Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / rtc / interface.c
1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 }
34 return err;
35 }
36
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 {
39 int err;
40
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
44
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
48 }
49 EXPORT_SYMBOL_GPL(rtc_read_time);
50
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 {
53 int err;
54
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
58
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
62
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
74
75 mutex_unlock(&rtc->ops_lock);
76 /* A timer might have just expired */
77 schedule_work(&rtc->irqwork);
78 return err;
79 }
80 EXPORT_SYMBOL_GPL(rtc_set_time);
81
82 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
83 {
84 int err;
85
86 err = mutex_lock_interruptible(&rtc->ops_lock);
87 if (err)
88 return err;
89
90 if (!rtc->ops)
91 err = -ENODEV;
92 else if (rtc->ops->set_mmss)
93 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
94 else if (rtc->ops->read_time && rtc->ops->set_time) {
95 struct rtc_time new, old;
96
97 err = rtc->ops->read_time(rtc->dev.parent, &old);
98 if (err == 0) {
99 rtc_time_to_tm(secs, &new);
100
101 /*
102 * avoid writing when we're going to change the day of
103 * the month. We will retry in the next minute. This
104 * basically means that if the RTC must not drift
105 * by more than 1 minute in 11 minutes.
106 */
107 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
108 (new.tm_hour == 23 && new.tm_min == 59)))
109 err = rtc->ops->set_time(rtc->dev.parent,
110 &new);
111 }
112 }
113 else
114 err = -EINVAL;
115
116 mutex_unlock(&rtc->ops_lock);
117 /* A timer might have just expired */
118 schedule_work(&rtc->irqwork);
119
120 return err;
121 }
122 EXPORT_SYMBOL_GPL(rtc_set_mmss);
123
124 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125 {
126 int err;
127
128 err = mutex_lock_interruptible(&rtc->ops_lock);
129 if (err)
130 return err;
131
132 if (rtc->ops == NULL)
133 err = -ENODEV;
134 else if (!rtc->ops->read_alarm)
135 err = -EINVAL;
136 else {
137 memset(alarm, 0, sizeof(struct rtc_wkalrm));
138 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
139 }
140
141 mutex_unlock(&rtc->ops_lock);
142 return err;
143 }
144
145 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
146 {
147 int err;
148 struct rtc_time before, now;
149 int first_time = 1;
150 unsigned long t_now, t_alm;
151 enum { none, day, month, year } missing = none;
152 unsigned days;
153
154 /* The lower level RTC driver may return -1 in some fields,
155 * creating invalid alarm->time values, for reasons like:
156 *
157 * - The hardware may not be capable of filling them in;
158 * many alarms match only on time-of-day fields, not
159 * day/month/year calendar data.
160 *
161 * - Some hardware uses illegal values as "wildcard" match
162 * values, which non-Linux firmware (like a BIOS) may try
163 * to set up as e.g. "alarm 15 minutes after each hour".
164 * Linux uses only oneshot alarms.
165 *
166 * When we see that here, we deal with it by using values from
167 * a current RTC timestamp for any missing (-1) values. The
168 * RTC driver prevents "periodic alarm" modes.
169 *
170 * But this can be racey, because some fields of the RTC timestamp
171 * may have wrapped in the interval since we read the RTC alarm,
172 * which would lead to us inserting inconsistent values in place
173 * of the -1 fields.
174 *
175 * Reading the alarm and timestamp in the reverse sequence
176 * would have the same race condition, and not solve the issue.
177 *
178 * So, we must first read the RTC timestamp,
179 * then read the RTC alarm value,
180 * and then read a second RTC timestamp.
181 *
182 * If any fields of the second timestamp have changed
183 * when compared with the first timestamp, then we know
184 * our timestamp may be inconsistent with that used by
185 * the low-level rtc_read_alarm_internal() function.
186 *
187 * So, when the two timestamps disagree, we just loop and do
188 * the process again to get a fully consistent set of values.
189 *
190 * This could all instead be done in the lower level driver,
191 * but since more than one lower level RTC implementation needs it,
192 * then it's probably best best to do it here instead of there..
193 */
194
195 /* Get the "before" timestamp */
196 err = rtc_read_time(rtc, &before);
197 if (err < 0)
198 return err;
199 do {
200 if (!first_time)
201 memcpy(&before, &now, sizeof(struct rtc_time));
202 first_time = 0;
203
204 /* get the RTC alarm values, which may be incomplete */
205 err = rtc_read_alarm_internal(rtc, alarm);
206 if (err)
207 return err;
208
209 /* full-function RTCs won't have such missing fields */
210 if (rtc_valid_tm(&alarm->time) == 0)
211 return 0;
212
213 /* get the "after" timestamp, to detect wrapped fields */
214 err = rtc_read_time(rtc, &now);
215 if (err < 0)
216 return err;
217
218 /* note that tm_sec is a "don't care" value here: */
219 } while ( before.tm_min != now.tm_min
220 || before.tm_hour != now.tm_hour
221 || before.tm_mon != now.tm_mon
222 || before.tm_year != now.tm_year);
223
224 /* Fill in the missing alarm fields using the timestamp; we
225 * know there's at least one since alarm->time is invalid.
226 */
227 if (alarm->time.tm_sec == -1)
228 alarm->time.tm_sec = now.tm_sec;
229 if (alarm->time.tm_min == -1)
230 alarm->time.tm_min = now.tm_min;
231 if (alarm->time.tm_hour == -1)
232 alarm->time.tm_hour = now.tm_hour;
233
234 /* For simplicity, only support date rollover for now */
235 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
236 alarm->time.tm_mday = now.tm_mday;
237 missing = day;
238 }
239 if ((unsigned)alarm->time.tm_mon >= 12) {
240 alarm->time.tm_mon = now.tm_mon;
241 if (missing == none)
242 missing = month;
243 }
244 if (alarm->time.tm_year == -1) {
245 alarm->time.tm_year = now.tm_year;
246 if (missing == none)
247 missing = year;
248 }
249
250 /* with luck, no rollover is needed */
251 rtc_tm_to_time(&now, &t_now);
252 rtc_tm_to_time(&alarm->time, &t_alm);
253 if (t_now < t_alm)
254 goto done;
255
256 switch (missing) {
257
258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
259 * that will trigger at 5am will do so at 5am Tuesday, which
260 * could also be in the next month or year. This is a common
261 * case, especially for PCs.
262 */
263 case day:
264 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
265 t_alm += 24 * 60 * 60;
266 rtc_time_to_tm(t_alm, &alarm->time);
267 break;
268
269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
270 * be next month. An alarm matching on the 30th, 29th, or 28th
271 * may end up in the month after that! Many newer PCs support
272 * this type of alarm.
273 */
274 case month:
275 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
276 do {
277 if (alarm->time.tm_mon < 11)
278 alarm->time.tm_mon++;
279 else {
280 alarm->time.tm_mon = 0;
281 alarm->time.tm_year++;
282 }
283 days = rtc_month_days(alarm->time.tm_mon,
284 alarm->time.tm_year);
285 } while (days < alarm->time.tm_mday);
286 break;
287
288 /* Year rollover ... easy except for leap years! */
289 case year:
290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
291 do {
292 alarm->time.tm_year++;
293 } while (rtc_valid_tm(&alarm->time) != 0);
294 break;
295
296 default:
297 dev_warn(&rtc->dev, "alarm rollover not handled\n");
298 }
299
300 done:
301 return 0;
302 }
303
304 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
305 {
306 #ifdef RTC_LEGACY_ALARM_IMPL
307 return __rtc_read_alarm(rtc, alarm);
308 #else
309 int err;
310
311 err = mutex_lock_interruptible(&rtc->ops_lock);
312 if (err)
313 return err;
314 if (rtc->ops == NULL)
315 err = -ENODEV;
316 else if (!rtc->ops->read_alarm)
317 err = -EINVAL;
318 else {
319 memset(alarm, 0, sizeof(struct rtc_wkalrm));
320 alarm->enabled = rtc->aie_timer.enabled;
321 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
322 }
323 mutex_unlock(&rtc->ops_lock);
324
325 return err;
326 #endif
327 }
328 EXPORT_SYMBOL_GPL(rtc_read_alarm);
329
330 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
331 {
332 #ifdef RTC_LEGACY_ALARM_IMPL
333 WARN(1, "__rtc_set_alarm() is not supported!!\n");
334 return -EPERM;
335 #else
336 struct rtc_time tm;
337 long now, scheduled;
338 int err;
339
340 err = rtc_valid_tm(&alarm->time);
341 if (err)
342 return err;
343 rtc_tm_to_time(&alarm->time, &scheduled);
344
345 /* Make sure we're not setting alarms in the past */
346 err = __rtc_read_time(rtc, &tm);
347 rtc_tm_to_time(&tm, &now);
348 if (scheduled <= now)
349 return -ETIME;
350 /*
351 * XXX - We just checked to make sure the alarm time is not
352 * in the past, but there is still a race window where if
353 * the is alarm set for the next second and the second ticks
354 * over right here, before we set the alarm.
355 */
356
357 if (!rtc->ops)
358 err = -ENODEV;
359 else if (!rtc->ops->set_alarm)
360 err = -EINVAL;
361 else
362 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
363
364 return err;
365 #endif
366 }
367
368 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
369 {
370 int err;
371
372 err = rtc_valid_tm(&alarm->time);
373 if (err != 0)
374 return err;
375
376 err = mutex_lock_interruptible(&rtc->ops_lock);
377 if (err)
378 return err;
379 #ifdef RTC_LEGACY_ALARM_IMPL
380 if (!rtc->ops)
381 err = -ENODEV;
382 else if (!rtc->ops->set_alarm)
383 err = -EINVAL;
384 else
385 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
386 #else
387
388 if (rtc->aie_timer.enabled) {
389 rtc_timer_remove(rtc, &rtc->aie_timer);
390 }
391 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
392 rtc->aie_timer.period = ktime_set(0, 0);
393 if (alarm->enabled) {
394 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
395 }
396 #endif
397 mutex_unlock(&rtc->ops_lock);
398 return err;
399 }
400 EXPORT_SYMBOL_GPL(rtc_set_alarm);
401
402 int rtc_set_alarm_poweron(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
403 {
404 int err;
405
406 err = rtc_valid_tm(&alarm->time);
407 if (err != 0)
408 return err;
409
410 err = mutex_lock_interruptible(&rtc->ops_lock);
411 if (err)
412 return err;
413
414 if (!rtc->ops)
415 err = -ENODEV;
416 else if (!rtc->ops->set_alarm)
417 err = -EINVAL;
418 else
419 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
420
421 mutex_unlock(&rtc->ops_lock);
422 return err;
423 }
424 EXPORT_SYMBOL_GPL(rtc_set_alarm_poweron);
425
426 /* Called once per device from rtc_device_register */
427 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
428 {
429 #ifdef RTC_LEGACY_ALARM_IMPL
430 return 0;
431 #else
432 int err;
433 struct rtc_time now;
434
435 err = rtc_valid_tm(&alarm->time);
436 if (err != 0)
437 return err;
438
439 err = rtc_read_time(rtc, &now);
440 if (err)
441 return err;
442
443 err = mutex_lock_interruptible(&rtc->ops_lock);
444 if (err)
445 return err;
446
447 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
448 rtc->aie_timer.period = ktime_set(0, 0);
449
450 /* Alarm has to be enabled & in the futrure for us to enqueue it */
451 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
452 rtc->aie_timer.node.expires.tv64)) {
453
454 rtc->aie_timer.enabled = 1;
455 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
456 }
457 mutex_unlock(&rtc->ops_lock);
458 return err;
459 #endif
460 }
461 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
462
463
464
465 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
466 {
467 int err = mutex_lock_interruptible(&rtc->ops_lock);
468 if (err)
469 return err;
470
471 if (rtc->aie_timer.enabled != enabled) {
472 if (enabled)
473 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
474 else
475 rtc_timer_remove(rtc, &rtc->aie_timer);
476 }
477
478 if (err)
479 /* nothing */;
480 else if (!rtc->ops)
481 err = -ENODEV;
482 else if (!rtc->ops->alarm_irq_enable)
483 err = -EINVAL;
484 else
485 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
486
487 mutex_unlock(&rtc->ops_lock);
488 return err;
489 }
490 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
491
492 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
493 {
494 int err = mutex_lock_interruptible(&rtc->ops_lock);
495 if (err)
496 return err;
497
498 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
499 if (enabled == 0 && rtc->uie_irq_active) {
500 mutex_unlock(&rtc->ops_lock);
501 return rtc_dev_update_irq_enable_emul(rtc, 0);
502 }
503 #endif
504 /* make sure we're changing state */
505 if (rtc->uie_rtctimer.enabled == enabled)
506 goto out;
507
508 if (rtc->uie_unsupported) {
509 err = -EINVAL;
510 goto out;
511 }
512
513 if (enabled) {
514 struct rtc_time tm;
515 ktime_t now, onesec;
516
517 __rtc_read_time(rtc, &tm);
518 onesec = ktime_set(1, 0);
519 now = rtc_tm_to_ktime(tm);
520 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
521 rtc->uie_rtctimer.period = ktime_set(1, 0);
522 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
523 } else
524 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
525
526 out:
527 mutex_unlock(&rtc->ops_lock);
528 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
529 /*
530 * Enable emulation if the driver did not provide
531 * the update_irq_enable function pointer or if returned
532 * -EINVAL to signal that it has been configured without
533 * interrupts or that are not available at the moment.
534 */
535 if (err == -EINVAL)
536 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
537 #endif
538 return err;
539
540 }
541 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
542
543
544 /**
545 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
546 * @rtc: pointer to the rtc device
547 *
548 * This function is called when an AIE, UIE or PIE mode interrupt
549 * has occurred (or been emulated).
550 *
551 * Triggers the registered irq_task function callback.
552 */
553 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
554 {
555 unsigned long flags;
556
557 /* mark one irq of the appropriate mode */
558 spin_lock_irqsave(&rtc->irq_lock, flags);
559 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
560 spin_unlock_irqrestore(&rtc->irq_lock, flags);
561
562 /* call the task func */
563 spin_lock_irqsave(&rtc->irq_task_lock, flags);
564 if (rtc->irq_task)
565 rtc->irq_task->func(rtc->irq_task->private_data);
566 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
567
568 wake_up_interruptible(&rtc->irq_queue);
569 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
570 }
571
572
573 /**
574 * rtc_aie_update_irq - AIE mode rtctimer hook
575 * @private: pointer to the rtc_device
576 *
577 * This functions is called when the aie_timer expires.
578 */
579 void rtc_aie_update_irq(void *private)
580 {
581 struct rtc_device *rtc = (struct rtc_device *)private;
582 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
583 }
584
585
586 /**
587 * rtc_uie_update_irq - UIE mode rtctimer hook
588 * @private: pointer to the rtc_device
589 *
590 * This functions is called when the uie_timer expires.
591 */
592 void rtc_uie_update_irq(void *private)
593 {
594 struct rtc_device *rtc = (struct rtc_device *)private;
595 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
596 }
597
598
599 /**
600 * rtc_pie_update_irq - PIE mode hrtimer hook
601 * @timer: pointer to the pie mode hrtimer
602 *
603 * This function is used to emulate PIE mode interrupts
604 * using an hrtimer. This function is called when the periodic
605 * hrtimer expires.
606 */
607 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
608 {
609 struct rtc_device *rtc;
610 ktime_t period;
611 int count;
612 rtc = container_of(timer, struct rtc_device, pie_timer);
613
614 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
615 count = hrtimer_forward_now(timer, period);
616
617 rtc_handle_legacy_irq(rtc, count, RTC_PF);
618
619 return HRTIMER_RESTART;
620 }
621
622 /**
623 * rtc_update_irq - Triggered when a RTC interrupt occurs.
624 * @rtc: the rtc device
625 * @num: how many irqs are being reported (usually one)
626 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
627 * Context: any
628 */
629 void rtc_update_irq(struct rtc_device *rtc,
630 unsigned long num, unsigned long events)
631 {
632 pm_stay_awake(rtc->dev.parent);
633 schedule_work(&rtc->irqwork);
634 }
635 EXPORT_SYMBOL_GPL(rtc_update_irq);
636
637 static int __rtc_match(struct device *dev, const void *data)
638 {
639 const char *name = data;
640
641 if (strcmp(dev_name(dev), name) == 0)
642 return 1;
643 return 0;
644 }
645
646 struct rtc_device *rtc_class_open(const char *name)
647 {
648 struct device *dev;
649 struct rtc_device *rtc = NULL;
650
651 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
652 if (dev)
653 rtc = to_rtc_device(dev);
654
655 if (rtc) {
656 if (!try_module_get(rtc->owner)) {
657 put_device(dev);
658 rtc = NULL;
659 }
660 }
661
662 return rtc;
663 }
664 EXPORT_SYMBOL_GPL(rtc_class_open);
665
666 void rtc_class_close(struct rtc_device *rtc)
667 {
668 module_put(rtc->owner);
669 put_device(&rtc->dev);
670 }
671 EXPORT_SYMBOL_GPL(rtc_class_close);
672
673 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
674 {
675 int retval = -EBUSY;
676
677 if (task == NULL || task->func == NULL)
678 return -EINVAL;
679
680 /* Cannot register while the char dev is in use */
681 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
682 return -EBUSY;
683
684 spin_lock_irq(&rtc->irq_task_lock);
685 if (rtc->irq_task == NULL) {
686 rtc->irq_task = task;
687 retval = 0;
688 }
689 spin_unlock_irq(&rtc->irq_task_lock);
690
691 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
692
693 return retval;
694 }
695 EXPORT_SYMBOL_GPL(rtc_irq_register);
696
697 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
698 {
699 spin_lock_irq(&rtc->irq_task_lock);
700 if (rtc->irq_task == task)
701 rtc->irq_task = NULL;
702 spin_unlock_irq(&rtc->irq_task_lock);
703 }
704 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
705
706 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
707 {
708 /*
709 * We always cancel the timer here first, because otherwise
710 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
711 * when we manage to start the timer before the callback
712 * returns HRTIMER_RESTART.
713 *
714 * We cannot use hrtimer_cancel() here as a running callback
715 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
716 * would spin forever.
717 */
718 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
719 return -1;
720
721 if (enabled) {
722 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
723
724 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
725 }
726 return 0;
727 }
728
729 /**
730 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
731 * @rtc: the rtc device
732 * @task: currently registered with rtc_irq_register()
733 * @enabled: true to enable periodic IRQs
734 * Context: any
735 *
736 * Note that rtc_irq_set_freq() should previously have been used to
737 * specify the desired frequency of periodic IRQ task->func() callbacks.
738 */
739 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
740 {
741 int err = 0;
742 unsigned long flags;
743
744 retry:
745 spin_lock_irqsave(&rtc->irq_task_lock, flags);
746 if (rtc->irq_task != NULL && task == NULL)
747 err = -EBUSY;
748 if (rtc->irq_task != task)
749 err = -EACCES;
750 if (!err) {
751 if (rtc_update_hrtimer(rtc, enabled) < 0) {
752 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
753 cpu_relax();
754 goto retry;
755 }
756 rtc->pie_enabled = enabled;
757 }
758 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
759 return err;
760 }
761 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
762
763 /**
764 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
765 * @rtc: the rtc device
766 * @task: currently registered with rtc_irq_register()
767 * @freq: positive frequency with which task->func() will be called
768 * Context: any
769 *
770 * Note that rtc_irq_set_state() is used to enable or disable the
771 * periodic IRQs.
772 */
773 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
774 {
775 int err = 0;
776 unsigned long flags;
777
778 if (freq <= 0 || freq > RTC_MAX_FREQ)
779 return -EINVAL;
780 retry:
781 spin_lock_irqsave(&rtc->irq_task_lock, flags);
782 if (rtc->irq_task != NULL && task == NULL)
783 err = -EBUSY;
784 if (rtc->irq_task != task)
785 err = -EACCES;
786 if (!err) {
787 rtc->irq_freq = freq;
788 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
789 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
790 cpu_relax();
791 goto retry;
792 }
793 }
794 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
795 return err;
796 }
797 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
798
799 /**
800 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
801 * @rtc rtc device
802 * @timer timer being added.
803 *
804 * Enqueues a timer onto the rtc devices timerqueue and sets
805 * the next alarm event appropriately.
806 *
807 * Sets the enabled bit on the added timer.
808 *
809 * Must hold ops_lock for proper serialization of timerqueue
810 */
811 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
812 {
813 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
814 struct rtc_time tm;
815 ktime_t now;
816
817 timer->enabled = 1;
818 __rtc_read_time(rtc, &tm);
819 now = rtc_tm_to_ktime(tm);
820
821 /* Skip over expired timers */
822 while (next) {
823 if (next->expires.tv64 >= now.tv64)
824 break;
825 next = timerqueue_iterate_next(next);
826 }
827
828 timerqueue_add(&rtc->timerqueue, &timer->node);
829 if (!next) {
830 struct rtc_wkalrm alarm;
831 int err;
832 alarm.time = rtc_ktime_to_tm(timer->node.expires);
833 alarm.enabled = 1;
834 err = __rtc_set_alarm(rtc, &alarm);
835 if (err == -ETIME)
836 schedule_work(&rtc->irqwork);
837 else if (err) {
838 timerqueue_del(&rtc->timerqueue, &timer->node);
839 timer->enabled = 0;
840 return err;
841 }
842 }
843 return 0;
844 }
845
846 static void rtc_alarm_disable(struct rtc_device *rtc)
847 {
848 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
849 return;
850
851 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
852 }
853
854 /**
855 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
856 * @rtc rtc device
857 * @timer timer being removed.
858 *
859 * Removes a timer onto the rtc devices timerqueue and sets
860 * the next alarm event appropriately.
861 *
862 * Clears the enabled bit on the removed timer.
863 *
864 * Must hold ops_lock for proper serialization of timerqueue
865 */
866 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
867 {
868 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
869 timerqueue_del(&rtc->timerqueue, &timer->node);
870 timer->enabled = 0;
871 if (next == &timer->node) {
872 struct rtc_wkalrm alarm;
873 int err;
874 next = timerqueue_getnext(&rtc->timerqueue);
875 if (!next) {
876 rtc_alarm_disable(rtc);
877 return;
878 }
879 alarm.time = rtc_ktime_to_tm(next->expires);
880 alarm.enabled = 1;
881 err = __rtc_set_alarm(rtc, &alarm);
882 if (err == -ETIME)
883 schedule_work(&rtc->irqwork);
884 }
885 }
886
887 /**
888 * rtc_timer_do_work - Expires rtc timers
889 * @rtc rtc device
890 * @timer timer being removed.
891 *
892 * Expires rtc timers. Reprograms next alarm event if needed.
893 * Called via worktask.
894 *
895 * Serializes access to timerqueue via ops_lock mutex
896 */
897 void rtc_timer_do_work(struct work_struct *work)
898 {
899 struct rtc_timer *timer;
900 struct timerqueue_node *next;
901 ktime_t now;
902 struct rtc_time tm;
903
904 struct rtc_device *rtc =
905 container_of(work, struct rtc_device, irqwork);
906
907 mutex_lock(&rtc->ops_lock);
908 again:
909 pm_relax(rtc->dev.parent);
910 __rtc_read_time(rtc, &tm);
911 now = rtc_tm_to_ktime(tm);
912 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
913 if (next->expires.tv64 > now.tv64)
914 break;
915
916 /* expire timer */
917 timer = container_of(next, struct rtc_timer, node);
918 timerqueue_del(&rtc->timerqueue, &timer->node);
919 timer->enabled = 0;
920 if (timer->task.func)
921 timer->task.func(timer->task.private_data);
922
923 /* Re-add/fwd periodic timers */
924 if (ktime_to_ns(timer->period)) {
925 timer->node.expires = ktime_add(timer->node.expires,
926 timer->period);
927 timer->enabled = 1;
928 timerqueue_add(&rtc->timerqueue, &timer->node);
929 }
930 }
931
932 /* Set next alarm */
933 if (next) {
934 struct rtc_wkalrm alarm;
935 int err;
936 alarm.time = rtc_ktime_to_tm(next->expires);
937 alarm.enabled = 1;
938 err = __rtc_set_alarm(rtc, &alarm);
939 if (err == -ETIME)
940 goto again;
941 } else
942 rtc_alarm_disable(rtc);
943
944 mutex_unlock(&rtc->ops_lock);
945 }
946
947
948 /* rtc_timer_init - Initializes an rtc_timer
949 * @timer: timer to be intiialized
950 * @f: function pointer to be called when timer fires
951 * @data: private data passed to function pointer
952 *
953 * Kernel interface to initializing an rtc_timer.
954 */
955 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
956 {
957 timerqueue_init(&timer->node);
958 timer->enabled = 0;
959 timer->task.func = f;
960 timer->task.private_data = data;
961 }
962
963 /* rtc_timer_start - Sets an rtc_timer to fire in the future
964 * @ rtc: rtc device to be used
965 * @ timer: timer being set
966 * @ expires: time at which to expire the timer
967 * @ period: period that the timer will recur
968 *
969 * Kernel interface to set an rtc_timer
970 */
971 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
972 ktime_t expires, ktime_t period)
973 {
974 int ret = 0;
975 mutex_lock(&rtc->ops_lock);
976 if (timer->enabled)
977 rtc_timer_remove(rtc, timer);
978
979 timer->node.expires = expires;
980 timer->period = period;
981
982 ret = rtc_timer_enqueue(rtc, timer);
983
984 mutex_unlock(&rtc->ops_lock);
985 return ret;
986 }
987
988 /* rtc_timer_cancel - Stops an rtc_timer
989 * @ rtc: rtc device to be used
990 * @ timer: timer being set
991 *
992 * Kernel interface to cancel an rtc_timer
993 */
994 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
995 {
996 int ret = 0;
997 mutex_lock(&rtc->ops_lock);
998 if (timer->enabled)
999 rtc_timer_remove(rtc, timer);
1000 mutex_unlock(&rtc->ops_lock);
1001 return ret;
1002 }
1003
1004