import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / rtc / rtc-bfin.c
1 /*
2 * Blackfin On-Chip Real Time Clock Driver
3 * Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
4 *
5 * Copyright 2004-2010 Analog Devices Inc.
6 *
7 * Enter bugs at http://blackfin.uclinux.org/
8 *
9 * Licensed under the GPL-2 or later.
10 */
11
12 /* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
21 *
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second every time we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write. We bank on the idea that it doesn't matter when the sync
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
30 *
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
33 */
34
35 /* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE). Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
42 */
43
44 #include <linux/bcd.h>
45 #include <linux/completion.h>
46 #include <linux/delay.h>
47 #include <linux/init.h>
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <linux/platform_device.h>
52 #include <linux/rtc.h>
53 #include <linux/seq_file.h>
54 #include <linux/slab.h>
55
56 #include <asm/blackfin.h>
57
58 #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
59
60 struct bfin_rtc {
61 struct rtc_device *rtc_dev;
62 struct rtc_time rtc_alarm;
63 u16 rtc_wrote_regs;
64 };
65
66 /* Bit values for the ISTAT / ICTL registers */
67 #define RTC_ISTAT_WRITE_COMPLETE 0x8000
68 #define RTC_ISTAT_WRITE_PENDING 0x4000
69 #define RTC_ISTAT_ALARM_DAY 0x0040
70 #define RTC_ISTAT_24HR 0x0020
71 #define RTC_ISTAT_HOUR 0x0010
72 #define RTC_ISTAT_MIN 0x0008
73 #define RTC_ISTAT_SEC 0x0004
74 #define RTC_ISTAT_ALARM 0x0002
75 #define RTC_ISTAT_STOPWATCH 0x0001
76
77 /* Shift values for RTC_STAT register */
78 #define DAY_BITS_OFF 17
79 #define HOUR_BITS_OFF 12
80 #define MIN_BITS_OFF 6
81 #define SEC_BITS_OFF 0
82
83 /* Some helper functions to convert between the common RTC notion of time
84 * and the internal Blackfin notion that is encoded in 32bits.
85 */
86 static inline u32 rtc_time_to_bfin(unsigned long now)
87 {
88 u32 sec = (now % 60);
89 u32 min = (now % (60 * 60)) / 60;
90 u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
91 u32 days = (now / (60 * 60 * 24));
92 return (sec << SEC_BITS_OFF) +
93 (min << MIN_BITS_OFF) +
94 (hour << HOUR_BITS_OFF) +
95 (days << DAY_BITS_OFF);
96 }
97 static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
98 {
99 return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
100 (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
101 (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
102 (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
103 }
104 static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
105 {
106 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
107 }
108
109 /**
110 * bfin_rtc_sync_pending - make sure pending writes have complete
111 *
112 * Wait for the previous write to a RTC register to complete.
113 * Unfortunately, we can't sleep here as that introduces a race condition when
114 * turning on interrupt events. Consider this:
115 * - process sets alarm
116 * - process enables alarm
117 * - process sleeps while waiting for rtc write to sync
118 * - interrupt fires while process is sleeping
119 * - interrupt acks the event by writing to ISTAT
120 * - interrupt sets the WRITE PENDING bit
121 * - interrupt handler finishes
122 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
123 * - interrupt fires while process is sleeping
124 * If anyone can point out the obvious solution here, i'm listening :). This
125 * shouldn't be an issue on an SMP or preempt system as this function should
126 * only be called with the rtc lock held.
127 *
128 * Other options:
129 * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
130 * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
131 * - use the write complete IRQ
132 */
133 /*
134 static void bfin_rtc_sync_pending_polled(void)
135 {
136 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
138 break;
139 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
140 }
141 */
142 static DECLARE_COMPLETION(bfin_write_complete);
143 static void bfin_rtc_sync_pending(struct device *dev)
144 {
145 dev_dbg_stamp(dev);
146 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
147 wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
148 dev_dbg_stamp(dev);
149 }
150
151 /**
152 * bfin_rtc_reset - set RTC to sane/known state
153 *
154 * Initialize the RTC. Enable pre-scaler to scale RTC clock
155 * to 1Hz and clear interrupt/status registers.
156 */
157 static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
158 {
159 struct bfin_rtc *rtc = dev_get_drvdata(dev);
160 dev_dbg_stamp(dev);
161 bfin_rtc_sync_pending(dev);
162 bfin_write_RTC_PREN(0x1);
163 bfin_write_RTC_ICTL(rtc_ictl);
164 bfin_write_RTC_ALARM(0);
165 bfin_write_RTC_ISTAT(0xFFFF);
166 rtc->rtc_wrote_regs = 0;
167 }
168
169 /**
170 * bfin_rtc_interrupt - handle interrupt from RTC
171 *
172 * Since we handle all RTC events here, we have to make sure the requested
173 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
174 * always gets updated regardless of the interrupt being enabled. So when one
175 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
176 * and say that other events have happened as well (e.g. second). We do not
177 * have to worry about pending writes to the RTC_ICTL register as interrupts
178 * only fire if they are enabled in the RTC_ICTL register.
179 */
180 static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
181 {
182 struct device *dev = dev_id;
183 struct bfin_rtc *rtc = dev_get_drvdata(dev);
184 unsigned long events = 0;
185 bool write_complete = false;
186 u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
187
188 dev_dbg_stamp(dev);
189
190 rtc_istat = bfin_read_RTC_ISTAT();
191 rtc_ictl = bfin_read_RTC_ICTL();
192 rtc_istat_clear = 0;
193
194 bits = RTC_ISTAT_WRITE_COMPLETE;
195 if (rtc_istat & bits) {
196 rtc_istat_clear |= bits;
197 write_complete = true;
198 complete(&bfin_write_complete);
199 }
200
201 bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
202 if (rtc_ictl & bits) {
203 if (rtc_istat & bits) {
204 rtc_istat_clear |= bits;
205 events |= RTC_AF | RTC_IRQF;
206 }
207 }
208
209 bits = RTC_ISTAT_SEC;
210 if (rtc_ictl & bits) {
211 if (rtc_istat & bits) {
212 rtc_istat_clear |= bits;
213 events |= RTC_UF | RTC_IRQF;
214 }
215 }
216
217 if (events)
218 rtc_update_irq(rtc->rtc_dev, 1, events);
219
220 if (write_complete || events) {
221 bfin_write_RTC_ISTAT(rtc_istat_clear);
222 return IRQ_HANDLED;
223 } else
224 return IRQ_NONE;
225 }
226
227 static void bfin_rtc_int_set(u16 rtc_int)
228 {
229 bfin_write_RTC_ISTAT(rtc_int);
230 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
231 }
232 static void bfin_rtc_int_clear(u16 rtc_int)
233 {
234 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
235 }
236 static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
237 {
238 /* Blackfin has different bits for whether the alarm is
239 * more than 24 hours away.
240 */
241 bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
242 }
243
244 static int bfin_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
245 {
246 struct bfin_rtc *rtc = dev_get_drvdata(dev);
247
248 dev_dbg_stamp(dev);
249 if (enabled)
250 bfin_rtc_int_set_alarm(rtc);
251 else
252 bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
253
254 return 0;
255 }
256
257 static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
258 {
259 struct bfin_rtc *rtc = dev_get_drvdata(dev);
260
261 dev_dbg_stamp(dev);
262
263 if (rtc->rtc_wrote_regs & 0x1)
264 bfin_rtc_sync_pending(dev);
265
266 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
267
268 return 0;
269 }
270
271 static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
272 {
273 struct bfin_rtc *rtc = dev_get_drvdata(dev);
274 int ret;
275 unsigned long now;
276
277 dev_dbg_stamp(dev);
278
279 ret = rtc_tm_to_time(tm, &now);
280 if (ret == 0) {
281 if (rtc->rtc_wrote_regs & 0x1)
282 bfin_rtc_sync_pending(dev);
283 bfin_write_RTC_STAT(rtc_time_to_bfin(now));
284 rtc->rtc_wrote_regs = 0x1;
285 }
286
287 return ret;
288 }
289
290 static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
291 {
292 struct bfin_rtc *rtc = dev_get_drvdata(dev);
293 dev_dbg_stamp(dev);
294 alrm->time = rtc->rtc_alarm;
295 bfin_rtc_sync_pending(dev);
296 alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
297 return 0;
298 }
299
300 static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
301 {
302 struct bfin_rtc *rtc = dev_get_drvdata(dev);
303 unsigned long rtc_alarm;
304
305 dev_dbg_stamp(dev);
306
307 if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
308 return -EINVAL;
309
310 rtc->rtc_alarm = alrm->time;
311
312 bfin_rtc_sync_pending(dev);
313 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
314 if (alrm->enabled)
315 bfin_rtc_int_set_alarm(rtc);
316
317 return 0;
318 }
319
320 static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
321 {
322 #define yesno(x) ((x) ? "yes" : "no")
323 u16 ictl = bfin_read_RTC_ICTL();
324 dev_dbg_stamp(dev);
325 seq_printf(seq,
326 "alarm_IRQ\t: %s\n"
327 "wkalarm_IRQ\t: %s\n"
328 "seconds_IRQ\t: %s\n",
329 yesno(ictl & RTC_ISTAT_ALARM),
330 yesno(ictl & RTC_ISTAT_ALARM_DAY),
331 yesno(ictl & RTC_ISTAT_SEC));
332 return 0;
333 #undef yesno
334 }
335
336 static struct rtc_class_ops bfin_rtc_ops = {
337 .read_time = bfin_rtc_read_time,
338 .set_time = bfin_rtc_set_time,
339 .read_alarm = bfin_rtc_read_alarm,
340 .set_alarm = bfin_rtc_set_alarm,
341 .proc = bfin_rtc_proc,
342 .alarm_irq_enable = bfin_rtc_alarm_irq_enable,
343 };
344
345 static int bfin_rtc_probe(struct platform_device *pdev)
346 {
347 struct bfin_rtc *rtc;
348 struct device *dev = &pdev->dev;
349 int ret = 0;
350 unsigned long timeout = jiffies + HZ;
351
352 dev_dbg_stamp(dev);
353
354 /* Allocate memory for our RTC struct */
355 rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
356 if (unlikely(!rtc))
357 return -ENOMEM;
358 platform_set_drvdata(pdev, rtc);
359 device_init_wakeup(dev, 1);
360
361 /* Register our RTC with the RTC framework */
362 rtc->rtc_dev = devm_rtc_device_register(dev, pdev->name, &bfin_rtc_ops,
363 THIS_MODULE);
364 if (unlikely(IS_ERR(rtc->rtc_dev))) {
365 ret = PTR_ERR(rtc->rtc_dev);
366 goto err;
367 }
368
369 /* Grab the IRQ and init the hardware */
370 ret = devm_request_irq(dev, IRQ_RTC, bfin_rtc_interrupt, 0,
371 pdev->name, dev);
372 if (unlikely(ret))
373 goto err;
374 /* sometimes the bootloader touched things, but the write complete was not
375 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
376 */
377 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
378 if (time_after(jiffies, timeout))
379 break;
380 bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
381 bfin_write_RTC_SWCNT(0);
382
383 return 0;
384
385 err:
386 return ret;
387 }
388
389 static int bfin_rtc_remove(struct platform_device *pdev)
390 {
391 struct device *dev = &pdev->dev;
392
393 bfin_rtc_reset(dev, 0);
394 platform_set_drvdata(pdev, NULL);
395
396 return 0;
397 }
398
399 #ifdef CONFIG_PM_SLEEP
400 static int bfin_rtc_suspend(struct device *dev)
401 {
402 dev_dbg_stamp(dev);
403
404 if (device_may_wakeup(dev)) {
405 enable_irq_wake(IRQ_RTC);
406 bfin_rtc_sync_pending(dev);
407 } else
408 bfin_rtc_int_clear(0);
409
410 return 0;
411 }
412
413 static int bfin_rtc_resume(struct device *dev)
414 {
415 dev_dbg_stamp(dev);
416
417 if (device_may_wakeup(dev))
418 disable_irq_wake(IRQ_RTC);
419
420 /*
421 * Since only some of the RTC bits are maintained externally in the
422 * Vbat domain, we need to wait for the RTC MMRs to be synced into
423 * the core after waking up. This happens every RTC 1HZ. Once that
424 * has happened, we can go ahead and re-enable the important write
425 * complete interrupt event.
426 */
427 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
428 continue;
429 bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
430
431 return 0;
432 }
433 #endif
434
435 static SIMPLE_DEV_PM_OPS(bfin_rtc_pm_ops, bfin_rtc_suspend, bfin_rtc_resume);
436
437 static struct platform_driver bfin_rtc_driver = {
438 .driver = {
439 .name = "rtc-bfin",
440 .owner = THIS_MODULE,
441 .pm = &bfin_rtc_pm_ops,
442 },
443 .probe = bfin_rtc_probe,
444 .remove = bfin_rtc_remove,
445 };
446
447 module_platform_driver(bfin_rtc_driver);
448
449 MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
450 MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
451 MODULE_LICENSE("GPL");
452 MODULE_ALIAS("platform:rtc-bfin");