*nadded] = device;
747 (*nadded)++;
748
749 /* initially, (before registering with scsi layer) we don't
750 * know our hostno and we don't want to print anything first
751 * time anyway (the scsi layer's inquiries will show that info)
752 */
753 /* if (hostno != -1) */
754 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
755 scsi_device_type(device->devtype), hostno,
756 device->bus, device->target, device->lun);
757 return 0;
758 }
759
760 /* Update an entry in h->dev[] array. */
761 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
762 int entry, struct hpsa_scsi_dev_t *new_entry)
763 {
764 /* assumes h->devlock is held */
765 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
766
767 /* Raid level changed. */
768 h->dev[entry]->raid_level = new_entry->raid_level;
769 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
770 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
771 new_entry->target, new_entry->lun);
772 }
773
774 /* Replace an entry from h->dev[] array. */
775 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
776 int entry, struct hpsa_scsi_dev_t *new_entry,
777 struct hpsa_scsi_dev_t *added[], int *nadded,
778 struct hpsa_scsi_dev_t *removed[], int *nremoved)
779 {
780 /* assumes h->devlock is held */
781 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
782 removed[*nremoved] = h->dev[entry];
783 (*nremoved)++;
784
785 /*
786 * New physical devices won't have target/lun assigned yet
787 * so we need to preserve the values in the slot we are replacing.
788 */
789 if (new_entry->target == -1) {
790 new_entry->target = h->dev[entry]->target;
791 new_entry->lun = h->dev[entry]->lun;
792 }
793
794 h->dev[entry] = new_entry;
795 added[*nadded] = new_entry;
796 (*nadded)++;
797 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
798 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
799 new_entry->target, new_entry->lun);
800 }
801
802 /* Remove an entry from h->dev[] array. */
803 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
804 struct hpsa_scsi_dev_t *removed[], int *nremoved)
805 {
806 /* assumes h->devlock is held */
807 int i;
808 struct hpsa_scsi_dev_t *sd;
809
810 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
811
812 sd = h->dev[entry];
813 removed[*nremoved] = h->dev[entry];
814 (*nremoved)++;
815
816 for (i = entry; i < h->ndevices-1; i++)
817 h->dev[i] = h->dev[i+1];
818 h->ndevices--;
819 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
820 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
821 sd->lun);
822 }
823
824 #define SCSI3ADDR_EQ(a, b) ( \
825 (a)[7] == (b)[7] && \
826 (a)[6] == (b)[6] && \
827 (a)[5] == (b)[5] && \
828 (a)[4] == (b)[4] && \
829 (a)[3] == (b)[3] && \
830 (a)[2] == (b)[2] && \
831 (a)[1] == (b)[1] && \
832 (a)[0] == (b)[0])
833
834 static void fixup_botched_add(struct ctlr_info *h,
835 struct hpsa_scsi_dev_t *added)
836 {
837 /* called when scsi_add_device fails in order to re-adjust
838 * h->dev[] to match the mid layer's view.
839 */
840 unsigned long flags;
841 int i, j;
842
843 spin_lock_irqsave(&h->lock, flags);
844 for (i = 0; i < h->ndevices; i++) {
845 if (h->dev[i] == added) {
846 for (j = i; j < h->ndevices-1; j++)
847 h->dev[j] = h->dev[j+1];
848 h->ndevices--;
849 break;
850 }
851 }
852 spin_unlock_irqrestore(&h->lock, flags);
853 kfree(added);
854 }
855
856 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
857 struct hpsa_scsi_dev_t *dev2)
858 {
859 /* we compare everything except lun and target as these
860 * are not yet assigned. Compare parts likely
861 * to differ first
862 */
863 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
864 sizeof(dev1->scsi3addr)) != 0)
865 return 0;
866 if (memcmp(dev1->device_id, dev2->device_id,
867 sizeof(dev1->device_id)) != 0)
868 return 0;
869 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
870 return 0;
871 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
872 return 0;
873 if (dev1->devtype != dev2->devtype)
874 return 0;
875 if (dev1->bus != dev2->bus)
876 return 0;
877 return 1;
878 }
879
880 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
881 struct hpsa_scsi_dev_t *dev2)
882 {
883 /* Device attributes that can change, but don't mean
884 * that the device is a different device, nor that the OS
885 * needs to be told anything about the change.
886 */
887 if (dev1->raid_level != dev2->raid_level)
888 return 1;
889 return 0;
890 }
891
892 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
893 * and return needle location in *index. If scsi3addr matches, but not
894 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
895 * location in *index.
896 * In the case of a minor device attribute change, such as RAID level, just
897 * return DEVICE_UPDATED, along with the updated device's location in index.
898 * If needle not found, return DEVICE_NOT_FOUND.
899 */
900 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
901 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
902 int *index)
903 {
904 int i;
905 #define DEVICE_NOT_FOUND 0
906 #define DEVICE_CHANGED 1
907 #define DEVICE_SAME 2
908 #define DEVICE_UPDATED 3
909 for (i = 0; i < haystack_size; i++) {
910 if (haystack[i] == NULL) /* previously removed. */
911 continue;
912 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
913 *index = i;
914 if (device_is_the_same(needle, haystack[i])) {
915 if (device_updated(needle, haystack[i]))
916 return DEVICE_UPDATED;
917 return DEVICE_SAME;
918 } else {
919 return DEVICE_CHANGED;
920 }
921 }
922 }
923 *index = -1;
924 return DEVICE_NOT_FOUND;
925 }
926
927 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
928 struct hpsa_scsi_dev_t *sd[], int nsds)
929 {
930 /* sd contains scsi3 addresses and devtypes, and inquiry
931 * data. This function takes what's in sd to be the current
932 * reality and updates h->dev[] to reflect that reality.
933 */
934 int i, entry, device_change, changes = 0;
935 struct hpsa_scsi_dev_t *csd;
936 unsigned long flags;
937 struct hpsa_scsi_dev_t **added, **removed;
938 int nadded, nremoved;
939 struct Scsi_Host *sh = NULL;
940
941 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
942 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
943
944 if (!added || !removed) {
945 dev_warn(&h->pdev->dev, "out of memory in "
946 "adjust_hpsa_scsi_table\n");
947 goto free_and_out;
948 }
949
950 spin_lock_irqsave(&h->devlock, flags);
951
952 /* find any devices in h->dev[] that are not in
953 * sd[] and remove them from h->dev[], and for any
954 * devices which have changed, remove the old device
955 * info and add the new device info.
956 * If minor device attributes change, just update
957 * the existing device structure.
958 */
959 i = 0;
960 nremoved = 0;
961 nadded = 0;
962 while (i < h->ndevices) {
963 csd = h->dev[i];
964 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
965 if (device_change == DEVICE_NOT_FOUND) {
966 changes++;
967 hpsa_scsi_remove_entry(h, hostno, i,
968 removed, &nremoved);
969 continue; /* remove ^^^, hence i not incremented */
970 } else if (device_change == DEVICE_CHANGED) {
971 changes++;
972 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
973 added, &nadded, removed, &nremoved);
974 /* Set it to NULL to prevent it from being freed
975 * at the bottom of hpsa_update_scsi_devices()
976 */
977 sd[entry] = NULL;
978 } else if (device_change == DEVICE_UPDATED) {
979 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
980 }
981 i++;
982 }
983
984 /* Now, make sure every device listed in sd[] is also
985 * listed in h->dev[], adding them if they aren't found
986 */
987
988 for (i = 0; i < nsds; i++) {
989 if (!sd[i]) /* if already added above. */
990 continue;
991 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
992 h->ndevices, &entry);
993 if (device_change == DEVICE_NOT_FOUND) {
994 changes++;
995 if (hpsa_scsi_add_entry(h, hostno, sd[i],
996 added, &nadded) != 0)
997 break;
998 sd[i] = NULL; /* prevent from being freed later. */
999 } else if (device_change == DEVICE_CHANGED) {
1000 /* should never happen... */
1001 changes++;
1002 dev_warn(&h->pdev->dev,
1003 "device unexpectedly changed.\n");
1004 /* but if it does happen, we just ignore that device */
1005 }
1006 }
1007 spin_unlock_irqrestore(&h->devlock, flags);
1008
1009 /* Don't notify scsi mid layer of any changes the first time through
1010 * (or if there are no changes) scsi_scan_host will do it later the
1011 * first time through.
1012 */
1013 if (hostno == -1 || !changes)
1014 goto free_and_out;
1015
1016 sh = h->scsi_host;
1017 /* Notify scsi mid layer of any removed devices */
1018 for (i = 0; i < nremoved; i++) {
1019 struct scsi_device *sdev =
1020 scsi_device_lookup(sh, removed[i]->bus,
1021 removed[i]->target, removed[i]->lun);
1022 if (sdev != NULL) {
1023 scsi_remove_device(sdev);
1024 scsi_device_put(sdev);
1025 } else {
1026 /* We don't expect to get here.
1027 * future cmds to this device will get selection
1028 * timeout as if the device was gone.
1029 */
1030 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1031 " for removal.", hostno, removed[i]->bus,
1032 removed[i]->target, removed[i]->lun);
1033 }
1034 kfree(removed[i]);
1035 removed[i] = NULL;
1036 }
1037
1038 /* Notify scsi mid layer of any added devices */
1039 for (i = 0; i < nadded; i++) {
1040 if (scsi_add_device(sh, added[i]->bus,
1041 added[i]->target, added[i]->lun) == 0)
1042 continue;
1043 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1044 "device not added.\n", hostno, added[i]->bus,
1045 added[i]->target, added[i]->lun);
1046 /* now we have to remove it from h->dev,
1047 * since it didn't get added to scsi mid layer
1048 */
1049 fixup_botched_add(h, added[i]);
1050 }
1051
1052 free_and_out:
1053 kfree(added);
1054 kfree(removed);
1055 }
1056
1057 /*
1058 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1059 * Assume's h->devlock is held.
1060 */
1061 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1062 int bus, int target, int lun)
1063 {
1064 int i;
1065 struct hpsa_scsi_dev_t *sd;
1066
1067 for (i = 0; i < h->ndevices; i++) {
1068 sd = h->dev[i];
1069 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1070 return sd;
1071 }
1072 return NULL;
1073 }
1074
1075 /* link sdev->hostdata to our per-device structure. */
1076 static int hpsa_slave_alloc(struct scsi_device *sdev)
1077 {
1078 struct hpsa_scsi_dev_t *sd;
1079 unsigned long flags;
1080 struct ctlr_info *h;
1081
1082 h = sdev_to_hba(sdev);
1083 spin_lock_irqsave(&h->devlock, flags);
1084 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1085 sdev_id(sdev), sdev->lun);
1086 if (sd != NULL)
1087 sdev->hostdata = sd;
1088 spin_unlock_irqrestore(&h->devlock, flags);
1089 return 0;
1090 }
1091
1092 static void hpsa_slave_destroy(struct scsi_device *sdev)
1093 {
1094 /* nothing to do. */
1095 }
1096
1097 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1098 {
1099 int i;
1100
1101 if (!h->cmd_sg_list)
1102 return;
1103 for (i = 0; i < h->nr_cmds; i++) {
1104 kfree(h->cmd_sg_list[i]);
1105 h->cmd_sg_list[i] = NULL;
1106 }
1107 kfree(h->cmd_sg_list);
1108 h->cmd_sg_list = NULL;
1109 }
1110
1111 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1112 {
1113 int i;
1114
1115 if (h->chainsize <= 0)
1116 return 0;
1117
1118 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1119 GFP_KERNEL);
1120 if (!h->cmd_sg_list)
1121 return -ENOMEM;
1122 for (i = 0; i < h->nr_cmds; i++) {
1123 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1124 h->chainsize, GFP_KERNEL);
1125 if (!h->cmd_sg_list[i])
1126 goto clean;
1127 }
1128 return 0;
1129
1130 clean:
1131 hpsa_free_sg_chain_blocks(h);
1132 return -ENOMEM;
1133 }
1134
1135 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1136 struct CommandList *c)
1137 {
1138 struct SGDescriptor *chain_sg, *chain_block;
1139 u64 temp64;
1140
1141 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1142 chain_block = h->cmd_sg_list[c->cmdindex];
1143 chain_sg->Ext = HPSA_SG_CHAIN;
1144 chain_sg->Len = sizeof(*chain_sg) *
1145 (c->Header.SGTotal - h->max_cmd_sg_entries);
1146 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1147 PCI_DMA_TODEVICE);
1148 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1149 /* prevent subsequent unmapping */
1150 chain_sg->Addr.lower = 0;
1151 chain_sg->Addr.upper = 0;
1152 return -1;
1153 }
1154 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1155 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1156 return 0;
1157 }
1158
1159 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1160 struct CommandList *c)
1161 {
1162 struct SGDescriptor *chain_sg;
1163 union u64bit temp64;
1164
1165 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1166 return;
1167
1168 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1169 temp64.val32.lower = chain_sg->Addr.lower;
1170 temp64.val32.upper = chain_sg->Addr.upper;
1171 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1172 }
1173
1174 static void complete_scsi_command(struct CommandList *cp)
1175 {
1176 struct scsi_cmnd *cmd;
1177 struct ctlr_info *h;
1178 struct ErrorInfo *ei;
1179
1180 unsigned char sense_key;
1181 unsigned char asc; /* additional sense code */
1182 unsigned char ascq; /* additional sense code qualifier */
1183 unsigned long sense_data_size;
1184
1185 ei = cp->err_info;
1186 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1187 h = cp->h;
1188
1189 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1190 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1191 hpsa_unmap_sg_chain_block(h, cp);
1192
1193 cmd->result = (DID_OK << 16); /* host byte */
1194 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1195 cmd->result |= ei->ScsiStatus;
1196
1197 /* copy the sense data whether we need to or not. */
1198 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1199 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1200 else
1201 sense_data_size = sizeof(ei->SenseInfo);
1202 if (ei->SenseLen < sense_data_size)
1203 sense_data_size = ei->SenseLen;
1204
1205 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1206 scsi_set_resid(cmd, ei->ResidualCnt);
1207
1208 if (ei->CommandStatus == 0) {
1209 cmd_free(h, cp);
1210 cmd->scsi_done(cmd);
1211 return;
1212 }
1213
1214 /* an error has occurred */
1215 switch (ei->CommandStatus) {
1216
1217 case CMD_TARGET_STATUS:
1218 if (ei->ScsiStatus) {
1219 /* Get sense key */
1220 sense_key = 0xf & ei->SenseInfo[2];
1221 /* Get additional sense code */
1222 asc = ei->SenseInfo[12];
1223 /* Get addition sense code qualifier */
1224 ascq = ei->SenseInfo[13];
1225 }
1226
1227 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1228 if (check_for_unit_attention(h, cp)) {
1229 cmd->result = DID_SOFT_ERROR << 16;
1230 break;
1231 }
1232 if (sense_key == ILLEGAL_REQUEST) {
1233 /*
1234 * SCSI REPORT_LUNS is commonly unsupported on
1235 * Smart Array. Suppress noisy complaint.
1236 */
1237 if (cp->Request.CDB[0] == REPORT_LUNS)
1238 break;
1239
1240 /* If ASC/ASCQ indicate Logical Unit
1241 * Not Supported condition,
1242 */
1243 if ((asc == 0x25) && (ascq == 0x0)) {
1244 dev_warn(&h->pdev->dev, "cp %p "
1245 "has check condition\n", cp);
1246 break;
1247 }
1248 }
1249
1250 if (sense_key == NOT_READY) {
1251 /* If Sense is Not Ready, Logical Unit
1252 * Not ready, Manual Intervention
1253 * required
1254 */
1255 if ((asc == 0x04) && (ascq == 0x03)) {
1256 dev_warn(&h->pdev->dev, "cp %p "
1257 "has check condition: unit "
1258 "not ready, manual "
1259 "intervention required\n", cp);
1260 break;
1261 }
1262 }
1263 if (sense_key == ABORTED_COMMAND) {
1264 /* Aborted command is retryable */
1265 dev_warn(&h->pdev->dev, "cp %p "
1266 "has check condition: aborted command: "
1267 "ASC: 0x%x, ASCQ: 0x%x\n",
1268 cp, asc, ascq);
1269 cmd->result |= DID_SOFT_ERROR << 16;
1270 break;
1271 }
1272 /* Must be some other type of check condition */
1273 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1274 "unknown type: "
1275 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1276 "Returning result: 0x%x, "
1277 "cmd=[%02x %02x %02x %02x %02x "
1278 "%02x %02x %02x %02x %02x %02x "
1279 "%02x %02x %02x %02x %02x]\n",
1280 cp, sense_key, asc, ascq,
1281 cmd->result,
1282 cmd->cmnd[0], cmd->cmnd[1],
1283 cmd->cmnd[2], cmd->cmnd[3],
1284 cmd->cmnd[4], cmd->cmnd[5],
1285 cmd->cmnd[6], cmd->cmnd[7],
1286 cmd->cmnd[8], cmd->cmnd[9],
1287 cmd->cmnd[10], cmd->cmnd[11],
1288 cmd->cmnd[12], cmd->cmnd[13],
1289 cmd->cmnd[14], cmd->cmnd[15]);
1290 break;
1291 }
1292
1293
1294 /* Problem was not a check condition
1295 * Pass it up to the upper layers...
1296 */
1297 if (ei->ScsiStatus) {
1298 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1299 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1300 "Returning result: 0x%x\n",
1301 cp, ei->ScsiStatus,
1302 sense_key, asc, ascq,
1303 cmd->result);
1304 } else { /* scsi status is zero??? How??? */
1305 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1306 "Returning no connection.\n", cp),
1307
1308 /* Ordinarily, this case should never happen,
1309 * but there is a bug in some released firmware
1310 * revisions that allows it to happen if, for
1311 * example, a 4100 backplane loses power and
1312 * the tape drive is in it. We assume that
1313 * it's a fatal error of some kind because we
1314 * can't show that it wasn't. We will make it
1315 * look like selection timeout since that is
1316 * the most common reason for this to occur,
1317 * and it's severe enough.
1318 */
1319
1320 cmd->result = DID_NO_CONNECT << 16;
1321 }
1322 break;
1323
1324 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1325 break;
1326 case CMD_DATA_OVERRUN:
1327 dev_warn(&h->pdev->dev, "cp %p has"
1328 " completed with data overrun "
1329 "reported\n", cp);
1330 break;
1331 case CMD_INVALID: {
1332 /* print_bytes(cp, sizeof(*cp), 1, 0);
1333 print_cmd(cp); */
1334 /* We get CMD_INVALID if you address a non-existent device
1335 * instead of a selection timeout (no response). You will
1336 * see this if you yank out a drive, then try to access it.
1337 * This is kind of a shame because it means that any other
1338 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1339 * missing target. */
1340 cmd->result = DID_NO_CONNECT << 16;
1341 }
1342 break;
1343 case CMD_PROTOCOL_ERR:
1344 cmd->result = DID_ERROR << 16;
1345 dev_warn(&h->pdev->dev, "cp %p has "
1346 "protocol error\n", cp);
1347 break;
1348 case CMD_HARDWARE_ERR:
1349 cmd->result = DID_ERROR << 16;
1350 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1351 break;
1352 case CMD_CONNECTION_LOST:
1353 cmd->result = DID_ERROR << 16;
1354 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1355 break;
1356 case CMD_ABORTED:
1357 cmd->result = DID_ABORT << 16;
1358 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1359 cp, ei->ScsiStatus);
1360 break;
1361 case CMD_ABORT_FAILED:
1362 cmd->result = DID_ERROR << 16;
1363 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1364 break;
1365 case CMD_UNSOLICITED_ABORT:
1366 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1367 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1368 "abort\n", cp);
1369 break;
1370 case CMD_TIMEOUT:
1371 cmd->result = DID_TIME_OUT << 16;
1372 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1373 break;
1374 case CMD_UNABORTABLE:
1375 cmd->result = DID_ERROR << 16;
1376 dev_warn(&h->pdev->dev, "Command unabortable\n");
1377 break;
1378 default:
1379 cmd->result = DID_ERROR << 16;
1380 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1381 cp, ei->CommandStatus);
1382 }
1383 cmd_free(h, cp);
1384 cmd->scsi_done(cmd);
1385 }
1386
1387 static void hpsa_pci_unmap(struct pci_dev *pdev,
1388 struct CommandList *c, int sg_used, int data_direction)
1389 {
1390 int i;
1391 union u64bit addr64;
1392
1393 for (i = 0; i < sg_used; i++) {
1394 addr64.val32.lower = c->SG[i].Addr.lower;
1395 addr64.val32.upper = c->SG[i].Addr.upper;
1396 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1397 data_direction);
1398 }
1399 }
1400
1401 static int hpsa_map_one(struct pci_dev *pdev,
1402 struct CommandList *cp,
1403 unsigned char *buf,
1404 size_t buflen,
1405 int data_direction)
1406 {
1407 u64 addr64;
1408
1409 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1410 cp->Header.SGList = 0;
1411 cp->Header.SGTotal = 0;
1412 return 0;
1413 }
1414
1415 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1416 if (dma_mapping_error(&pdev->dev, addr64)) {
1417 /* Prevent subsequent unmap of something never mapped */
1418 cp->Header.SGList = 0;
1419 cp->Header.SGTotal = 0;
1420 return -1;
1421 }
1422 cp->SG[0].Addr.lower =
1423 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1424 cp->SG[0].Addr.upper =
1425 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1426 cp->SG[0].Len = buflen;
1427 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1428 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1429 return 0;
1430 }
1431
1432 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1433 struct CommandList *c)
1434 {
1435 DECLARE_COMPLETION_ONSTACK(wait);
1436
1437 c->waiting = &wait;
1438 enqueue_cmd_and_start_io(h, c);
1439 wait_for_completion(&wait);
1440 }
1441
1442 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1443 struct CommandList *c)
1444 {
1445 unsigned long flags;
1446
1447 /* If controller lockup detected, fake a hardware error. */
1448 spin_lock_irqsave(&h->lock, flags);
1449 if (unlikely(h->lockup_detected)) {
1450 spin_unlock_irqrestore(&h->lock, flags);
1451 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1452 } else {
1453 spin_unlock_irqrestore(&h->lock, flags);
1454 hpsa_scsi_do_simple_cmd_core(h, c);
1455 }
1456 }
1457
1458 #define MAX_DRIVER_CMD_RETRIES 25
1459 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1460 struct CommandList *c, int data_direction)
1461 {
1462 int backoff_time = 10, retry_count = 0;
1463
1464 do {
1465 memset(c->err_info, 0, sizeof(*c->err_info));
1466 hpsa_scsi_do_simple_cmd_core(h, c);
1467 retry_count++;
1468 if (retry_count > 3) {
1469 msleep(backoff_time);
1470 if (backoff_time < 1000)
1471 backoff_time *= 2;
1472 }
1473 } while ((check_for_unit_attention(h, c) ||
1474 check_for_busy(h, c)) &&
1475 retry_count <= MAX_DRIVER_CMD_RETRIES);
1476 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1477 }
1478
1479 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1480 {
1481 struct ErrorInfo *ei;
1482 struct device *d = &cp->h->pdev->dev;
1483
1484 ei = cp->err_info;
1485 switch (ei->CommandStatus) {
1486 case CMD_TARGET_STATUS:
1487 dev_warn(d, "cmd %p has completed with errors\n", cp);
1488 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1489 ei->ScsiStatus);
1490 if (ei->ScsiStatus == 0)
1491 dev_warn(d, "SCSI status is abnormally zero. "
1492 "(probably indicates selection timeout "
1493 "reported incorrectly due to a known "
1494 "firmware bug, circa July, 2001.)\n");
1495 break;
1496 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1497 dev_info(d, "UNDERRUN\n");
1498 break;
1499 case CMD_DATA_OVERRUN:
1500 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1501 break;
1502 case CMD_INVALID: {
1503 /* controller unfortunately reports SCSI passthru's
1504 * to non-existent targets as invalid commands.
1505 */
1506 dev_warn(d, "cp %p is reported invalid (probably means "
1507 "target device no longer present)\n", cp);
1508 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1509 print_cmd(cp); */
1510 }
1511 break;
1512 case CMD_PROTOCOL_ERR:
1513 dev_warn(d, "cp %p has protocol error \n", cp);
1514 break;
1515 case CMD_HARDWARE_ERR:
1516 /* cmd->result = DID_ERROR << 16; */
1517 dev_warn(d, "cp %p had hardware error\n", cp);
1518 break;
1519 case CMD_CONNECTION_LOST:
1520 dev_warn(d, "cp %p had connection lost\n", cp);
1521 break;
1522 case CMD_ABORTED:
1523 dev_warn(d, "cp %p was aborted\n", cp);
1524 break;
1525 case CMD_ABORT_FAILED:
1526 dev_warn(d, "cp %p reports abort failed\n", cp);
1527 break;
1528 case CMD_UNSOLICITED_ABORT:
1529 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1530 break;
1531 case CMD_TIMEOUT:
1532 dev_warn(d, "cp %p timed out\n", cp);
1533 break;
1534 case CMD_UNABORTABLE:
1535 dev_warn(d, "Command unabortable\n");
1536 break;
1537 default:
1538 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1539 ei->CommandStatus);
1540 }
1541 }
1542
1543 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1544 unsigned char page, unsigned char *buf,
1545 unsigned char bufsize)
1546 {
1547 int rc = IO_OK;
1548 struct CommandList *c;
1549 struct ErrorInfo *ei;
1550
1551 c = cmd_special_alloc(h);
1552
1553 if (c == NULL) { /* trouble... */
1554 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1555 return -ENOMEM;
1556 }
1557
1558 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1559 page, scsi3addr, TYPE_CMD)) {
1560 rc = -1;
1561 goto out;
1562 }
1563 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1564 ei = c->err_info;
1565 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1566 hpsa_scsi_interpret_error(c);
1567 rc = -1;
1568 }
1569 out:
1570 cmd_special_free(h, c);
1571 return rc;
1572 }
1573
1574 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1575 {
1576 int rc = IO_OK;
1577 struct CommandList *c;
1578 struct ErrorInfo *ei;
1579
1580 c = cmd_special_alloc(h);
1581
1582 if (c == NULL) { /* trouble... */
1583 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1584 return -ENOMEM;
1585 }
1586
1587 /* fill_cmd can't fail here, no data buffer to map. */
1588 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1589 NULL, 0, 0, scsi3addr, TYPE_MSG);
1590 hpsa_scsi_do_simple_cmd_core(h, c);
1591 /* no unmap needed here because no data xfer. */
1592
1593 ei = c->err_info;
1594 if (ei->CommandStatus != 0) {
1595 hpsa_scsi_interpret_error(c);
1596 rc = -1;
1597 }
1598 cmd_special_free(h, c);
1599 return rc;
1600 }
1601
1602 static void hpsa_get_raid_level(struct ctlr_info *h,
1603 unsigned char *scsi3addr, unsigned char *raid_level)
1604 {
1605 int rc;
1606 unsigned char *buf;
1607
1608 *raid_level = RAID_UNKNOWN;
1609 buf = kzalloc(64, GFP_KERNEL);
1610 if (!buf)
1611 return;
1612 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1613 if (rc == 0)
1614 *raid_level = buf[8];
1615 if (*raid_level > RAID_UNKNOWN)
1616 *raid_level = RAID_UNKNOWN;
1617 kfree(buf);
1618 return;
1619 }
1620
1621 /* Get the device id from inquiry page 0x83 */
1622 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1623 unsigned char *device_id, int buflen)
1624 {
1625 int rc;
1626 unsigned char *buf;
1627
1628 if (buflen > 16)
1629 buflen = 16;
1630 buf = kzalloc(64, GFP_KERNEL);
1631 if (!buf)
1632 return -1;
1633 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1634 if (rc == 0)
1635 memcpy(device_id, &buf[8], buflen);
1636 kfree(buf);
1637 return rc != 0;
1638 }
1639
1640 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1641 struct ReportLUNdata *buf, int bufsize,
1642 int extended_response)
1643 {
1644 int rc = IO_OK;
1645 struct CommandList *c;
1646 unsigned char scsi3addr[8];
1647 struct ErrorInfo *ei;
1648
1649 c = cmd_special_alloc(h);
1650 if (c == NULL) { /* trouble... */
1651 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1652 return -1;
1653 }
1654 /* address the controller */
1655 memset(scsi3addr, 0, sizeof(scsi3addr));
1656 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1657 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1658 rc = -1;
1659 goto out;
1660 }
1661 if (extended_response)
1662 c->Request.CDB[1] = extended_response;
1663 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1664 ei = c->err_info;
1665 if (ei->CommandStatus != 0 &&
1666 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1667 hpsa_scsi_interpret_error(c);
1668 rc = -1;
1669 }
1670 out:
1671 cmd_special_free(h, c);
1672 return rc;
1673 }
1674
1675 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1676 struct ReportLUNdata *buf,
1677 int bufsize, int extended_response)
1678 {
1679 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1680 }
1681
1682 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1683 struct ReportLUNdata *buf, int bufsize)
1684 {
1685 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1686 }
1687
1688 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1689 int bus, int target, int lun)
1690 {
1691 device->bus = bus;
1692 device->target = target;
1693 device->lun = lun;
1694 }
1695
1696 static int hpsa_update_device_info(struct ctlr_info *h,
1697 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1698 unsigned char *is_OBDR_device)
1699 {
1700
1701 #define OBDR_SIG_OFFSET 43
1702 #define OBDR_TAPE_SIG "$DR-10"
1703 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1704 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1705
1706 unsigned char *inq_buff;
1707 unsigned char *obdr_sig;
1708
1709 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1710 if (!inq_buff)
1711 goto bail_out;
1712
1713 /* Do an inquiry to the device to see what it is. */
1714 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1715 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1716 /* Inquiry failed (msg printed already) */
1717 dev_err(&h->pdev->dev,
1718 "hpsa_update_device_info: inquiry failed\n");
1719 goto bail_out;
1720 }
1721
1722 this_device->devtype = (inq_buff[0] & 0x1f);
1723 memcpy(this_device->scsi3addr, scsi3addr, 8);
1724 memcpy(this_device->vendor, &inq_buff[8],
1725 sizeof(this_device->vendor));
1726 memcpy(this_device->model, &inq_buff[16],
1727 sizeof(this_device->model));
1728 memset(this_device->device_id, 0,
1729 sizeof(this_device->device_id));
1730 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1731 sizeof(this_device->device_id));
1732
1733 if (this_device->devtype == TYPE_DISK &&
1734 is_logical_dev_addr_mode(scsi3addr))
1735 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1736 else
1737 this_device->raid_level = RAID_UNKNOWN;
1738
1739 if (is_OBDR_device) {
1740 /* See if this is a One-Button-Disaster-Recovery device
1741 * by looking for "$DR-10" at offset 43 in inquiry data.
1742 */
1743 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1744 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1745 strncmp(obdr_sig, OBDR_TAPE_SIG,
1746 OBDR_SIG_LEN) == 0);
1747 }
1748
1749 kfree(inq_buff);
1750 return 0;
1751
1752 bail_out:
1753 kfree(inq_buff);
1754 return 1;
1755 }
1756
1757 static unsigned char *ext_target_model[] = {
1758 "MSA2012",
1759 "MSA2024",
1760 "MSA2312",
1761 "MSA2324",
1762 "P2000 G3 SAS",
1763 NULL,
1764 };
1765
1766 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1767 {
1768 int i;
1769
1770 for (i = 0; ext_target_model[i]; i++)
1771 if (strncmp(device->model, ext_target_model[i],
1772 strlen(ext_target_model[i])) == 0)
1773 return 1;
1774 return 0;
1775 }
1776
1777 /* Helper function to assign bus, target, lun mapping of devices.
1778 * Puts non-external target logical volumes on bus 0, external target logical
1779 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1780 * Logical drive target and lun are assigned at this time, but
1781 * physical device lun and target assignment are deferred (assigned
1782 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1783 */
1784 static void figure_bus_target_lun(struct ctlr_info *h,
1785 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1786 {
1787 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1788
1789 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1790 /* physical device, target and lun filled in later */
1791 if (is_hba_lunid(lunaddrbytes))
1792 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1793 else
1794 /* defer target, lun assignment for physical devices */
1795 hpsa_set_bus_target_lun(device, 2, -1, -1);
1796 return;
1797 }
1798 /* It's a logical device */
1799 if (is_ext_target(h, device)) {
1800 /* external target way, put logicals on bus 1
1801 * and match target/lun numbers box
1802 * reports, other smart array, bus 0, target 0, match lunid
1803 */
1804 hpsa_set_bus_target_lun(device,
1805 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1806 return;
1807 }
1808 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1809 }
1810
1811 /*
1812 * If there is no lun 0 on a target, linux won't find any devices.
1813 * For the external targets (arrays), we have to manually detect the enclosure
1814 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1815 * it for some reason. *tmpdevice is the target we're adding,
1816 * this_device is a pointer into the current element of currentsd[]
1817 * that we're building up in update_scsi_devices(), below.
1818 * lunzerobits is a bitmap that tracks which targets already have a
1819 * lun 0 assigned.
1820 * Returns 1 if an enclosure was added, 0 if not.
1821 */
1822 static int add_ext_target_dev(struct ctlr_info *h,
1823 struct hpsa_scsi_dev_t *tmpdevice,
1824 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1825 unsigned long lunzerobits[], int *n_ext_target_devs)
1826 {
1827 unsigned char scsi3addr[8];
1828
1829 if (test_bit(tmpdevice->target, lunzerobits))
1830 return 0; /* There is already a lun 0 on this target. */
1831
1832 if (!is_logical_dev_addr_mode(lunaddrbytes))
1833 return 0; /* It's the logical targets that may lack lun 0. */
1834
1835 if (!is_ext_target(h, tmpdevice))
1836 return 0; /* Only external target devices have this problem. */
1837
1838 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1839 return 0;
1840
1841 memset(scsi3addr, 0, 8);
1842 scsi3addr[3] = tmpdevice->target;
1843 if (is_hba_lunid(scsi3addr))
1844 return 0; /* Don't add the RAID controller here. */
1845
1846 if (is_scsi_rev_5(h))
1847 return 0; /* p1210m doesn't need to do this. */
1848
1849 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1850 dev_warn(&h->pdev->dev, "Maximum number of external "
1851 "target devices exceeded. Check your hardware "
1852 "configuration.");
1853 return 0;
1854 }
1855
1856 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1857 return 0;
1858 (*n_ext_target_devs)++;
1859 hpsa_set_bus_target_lun(this_device,
1860 tmpdevice->bus, tmpdevice->target, 0);
1861 set_bit(tmpdevice->target, lunzerobits);
1862 return 1;
1863 }
1864
1865 /*
1866 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1867 * logdev. The number of luns in physdev and logdev are returned in
1868 * *nphysicals and *nlogicals, respectively.
1869 * Returns 0 on success, -1 otherwise.
1870 */
1871 static int hpsa_gather_lun_info(struct ctlr_info *h,
1872 int reportlunsize,
1873 struct ReportLUNdata *physdev, u32 *nphysicals,
1874 struct ReportLUNdata *logdev, u32 *nlogicals)
1875 {
1876 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1877 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1878 return -1;
1879 }
1880 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1881 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1882 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1883 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1884 *nphysicals - HPSA_MAX_PHYS_LUN);
1885 *nphysicals = HPSA_MAX_PHYS_LUN;
1886 }
1887 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1888 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1889 return -1;
1890 }
1891 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1892 /* Reject Logicals in excess of our max capability. */
1893 if (*nlogicals > HPSA_MAX_LUN) {
1894 dev_warn(&h->pdev->dev,
1895 "maximum logical LUNs (%d) exceeded. "
1896 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1897 *nlogicals - HPSA_MAX_LUN);
1898 *nlogicals = HPSA_MAX_LUN;
1899 }
1900 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1901 dev_warn(&h->pdev->dev,
1902 "maximum logical + physical LUNs (%d) exceeded. "
1903 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1904 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1905 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1906 }
1907 return 0;
1908 }
1909
1910 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1911 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1912 struct ReportLUNdata *logdev_list)
1913 {
1914 /* Helper function, figure out where the LUN ID info is coming from
1915 * given index i, lists of physical and logical devices, where in
1916 * the list the raid controller is supposed to appear (first or last)
1917 */
1918
1919 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1920 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1921
1922 if (i == raid_ctlr_position)
1923 return RAID_CTLR_LUNID;
1924
1925 if (i < logicals_start)
1926 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1927
1928 if (i < last_device)
1929 return &logdev_list->LUN[i - nphysicals -
1930 (raid_ctlr_position == 0)][0];
1931 BUG();
1932 return NULL;
1933 }
1934
1935 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1936 {
1937 /* the idea here is we could get notified
1938 * that some devices have changed, so we do a report
1939 * physical luns and report logical luns cmd, and adjust
1940 * our list of devices accordingly.
1941 *
1942 * The scsi3addr's of devices won't change so long as the
1943 * adapter is not reset. That means we can rescan and
1944 * tell which devices we already know about, vs. new
1945 * devices, vs. disappearing devices.
1946 */
1947 struct ReportLUNdata *physdev_list = NULL;
1948 struct ReportLUNdata *logdev_list = NULL;
1949 u32 nphysicals = 0;
1950 u32 nlogicals = 0;
1951 u32 ndev_allocated = 0;
1952 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1953 int ncurrent = 0;
1954 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1955 int i, n_ext_target_devs, ndevs_to_allocate;
1956 int raid_ctlr_position;
1957 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1958
1959 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1960 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1961 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1962 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1963
1964 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1965 dev_err(&h->pdev->dev, "out of memory\n");
1966 goto out;
1967 }
1968 memset(lunzerobits, 0, sizeof(lunzerobits));
1969
1970 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1971 logdev_list, &nlogicals))
1972 goto out;
1973
1974 /* We might see up to the maximum number of logical and physical disks
1975 * plus external target devices, and a device for the local RAID
1976 * controller.
1977 */
1978 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1979
1980 /* Allocate the per device structures */
1981 for (i = 0; i < ndevs_to_allocate; i++) {
1982 if (i >= HPSA_MAX_DEVICES) {
1983 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1984 " %d devices ignored.\n", HPSA_MAX_DEVICES,
1985 ndevs_to_allocate - HPSA_MAX_DEVICES);
1986 break;
1987 }
1988
1989 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1990 if (!currentsd[i]) {
1991 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1992 __FILE__, __LINE__);
1993 goto out;
1994 }
1995 ndev_allocated++;
1996 }
1997
1998 if (unlikely(is_scsi_rev_5(h)))
1999 raid_ctlr_position = 0;
2000 else
2001 raid_ctlr_position = nphysicals + nlogicals;
2002
2003 /* adjust our table of devices */
2004 n_ext_target_devs = 0;
2005 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2006 u8 *lunaddrbytes, is_OBDR = 0;
2007
2008 /* Figure out where the LUN ID info is coming from */
2009 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2010 i, nphysicals, nlogicals, physdev_list, logdev_list);
2011 /* skip masked physical devices. */
2012 if (lunaddrbytes[3] & 0xC0 &&
2013 i < nphysicals + (raid_ctlr_position == 0))
2014 continue;
2015
2016 /* Get device type, vendor, model, device id */
2017 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2018 &is_OBDR))
2019 continue; /* skip it if we can't talk to it. */
2020 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2021 this_device = currentsd[ncurrent];
2022
2023 /*
2024 * For external target devices, we have to insert a LUN 0 which
2025 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2026 * is nonetheless an enclosure device there. We have to
2027 * present that otherwise linux won't find anything if
2028 * there is no lun 0.
2029 */
2030 if (add_ext_target_dev(h, tmpdevice, this_device,
2031 lunaddrbytes, lunzerobits,
2032 &n_ext_target_devs)) {
2033 ncurrent++;
2034 this_device = currentsd[ncurrent];
2035 }
2036
2037 *this_device = *tmpdevice;
2038
2039 switch (this_device->devtype) {
2040 case TYPE_ROM:
2041 /* We don't *really* support actual CD-ROM devices,
2042 * just "One Button Disaster Recovery" tape drive
2043 * which temporarily pretends to be a CD-ROM drive.
2044 * So we check that the device is really an OBDR tape
2045 * device by checking for "$DR-10" in bytes 43-48 of
2046 * the inquiry data.
2047 */
2048 if (is_OBDR)
2049 ncurrent++;
2050 break;
2051 case TYPE_DISK:
2052 if (i < nphysicals)
2053 break;
2054 ncurrent++;
2055 break;
2056 case TYPE_TAPE:
2057 case TYPE_MEDIUM_CHANGER:
2058 ncurrent++;
2059 break;
2060 case TYPE_RAID:
2061 /* Only present the Smartarray HBA as a RAID controller.
2062 * If it's a RAID controller other than the HBA itself
2063 * (an external RAID controller, MSA500 or similar)
2064 * don't present it.
2065 */
2066 if (!is_hba_lunid(lunaddrbytes))
2067 break;
2068 ncurrent++;
2069 break;
2070 default:
2071 break;
2072 }
2073 if (ncurrent >= HPSA_MAX_DEVICES)
2074 break;
2075 }
2076 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2077 out:
2078 kfree(tmpdevice);
2079 for (i = 0; i < ndev_allocated; i++)
2080 kfree(currentsd[i]);
2081 kfree(currentsd);
2082 kfree(physdev_list);
2083 kfree(logdev_list);
2084 }
2085
2086 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2087 * dma mapping and fills in the scatter gather entries of the
2088 * hpsa command, cp.
2089 */
2090 static int hpsa_scatter_gather(struct ctlr_info *h,
2091 struct CommandList *cp,
2092 struct scsi_cmnd *cmd)
2093 {
2094 unsigned int len;
2095 struct scatterlist *sg;
2096 u64 addr64;
2097 int use_sg, i, sg_index, chained;
2098 struct SGDescriptor *curr_sg;
2099
2100 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2101
2102 use_sg = scsi_dma_map(cmd);
2103 if (use_sg < 0)
2104 return use_sg;
2105
2106 if (!use_sg)
2107 goto sglist_finished;
2108
2109 curr_sg = cp->SG;
2110 chained = 0;
2111 sg_index = 0;
2112 scsi_for_each_sg(cmd, sg, use_sg, i) {
2113 if (i == h->max_cmd_sg_entries - 1 &&
2114 use_sg > h->max_cmd_sg_entries) {
2115 chained = 1;
2116 curr_sg = h->cmd_sg_list[cp->cmdindex];
2117 sg_index = 0;
2118 }
2119 addr64 = (u64) sg_dma_address(sg);
2120 len = sg_dma_len(sg);
2121 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2122 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2123 curr_sg->Len = len;
2124 curr_sg->Ext = 0; /* we are not chaining */
2125 curr_sg++;
2126 }
2127
2128 if (use_sg + chained > h->maxSG)
2129 h->maxSG = use_sg + chained;
2130
2131 if (chained) {
2132 cp->Header.SGList = h->max_cmd_sg_entries;
2133 cp->Header.SGTotal = (u16) (use_sg + 1);
2134 if (hpsa_map_sg_chain_block(h, cp)) {
2135 scsi_dma_unmap(cmd);
2136 return -1;
2137 }
2138 return 0;
2139 }
2140
2141 sglist_finished:
2142
2143 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2144 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2145 return 0;
2146 }
2147
2148
2149 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2150 void (*done)(struct scsi_cmnd *))
2151 {
2152 struct ctlr_info *h;
2153 struct hpsa_scsi_dev_t *dev;
2154 unsigned char scsi3addr[8];
2155 struct CommandList *c;
2156 unsigned long flags;
2157
2158 /* Get the ptr to our adapter structure out of cmd->host. */
2159 h = sdev_to_hba(cmd->device);
2160 dev = cmd->device->hostdata;
2161 if (!dev) {
2162 cmd->result = DID_NO_CONNECT << 16;
2163 done(cmd);
2164 return 0;
2165 }
2166 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2167
2168 spin_lock_irqsave(&h->lock, flags);
2169 if (unlikely(h->lockup_detected)) {
2170 spin_unlock_irqrestore(&h->lock, flags);
2171 cmd->result = DID_ERROR << 16;
2172 done(cmd);
2173 return 0;
2174 }
2175 spin_unlock_irqrestore(&h->lock, flags);
2176 c = cmd_alloc(h);
2177 if (c == NULL) { /* trouble... */
2178 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2179 return SCSI_MLQUEUE_HOST_BUSY;
2180 }
2181
2182 /* Fill in the command list header */
2183
2184 cmd->scsi_done = done; /* save this for use by completion code */
2185
2186 /* save c in case we have to abort it */
2187 cmd->host_scribble = (unsigned char *) c;
2188
2189 c->cmd_type = CMD_SCSI;
2190 c->scsi_cmd = cmd;
2191 c->Header.ReplyQueue = 0; /* unused in simple mode */
2192 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2193 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2194 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2195
2196 /* Fill in the request block... */
2197
2198 c->Request.Timeout = 0;
2199 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2200 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2201 c->Request.CDBLen = cmd->cmd_len;
2202 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2203 c->Request.Type.Type = TYPE_CMD;
2204 c->Request.Type.Attribute = ATTR_SIMPLE;
2205 switch (cmd->sc_data_direction) {
2206 case DMA_TO_DEVICE:
2207 c->Request.Type.Direction = XFER_WRITE;
2208 break;
2209 case DMA_FROM_DEVICE:
2210 c->Request.Type.Direction = XFER_READ;
2211 break;
2212 case DMA_NONE:
2213 c->Request.Type.Direction = XFER_NONE;
2214 break;
2215 case DMA_BIDIRECTIONAL:
2216 /* This can happen if a buggy application does a scsi passthru
2217 * and sets both inlen and outlen to non-zero. ( see
2218 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2219 */
2220
2221 c->Request.Type.Direction = XFER_RSVD;
2222 /* This is technically wrong, and hpsa controllers should
2223 * reject it with CMD_INVALID, which is the most correct
2224 * response, but non-fibre backends appear to let it
2225 * slide by, and give the same results as if this field
2226 * were set correctly. Either way is acceptable for
2227 * our purposes here.
2228 */
2229
2230 break;
2231
2232 default:
2233 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2234 cmd->sc_data_direction);
2235 BUG();
2236 break;
2237 }
2238
2239 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2240 cmd_free(h, c);
2241 return SCSI_MLQUEUE_HOST_BUSY;
2242 }
2243 enqueue_cmd_and_start_io(h, c);
2244 /* the cmd'll come back via intr handler in complete_scsi_command() */
2245 return 0;
2246 }
2247
2248 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2249
2250 static void hpsa_scan_start(struct Scsi_Host *sh)
2251 {
2252 struct ctlr_info *h = shost_to_hba(sh);
2253 unsigned long flags;
2254
2255 /* wait until any scan already in progress is finished. */
2256 while (1) {
2257 spin_lock_irqsave(&h->scan_lock, flags);
2258 if (h->scan_finished)
2259 break;
2260 spin_unlock_irqrestore(&h->scan_lock, flags);
2261 wait_event(h->scan_wait_queue, h->scan_finished);
2262 /* Note: We don't need to worry about a race between this
2263 * thread and driver unload because the midlayer will
2264 * have incremented the reference count, so unload won't
2265 * happen if we're in here.
2266 */
2267 }
2268 h->scan_finished = 0; /* mark scan as in progress */
2269 spin_unlock_irqrestore(&h->scan_lock, flags);
2270
2271 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2272
2273 spin_lock_irqsave(&h->scan_lock, flags);
2274 h->scan_finished = 1; /* mark scan as finished. */
2275 wake_up_all(&h->scan_wait_queue);
2276 spin_unlock_irqrestore(&h->scan_lock, flags);
2277 }
2278
2279 static int hpsa_scan_finished(struct Scsi_Host *sh,
2280 unsigned long elapsed_time)
2281 {
2282 struct ctlr_info *h = shost_to_hba(sh);
2283 unsigned long flags;
2284 int finished;
2285
2286 spin_lock_irqsave(&h->scan_lock, flags);
2287 finished = h->scan_finished;
2288 spin_unlock_irqrestore(&h->scan_lock, flags);
2289 return finished;
2290 }
2291
2292 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2293 int qdepth, int reason)
2294 {
2295 struct ctlr_info *h = sdev_to_hba(sdev);
2296
2297 if (reason != SCSI_QDEPTH_DEFAULT)
2298 return -ENOTSUPP;
2299
2300 if (qdepth < 1)
2301 qdepth = 1;
2302 else
2303 if (qdepth > h->nr_cmds)
2304 qdepth = h->nr_cmds;
2305 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2306 return sdev->queue_depth;
2307 }
2308
2309 static void hpsa_unregister_scsi(struct ctlr_info *h)
2310 {
2311 /* we are being forcibly unloaded, and may not refuse. */
2312 scsi_remove_host(h->scsi_host);
2313 scsi_host_put(h->scsi_host);
2314 h->scsi_host = NULL;
2315 }
2316
2317 static int hpsa_register_scsi(struct ctlr_info *h)
2318 {
2319 struct Scsi_Host *sh;
2320 int error;
2321
2322 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2323 if (sh == NULL)
2324 goto fail;
2325
2326 sh->io_port = 0;
2327 sh->n_io_port = 0;
2328 sh->this_id = -1;
2329 sh->max_channel = 3;
2330 sh->max_cmd_len = MAX_COMMAND_SIZE;
2331 sh->max_lun = HPSA_MAX_LUN;
2332 sh->max_id = HPSA_MAX_LUN;
2333 sh->can_queue = h->nr_cmds;
2334 sh->cmd_per_lun = h->nr_cmds;
2335 sh->sg_tablesize = h->maxsgentries;
2336 h->scsi_host = sh;
2337 sh->hostdata[0] = (unsigned long) h;
2338 sh->irq = h->intr[h->intr_mode];
2339 sh->unique_id = sh->irq;
2340 error = scsi_add_host(sh, &h->pdev->dev);
2341 if (error)
2342 goto fail_host_put;
2343 scsi_scan_host(sh);
2344 return 0;
2345
2346 fail_host_put:
2347 dev_err(&h->pdev->dev, "%s: scsi_add_host"
2348 " failed for controller %d\n", __func__, h->ctlr);
2349 scsi_host_put(sh);
2350 return error;
2351 fail:
2352 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2353 " failed for controller %d\n", __func__, h->ctlr);
2354 return -ENOMEM;
2355 }
2356
2357 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2358 unsigned char lunaddr[])
2359 {
2360 int rc = 0;
2361 int count = 0;
2362 int waittime = 1; /* seconds */
2363 struct CommandList *c;
2364
2365 c = cmd_special_alloc(h);
2366 if (!c) {
2367 dev_warn(&h->pdev->dev, "out of memory in "
2368 "wait_for_device_to_become_ready.\n");
2369 return IO_ERROR;
2370 }
2371
2372 /* Send test unit ready until device ready, or give up. */
2373 while (count < HPSA_TUR_RETRY_LIMIT) {
2374
2375 /* Wait for a bit. do this first, because if we send
2376 * the TUR right away, the reset will just abort it.
2377 */
2378 msleep(1000 * waittime);
2379 count++;
2380
2381 /* Increase wait time with each try, up to a point. */
2382 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2383 waittime = waittime * 2;
2384
2385 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2386 (void) fill_cmd(c, TEST_UNIT_READY, h,
2387 NULL, 0, 0, lunaddr, TYPE_CMD);
2388 hpsa_scsi_do_simple_cmd_core(h, c);
2389 /* no unmap needed here because no data xfer. */
2390
2391 if (c->err_info->CommandStatus == CMD_SUCCESS)
2392 break;
2393
2394 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2395 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2396 (c->err_info->SenseInfo[2] == NO_SENSE ||
2397 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2398 break;
2399
2400 dev_warn(&h->pdev->dev, "waiting %d secs "
2401 "for device to become ready.\n", waittime);
2402 rc = 1; /* device not ready. */
2403 }
2404
2405 if (rc)
2406 dev_warn(&h->pdev->dev, "giving up on device.\n");
2407 else
2408 dev_warn(&h->pdev->dev, "device is ready.\n");
2409
2410 cmd_special_free(h, c);
2411 return rc;
2412 }
2413
2414 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2415 * complaining. Doing a host- or bus-reset can't do anything good here.
2416 */
2417 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2418 {
2419 int rc;
2420 struct ctlr_info *h;
2421 struct hpsa_scsi_dev_t *dev;
2422
2423 /* find the controller to which the command to be aborted was sent */
2424 h = sdev_to_hba(scsicmd->device);
2425 if (h == NULL) /* paranoia */
2426 return FAILED;
2427 dev = scsicmd->device->hostdata;
2428 if (!dev) {
2429 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2430 "device lookup failed.\n");
2431 return FAILED;
2432 }
2433 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2434 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2435 /* send a reset to the SCSI LUN which the command was sent to */
2436 rc = hpsa_send_reset(h, dev->scsi3addr);
2437 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2438 return SUCCESS;
2439
2440 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2441 return FAILED;
2442 }
2443
2444 static void swizzle_abort_tag(u8 *tag)
2445 {
2446 u8 original_tag[8];
2447
2448 memcpy(original_tag, tag, 8);
2449 tag[0] = original_tag[3];
2450 tag[1] = original_tag[2];
2451 tag[2] = original_tag[1];
2452 tag[3] = original_tag[0];
2453 tag[4] = original_tag[7];
2454 tag[5] = original_tag[6];
2455 tag[6] = original_tag[5];
2456 tag[7] = original_tag[4];
2457 }
2458
2459 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2460 struct CommandList *abort, int swizzle)
2461 {
2462 int rc = IO_OK;
2463 struct CommandList *c;
2464 struct ErrorInfo *ei;
2465
2466 c = cmd_special_alloc(h);
2467 if (c == NULL) { /* trouble... */
2468 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2469 return -ENOMEM;
2470 }
2471
2472 /* fill_cmd can't fail here, no buffer to map */
2473 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2474 0, 0, scsi3addr, TYPE_MSG);
2475 if (swizzle)
2476 swizzle_abort_tag(&c->Request.CDB[4]);
2477 hpsa_scsi_do_simple_cmd_core(h, c);
2478 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2479 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2480 /* no unmap needed here because no data xfer. */
2481
2482 ei = c->err_info;
2483 switch (ei->CommandStatus) {
2484 case CMD_SUCCESS:
2485 break;
2486 case CMD_UNABORTABLE: /* Very common, don't make noise. */
2487 rc = -1;
2488 break;
2489 default:
2490 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2491 __func__, abort->Header.Tag.upper,
2492 abort->Header.Tag.lower);
2493 hpsa_scsi_interpret_error(c);
2494 rc = -1;
2495 break;
2496 }
2497 cmd_special_free(h, c);
2498 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2499 abort->Header.Tag.upper, abort->Header.Tag.lower);
2500 return rc;
2501 }
2502
2503 /*
2504 * hpsa_find_cmd_in_queue
2505 *
2506 * Used to determine whether a command (find) is still present
2507 * in queue_head. Optionally excludes the last element of queue_head.
2508 *
2509 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2510 * not yet been submitted, and so can be aborted by the driver without
2511 * sending an abort to the hardware.
2512 *
2513 * Returns pointer to command if found in queue, NULL otherwise.
2514 */
2515 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2516 struct scsi_cmnd *find, struct list_head *queue_head)
2517 {
2518 unsigned long flags;
2519 struct CommandList *c = NULL; /* ptr into cmpQ */
2520
2521 if (!find)
2522 return 0;
2523 spin_lock_irqsave(&h->lock, flags);
2524 list_for_each_entry(c, queue_head, list) {
2525 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2526 continue;
2527 if (c->scsi_cmd == find) {
2528 spin_unlock_irqrestore(&h->lock, flags);
2529 return c;
2530 }
2531 }
2532 spin_unlock_irqrestore(&h->lock, flags);
2533 return NULL;
2534 }
2535
2536 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2537 u8 *tag, struct list_head *queue_head)
2538 {
2539 unsigned long flags;
2540 struct CommandList *c;
2541
2542 spin_lock_irqsave(&h->lock, flags);
2543 list_for_each_entry(c, queue_head, list) {
2544 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2545 continue;
2546 spin_unlock_irqrestore(&h->lock, flags);
2547 return c;
2548 }
2549 spin_unlock_irqrestore(&h->lock, flags);
2550 return NULL;
2551 }
2552
2553 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2554 * tell which kind we're dealing with, so we send the abort both ways. There
2555 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2556 * way we construct our tags but we check anyway in case the assumptions which
2557 * make this true someday become false.
2558 */
2559 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2560 unsigned char *scsi3addr, struct CommandList *abort)
2561 {
2562 u8 swizzled_tag[8];
2563 struct CommandList *c;
2564 int rc = 0, rc2 = 0;
2565
2566 /* we do not expect to find the swizzled tag in our queue, but
2567 * check anyway just to be sure the assumptions which make this
2568 * the case haven't become wrong.
2569 */
2570 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2571 swizzle_abort_tag(swizzled_tag);
2572 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2573 if (c != NULL) {
2574 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2575 return hpsa_send_abort(h, scsi3addr, abort, 0);
2576 }
2577 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2578
2579 /* if the command is still in our queue, we can't conclude that it was
2580 * aborted (it might have just completed normally) but in any case
2581 * we don't need to try to abort it another way.
2582 */
2583 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2584 if (c)
2585 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2586 return rc && rc2;
2587 }
2588
2589 /* Send an abort for the specified command.
2590 * If the device and controller support it,
2591 * send a task abort request.
2592 */
2593 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2594 {
2595
2596 int i, rc;
2597 struct ctlr_info *h;
2598 struct hpsa_scsi_dev_t *dev;
2599 struct CommandList *abort; /* pointer to command to be aborted */
2600 struct CommandList *found;
2601 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
2602 char msg[256]; /* For debug messaging. */
2603 int ml = 0;
2604
2605 /* Find the controller of the command to be aborted */
2606 h = sdev_to_hba(sc->device);
2607 if (WARN(h == NULL,
2608 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2609 return FAILED;
2610
2611 /* Check that controller supports some kind of task abort */
2612 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2613 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2614 return FAILED;
2615
2616 memset(msg, 0, sizeof(msg));
2617 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2618 h->scsi_host->host_no, sc->device->channel,
2619 sc->device->id, sc->device->lun);
2620
2621 /* Find the device of the command to be aborted */
2622 dev = sc->device->hostdata;
2623 if (!dev) {
2624 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2625 msg);
2626 return FAILED;
2627 }
2628
2629 /* Get SCSI command to be aborted */
2630 abort = (struct CommandList *) sc->host_scribble;
2631 if (abort == NULL) {
2632 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2633 msg);
2634 return FAILED;
2635 }
2636
2637 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2638 abort->Header.Tag.upper, abort->Header.Tag.lower);
2639 as = (struct scsi_cmnd *) abort->scsi_cmd;
2640 if (as != NULL)
2641 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2642 as->cmnd[0], as->serial_number);
2643 dev_dbg(&h->pdev->dev, "%s\n", msg);
2644 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2645 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2646
2647 /* Search reqQ to See if command is queued but not submitted,
2648 * if so, complete the command with aborted status and remove
2649 * it from the reqQ.
2650 */
2651 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2652 if (found) {
2653 found->err_info->CommandStatus = CMD_ABORTED;
2654 finish_cmd(found);
2655 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2656 msg);
2657 return SUCCESS;
2658 }
2659
2660 /* not in reqQ, if also not in cmpQ, must have already completed */
2661 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2662 if (!found) {
2663 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2664 msg);
2665 return SUCCESS;
2666 }
2667
2668 /*
2669 * Command is in flight, or possibly already completed
2670 * by the firmware (but not to the scsi mid layer) but we can't
2671 * distinguish which. Send the abort down.
2672 */
2673 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2674 if (rc != 0) {
2675 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2676 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2677 h->scsi_host->host_no,
2678 dev->bus, dev->target, dev->lun);
2679 return FAILED;
2680 }
2681 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2682
2683 /* If the abort(s) above completed and actually aborted the
2684 * command, then the command to be aborted should already be
2685 * completed. If not, wait around a bit more to see if they
2686 * manage to complete normally.
2687 */
2688 #define ABORT_COMPLETE_WAIT_SECS 30
2689 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2690 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2691 if (!found)
2692 return SUCCESS;
2693 msleep(100);
2694 }
2695 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2696 msg, ABORT_COMPLETE_WAIT_SECS);
2697 return FAILED;
2698 }
2699
2700
2701 /*
2702 * For operations that cannot sleep, a command block is allocated at init,
2703 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2704 * which ones are free or in use. Lock must be held when calling this.
2705 * cmd_free() is the complement.
2706 */
2707 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2708 {
2709 struct CommandList *c;
2710 int i;
2711 union u64bit temp64;
2712 dma_addr_t cmd_dma_handle, err_dma_handle;
2713 unsigned long flags;
2714
2715 spin_lock_irqsave(&h->lock, flags);
2716 do {
2717 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2718 if (i == h->nr_cmds) {
2719 spin_unlock_irqrestore(&h->lock, flags);
2720 return NULL;
2721 }
2722 } while (test_and_set_bit
2723 (i & (BITS_PER_LONG - 1),
2724 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2725 h->nr_allocs++;
2726 spin_unlock_irqrestore(&h->lock, flags);
2727
2728 c = h->cmd_pool + i;
2729 memset(c, 0, sizeof(*c));
2730 cmd_dma_handle = h->cmd_pool_dhandle
2731 + i * sizeof(*c);
2732 c->err_info = h->errinfo_pool + i;
2733 memset(c->err_info, 0, sizeof(*c->err_info));
2734 err_dma_handle = h->errinfo_pool_dhandle
2735 + i * sizeof(*c->err_info);
2736
2737 c->cmdindex = i;
2738
2739 INIT_LIST_HEAD(&c->list);
2740 c->busaddr = (u32) cmd_dma_handle;
2741 temp64.val = (u64) err_dma_handle;
2742 c->ErrDesc.Addr.lower = temp64.val32.lower;
2743 c->ErrDesc.Addr.upper = temp64.val32.upper;
2744 c->ErrDesc.Len = sizeof(*c->err_info);
2745
2746 c->h = h;
2747 return c;
2748 }
2749
2750 /* For operations that can wait for kmalloc to possibly sleep,
2751 * this routine can be called. Lock need not be held to call
2752 * cmd_special_alloc. cmd_special_free() is the complement.
2753 */
2754 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2755 {
2756 struct CommandList *c;
2757 union u64bit temp64;
2758 dma_addr_t cmd_dma_handle, err_dma_handle;
2759
2760 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2761 if (c == NULL)
2762 return NULL;
2763 memset(c, 0, sizeof(*c));
2764
2765 c->cmdindex = -1;
2766
2767 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2768 &err_dma_handle);
2769
2770 if (c->err_info == NULL) {
2771 pci_free_consistent(h->pdev,
2772 sizeof(*c), c, cmd_dma_handle);
2773 return NULL;
2774 }
2775 memset(c->err_info, 0, sizeof(*c->err_info));
2776
2777 INIT_LIST_HEAD(&c->list);
2778 c->busaddr = (u32) cmd_dma_handle;
2779 temp64.val = (u64) err_dma_handle;
2780 c->ErrDesc.Addr.lower = temp64.val32.lower;
2781 c->ErrDesc.Addr.upper = temp64.val32.upper;
2782 c->ErrDesc.Len = sizeof(*c->err_info);
2783
2784 c->h = h;
2785 return c;
2786 }
2787
2788 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2789 {
2790 int i;
2791 unsigned long flags;
2792
2793 i = c - h->cmd_pool;
2794 spin_lock_irqsave(&h->lock, flags);
2795 clear_bit(i & (BITS_PER_LONG - 1),
2796 h->cmd_pool_bits + (i / BITS_PER_LONG));
2797 h->nr_frees++;
2798 spin_unlock_irqrestore(&h->lock, flags);
2799 }
2800
2801 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2802 {
2803 union u64bit temp64;
2804
2805 temp64.val32.lower = c->ErrDesc.Addr.lower;
2806 temp64.val32.upper = c->ErrDesc.Addr.upper;
2807 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2808 c->err_info, (dma_addr_t) temp64.val);
2809 pci_free_consistent(h->pdev, sizeof(*c),
2810 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2811 }
2812
2813 #ifdef CONFIG_COMPAT
2814
2815 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2816 {
2817 IOCTL32_Command_struct __user *arg32 =
2818 (IOCTL32_Command_struct __user *) arg;
2819 IOCTL_Command_struct arg64;
2820 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2821 int err;
2822 u32 cp;
2823
2824 memset(&arg64, 0, sizeof(arg64));
2825 err = 0;
2826 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2827 sizeof(arg64.LUN_info));
2828 err |= copy_from_user(&arg64.Request, &arg32->Request,
2829 sizeof(arg64.Request));
2830 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2831 sizeof(arg64.error_info));
2832 err |= get_user(arg64.buf_size, &arg32->buf_size);
2833 err |= get_user(cp, &arg32->buf);
2834 arg64.buf = compat_ptr(cp);
2835 err |= copy_to_user(p, &arg64, sizeof(arg64));
2836
2837 if (err)
2838 return -EFAULT;
2839
2840 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2841 if (err)
2842 return err;
2843 err |= copy_in_user(&arg32->error_info, &p->error_info,
2844 sizeof(arg32->error_info));
2845 if (err)
2846 return -EFAULT;
2847 return err;
2848 }
2849
2850 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2851 int cmd, void *arg)
2852 {
2853 BIG_IOCTL32_Command_struct __user *arg32 =
2854 (BIG_IOCTL32_Command_struct __user *) arg;
2855 BIG_IOCTL_Command_struct arg64;
2856 BIG_IOCTL_Command_struct __user *p =
2857 compat_alloc_user_space(sizeof(arg64));
2858 int err;
2859 u32 cp;
2860
2861 memset(&arg64, 0, sizeof(arg64));
2862 err = 0;
2863 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2864 sizeof(arg64.LUN_info));
2865 err |= copy_from_user(&arg64.Request, &arg32->Request,
2866 sizeof(arg64.Request));
2867 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2868 sizeof(arg64.error_info));
2869 err |= get_user(arg64.buf_size, &arg32->buf_size);
2870 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2871 err |= get_user(cp, &arg32->buf);
2872 arg64.buf = compat_ptr(cp);
2873 err |= copy_to_user(p, &arg64, sizeof(arg64));
2874
2875 if (err)
2876 return -EFAULT;
2877
2878 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2879 if (err)
2880 return err;
2881 err |= copy_in_user(&arg32->error_info, &p->error_info,
2882 sizeof(arg32->error_info));
2883 if (err)
2884 return -EFAULT;
2885 return err;
2886 }
2887
2888 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2889 {
2890 switch (cmd) {
2891 case CCISS_GETPCIINFO:
2892 case CCISS_GETINTINFO:
2893 case CCISS_SETINTINFO:
2894 case CCISS_GETNODENAME:
2895 case CCISS_SETNODENAME:
2896 case CCISS_GETHEARTBEAT:
2897 case CCISS_GETBUSTYPES:
2898 case CCISS_GETFIRMVER:
2899 case CCISS_GETDRIVVER:
2900 case CCISS_REVALIDVOLS:
2901 case CCISS_DEREGDISK:
2902 case CCISS_REGNEWDISK:
2903 case CCISS_REGNEWD:
2904 case CCISS_RESCANDISK:
2905 case CCISS_GETLUNINFO:
2906 return hpsa_ioctl(dev, cmd, arg);
2907
2908 case CCISS_PASSTHRU32:
2909 return hpsa_ioctl32_passthru(dev, cmd, arg);
2910 case CCISS_BIG_PASSTHRU32:
2911 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2912
2913 default:
2914 return -ENOIOCTLCMD;
2915 }
2916 }
2917 #endif
2918
2919 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2920 {
2921 struct hpsa_pci_info pciinfo;
2922
2923 if (!argp)
2924 return -EINVAL;
2925 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2926 pciinfo.bus = h->pdev->bus->number;
2927 pciinfo.dev_fn = h->pdev->devfn;
2928 pciinfo.board_id = h->board_id;
2929 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2930 return -EFAULT;
2931 return 0;
2932 }
2933
2934 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2935 {
2936 DriverVer_type DriverVer;
2937 unsigned char vmaj, vmin, vsubmin;
2938 int rc;
2939
2940 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2941 &vmaj, &vmin, &vsubmin);
2942 if (rc != 3) {
2943 dev_info(&h->pdev->dev, "driver version string '%s' "
2944 "unrecognized.", HPSA_DRIVER_VERSION);
2945 vmaj = 0;
2946 vmin = 0;
2947 vsubmin = 0;
2948 }
2949 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2950 if (!argp)
2951 return -EINVAL;
2952 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2953 return -EFAULT;
2954 return 0;
2955 }
2956
2957 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2958 {
2959 IOCTL_Command_struct iocommand;
2960 struct CommandList *c;
2961 char *buff = NULL;
2962 union u64bit temp64;
2963 int rc = 0;
2964
2965 if (!argp)
2966 return -EINVAL;
2967 if (!capable(CAP_SYS_RAWIO))
2968 return -EPERM;
2969 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2970 return -EFAULT;
2971 if ((iocommand.buf_size < 1) &&
2972 (iocommand.Request.Type.Direction != XFER_NONE)) {
2973 return -EINVAL;
2974 }
2975 if (iocommand.buf_size > 0) {
2976 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2977 if (buff == NULL)
2978 return -EFAULT;
2979 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2980 /* Copy the data into the buffer we created */
2981 if (copy_from_user(buff, iocommand.buf,
2982 iocommand.buf_size)) {
2983 rc = -EFAULT;
2984 goto out_kfree;
2985 }
2986 } else {
2987 memset(buff, 0, iocommand.buf_size);
2988 }
2989 }
2990 c = cmd_special_alloc(h);
2991 if (c == NULL) {
2992 rc = -ENOMEM;
2993 goto out_kfree;
2994 }
2995 /* Fill in the command type */
2996 c->cmd_type = CMD_IOCTL_PEND;
2997 /* Fill in Command Header */
2998 c->Header.ReplyQueue = 0; /* unused in simple mode */
2999 if (iocommand.buf_size > 0) { /* buffer to fill */
3000 c->Header.SGList = 1;
3001 c->Header.SGTotal = 1;
3002 } else { /* no buffers to fill */
3003 c->Header.SGList = 0;
3004 c->Header.SGTotal = 0;
3005 }
3006 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3007 /* use the kernel address the cmd block for tag */
3008 c->Header.Tag.lower = c->busaddr;
3009
3010 /* Fill in Request block */
3011 memcpy(&c->Request, &iocommand.Request,
3012 sizeof(c->Request));
3013
3014 /* Fill in the scatter gather information */
3015 if (iocommand.buf_size > 0) {
3016 temp64.val = pci_map_single(h->pdev, buff,
3017 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3018 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3019 c->SG[0].Addr.lower = 0;
3020 c->SG[0].Addr.upper = 0;
3021 c->SG[0].Len = 0;
3022 rc = -ENOMEM;
3023 goto out;
3024 }
3025 c->SG[0].Addr.lower = temp64.val32.lower;
3026 c->SG[0].Addr.upper = temp64.val32.upper;
3027 c->SG[0].Len = iocommand.buf_size;
3028 c->SG[0].Ext = 0; /* we are not chaining*/
3029 }
3030 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3031 if (iocommand.buf_size > 0)
3032 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3033 check_ioctl_unit_attention(h, c);
3034
3035 /* Copy the error information out */
3036 memcpy(&iocommand.error_info, c->err_info,
3037 sizeof(iocommand.error_info));
3038 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3039 rc = -EFAULT;
3040 goto out;
3041 }
3042 if (iocommand.Request.Type.Direction == XFER_READ &&
3043 iocommand.buf_size > 0) {
3044 /* Copy the data out of the buffer we created */
3045 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3046 rc = -EFAULT;
3047 goto out;
3048 }
3049 }
3050 out:
3051 cmd_special_free(h, c);
3052 out_kfree:
3053 kfree(buff);
3054 return rc;
3055 }
3056
3057 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3058 {
3059 BIG_IOCTL_Command_struct *ioc;
3060 struct CommandList *c;
3061 unsigned char **buff = NULL;
3062 int *buff_size = NULL;
3063 union u64bit temp64;
3064 BYTE sg_used = 0;
3065 int status = 0;
3066 int i;
3067 u32 left;
3068 u32 sz;
3069 BYTE __user *data_ptr;
3070
3071 if (!argp)
3072 return -EINVAL;
3073 if (!capable(CAP_SYS_RAWIO))
3074 return -EPERM;
3075 ioc = (BIG_IOCTL_Command_struct *)
3076 kmalloc(sizeof(*ioc), GFP_KERNEL);
3077 if (!ioc) {
3078 status = -ENOMEM;
3079 goto cleanup1;
3080 }
3081 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3082 status = -EFAULT;
3083 goto cleanup1;
3084 }
3085 if ((ioc->buf_size < 1) &&
3086 (ioc->Request.Type.Direction != XFER_NONE)) {
3087 status = -EINVAL;
3088 goto cleanup1;
3089 }
3090 /* Check kmalloc limits using all SGs */
3091 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3092 status = -EINVAL;
3093 goto cleanup1;
3094 }
3095 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3096 status = -EINVAL;
3097 goto cleanup1;
3098 }
3099 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3100 if (!buff) {
3101 status = -ENOMEM;
3102 goto cleanup1;
3103 }
3104 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3105 if (!buff_size) {
3106 status = -ENOMEM;
3107 goto cleanup1;
3108 }
3109 left = ioc->buf_size;
3110 data_ptr = ioc->buf;
3111 while (left) {
3112 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3113 buff_size[sg_used] = sz;
3114 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3115 if (buff[sg_used] == NULL) {
3116 status = -ENOMEM;
3117 goto cleanup1;
3118 }
3119 if (ioc->Request.Type.Direction == XFER_WRITE) {
3120 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3121 status = -EFAULT;
3122 goto cleanup1;
3123 }
3124 } else
3125 memset(buff[sg_used], 0, sz);
3126 left -= sz;
3127 data_ptr += sz;
3128 sg_used++;
3129 }
3130 c = cmd_special_alloc(h);
3131 if (c == NULL) {
3132 status = -ENOMEM;
3133 goto cleanup1;
3134 }
3135 c->cmd_type = CMD_IOCTL_PEND;
3136 c->Header.ReplyQueue = 0;
3137 c->Header.SGList = c->Header.SGTotal = sg_used;
3138 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3139 c->Header.Tag.lower = c->busaddr;
3140 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3141 if (ioc->buf_size > 0) {
3142 int i;
3143 for (i = 0; i < sg_used; i++) {
3144 temp64.val = pci_map_single(h->pdev, buff[i],
3145 buff_size[i], PCI_DMA_BIDIRECTIONAL);
3146 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3147 c->SG[i].Addr.lower = 0;
3148 c->SG[i].Addr.upper = 0;
3149 c->SG[i].Len = 0;
3150 hpsa_pci_unmap(h->pdev, c, i,
3151 PCI_DMA_BIDIRECTIONAL);
3152 status = -ENOMEM;
3153 goto cleanup1;
3154 }
3155 c->SG[i].Addr.lower = temp64.val32.lower;
3156 c->SG[i].Addr.upper = temp64.val32.upper;
3157 c->SG[i].Len = buff_size[i];
3158 /* we are not chaining */
3159 c->SG[i].Ext = 0;
3160 }
3161 }
3162 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3163 if (sg_used)
3164 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3165 check_ioctl_unit_attention(h, c);
3166 /* Copy the error information out */
3167 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3168 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3169 cmd_special_free(h, c);
3170 status = -EFAULT;
3171 goto cleanup1;
3172 }
3173 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3174 /* Copy the data out of the buffer we created */
3175 BYTE __user *ptr = ioc->buf;
3176 for (i = 0; i < sg_used; i++) {
3177 if (copy_to_user(ptr, buff[i], buff_size[i])) {
3178 cmd_special_free(h, c);
3179 status = -EFAULT;
3180 goto cleanup1;
3181 }
3182 ptr += buff_size[i];
3183 }
3184 }
3185 cmd_special_free(h, c);
3186 status = 0;
3187 cleanup1:
3188 if (buff) {
3189 for (i = 0; i < sg_used; i++)
3190 kfree(buff[i]);
3191 kfree(buff);
3192 }
3193 kfree(buff_size);
3194 kfree(ioc);
3195 return status;
3196 }
3197
3198 static void check_ioctl_unit_attention(struct ctlr_info *h,
3199 struct CommandList *c)
3200 {
3201 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3202 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3203 (void) check_for_unit_attention(h, c);
3204 }
3205 /*
3206 * ioctl
3207 */
3208 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3209 {
3210 struct ctlr_info *h;
3211 void __user *argp = (void __user *)arg;
3212
3213 h = sdev_to_hba(dev);
3214
3215 switch (cmd) {
3216 case CCISS_DEREGDISK:
3217 case CCISS_REGNEWDISK:
3218 case CCISS_REGNEWD:
3219 hpsa_scan_start(h->scsi_host);
3220 return 0;
3221 case CCISS_GETPCIINFO:
3222 return hpsa_getpciinfo_ioctl(h, argp);
3223 case CCISS_GETDRIVVER:
3224 return hpsa_getdrivver_ioctl(h, argp);
3225 case CCISS_PASSTHRU:
3226 return hpsa_passthru_ioctl(h, argp);
3227 case CCISS_BIG_PASSTHRU:
3228 return hpsa_big_passthru_ioctl(h, argp);
3229 default:
3230 return -ENOTTY;
3231 }
3232 }
3233
3234 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3235 u8 reset_type)
3236 {
3237 struct CommandList *c;
3238
3239 c = cmd_alloc(h);
3240 if (!c)
3241 return -ENOMEM;
3242 /* fill_cmd can't fail here, no data buffer to map */
3243 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3244 RAID_CTLR_LUNID, TYPE_MSG);
3245 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3246 c->waiting = NULL;
3247 enqueue_cmd_and_start_io(h, c);
3248 /* Don't wait for completion, the reset won't complete. Don't free
3249 * the command either. This is the last command we will send before
3250 * re-initializing everything, so it doesn't matter and won't leak.
3251 */
3252 return 0;
3253 }
3254
3255 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3256 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3257 int cmd_type)
3258 {
3259 int pci_dir = XFER_NONE;
3260 struct CommandList *a; /* for commands to be aborted */
3261
3262 c->cmd_type = CMD_IOCTL_PEND;
3263 c->Header.ReplyQueue = 0;
3264 if (buff != NULL && size > 0) {
3265 c->Header.SGList = 1;
3266 c->Header.SGTotal = 1;
3267 } else {
3268 c->Header.SGList = 0;
3269 c->Header.SGTotal = 0;
3270 }
3271 c->Header.Tag.lower = c->busaddr;
3272 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3273
3274 c->Request.Type.Type = cmd_type;
3275 if (cmd_type == TYPE_CMD) {
3276 switch (cmd) {
3277 case HPSA_INQUIRY:
3278 /* are we trying to read a vital product page */
3279 if (page_code != 0) {
3280 c->Request.CDB[1] = 0x01;
3281 c->Request.CDB[2] = page_code;
3282 }
3283 c->Request.CDBLen = 6;
3284 c->Request.Type.Attribute = ATTR_SIMPLE;
3285 c->Request.Type.Direction = XFER_READ;
3286 c->Request.Timeout = 0;
3287 c->Request.CDB[0] = HPSA_INQUIRY;
3288 c->Request.CDB[4] = size & 0xFF;
3289 break;
3290 case HPSA_REPORT_LOG:
3291 case HPSA_REPORT_PHYS:
3292 /* Talking to controller so It's a physical command
3293 mode = 00 target = 0. Nothing to write.
3294 */
3295 c->Request.CDBLen = 12;
3296 c->Request.Type.Attribute = ATTR_SIMPLE;
3297 c->Request.Type.Direction = XFER_READ;
3298 c->Request.Timeout = 0;
3299 c->Request.CDB[0] = cmd;
3300 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3301 c->Request.CDB[7] = (size >> 16) & 0xFF;
3302 c->Request.CDB[8] = (size >> 8) & 0xFF;
3303 c->Request.CDB[9] = size & 0xFF;
3304 break;
3305 case HPSA_CACHE_FLUSH:
3306 c->Request.CDBLen = 12;
3307 c->Request.Type.Attribute = ATTR_SIMPLE;
3308 c->Request.Type.Direction = XFER_WRITE;
3309 c->Request.Timeout = 0;
3310 c->Request.CDB[0] = BMIC_WRITE;
3311 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3312 c->Request.CDB[7] = (size >> 8) & 0xFF;
3313 c->Request.CDB[8] = size & 0xFF;
3314 break;
3315 case TEST_UNIT_READY:
3316 c->Request.CDBLen = 6;
3317 c->Request.Type.Attribute = ATTR_SIMPLE;
3318 c->Request.Type.Direction = XFER_NONE;
3319 c->Request.Timeout = 0;
3320 break;
3321 default:
3322 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3323 BUG();
3324 return -1;
3325 }
3326 } else if (cmd_type == TYPE_MSG) {
3327 switch (cmd) {
3328
3329 case HPSA_DEVICE_RESET_MSG:
3330 c->Request.CDBLen = 16;
3331 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
3332 c->Request.Type.Attribute = ATTR_SIMPLE;
3333 c->Request.Type.Direction = XFER_NONE;
3334 c->Request.Timeout = 0; /* Don't time out */
3335 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3336 c->Request.CDB[0] = cmd;
3337 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3338 /* If bytes 4-7 are zero, it means reset the */
3339 /* LunID device */
3340 c->Request.CDB[4] = 0x00;
3341 c->Request.CDB[5] = 0x00;
3342 c->Request.CDB[6] = 0x00;
3343 c->Request.CDB[7] = 0x00;
3344 break;
3345 case HPSA_ABORT_MSG:
3346 a = buff; /* point to command to be aborted */
3347 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3348 a->Header.Tag.upper, a->Header.Tag.lower,
3349 c->Header.Tag.upper, c->Header.Tag.lower);
3350 c->Request.CDBLen = 16;
3351 c->Request.Type.Type = TYPE_MSG;
3352 c->Request.Type.Attribute = ATTR_SIMPLE;
3353 c->Request.Type.Direction = XFER_WRITE;
3354 c->Request.Timeout = 0; /* Don't time out */
3355 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3356 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3357 c->Request.CDB[2] = 0x00; /* reserved */
3358 c->Request.CDB[3] = 0x00; /* reserved */
3359 /* Tag to abort goes in CDB[4]-CDB[11] */
3360 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3361 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3362 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3363 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3364 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3365 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3366 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3367 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3368 c->Request.CDB[12] = 0x00; /* reserved */
3369 c->Request.CDB[13] = 0x00; /* reserved */
3370 c->Request.CDB[14] = 0x00; /* reserved */
3371 c->Request.CDB[15] = 0x00; /* reserved */
3372 break;
3373 default:
3374 dev_warn(&h->pdev->dev, "unknown message type %d\n",
3375 cmd);
3376 BUG();
3377 }
3378 } else {
3379 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3380 BUG();
3381 }
3382
3383 switch (c->Request.Type.Direction) {
3384 case XFER_READ:
3385 pci_dir = PCI_DMA_FROMDEVICE;
3386 break;
3387 case XFER_WRITE:
3388 pci_dir = PCI_DMA_TODEVICE;
3389 break;
3390 case XFER_NONE:
3391 pci_dir = PCI_DMA_NONE;
3392 break;
3393 default:
3394 pci_dir = PCI_DMA_BIDIRECTIONAL;
3395 }
3396 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3397 return -1;
3398 return 0;
3399 }
3400
3401 /*
3402 * Map (physical) PCI mem into (virtual) kernel space
3403 */
3404 static void __iomem *remap_pci_mem(ulong base, ulong size)
3405 {
3406 ulong page_base = ((ulong) base) & PAGE_MASK;
3407 ulong page_offs = ((ulong) base) - page_base;
3408 void __iomem *page_remapped = ioremap_nocache(page_base,
3409 page_offs + size);
3410
3411 return page_remapped ? (page_remapped + page_offs) : NULL;
3412 }
3413
3414 /* Takes cmds off the submission queue and sends them to the hardware,
3415 * then puts them on the queue of cmds waiting for completion.
3416 */
3417 static void start_io(struct ctlr_info *h)
3418 {
3419 struct CommandList *c;
3420 unsigned long flags;
3421
3422 spin_lock_irqsave(&h->lock, flags);
3423 while (!list_empty(&h->reqQ)) {
3424 c = list_entry(h->reqQ.next, struct CommandList, list);
3425 /* can't do anything if fifo is full */
3426 if ((h->access.fifo_full(h))) {
3427 dev_warn(&h->pdev->dev, "fifo full\n");
3428 break;
3429 }
3430
3431 /* Get the first entry from the Request Q */
3432 removeQ(c);
3433 h->Qdepth--;
3434
3435 /* Put job onto the completed Q */
3436 addQ(&h->cmpQ, c);
3437
3438 /* Must increment commands_outstanding before unlocking
3439 * and submitting to avoid race checking for fifo full
3440 * condition.
3441 */
3442 h->commands_outstanding++;
3443 if (h->commands_outstanding > h->max_outstanding)
3444 h->max_outstanding = h->commands_outstanding;
3445
3446 /* Tell the controller execute command */
3447 spin_unlock_irqrestore(&h->lock, flags);
3448 h->access.submit_command(h, c);
3449 spin_lock_irqsave(&h->lock, flags);
3450 }
3451 spin_unlock_irqrestore(&h->lock, flags);
3452 }
3453
3454 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3455 {
3456 return h->access.command_completed(h, q);
3457 }
3458
3459 static inline bool interrupt_pending(struct ctlr_info *h)
3460 {
3461 return h->access.intr_pending(h);
3462 }
3463
3464 static inline long interrupt_not_for_us(struct ctlr_info *h)
3465 {
3466 return (h->access.intr_pending(h) == 0) ||
3467 (h->interrupts_enabled == 0);
3468 }
3469
3470 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3471 u32 raw_tag)
3472 {
3473 if (unlikely(tag_index >= h->nr_cmds)) {
3474 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3475 return 1;
3476 }
3477 return 0;
3478 }
3479
3480 static inline void finish_cmd(struct CommandList *c)
3481 {
3482 unsigned long flags;
3483
3484 spin_lock_irqsave(&c->h->lock, flags);
3485 removeQ(c);
3486 spin_unlock_irqrestore(&c->h->lock, flags);
3487 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3488 if (likely(c->cmd_type == CMD_SCSI))
3489 complete_scsi_command(c);
3490 else if (c->cmd_type == CMD_IOCTL_PEND)
3491 complete(c->waiting);
3492 }
3493
3494 static inline u32 hpsa_tag_contains_index(u32 tag)
3495 {
3496 return tag & DIRECT_LOOKUP_BIT;
3497 }
3498
3499 static inline u32 hpsa_tag_to_index(u32 tag)
3500 {
3501 return tag >> DIRECT_LOOKUP_SHIFT;
3502 }
3503
3504
3505 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3506 {
3507 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3508 #define HPSA_SIMPLE_ERROR_BITS 0x03
3509 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3510 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3511 return tag & ~HPSA_PERF_ERROR_BITS;
3512 }
3513
3514 /* process completion of an indexed ("direct lookup") command */
3515 static inline void process_indexed_cmd(struct ctlr_info *h,
3516 u32 raw_tag)
3517 {
3518 u32 tag_index;
3519 struct CommandList *c;
3520
3521 tag_index = hpsa_tag_to_index(raw_tag);
3522 if (!bad_tag(h, tag_index, raw_tag)) {
3523 c = h->cmd_pool + tag_index;
3524 finish_cmd(c);
3525 }
3526 }
3527
3528 /* process completion of a non-indexed command */
3529 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3530 u32 raw_tag)
3531 {
3532 u32 tag;
3533 struct CommandList *c = NULL;
3534 unsigned long flags;
3535
3536 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3537 spin_lock_irqsave(&h->lock, flags);
3538 list_for_each_entry(c, &h->cmpQ, list) {
3539 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3540 spin_unlock_irqrestore(&h->lock, flags);
3541 finish_cmd(c);
3542 return;
3543 }
3544 }
3545 spin_unlock_irqrestore(&h->lock, flags);
3546 bad_tag(h, h->nr_cmds + 1, raw_tag);
3547 }
3548
3549 /* Some controllers, like p400, will give us one interrupt
3550 * after a soft reset, even if we turned interrupts off.
3551 * Only need to check for this in the hpsa_xxx_discard_completions
3552 * functions.
3553 */
3554 static int ignore_bogus_interrupt(struct ctlr_info *h)
3555 {
3556 if (likely(!reset_devices))
3557 return 0;
3558
3559 if (likely(h->interrupts_enabled))
3560 return 0;
3561
3562 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3563 "(known firmware bug.) Ignoring.\n");
3564
3565 return 1;
3566 }
3567
3568 /*
3569 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3570 * Relies on (h-q[x] == x) being true for x such that
3571 * 0 <= x < MAX_REPLY_QUEUES.
3572 */
3573 static struct ctlr_info *queue_to_hba(u8 *queue)
3574 {
3575 return container_of((queue - *queue), struct ctlr_info, q[0]);
3576 }
3577
3578 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3579 {
3580 struct ctlr_info *h = queue_to_hba(queue);
3581 u8 q = *(u8 *) queue;
3582 u32 raw_tag;
3583
3584 if (ignore_bogus_interrupt(h))
3585 return IRQ_NONE;
3586
3587 if (interrupt_not_for_us(h))
3588 return IRQ_NONE;
3589 h->last_intr_timestamp = get_jiffies_64();
3590 while (interrupt_pending(h)) {
3591 raw_tag = get_next_completion(h, q);
3592 while (raw_tag != FIFO_EMPTY)
3593 raw_tag = next_command(h, q);
3594 }
3595 return IRQ_HANDLED;
3596 }
3597
3598 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3599 {
3600 struct ctlr_info *h = queue_to_hba(queue);
3601 u32 raw_tag;
3602 u8 q = *(u8 *) queue;
3603
3604 if (ignore_bogus_interrupt(h))
3605 return IRQ_NONE;
3606
3607 h->last_intr_timestamp = get_jiffies_64();
3608 raw_tag = get_next_completion(h, q);
3609 while (raw_tag != FIFO_EMPTY)
3610 raw_tag = next_command(h, q);
3611 return IRQ_HANDLED;
3612 }
3613
3614 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3615 {
3616 struct ctlr_info *h = queue_to_hba((u8 *) queue);
3617 u32 raw_tag;
3618 u8 q = *(u8 *) queue;
3619
3620 if (interrupt_not_for_us(h))
3621 return IRQ_NONE;
3622 h->last_intr_timestamp = get_jiffies_64();
3623 while (interrupt_pending(h)) {
3624 raw_tag = get_next_completion(h, q);
3625 while (raw_tag != FIFO_EMPTY) {
3626 if (likely(hpsa_tag_contains_index(raw_tag)))
3627 process_indexed_cmd(h, raw_tag);
3628 else
3629 process_nonindexed_cmd(h, raw_tag);
3630 raw_tag = next_command(h, q);
3631 }
3632 }
3633 return IRQ_HANDLED;
3634 }
3635
3636 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3637 {
3638 struct ctlr_info *h = queue_to_hba(queue);
3639 u32 raw_tag;
3640 u8 q = *(u8 *) queue;
3641
3642 h->last_intr_timestamp = get_jiffies_64();
3643 raw_tag = get_next_completion(h, q);
3644 while (raw_tag != FIFO_EMPTY) {
3645 if (likely(hpsa_tag_contains_index(raw_tag)))
3646 process_indexed_cmd(h, raw_tag);
3647 else
3648 process_nonindexed_cmd(h, raw_tag);
3649 raw_tag = next_command(h, q);
3650 }
3651 return IRQ_HANDLED;
3652 }
3653
3654 /* Send a message CDB to the firmware. Careful, this only works
3655 * in simple mode, not performant mode due to the tag lookup.
3656 * We only ever use this immediately after a controller reset.
3657 */
3658 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3659 unsigned char type)
3660 {
3661 struct Command {
3662 struct CommandListHeader CommandHeader;
3663 struct RequestBlock Request;
3664 struct ErrDescriptor ErrorDescriptor;
3665 };
3666 struct Command *cmd;
3667 static const size_t cmd_sz = sizeof(*cmd) +
3668 sizeof(cmd->ErrorDescriptor);
3669 dma_addr_t paddr64;
3670 uint32_t paddr32, tag;
3671 void __iomem *vaddr;
3672 int i, err;
3673
3674 vaddr = pci_ioremap_bar(pdev, 0);
3675 if (vaddr == NULL)
3676 return -ENOMEM;
3677
3678 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3679 * CCISS commands, so they must be allocated from the lower 4GiB of
3680 * memory.
3681 */
3682 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3683 if (err) {
3684 iounmap(vaddr);
3685 return -ENOMEM;
3686 }
3687
3688 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3689 if (cmd == NULL) {
3690 iounmap(vaddr);
3691 return -ENOMEM;
3692 }
3693
3694 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3695 * although there's no guarantee, we assume that the address is at
3696 * least 4-byte aligned (most likely, it's page-aligned).
3697 */
3698 paddr32 = paddr64;
3699
3700 cmd->CommandHeader.ReplyQueue = 0;
3701 cmd->CommandHeader.SGList = 0;
3702 cmd->CommandHeader.SGTotal = 0;
3703 cmd->CommandHeader.Tag.lower = paddr32;
3704 cmd->CommandHeader.Tag.upper = 0;
3705 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3706
3707 cmd->Request.CDBLen = 16;
3708 cmd->Request.Type.Type = TYPE_MSG;
3709 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3710 cmd->Request.Type.Direction = XFER_NONE;
3711 cmd->Request.Timeout = 0; /* Don't time out */
3712 cmd->Request.CDB[0] = opcode;
3713 cmd->Request.CDB[1] = type;
3714 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3715 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3716 cmd->ErrorDescriptor.Addr.upper = 0;
3717 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3718
3719 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3720
3721 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3722 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3723 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3724 break;
3725 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3726 }
3727
3728 iounmap(vaddr);
3729
3730 /* we leak the DMA buffer here ... no choice since the controller could
3731 * still complete the command.
3732 */
3733 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3734 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3735 opcode, type);
3736 return -ETIMEDOUT;
3737 }
3738
3739 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3740
3741 if (tag & HPSA_ERROR_BIT) {
3742 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3743 opcode, type);
3744 return -EIO;
3745 }
3746
3747 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3748 opcode, type);
3749 return 0;
3750 }
3751
3752 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3753
3754 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3755 void * __iomem vaddr, u32 use_doorbell)
3756 {
3757 u16 pmcsr;
3758 int pos;
3759
3760 if (use_doorbell) {
3761 /* For everything after the P600, the PCI power state method
3762 * of resetting the controller doesn't work, so we have this
3763 * other way using the doorbell register.
3764 */
3765 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3766 writel(use_doorbell, vaddr + SA5_DOORBELL);
3767 } else { /* Try to do it the PCI power state way */
3768
3769 /* Quoting from the Open CISS Specification: "The Power
3770 * Management Control/Status Register (CSR) controls the power
3771 * state of the device. The normal operating state is D0,
3772 * CSR=00h. The software off state is D3, CSR=03h. To reset
3773 * the controller, place the interface device in D3 then to D0,
3774 * this causes a secondary PCI reset which will reset the
3775 * controller." */
3776
3777 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3778 if (pos == 0) {
3779 dev_err(&pdev->dev,
3780 "hpsa_reset_controller: "
3781 "PCI PM not supported\n");
3782 return -ENODEV;
3783 }
3784 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3785 /* enter the D3hot power management state */
3786 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3787 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3788 pmcsr |= PCI_D3hot;
3789 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3790
3791 msleep(500);
3792
3793 /* enter the D0 power management state */
3794 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3795 pmcsr |= PCI_D0;
3796 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3797
3798 /*
3799 * The P600 requires a small delay when changing states.
3800 * Otherwise we may think the board did not reset and we bail.
3801 * This for kdump only and is particular to the P600.
3802 */
3803 msleep(500);
3804 }
3805 return 0;
3806 }
3807
3808 static void init_driver_version(char *driver_version, int len)
3809 {
3810 memset(driver_version, 0, len);
3811 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3812 }
3813
3814 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3815 {
3816 char *driver_version;
3817 int i, size = sizeof(cfgtable->driver_version);
3818
3819 driver_version = kmalloc(size, GFP_KERNEL);
3820 if (!driver_version)
3821 return -ENOMEM;
3822
3823 init_driver_version(driver_version, size);
3824 for (i = 0; i < size; i++)
3825 writeb(driver_version[i], &cfgtable->driver_version[i]);
3826 kfree(driver_version);
3827 return 0;
3828 }
3829
3830 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3831 unsigned char *driver_ver)
3832 {
3833 int i;
3834
3835 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3836 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3837 }
3838
3839 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3840 {
3841
3842 char *driver_ver, *old_driver_ver;
3843 int rc, size = sizeof(cfgtable->driver_version);
3844
3845 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3846 if (!old_driver_ver)
3847 return -ENOMEM;
3848 driver_ver = old_driver_ver + size;
3849
3850 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3851 * should have been changed, otherwise we know the reset failed.
3852 */
3853 init_driver_version(old_driver_ver, size);
3854 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3855 rc = !memcmp(driver_ver, old_driver_ver, size);
3856 kfree(old_driver_ver);
3857 return rc;
3858 }
3859 /* This does a hard reset of the controller using PCI power management
3860 * states or the using the doorbell register.
3861 */
3862 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3863 {
3864 u64 cfg_offset;
3865 u32 cfg_base_addr;
3866 u64 cfg_base_addr_index;
3867 void __iomem *vaddr;
3868 unsigned long paddr;
3869 u32 misc_fw_support;
3870 int rc;
3871 struct CfgTable __iomem *cfgtable;
3872 u32 use_doorbell;
3873 u32 board_id;
3874 u16 command_register;
3875
3876 /* For controllers as old as the P600, this is very nearly
3877 * the same thing as
3878 *
3879 * pci_save_state(pci_dev);
3880 * pci_set_power_state(pci_dev, PCI_D3hot);
3881 * pci_set_power_state(pci_dev, PCI_D0);
3882 * pci_restore_state(pci_dev);
3883 *
3884 * For controllers newer than the P600, the pci power state
3885 * method of resetting doesn't work so we have another way
3886 * using the doorbell register.
3887 */
3888
3889 rc = hpsa_lookup_board_id(pdev, &board_id);
3890 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3891 dev_warn(&pdev->dev, "Not resetting device.\n");
3892 return -ENODEV;
3893 }
3894
3895 /* if controller is soft- but not hard resettable... */
3896 if (!ctlr_is_hard_resettable(board_id))
3897 return -ENOTSUPP; /* try soft reset later. */
3898
3899 /* Save the PCI command register */
3900 pci_read_config_word(pdev, 4, &command_register);
3901 pci_save_state(pdev);
3902
3903 /* find the first memory BAR, so we can find the cfg table */
3904 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3905 if (rc)
3906 return rc;
3907 vaddr = remap_pci_mem(paddr, 0x250);
3908 if (!vaddr)
3909 return -ENOMEM;
3910
3911 /* find cfgtable in order to check if reset via doorbell is supported */
3912 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3913 &cfg_base_addr_index, &cfg_offset);
3914 if (rc)
3915 goto unmap_vaddr;
3916 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3917 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3918 if (!cfgtable) {
3919 rc = -ENOMEM;
3920 goto unmap_vaddr;
3921 }
3922 rc = write_driver_ver_to_cfgtable(cfgtable);
3923 if (rc)
3924 goto unmap_vaddr;
3925
3926 /* If reset via doorbell register is supported, use that.
3927 * There are two such methods. Favor the newest method.
3928 */
3929 misc_fw_support = readl(&cfgtable->misc_fw_support);
3930 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3931 if (use_doorbell) {
3932 use_doorbell = DOORBELL_CTLR_RESET2;
3933 } else {
3934 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3935 if (use_doorbell) {
3936 dev_warn(&pdev->dev, "Soft reset not supported. "
3937 "Firmware update is required.\n");
3938 rc = -ENOTSUPP; /* try soft reset */
3939 goto unmap_cfgtable;
3940 }
3941 }
3942
3943 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3944 if (rc)
3945 goto unmap_cfgtable;
3946
3947 pci_restore_state(pdev);
3948 pci_write_config_word(pdev, 4, command_register);
3949
3950 /* Some devices (notably the HP Smart Array 5i Controller)
3951 need a little pause here */
3952 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3953
3954 /* Wait for board to become not ready, then ready. */
3955 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3956 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3957 if (rc) {
3958 dev_warn(&pdev->dev,
3959 "failed waiting for board to reset."
3960 " Will try soft reset.\n");
3961 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3962 goto unmap_cfgtable;
3963 }
3964 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3965 if (rc) {
3966 dev_warn(&pdev->dev,
3967 "failed waiting for board to become ready "
3968 "after hard reset\n");
3969 goto unmap_cfgtable;
3970 }
3971
3972 rc = controller_reset_failed(vaddr);
3973 if (rc < 0)
3974 goto unmap_cfgtable;
3975 if (rc) {
3976 dev_warn(&pdev->dev, "Unable to successfully reset "
3977 "controller. Will try soft reset.\n");
3978 rc = -ENOTSUPP;
3979 } else {
3980 dev_info(&pdev->dev, "board ready after hard reset.\n");
3981 }
3982
3983 unmap_cfgtable:
3984 iounmap(cfgtable);
3985
3986 unmap_vaddr:
3987 iounmap(vaddr);
3988 return rc;
3989 }
3990
3991 /*
3992 * We cannot read the structure directly, for portability we must use
3993 * the io functions.
3994 * This is for debug only.
3995 */
3996 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3997 {
3998 #ifdef HPSA_DEBUG
3999 int i;
4000 char temp_name[17];
4001
4002 dev_info(dev, "Controller Configuration information\n");
4003 dev_info(dev, "------------------------------------\n");
4004 for (i = 0; i < 4; i++)
4005 temp_name[i] = readb(&(tb->Signature[i]));
4006 temp_name[4] = '\0';
4007 dev_info(dev, " Signature = %s\n", temp_name);
4008 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
4009 dev_info(dev, " Transport methods supported = 0x%x\n",
4010 readl(&(tb->TransportSupport)));
4011 dev_info(dev, " Transport methods active = 0x%x\n",
4012 readl(&(tb->TransportActive)));
4013 dev_info(dev, " Requested transport Method = 0x%x\n",
4014 readl(&(tb->HostWrite.TransportRequest)));
4015 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
4016 readl(&(tb->HostWrite.CoalIntDelay)));
4017 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
4018 readl(&(tb->HostWrite.CoalIntCount)));
4019 dev_info(dev, " Max outstanding commands = 0x%d\n",
4020 readl(&(tb->CmdsOutMax)));
4021 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4022 for (i = 0; i < 16; i++)
4023 temp_name[i] = readb(&(tb->ServerName[i]));
4024 temp_name[16] = '\0';
4025 dev_info(dev, " Server Name = %s\n", temp_name);
4026 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
4027 readl(&(tb->HeartBeat)));
4028 #endif /* HPSA_DEBUG */
4029 }
4030
4031 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4032 {
4033 int i, offset, mem_type, bar_type;
4034
4035 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4036 return 0;
4037 offset = 0;
4038 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4039 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4040 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4041 offset += 4;
4042 else {
4043 mem_type = pci_resource_flags(pdev, i) &
4044 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4045 switch (mem_type) {
4046 case PCI_BASE_ADDRESS_MEM_TYPE_32:
4047 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4048 offset += 4; /* 32 bit */
4049 break;
4050 case PCI_BASE_ADDRESS_MEM_TYPE_64:
4051 offset += 8;
4052 break;
4053 default: /* reserved in PCI 2.2 */
4054 dev_warn(&pdev->dev,
4055 "base address is invalid\n");
4056 return -1;
4057 break;
4058 }
4059 }
4060 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4061 return i + 1;
4062 }
4063 return -1;
4064 }
4065
4066 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4067 * controllers that are capable. If not, we use IO-APIC mode.
4068 */
4069
4070 static void hpsa_interrupt_mode(struct ctlr_info *h)
4071 {
4072 #ifdef CONFIG_PCI_MSI
4073 int err, i;
4074 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4075
4076 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4077 hpsa_msix_entries[i].vector = 0;
4078 hpsa_msix_entries[i].entry = i;
4079 }
4080
4081 /* Some boards advertise MSI but don't really support it */
4082 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4083 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4084 goto default_int_mode;
4085 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4086 dev_info(&h->pdev->dev, "MSIX\n");
4087 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4088 MAX_REPLY_QUEUES);
4089 if (!err) {
4090 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4091 h->intr[i] = hpsa_msix_entries[i].vector;
4092 h->msix_vector = 1;
4093 return;
4094 }
4095 if (err > 0) {
4096 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4097 "available\n", err);
4098 goto default_int_mode;
4099 } else {
4100 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4101 err);
4102 goto default_int_mode;
4103 }
4104 }
4105 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4106 dev_info(&h->pdev->dev, "MSI\n");
4107 if (!pci_enable_msi(h->pdev))
4108 h->msi_vector = 1;
4109 else
4110 dev_warn(&h->pdev->dev, "MSI init failed\n");
4111 }
4112 default_int_mode:
4113 #endif /* CONFIG_PCI_MSI */
4114 /* if we get here we're going to use the default interrupt mode */
4115 h->intr[h->intr_mode] = h->pdev->irq;
4116 }
4117
4118 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4119 {
4120 int i;
4121 u32 subsystem_vendor_id, subsystem_device_id;
4122
4123 subsystem_vendor_id = pdev->subsystem_vendor;
4124 subsystem_device_id = pdev->subsystem_device;
4125 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4126 subsystem_vendor_id;
4127
4128 for (i = 0; i < ARRAY_SIZE(products); i++)
4129 if (*board_id == products[i].board_id)
4130 return i;
4131
4132 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4133 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4134 !hpsa_allow_any) {
4135 dev_warn(&pdev->dev, "unrecognized board ID: "
4136 "0x%08x, ignoring.\n", *board_id);
4137 return -ENODEV;
4138 }
4139 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4140 }
4141
4142 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4143 unsigned long *memory_bar)
4144 {
4145 int i;
4146
4147 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4148 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4149 /* addressing mode bits already removed */
4150 *memory_bar = pci_resource_start(pdev, i);
4151 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4152 *memory_bar);
4153 return 0;
4154 }
4155 dev_warn(&pdev->dev, "no memory BAR found\n");
4156 return -ENODEV;
4157 }
4158
4159 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4160 int wait_for_ready)
4161 {
4162 int i, iterations;
4163 u32 scratchpad;
4164 if (wait_for_ready)
4165 iterations = HPSA_BOARD_READY_ITERATIONS;
4166 else
4167 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4168
4169 for (i = 0; i < iterations; i++) {
4170 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4171 if (wait_for_ready) {
4172 if (scratchpad == HPSA_FIRMWARE_READY)
4173 return 0;
4174 } else {
4175 if (scratchpad != HPSA_FIRMWARE_READY)
4176 return 0;
4177 }
4178 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4179 }
4180 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4181 return -ENODEV;
4182 }
4183
4184 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4185 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4186 u64 *cfg_offset)
4187 {
4188 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4189 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4190 *cfg_base_addr &= (u32) 0x0000ffff;
4191 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4192 if (*cfg_base_addr_index == -1) {
4193 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4194 return -ENODEV;
4195 }
4196 return 0;
4197 }
4198
4199 static int hpsa_find_cfgtables(struct ctlr_info *h)
4200 {
4201 u64 cfg_offset;
4202 u32 cfg_base_addr;
4203 u64 cfg_base_addr_index;
4204 u32 trans_offset;
4205 int rc;
4206
4207 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4208 &cfg_base_addr_index, &cfg_offset);
4209 if (rc)
4210 return rc;
4211 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4212 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4213 if (!h->cfgtable)
4214 return -ENOMEM;
4215 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4216 if (rc)
4217 return rc;
4218 /* Find performant mode table. */
4219 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4220 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4221 cfg_base_addr_index)+cfg_offset+trans_offset,
4222 sizeof(*h->transtable));
4223 if (!h->transtable)
4224 return -ENOMEM;
4225 return 0;
4226 }
4227
4228 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4229 {
4230 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4231
4232 /* Limit commands in memory limited kdump scenario. */
4233 if (reset_devices && h->max_commands > 32)
4234 h->max_commands = 32;
4235
4236 if (h->max_commands < 16) {
4237 dev_warn(&h->pdev->dev, "Controller reports "
4238 "max supported commands of %d, an obvious lie. "
4239 "Using 16. Ensure that firmware is up to date.\n",
4240 h->max_commands);
4241 h->max_commands = 16;
4242 }
4243 }
4244
4245 /* Interrogate the hardware for some limits:
4246 * max commands, max SG elements without chaining, and with chaining,
4247 * SG chain block size, etc.
4248 */
4249 static void hpsa_find_board_params(struct ctlr_info *h)
4250 {
4251 hpsa_get_max_perf_mode_cmds(h);
4252 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4253 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4254 /*
4255 * Limit in-command s/g elements to 32 save dma'able memory.
4256 * Howvever spec says if 0, use 31
4257 */
4258 h->max_cmd_sg_entries = 31;
4259 if (h->maxsgentries > 512) {
4260 h->max_cmd_sg_entries = 32;
4261 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4262 h->maxsgentries--; /* save one for chain pointer */
4263 } else {
4264 h->maxsgentries = 31; /* default to traditional values */
4265 h->chainsize = 0;
4266 }
4267
4268 /* Find out what task management functions are supported and cache */
4269 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4270 }
4271
4272 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4273 {
4274 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4275 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4276 return false;
4277 }
4278 return true;
4279 }
4280
4281 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4282 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4283 {
4284 #ifdef CONFIG_X86
4285 u32 prefetch;
4286
4287 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4288 prefetch |= 0x100;
4289 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4290 #endif
4291 }
4292
4293 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4294 * in a prefetch beyond physical memory.
4295 */
4296 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4297 {
4298 u32 dma_prefetch;
4299
4300 if (h->board_id != 0x3225103C)
4301 return;
4302 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4303 dma_prefetch |= 0x8000;
4304 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4305 }
4306
4307 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4308 {
4309 int i;
4310 u32 doorbell_value;
4311 unsigned long flags;
4312
4313 /* under certain very rare conditions, this can take awhile.
4314 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4315 * as we enter this code.)
4316 */
4317 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4318 spin_lock_irqsave(&h->lock, flags);
4319 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4320 spin_unlock_irqrestore(&h->lock, flags);
4321 if (!(doorbell_value & CFGTBL_ChangeReq))
4322 break;
4323 /* delay and try again */
4324 usleep_range(10000, 20000);
4325 }
4326 }
4327
4328 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4329 {
4330 u32 trans_support;
4331
4332 trans_support = readl(&(h->cfgtable->TransportSupport));
4333 if (!(trans_support & SIMPLE_MODE))
4334 return -ENOTSUPP;
4335
4336 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4337 /* Update the field, and then ring the doorbell */
4338 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4339 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4340 hpsa_wait_for_mode_change_ack(h);
4341 print_cfg_table(&h->pdev->dev, h->cfgtable);
4342 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4343 dev_warn(&h->pdev->dev,
4344 "unable to get board into simple mode\n");
4345 return -ENODEV;
4346 }
4347 h->transMethod = CFGTBL_Trans_Simple;
4348 return 0;
4349 }
4350
4351 static int hpsa_pci_init(struct ctlr_info *h)
4352 {
4353 int prod_index, err;
4354
4355 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4356 if (prod_index < 0)
4357 return -ENODEV;
4358 h->product_name = products[prod_index].product_name;
4359 h->access = *(products[prod_index].access);
4360
4361 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4362 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4363
4364 err = pci_enable_device(h->pdev);
4365 if (err) {
4366 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4367 return err;
4368 }
4369
4370 /* Enable bus mastering (pci_disable_device may disable this) */
4371 pci_set_master(h->pdev);
4372
4373 err = pci_request_regions(h->pdev, HPSA);
4374 if (err) {
4375 dev_err(&h->pdev->dev,
4376 "cannot obtain PCI resources, aborting\n");
4377 return err;
4378 }
4379 hpsa_interrupt_mode(h);
4380 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4381 if (err)
4382 goto err_out_free_res;
4383 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4384 if (!h->vaddr) {
4385 err = -ENOMEM;
4386 goto err_out_free_res;
4387 }
4388 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4389 if (err)
4390 goto err_out_free_res;
4391 err = hpsa_find_cfgtables(h);
4392 if (err)
4393 goto err_out_free_res;
4394 hpsa_find_board_params(h);
4395
4396 if (!hpsa_CISS_signature_present(h)) {
4397 err = -ENODEV;
4398 goto err_out_free_res;
4399 }
4400 hpsa_enable_scsi_prefetch(h);
4401 hpsa_p600_dma_prefetch_quirk(h);
4402 err = hpsa_enter_simple_mode(h);
4403 if (err)
4404 goto err_out_free_res;
4405 return 0;
4406
4407 err_out_free_res:
4408 if (h->transtable)
4409 iounmap(h->transtable);
4410 if (h->cfgtable)
4411 iounmap(h->cfgtable);
4412 if (h->vaddr)
4413 iounmap(h->vaddr);
4414 pci_disable_device(h->pdev);
4415 pci_release_regions(h->pdev);
4416 return err;
4417 }
4418
4419 static void hpsa_hba_inquiry(struct ctlr_info *h)
4420 {
4421 int rc;
4422
4423 #define HBA_INQUIRY_BYTE_COUNT 64
4424 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4425 if (!h->hba_inquiry_data)
4426 return;
4427 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4428 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4429 if (rc != 0) {
4430 kfree(h->hba_inquiry_data);
4431 h->hba_inquiry_data = NULL;
4432 }
4433 }
4434
4435 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4436 {
4437 int rc, i;
4438
4439 if (!reset_devices)
4440 return 0;
4441
4442 /* kdump kernel is loading, we don't know in which state is
4443 * the pci interface. The dev->enable_cnt is equal zero
4444 * so we call enable+disable, wait a while and switch it on.
4445 */
4446 rc = pci_enable_device(pdev);
4447 if (rc) {
4448 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
4449 return -ENODEV;
4450 }
4451 pci_disable_device(pdev);
4452 msleep(260); /* a randomly chosen number */
4453 rc = pci_enable_device(pdev);
4454 if (rc) {
4455 dev_warn(&pdev->dev, "failed to enable device.\n");
4456 return -ENODEV;
4457 }
4458 pci_set_master(pdev);
4459 /* Reset the controller with a PCI power-cycle or via doorbell */
4460 rc = hpsa_kdump_hard_reset_controller(pdev);
4461
4462 /* -ENOTSUPP here means we cannot reset the controller
4463 * but it's already (and still) up and running in
4464 * "performant mode". Or, it might be 640x, which can't reset
4465 * due to concerns about shared bbwc between 6402/6404 pair.
4466 */
4467 if (rc) {
4468 if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
4469 rc = -ENODEV;
4470 goto out_disable;
4471 }
4472
4473 /* Now try to get the controller to respond to a no-op */
4474 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4475 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4476 if (hpsa_noop(pdev) == 0)
4477 break;
4478 else
4479 dev_warn(&pdev->dev, "no-op failed%s\n",
4480 (i < 11 ? "; re-trying" : ""));
4481 }
4482
4483 out_disable:
4484
4485 pci_disable_device(pdev);
4486 return rc;
4487 }
4488
4489 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4490 {
4491 h->cmd_pool_bits = kzalloc(
4492 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4493 sizeof(unsigned long), GFP_KERNEL);
4494 h->cmd_pool = pci_alloc_consistent(h->pdev,
4495 h->nr_cmds * sizeof(*h->cmd_pool),
4496 &(h->cmd_pool_dhandle));
4497 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4498 h->nr_cmds * sizeof(*h->errinfo_pool),
4499 &(h->errinfo_pool_dhandle));
4500 if ((h->cmd_pool_bits == NULL)
4501 || (h->cmd_pool == NULL)
4502 || (h->errinfo_pool == NULL)) {
4503 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4504 return -ENOMEM;
4505 }
4506 return 0;
4507 }
4508
4509 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4510 {
4511 kfree(h->cmd_pool_bits);
4512 if (h->cmd_pool)
4513 pci_free_consistent(h->pdev,
4514 h->nr_cmds * sizeof(struct CommandList),
4515 h->cmd_pool, h->cmd_pool_dhandle);
4516 if (h->errinfo_pool)
4517 pci_free_consistent(h->pdev,
4518 h->nr_cmds * sizeof(struct ErrorInfo),
4519 h->errinfo_pool,
4520 h->errinfo_pool_dhandle);
4521 }
4522
4523 static int hpsa_request_irq(struct ctlr_info *h,
4524 irqreturn_t (*msixhandler)(int, void *),
4525 irqreturn_t (*intxhandler)(int, void *))
4526 {
4527 int rc, i;
4528
4529 /*
4530 * initialize h->q[x] = x so that interrupt handlers know which
4531 * queue to process.
4532 */
4533 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4534 h->q[i] = (u8) i;
4535
4536 if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4537 /* If performant mode and MSI-X, use multiple reply queues */
4538 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4539 rc = request_irq(h->intr[i], msixhandler,
4540 0, h->devname,
4541 &h->q[i]);
4542 } else {
4543 /* Use single reply pool */
4544 if (h->msix_vector || h->msi_vector) {
4545 rc = request_irq(h->intr[h->intr_mode],
4546 msixhandler, 0, h->devname,
4547 &h->q[h->intr_mode]);
4548 } else {
4549 rc = request_irq(h->intr[h->intr_mode],
4550 intxhandler, IRQF_SHARED, h->devname,
4551 &h->q[h->intr_mode]);
4552 }
4553 }
4554 if (rc) {
4555 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4556 h->intr[h->intr_mode], h->devname);
4557 return -ENODEV;
4558 }
4559 return 0;
4560 }
4561
4562 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4563 {
4564 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4565 HPSA_RESET_TYPE_CONTROLLER)) {
4566 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4567 return -EIO;
4568 }
4569
4570 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4571 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4572 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4573 return -1;
4574 }
4575
4576 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4577 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4578 dev_warn(&h->pdev->dev, "Board failed to become ready "
4579 "after soft reset.\n");
4580 return -1;
4581 }
4582
4583 return 0;
4584 }
4585
4586 static void free_irqs(struct ctlr_info *h)
4587 {
4588 int i;
4589
4590 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4591 /* Single reply queue, only one irq to free */
4592 i = h->intr_mode;
4593 free_irq(h->intr[i], &h->q[i]);
4594 return;
4595 }
4596
4597 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4598 free_irq(h->intr[i], &h->q[i]);
4599 }
4600
4601 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4602 {
4603 free_irqs(h);
4604 #ifdef CONFIG_PCI_MSI
4605 if (h->msix_vector) {
4606 if (h->pdev->msix_enabled)
4607 pci_disable_msix(h->pdev);
4608 } else if (h->msi_vector) {
4609 if (h->pdev->msi_enabled)
4610 pci_disable_msi(h->pdev);
4611 }
4612 #endif /* CONFIG_PCI_MSI */
4613 }
4614
4615 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4616 {
4617 hpsa_free_irqs_and_disable_msix(h);
4618 hpsa_free_sg_chain_blocks(h);
4619 hpsa_free_cmd_pool(h);
4620 kfree(h->blockFetchTable);
4621 pci_free_consistent(h->pdev, h->reply_pool_size,
4622 h->reply_pool, h->reply_pool_dhandle);
4623 if (h->vaddr)
4624 iounmap(h->vaddr);
4625 if (h->transtable)
4626 iounmap(h->transtable);
4627 if (h->cfgtable)
4628 iounmap(h->cfgtable);
4629 pci_disable_device(h->pdev);
4630 pci_release_regions(h->pdev);
4631 kfree(h);
4632 }
4633
4634 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4635 {
4636 assert_spin_locked(&lockup_detector_lock);
4637 if (!hpsa_lockup_detector)
4638 return;
4639 if (h->lockup_detected)
4640 return; /* already stopped the lockup detector */
4641 list_del(&h->lockup_list);
4642 }
4643
4644 /* Called when controller lockup detected. */
4645 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4646 {
4647 struct CommandList *c = NULL;
4648
4649 assert_spin_locked(&h->lock);
4650 /* Mark all outstanding commands as failed and complete them. */
4651 while (!list_empty(list)) {
4652 c = list_entry(list->next, struct CommandList, list);
4653 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4654 finish_cmd(c);
4655 }
4656 }
4657
4658 static void controller_lockup_detected(struct ctlr_info *h)
4659 {
4660 unsigned long flags;
4661
4662 assert_spin_locked(&lockup_detector_lock);
4663 remove_ctlr_from_lockup_detector_list(h);
4664 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4665 spin_lock_irqsave(&h->lock, flags);
4666 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4667 spin_unlock_irqrestore(&h->lock, flags);
4668 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4669 h->lockup_detected);
4670 pci_disable_device(h->pdev);
4671 spin_lock_irqsave(&h->lock, flags);
4672 fail_all_cmds_on_list(h, &h->cmpQ);
4673 fail_all_cmds_on_list(h, &h->reqQ);
4674 spin_unlock_irqrestore(&h->lock, flags);
4675 }
4676
4677 static void detect_controller_lockup(struct ctlr_info *h)
4678 {
4679 u64 now;
4680 u32 heartbeat;
4681 unsigned long flags;
4682
4683 assert_spin_locked(&lockup_detector_lock);
4684 now = get_jiffies_64();
4685 /* If we've received an interrupt recently, we're ok. */
4686 if (time_after64(h->last_intr_timestamp +
4687 (h->heartbeat_sample_interval), now))
4688 return;
4689
4690 /*
4691 * If we've already checked the heartbeat recently, we're ok.
4692 * This could happen if someone sends us a signal. We
4693 * otherwise don't care about signals in this thread.
4694 */
4695 if (time_after64(h->last_heartbeat_timestamp +
4696 (h->heartbeat_sample_interval), now))
4697 return;
4698
4699 /* If heartbeat has not changed since we last looked, we're not ok. */
4700 spin_lock_irqsave(&h->lock, flags);
4701 heartbeat = readl(&h->cfgtable->HeartBeat);
4702 spin_unlock_irqrestore(&h->lock, flags);
4703 if (h->last_heartbeat == heartbeat) {
4704 controller_lockup_detected(h);
4705 return;
4706 }
4707
4708 /* We're ok. */
4709 h->last_heartbeat = heartbeat;
4710 h->last_heartbeat_timestamp = now;
4711 }
4712
4713 static int detect_controller_lockup_thread(void *notused)
4714 {
4715 struct ctlr_info *h;
4716 unsigned long flags;
4717
4718 while (1) {
4719 struct list_head *this, *tmp;
4720
4721 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4722 if (kthread_should_stop())
4723 break;
4724 spin_lock_irqsave(&lockup_detector_lock, flags);
4725 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4726 h = list_entry(this, struct ctlr_info, lockup_list);
4727 detect_controller_lockup(h);
4728 }
4729 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4730 }
4731 return 0;
4732 }
4733
4734 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4735 {
4736 unsigned long flags;
4737
4738 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4739 spin_lock_irqsave(&lockup_detector_lock, flags);
4740 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4741 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4742 }
4743
4744 static void start_controller_lockup_detector(struct ctlr_info *h)
4745 {
4746 /* Start the lockup detector thread if not already started */
4747 if (!hpsa_lockup_detector) {
4748 spin_lock_init(&lockup_detector_lock);
4749 hpsa_lockup_detector =
4750 kthread_run(detect_controller_lockup_thread,
4751 NULL, HPSA);
4752 }
4753 if (!hpsa_lockup_detector) {
4754 dev_warn(&h->pdev->dev,
4755 "Could not start lockup detector thread\n");
4756 return;
4757 }
4758 add_ctlr_to_lockup_detector_list(h);
4759 }
4760
4761 static void stop_controller_lockup_detector(struct ctlr_info *h)
4762 {
4763 unsigned long flags;
4764
4765 spin_lock_irqsave(&lockup_detector_lock, flags);
4766 remove_ctlr_from_lockup_detector_list(h);
4767 /* If the list of ctlr's to monitor is empty, stop the thread */
4768 if (list_empty(&hpsa_ctlr_list)) {
4769 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4770 kthread_stop(hpsa_lockup_detector);
4771 spin_lock_irqsave(&lockup_detector_lock, flags);
4772 hpsa_lockup_detector = NULL;
4773 }
4774 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4775 }
4776
4777 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4778 {
4779 int dac, rc;
4780 struct ctlr_info *h;
4781 int try_soft_reset = 0;
4782 unsigned long flags;
4783
4784 if (number_of_controllers == 0)
4785 printk(KERN_INFO DRIVER_NAME "\n");
4786
4787 rc = hpsa_init_reset_devices(pdev);
4788 if (rc) {
4789 if (rc != -ENOTSUPP)
4790 return rc;
4791 /* If the reset fails in a particular way (it has no way to do
4792 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4793 * a soft reset once we get the controller configured up to the
4794 * point that it can accept a command.
4795 */
4796 try_soft_reset = 1;
4797 rc = 0;
4798 }
4799
4800 reinit_after_soft_reset:
4801
4802 /* Command structures must be aligned on a 32-byte boundary because
4803 * the 5 lower bits of the address are used by the hardware. and by
4804 * the driver. See comments in hpsa.h for more info.
4805 */
4806 #define COMMANDLIST_ALIGNMENT 32
4807 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4808 h = kzalloc(sizeof(*h), GFP_KERNEL);
4809 if (!h)
4810 return -ENOMEM;
4811
4812 h->pdev = pdev;
4813 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4814 INIT_LIST_HEAD(&h->cmpQ);
4815 INIT_LIST_HEAD(&h->reqQ);
4816 spin_lock_init(&h->lock);
4817 spin_lock_init(&h->scan_lock);
4818 rc = hpsa_pci_init(h);
4819 if (rc != 0)
4820 goto clean1;
4821
4822 sprintf(h->devname, HPSA "%d", number_of_controllers);
4823 h->ctlr = number_of_controllers;
4824 number_of_controllers++;
4825
4826 /* configure PCI DMA stuff */
4827 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4828 if (rc == 0) {
4829 dac = 1;
4830 } else {
4831 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4832 if (rc == 0) {
4833 dac = 0;
4834 } else {
4835 dev_err(&pdev->dev, "no suitable DMA available\n");
4836 goto clean1;
4837 }
4838 }
4839
4840 /* make sure the board interrupts are off */
4841 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4842
4843 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4844 goto clean2;
4845 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4846 h->devname, pdev->device,
4847 h->intr[h->intr_mode], dac ? "" : " not");
4848 if (hpsa_allocate_cmd_pool(h))
4849 goto clean4;
4850 if (hpsa_allocate_sg_chain_blocks(h))
4851 goto clean4;
4852 init_waitqueue_head(&h->scan_wait_queue);
4853 h->scan_finished = 1; /* no scan currently in progress */
4854
4855 pci_set_drvdata(pdev, h);
4856 h->ndevices = 0;
4857 h->scsi_host = NULL;
4858 spin_lock_init(&h->devlock);
4859 hpsa_put_ctlr_into_performant_mode(h);
4860
4861 /* At this point, the controller is ready to take commands.
4862 * Now, if reset_devices and the hard reset didn't work, try
4863 * the soft reset and see if that works.
4864 */
4865 if (try_soft_reset) {
4866
4867 /* This is kind of gross. We may or may not get a completion
4868 * from the soft reset command, and if we do, then the value
4869 * from the fifo may or may not be valid. So, we wait 10 secs
4870 * after the reset throwing away any completions we get during
4871 * that time. Unregister the interrupt handler and register
4872 * fake ones to scoop up any residual completions.
4873 */
4874 spin_lock_irqsave(&h->lock, flags);
4875 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4876 spin_unlock_irqrestore(&h->lock, flags);
4877 free_irqs(h);
4878 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4879 hpsa_intx_discard_completions);
4880 if (rc) {
4881 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4882 "soft reset.\n");
4883 goto clean4;
4884 }
4885
4886 rc = hpsa_kdump_soft_reset(h);
4887 if (rc)
4888 /* Neither hard nor soft reset worked, we're hosed. */
4889 goto clean4;
4890
4891 dev_info(&h->pdev->dev, "Board READY.\n");
4892 dev_info(&h->pdev->dev,
4893 "Waiting for stale completions to drain.\n");
4894 h->access.set_intr_mask(h, HPSA_INTR_ON);
4895 msleep(10000);
4896 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4897
4898 rc = controller_reset_failed(h->cfgtable);
4899 if (rc)
4900 dev_info(&h->pdev->dev,
4901 "Soft reset appears to have failed.\n");
4902
4903 /* since the controller's reset, we have to go back and re-init
4904 * everything. Easiest to just forget what we've done and do it
4905 * all over again.
4906 */
4907 hpsa_undo_allocations_after_kdump_soft_reset(h);
4908 try_soft_reset = 0;
4909 if (rc)
4910 /* don't go to clean4, we already unallocated */
4911 return -ENODEV;
4912
4913 goto reinit_after_soft_reset;
4914 }
4915
4916 /* Turn the interrupts on so we can service requests */
4917 h->access.set_intr_mask(h, HPSA_INTR_ON);
4918
4919 hpsa_hba_inquiry(h);
4920 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4921 start_controller_lockup_detector(h);
4922 return 0;
4923
4924 clean4:
4925 hpsa_free_sg_chain_blocks(h);
4926 hpsa_free_cmd_pool(h);
4927 free_irqs(h);
4928 clean2:
4929 clean1:
4930 kfree(h);
4931 return rc;
4932 }
4933
4934 static void hpsa_flush_cache(struct ctlr_info *h)
4935 {
4936 char *flush_buf;
4937 struct CommandList *c;
4938
4939 flush_buf = kzalloc(4, GFP_KERNEL);
4940 if (!flush_buf)
4941 return;
4942
4943 c = cmd_special_alloc(h);
4944 if (!c) {
4945 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4946 goto out_of_memory;
4947 }
4948 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4949 RAID_CTLR_LUNID, TYPE_CMD)) {
4950 goto out;
4951 }
4952 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4953 if (c->err_info->CommandStatus != 0)
4954 out:
4955 dev_warn(&h->pdev->dev,
4956 "error flushing cache on controller\n");
4957 cmd_special_free(h, c);
4958 out_of_memory:
4959 kfree(flush_buf);
4960 }
4961
4962 static void hpsa_shutdown(struct pci_dev *pdev)
4963 {
4964 struct ctlr_info *h;
4965
4966 h = pci_get_drvdata(pdev);
4967 /* Turn board interrupts off and send the flush cache command
4968 * sendcmd will turn off interrupt, and send the flush...
4969 * To write all data in the battery backed cache to disks
4970 */
4971 hpsa_flush_cache(h);
4972 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4973 hpsa_free_irqs_and_disable_msix(h);
4974 }
4975
4976 static void hpsa_free_device_info(struct ctlr_info *h)
4977 {
4978 int i;
4979
4980 for (i = 0; i < h->ndevices; i++)
4981 kfree(h->dev[i]);
4982 }
4983
4984 static void hpsa_remove_one(struct pci_dev *pdev)
4985 {
4986 struct ctlr_info *h;
4987
4988 if (pci_get_drvdata(pdev) == NULL) {
4989 dev_err(&pdev->dev, "unable to remove device\n");
4990 return;
4991 }
4992 h = pci_get_drvdata(pdev);
4993 stop_controller_lockup_detector(h);
4994 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4995 hpsa_shutdown(pdev);
4996 iounmap(h->vaddr);
4997 iounmap(h->transtable);
4998 iounmap(h->cfgtable);
4999 hpsa_free_device_info(h);
5000 hpsa_free_sg_chain_blocks(h);
5001 pci_free_consistent(h->pdev,
5002 h->nr_cmds * sizeof(struct CommandList),
5003 h->cmd_pool, h->cmd_pool_dhandle);
5004 pci_free_consistent(h->pdev,
5005 h->nr_cmds * sizeof(struct ErrorInfo),
5006 h->errinfo_pool, h->errinfo_pool_dhandle);
5007 pci_free_consistent(h->pdev, h->reply_pool_size,
5008 h->reply_pool, h->reply_pool_dhandle);
5009 kfree(h->cmd_pool_bits);
5010 kfree(h->blockFetchTable);
5011 kfree(h->hba_inquiry_data);
5012 pci_disable_device(pdev);
5013 pci_release_regions(pdev);
5014 pci_set_drvdata(pdev, NULL);
5015 kfree(h);
5016 }
5017
5018 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5019 __attribute__((unused)) pm_message_t state)
5020 {
5021 return -ENOSYS;
5022 }
5023
5024 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5025 {
5026 return -ENOSYS;
5027 }
5028
5029 static struct pci_driver hpsa_pci_driver = {
5030 .name = HPSA,
5031 .probe = hpsa_init_one,
5032 .remove = hpsa_remove_one,
5033 .id_table = hpsa_pci_device_id, /* id_table */
5034 .shutdown = hpsa_shutdown,
5035 .suspend = hpsa_suspend,
5036 .resume = hpsa_resume,
5037 };
5038
5039 /* Fill in bucket_map[], given nsgs (the max number of
5040 * scatter gather elements supported) and bucket[],
5041 * which is an array of 8 integers. The bucket[] array
5042 * contains 8 different DMA transfer sizes (in 16
5043 * byte increments) which the controller uses to fetch
5044 * commands. This function fills in bucket_map[], which
5045 * maps a given number of scatter gather elements to one of
5046 * the 8 DMA transfer sizes. The point of it is to allow the
5047 * controller to only do as much DMA as needed to fetch the
5048 * command, with the DMA transfer size encoded in the lower
5049 * bits of the command address.
5050 */
5051 static void calc_bucket_map(int bucket[], int num_buckets,
5052 int nsgs, int *bucket_map)
5053 {
5054 int i, j, b, size;
5055
5056 /* even a command with 0 SGs requires 4 blocks */
5057 #define MINIMUM_TRANSFER_BLOCKS 4
5058 #define NUM_BUCKETS 8
5059 /* Note, bucket_map must have nsgs+1 entries. */
5060 for (i = 0; i <= nsgs; i++) {
5061 /* Compute size of a command with i SG entries */
5062 size = i + MINIMUM_TRANSFER_BLOCKS;
5063 b = num_buckets; /* Assume the biggest bucket */
5064 /* Find the bucket that is just big enough */
5065 for (j = 0; j < 8; j++) {
5066 if (bucket[j] >= size) {
5067 b = j;
5068 break;
5069 }
5070 }
5071 /* for a command with i SG entries, use bucket b. */
5072 bucket_map[i] = b;
5073 }
5074 }
5075
5076 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5077 {
5078 int i;
5079 unsigned long register_value;
5080
5081 /* This is a bit complicated. There are 8 registers on
5082 * the controller which we write to to tell it 8 different
5083 * sizes of commands which there may be. It's a way of
5084 * reducing the DMA done to fetch each command. Encoded into
5085 * each command's tag are 3 bits which communicate to the controller
5086 * which of the eight sizes that command fits within. The size of
5087 * each command depends on how many scatter gather entries there are.
5088 * Each SG entry requires 16 bytes. The eight registers are programmed
5089 * with the number of 16-byte blocks a command of that size requires.
5090 * The smallest command possible requires 5 such 16 byte blocks.
5091 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5092 * blocks. Note, this only extends to the SG entries contained
5093 * within the command block, and does not extend to chained blocks
5094 * of SG elements. bft[] contains the eight values we write to
5095 * the registers. They are not evenly distributed, but have more
5096 * sizes for small commands, and fewer sizes for larger commands.
5097 */
5098 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5099 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5100 /* 5 = 1 s/g entry or 4k
5101 * 6 = 2 s/g entry or 8k
5102 * 8 = 4 s/g entry or 16k
5103 * 10 = 6 s/g entry or 24k
5104 */
5105
5106 /* Controller spec: zero out this buffer. */
5107 memset(h->reply_pool, 0, h->reply_pool_size);
5108
5109 bft[7] = SG_ENTRIES_IN_CMD + 4;
5110 calc_bucket_map(bft, ARRAY_SIZE(bft),
5111 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5112 for (i = 0; i < 8; i++)
5113 writel(bft[i], &h->transtable->BlockFetch[i]);
5114
5115 /* size of controller ring buffer */
5116 writel(h->max_commands, &h->transtable->RepQSize);
5117 writel(h->nreply_queues, &h->transtable->RepQCount);
5118 writel(0, &h->transtable->RepQCtrAddrLow32);
5119 writel(0, &h->transtable->RepQCtrAddrHigh32);
5120
5121 for (i = 0; i < h->nreply_queues; i++) {
5122 writel(0, &h->transtable->RepQAddr[i].upper);
5123 writel(h->reply_pool_dhandle +
5124 (h->max_commands * sizeof(u64) * i),
5125 &h->transtable->RepQAddr[i].lower);
5126 }
5127
5128 writel(CFGTBL_Trans_Performant | use_short_tags |
5129 CFGTBL_Trans_enable_directed_msix,
5130 &(h->cfgtable->HostWrite.TransportRequest));
5131 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5132 hpsa_wait_for_mode_change_ack(h);
5133 register_value = readl(&(h->cfgtable->TransportActive));
5134 if (!(register_value & CFGTBL_Trans_Performant)) {
5135 dev_warn(&h->pdev->dev, "unable to get board into"
5136 " performant mode\n");
5137 return;
5138 }
5139 /* Change the access methods to the performant access methods */
5140 h->access = SA5_performant_access;
5141 h->transMethod = CFGTBL_Trans_Performant;
5142 }
5143
5144 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5145 {
5146 u32 trans_support;
5147 int i;
5148
5149 if (hpsa_simple_mode)
5150 return;
5151
5152 trans_support = readl(&(h->cfgtable->TransportSupport));
5153 if (!(trans_support & PERFORMANT_MODE))
5154 return;
5155
5156 h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5157 hpsa_get_max_perf_mode_cmds(h);
5158 /* Performant mode ring buffer and supporting data structures */
5159 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5160 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5161 &(h->reply_pool_dhandle));
5162
5163 for (i = 0; i < h->nreply_queues; i++) {
5164 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5165 h->reply_queue[i].size = h->max_commands;
5166 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
5167 h->reply_queue[i].current_entry = 0;
5168 }
5169
5170 /* Need a block fetch table for performant mode */
5171 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5172 sizeof(u32)), GFP_KERNEL);
5173
5174 if ((h->reply_pool == NULL)
5175 || (h->blockFetchTable == NULL))
5176 goto clean_up;
5177
5178 hpsa_enter_performant_mode(h,
5179 trans_support & CFGTBL_Trans_use_short_tags);
5180
5181 return;
5182
5183 clean_up:
5184 if (h->reply_pool)
5185 pci_free_consistent(h->pdev, h->reply_pool_size,
5186 h->reply_pool, h->reply_pool_dhandle);
5187 kfree(h->blockFetchTable);
5188 }
5189
5190 /*
5191 * This is it. Register the PCI driver information for the cards we control
5192 * the OS will call our registered routines when it finds one of our cards.
5193 */
5194 static int __init hpsa_init(void)
5195 {
5196 return pci_register_driver(&hpsa_pci_driver);
5197 }
5198
5199 static void __exit hpsa_cleanup(void)
5200 {
5201 pci_unregister_driver(&hpsa_pci_driver);
5202 }
5203
5204 module_init(hpsa_init);
5205 module_exit(hpsa_cleanup);