a86d1232613739ec70837326b2bd2aadbb5408cd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
70 };
71
72 /*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
125 }
126
127 /**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199 {
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228 {
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336 switch (mode) {
337 case REGULATOR_MODE_FAST:
338 return sprintf(buf, "fast\n");
339 case REGULATOR_MODE_NORMAL:
340 return sprintf(buf, "normal\n");
341 case REGULATOR_MODE_IDLE:
342 return sprintf(buf, "idle\n");
343 case REGULATOR_MODE_STANDBY:
344 return sprintf(buf, "standby\n");
345 }
346 return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351 {
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360 if (state > 0)
361 return sprintf(buf, "enabled\n");
362 else if (state == 0)
363 return sprintf(buf, "disabled\n");
364 else
365 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372 ssize_t ret;
373
374 mutex_lock(&rdev->mutex);
375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376 mutex_unlock(&rdev->mutex);
377
378 return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
384 {
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 int status;
387 char *label;
388
389 status = rdev->desc->ops->get_status(rdev);
390 if (status < 0)
391 return status;
392
393 switch (status) {
394 case REGULATOR_STATUS_OFF:
395 label = "off";
396 break;
397 case REGULATOR_STATUS_ON:
398 label = "on";
399 break;
400 case REGULATOR_STATUS_ERROR:
401 label = "error";
402 break;
403 case REGULATOR_STATUS_FAST:
404 label = "fast";
405 break;
406 case REGULATOR_STATUS_NORMAL:
407 label = "normal";
408 break;
409 case REGULATOR_STATUS_IDLE:
410 label = "idle";
411 break;
412 case REGULATOR_STATUS_STANDBY:
413 label = "standby";
414 break;
415 case REGULATOR_STATUS_BYPASS:
416 label = "bypass";
417 break;
418 case REGULATOR_STATUS_UNDEFINED:
419 label = "undefined";
420 break;
421 default:
422 return -ERANGE;
423 }
424
425 return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434 if (!rdev->constraints)
435 return sprintf(buf, "constraint not defined\n");
436
437 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443 {
444 struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446 if (!rdev->constraints)
447 return sprintf(buf, "constraint not defined\n");
448
449 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
460
461 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
467 {
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
472
473 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 struct regulator *regulator;
482 int uA = 0;
483
484 mutex_lock(&rdev->mutex);
485 list_for_each_entry(regulator, &rdev->consumer_list, list)
486 uA += regulator->uA_load;
487 mutex_unlock(&rdev->mutex);
488 return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496 return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504 switch (rdev->desc->type) {
505 case REGULATOR_VOLTAGE:
506 return sprintf(buf, "voltage\n");
507 case REGULATOR_CURRENT:
508 return sprintf(buf, "current\n");
509 }
510 return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
525 {
526 struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544 struct device_attribute *attr, char *buf)
545 {
546 struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548 return regulator_print_opmode(buf,
549 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559 return regulator_print_opmode(buf,
560 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570 return regulator_print_opmode(buf,
571 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581 return regulator_print_state(buf,
582 rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return regulator_print_state(buf,
593 rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
600 {
601 struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603 return regulator_print_state(buf,
604 rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613 const char *report;
614 bool bypass;
615 int ret;
616
617 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619 if (ret != 0)
620 report = "unknown";
621 else if (bypass)
622 report = "enabled";
623 else
624 report = "disabled";
625
626 return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629 regulator_bypass_show, NULL);
630
631 /*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635 static struct device_attribute regulator_dev_attrs[] = {
636 __ATTR(name, 0444, regulator_name_show, NULL),
637 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638 __ATTR(type, 0444, regulator_type_show, NULL),
639 __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649 .name = "regulator",
650 .dev_release = regulator_dev_release,
651 .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658 struct regulator *sibling;
659 int current_uA = 0, output_uV, input_uV, err;
660 unsigned int mode;
661
662 err = regulator_check_drms(rdev);
663 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 (!rdev->desc->ops->get_voltage &&
665 !rdev->desc->ops->get_voltage_sel) ||
666 !rdev->desc->ops->set_mode)
667 return;
668
669 /* get output voltage */
670 output_uV = _regulator_get_voltage(rdev);
671 if (output_uV <= 0)
672 return;
673
674 /* get input voltage */
675 input_uV = 0;
676 if (rdev->supply)
677 input_uV = regulator_get_voltage(rdev->supply);
678 if (input_uV <= 0)
679 input_uV = rdev->constraints->input_uV;
680 if (input_uV <= 0)
681 return;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 /* now get the optimum mode for our new total regulator load */
688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 output_uV, current_uA);
690
691 /* check the new mode is allowed */
692 err = regulator_mode_constrain(rdev, &mode);
693 if (err == 0)
694 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698 struct regulator_state *rstate)
699 {
700 int ret = 0;
701
702 /* If we have no suspend mode configration don't set anything;
703 * only warn if the driver implements set_suspend_voltage or
704 * set_suspend_mode callback.
705 */
706 if (!rstate->enabled && !rstate->disabled) {
707 if (rdev->desc->ops->set_suspend_voltage ||
708 rdev->desc->ops->set_suspend_mode)
709 rdev_warn(rdev, "No configuration\n");
710 return 0;
711 }
712
713 if (rstate->enabled && rstate->disabled) {
714 rdev_err(rdev, "invalid configuration\n");
715 return -EINVAL;
716 }
717
718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719 ret = rdev->desc->ops->set_suspend_enable(rdev);
720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721 ret = rdev->desc->ops->set_suspend_disable(rdev);
722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723 ret = 0;
724
725 if (ret < 0) {
726 rdev_err(rdev, "failed to enabled/disable\n");
727 return ret;
728 }
729
730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732 if (ret < 0) {
733 rdev_err(rdev, "failed to set voltage\n");
734 return ret;
735 }
736 }
737
738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740 if (ret < 0) {
741 rdev_err(rdev, "failed to set mode\n");
742 return ret;
743 }
744 }
745 return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751 if (!rdev->constraints)
752 return -EINVAL;
753
754 switch (state) {
755 case PM_SUSPEND_STANDBY:
756 return suspend_set_state(rdev,
757 &rdev->constraints->state_standby);
758 case PM_SUSPEND_MEM:
759 return suspend_set_state(rdev,
760 &rdev->constraints->state_mem);
761 case PM_SUSPEND_MAX:
762 return suspend_set_state(rdev,
763 &rdev->constraints->state_disk);
764 default:
765 return -EINVAL;
766 }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771 struct regulation_constraints *constraints = rdev->constraints;
772 char buf[80] = "";
773 int count = 0;
774 int ret;
775
776 if (constraints->min_uV && constraints->max_uV) {
777 if (constraints->min_uV == constraints->max_uV)
778 count += sprintf(buf + count, "%d mV ",
779 constraints->min_uV / 1000);
780 else
781 count += sprintf(buf + count, "%d <--> %d mV ",
782 constraints->min_uV / 1000,
783 constraints->max_uV / 1000);
784 }
785
786 if (!constraints->min_uV ||
787 constraints->min_uV != constraints->max_uV) {
788 ret = _regulator_get_voltage(rdev);
789 if (ret > 0)
790 count += sprintf(buf + count, "at %d mV ", ret / 1000);
791 }
792
793 if (constraints->uV_offset)
794 count += sprintf(buf, "%dmV offset ",
795 constraints->uV_offset / 1000);
796
797 if (constraints->min_uA && constraints->max_uA) {
798 if (constraints->min_uA == constraints->max_uA)
799 count += sprintf(buf + count, "%d mA ",
800 constraints->min_uA / 1000);
801 else
802 count += sprintf(buf + count, "%d <--> %d mA ",
803 constraints->min_uA / 1000,
804 constraints->max_uA / 1000);
805 }
806
807 if (!constraints->min_uA ||
808 constraints->min_uA != constraints->max_uA) {
809 ret = _regulator_get_current_limit(rdev);
810 if (ret > 0)
811 count += sprintf(buf + count, "at %d mA ", ret / 1000);
812 }
813
814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815 count += sprintf(buf + count, "fast ");
816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817 count += sprintf(buf + count, "normal ");
818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819 count += sprintf(buf + count, "idle ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821 count += sprintf(buf + count, "standby");
822
823 if (!count)
824 sprintf(buf, "no parameters");
825
826 rdev_info(rdev, "%s\n", buf);
827
828 if ((constraints->min_uV != constraints->max_uV) &&
829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830 rdev_warn(rdev,
831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835 struct regulation_constraints *constraints)
836 {
837 struct regulator_ops *ops = rdev->desc->ops;
838 int ret;
839
840 /* do we need to apply the constraint voltage */
841 if (rdev->constraints->apply_uV &&
842 rdev->constraints->min_uV == rdev->constraints->max_uV) {
843 ret = _regulator_do_set_voltage(rdev,
844 rdev->constraints->min_uV,
845 rdev->constraints->max_uV);
846 if (ret < 0) {
847 rdev_err(rdev, "failed to apply %duV constraint\n",
848 rdev->constraints->min_uV);
849 return ret;
850 }
851 }
852
853 /* constrain machine-level voltage specs to fit
854 * the actual range supported by this regulator.
855 */
856 if (ops->list_voltage && rdev->desc->n_voltages) {
857 int count = rdev->desc->n_voltages;
858 int i;
859 int min_uV = INT_MAX;
860 int max_uV = INT_MIN;
861 int cmin = constraints->min_uV;
862 int cmax = constraints->max_uV;
863
864 /* it's safe to autoconfigure fixed-voltage supplies
865 and the constraints are used by list_voltage. */
866 if (count == 1 && !cmin) {
867 cmin = 1;
868 cmax = INT_MAX;
869 constraints->min_uV = cmin;
870 constraints->max_uV = cmax;
871 }
872
873 /* voltage constraints are optional */
874 if ((cmin == 0) && (cmax == 0))
875 return 0;
876
877 /* else require explicit machine-level constraints */
878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879 rdev_err(rdev, "invalid voltage constraints\n");
880 return -EINVAL;
881 }
882
883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884 for (i = 0; i < count; i++) {
885 int value;
886
887 value = ops->list_voltage(rdev, i);
888 if (value <= 0)
889 continue;
890
891 /* maybe adjust [min_uV..max_uV] */
892 if (value >= cmin && value < min_uV)
893 min_uV = value;
894 if (value <= cmax && value > max_uV)
895 max_uV = value;
896 }
897
898 /* final: [min_uV..max_uV] valid iff constraints valid */
899 if (max_uV < min_uV) {
900 rdev_err(rdev,
901 "unsupportable voltage constraints %u-%uuV\n",
902 min_uV, max_uV);
903 return -EINVAL;
904 }
905
906 /* use regulator's subset of machine constraints */
907 if (constraints->min_uV < min_uV) {
908 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909 constraints->min_uV, min_uV);
910 constraints->min_uV = min_uV;
911 }
912 if (constraints->max_uV > max_uV) {
913 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914 constraints->max_uV, max_uV);
915 constraints->max_uV = max_uV;
916 }
917 }
918
919 return 0;
920 }
921
922 static int _regulator_do_enable(struct regulator_dev *rdev);
923
924 /**
925 * set_machine_constraints - sets regulator constraints
926 * @rdev: regulator source
927 * @constraints: constraints to apply
928 *
929 * Allows platform initialisation code to define and constrain
930 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
931 * Constraints *must* be set by platform code in order for some
932 * regulator operations to proceed i.e. set_voltage, set_current_limit,
933 * set_mode.
934 */
935 static int set_machine_constraints(struct regulator_dev *rdev,
936 const struct regulation_constraints *constraints)
937 {
938 int ret = 0;
939 struct regulator_ops *ops = rdev->desc->ops;
940
941 if (constraints)
942 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
943 GFP_KERNEL);
944 else
945 rdev->constraints = kzalloc(sizeof(*constraints),
946 GFP_KERNEL);
947 if (!rdev->constraints)
948 return -ENOMEM;
949
950 ret = machine_constraints_voltage(rdev, rdev->constraints);
951 if (ret != 0)
952 goto out;
953
954 /* do we need to setup our suspend state */
955 if (rdev->constraints->initial_state) {
956 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
957 if (ret < 0) {
958 rdev_err(rdev, "failed to set suspend state\n");
959 goto out;
960 }
961 }
962
963 if (rdev->constraints->initial_mode) {
964 if (!ops->set_mode) {
965 rdev_err(rdev, "no set_mode operation\n");
966 ret = -EINVAL;
967 goto out;
968 }
969
970 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
971 if (ret < 0) {
972 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
973 goto out;
974 }
975 }
976
977 /* If the constraints say the regulator should be on at this point
978 * and we have control then make sure it is enabled.
979 */
980 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
981 ret = _regulator_do_enable(rdev);
982 if (ret < 0 && ret != -EINVAL) {
983 rdev_err(rdev, "failed to enable\n");
984 goto out;
985 }
986 }
987
988 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
989 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
990 if (ret < 0) {
991 rdev_err(rdev, "failed to set ramp_delay\n");
992 goto out;
993 }
994 }
995
996 print_constraints(rdev);
997 return 0;
998 out:
999 kfree(rdev->constraints);
1000 rdev->constraints = NULL;
1001 return ret;
1002 }
1003
1004 /**
1005 * set_supply - set regulator supply regulator
1006 * @rdev: regulator name
1007 * @supply_rdev: supply regulator name
1008 *
1009 * Called by platform initialisation code to set the supply regulator for this
1010 * regulator. This ensures that a regulators supply will also be enabled by the
1011 * core if it's child is enabled.
1012 */
1013 static int set_supply(struct regulator_dev *rdev,
1014 struct regulator_dev *supply_rdev)
1015 {
1016 int err;
1017
1018 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1019
1020 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1021 if (rdev->supply == NULL) {
1022 err = -ENOMEM;
1023 return err;
1024 }
1025 supply_rdev->open_count++;
1026
1027 return 0;
1028 }
1029
1030 /**
1031 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1032 * @rdev: regulator source
1033 * @consumer_dev_name: dev_name() string for device supply applies to
1034 * @supply: symbolic name for supply
1035 *
1036 * Allows platform initialisation code to map physical regulator
1037 * sources to symbolic names for supplies for use by devices. Devices
1038 * should use these symbolic names to request regulators, avoiding the
1039 * need to provide board-specific regulator names as platform data.
1040 */
1041 static int set_consumer_device_supply(struct regulator_dev *rdev,
1042 const char *consumer_dev_name,
1043 const char *supply)
1044 {
1045 struct regulator_map *node;
1046 int has_dev;
1047
1048 if (supply == NULL)
1049 return -EINVAL;
1050
1051 if (consumer_dev_name != NULL)
1052 has_dev = 1;
1053 else
1054 has_dev = 0;
1055
1056 list_for_each_entry(node, &regulator_map_list, list) {
1057 if (node->dev_name && consumer_dev_name) {
1058 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1059 continue;
1060 } else if (node->dev_name || consumer_dev_name) {
1061 continue;
1062 }
1063
1064 if (strcmp(node->supply, supply) != 0)
1065 continue;
1066
1067 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1068 consumer_dev_name,
1069 dev_name(&node->regulator->dev),
1070 node->regulator->desc->name,
1071 supply,
1072 dev_name(&rdev->dev), rdev_get_name(rdev));
1073 return -EBUSY;
1074 }
1075
1076 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1077 if (node == NULL)
1078 return -ENOMEM;
1079
1080 node->regulator = rdev;
1081 node->supply = supply;
1082
1083 if (has_dev) {
1084 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1085 if (node->dev_name == NULL) {
1086 kfree(node);
1087 return -ENOMEM;
1088 }
1089 }
1090
1091 list_add(&node->list, &regulator_map_list);
1092 return 0;
1093 }
1094
1095 static void unset_regulator_supplies(struct regulator_dev *rdev)
1096 {
1097 struct regulator_map *node, *n;
1098
1099 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1100 if (rdev == node->regulator) {
1101 list_del(&node->list);
1102 kfree(node->dev_name);
1103 kfree(node);
1104 }
1105 }
1106 }
1107
1108 #define REG_STR_SIZE 64
1109
1110 static struct regulator *create_regulator(struct regulator_dev *rdev,
1111 struct device *dev,
1112 const char *supply_name)
1113 {
1114 struct regulator *regulator;
1115 char buf[REG_STR_SIZE];
1116 int err, size;
1117
1118 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1119 if (regulator == NULL)
1120 return NULL;
1121
1122 mutex_lock(&rdev->mutex);
1123 regulator->rdev = rdev;
1124 list_add(&regulator->list, &rdev->consumer_list);
1125
1126 if (dev) {
1127 regulator->dev = dev;
1128
1129 /* Add a link to the device sysfs entry */
1130 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131 dev->kobj.name, supply_name);
1132 if (size >= REG_STR_SIZE)
1133 goto overflow_err;
1134
1135 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136 if (regulator->supply_name == NULL)
1137 goto overflow_err;
1138
1139 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140 buf);
1141 if (err) {
1142 rdev_warn(rdev, "could not add device link %s err %d\n",
1143 dev->kobj.name, err);
1144 /* non-fatal */
1145 }
1146 } else {
1147 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148 if (regulator->supply_name == NULL)
1149 goto overflow_err;
1150 }
1151
1152 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153 rdev->debugfs);
1154 if (!regulator->debugfs) {
1155 rdev_warn(rdev, "Failed to create debugfs directory\n");
1156 } else {
1157 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158 &regulator->uA_load);
1159 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160 &regulator->min_uV);
1161 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162 &regulator->max_uV);
1163 }
1164
1165 /*
1166 * Check now if the regulator is an always on regulator - if
1167 * it is then we don't need to do nearly so much work for
1168 * enable/disable calls.
1169 */
1170 if (!_regulator_can_change_status(rdev) &&
1171 _regulator_is_enabled(rdev))
1172 regulator->always_on = true;
1173
1174 mutex_unlock(&rdev->mutex);
1175 return regulator;
1176 overflow_err:
1177 list_del(&regulator->list);
1178 kfree(regulator);
1179 mutex_unlock(&rdev->mutex);
1180 return NULL;
1181 }
1182
1183 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1184 {
1185 if (!rdev->desc->ops->enable_time)
1186 return rdev->desc->enable_time;
1187 return rdev->desc->ops->enable_time(rdev);
1188 }
1189
1190 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1191 const char *supply,
1192 int *ret)
1193 {
1194 struct regulator_dev *r;
1195 struct device_node *node;
1196 struct regulator_map *map;
1197 const char *devname = NULL;
1198
1199 /* first do a dt based lookup */
1200 if (dev && dev->of_node) {
1201 node = of_get_regulator(dev, supply);
1202 if (node) {
1203 list_for_each_entry(r, &regulator_list, list)
1204 if (r->dev.parent &&
1205 node == r->dev.of_node)
1206 return r;
1207 } else {
1208 /*
1209 * If we couldn't even get the node then it's
1210 * not just that the device didn't register
1211 * yet, there's no node and we'll never
1212 * succeed.
1213 */
1214 *ret = -ENODEV;
1215 }
1216 }
1217
1218 /* if not found, try doing it non-dt way */
1219 if (dev)
1220 devname = dev_name(dev);
1221
1222 list_for_each_entry(r, &regulator_list, list)
1223 if (strcmp(rdev_get_name(r), supply) == 0)
1224 return r;
1225
1226 list_for_each_entry(map, &regulator_map_list, list) {
1227 /* If the mapping has a device set up it must match */
1228 if (map->dev_name &&
1229 (!devname || strcmp(map->dev_name, devname)))
1230 continue;
1231
1232 if (strcmp(map->supply, supply) == 0)
1233 return map->regulator;
1234 }
1235
1236
1237 return NULL;
1238 }
1239
1240 /* Internal regulator request function */
1241 static struct regulator *_regulator_get(struct device *dev, const char *id,
1242 int exclusive)
1243 {
1244 struct regulator_dev *rdev;
1245 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1246 const char *devname = NULL;
1247 int ret = 0;
1248
1249 if (id == NULL) {
1250 pr_err("get() with no identifier\n");
1251 return regulator;
1252 }
1253
1254 if (dev)
1255 devname = dev_name(dev);
1256
1257 mutex_lock(&regulator_list_mutex);
1258
1259 rdev = regulator_dev_lookup(dev, id, &ret);
1260 if (rdev)
1261 goto found;
1262
1263 /*
1264 * If we have return value from dev_lookup fail, we do not expect to
1265 * succeed, so, quit with appropriate error value
1266 */
1267 if (ret) {
1268 regulator = ERR_PTR(ret);
1269 goto out;
1270 }
1271
1272 if (board_wants_dummy_regulator) {
1273 rdev = dummy_regulator_rdev;
1274 goto found;
1275 }
1276
1277 #ifdef CONFIG_REGULATOR_DUMMY
1278 if (!devname)
1279 devname = "deviceless";
1280
1281 /* If the board didn't flag that it was fully constrained then
1282 * substitute in a dummy regulator so consumers can continue.
1283 */
1284 if (!has_full_constraints) {
1285 pr_warn("%s supply %s not found, using dummy regulator\n",
1286 devname, id);
1287 rdev = dummy_regulator_rdev;
1288 goto found;
1289 }
1290 #endif
1291
1292 mutex_unlock(&regulator_list_mutex);
1293 return regulator;
1294
1295 found:
1296 if (rdev->exclusive) {
1297 regulator = ERR_PTR(-EPERM);
1298 goto out;
1299 }
1300
1301 if (exclusive && rdev->open_count) {
1302 regulator = ERR_PTR(-EBUSY);
1303 goto out;
1304 }
1305
1306 if (!try_module_get(rdev->owner))
1307 goto out;
1308
1309 regulator = create_regulator(rdev, dev, id);
1310 if (regulator == NULL) {
1311 regulator = ERR_PTR(-ENOMEM);
1312 module_put(rdev->owner);
1313 goto out;
1314 }
1315
1316 rdev->open_count++;
1317 if (exclusive) {
1318 rdev->exclusive = 1;
1319
1320 ret = _regulator_is_enabled(rdev);
1321 if (ret > 0)
1322 rdev->use_count = 1;
1323 else
1324 rdev->use_count = 0;
1325 }
1326
1327 out:
1328 mutex_unlock(&regulator_list_mutex);
1329
1330 return regulator;
1331 }
1332
1333 /**
1334 * regulator_get - lookup and obtain a reference to a regulator.
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Returns a struct regulator corresponding to the regulator producer,
1339 * or IS_ERR() condition containing errno.
1340 *
1341 * Use of supply names configured via regulator_set_device_supply() is
1342 * strongly encouraged. It is recommended that the supply name used
1343 * should match the name used for the supply and/or the relevant
1344 * device pins in the datasheet.
1345 */
1346 struct regulator *regulator_get(struct device *dev, const char *id)
1347 {
1348 return _regulator_get(dev, id, 0);
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_get);
1351
1352 static void devm_regulator_release(struct device *dev, void *res)
1353 {
1354 regulator_put(*(struct regulator **)res);
1355 }
1356
1357 /**
1358 * devm_regulator_get - Resource managed regulator_get()
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Managed regulator_get(). Regulators returned from this function are
1363 * automatically regulator_put() on driver detach. See regulator_get() for more
1364 * information.
1365 */
1366 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1367 {
1368 struct regulator **ptr, *regulator;
1369
1370 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1371 if (!ptr)
1372 return ERR_PTR(-ENOMEM);
1373
1374 regulator = regulator_get(dev, id);
1375 if (!IS_ERR(regulator)) {
1376 *ptr = regulator;
1377 devres_add(dev, ptr);
1378 } else {
1379 devres_free(ptr);
1380 }
1381
1382 return regulator;
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regulator_get);
1385
1386 /**
1387 * regulator_get_exclusive - obtain exclusive access to a regulator.
1388 * @dev: device for regulator "consumer"
1389 * @id: Supply name or regulator ID.
1390 *
1391 * Returns a struct regulator corresponding to the regulator producer,
1392 * or IS_ERR() condition containing errno. Other consumers will be
1393 * unable to obtain this reference is held and the use count for the
1394 * regulator will be initialised to reflect the current state of the
1395 * regulator.
1396 *
1397 * This is intended for use by consumers which cannot tolerate shared
1398 * use of the regulator such as those which need to force the
1399 * regulator off for correct operation of the hardware they are
1400 * controlling.
1401 *
1402 * Use of supply names configured via regulator_set_device_supply() is
1403 * strongly encouraged. It is recommended that the supply name used
1404 * should match the name used for the supply and/or the relevant
1405 * device pins in the datasheet.
1406 */
1407 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1408 {
1409 return _regulator_get(dev, id, 1);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1412
1413 /* Locks held by regulator_put() */
1414 static void _regulator_put(struct regulator *regulator)
1415 {
1416 struct regulator_dev *rdev;
1417
1418 if (regulator == NULL || IS_ERR(regulator))
1419 return;
1420
1421 rdev = regulator->rdev;
1422
1423 debugfs_remove_recursive(regulator->debugfs);
1424
1425 /* remove any sysfs entries */
1426 if (regulator->dev)
1427 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1428 kfree(regulator->supply_name);
1429 list_del(&regulator->list);
1430 kfree(regulator);
1431
1432 rdev->open_count--;
1433 rdev->exclusive = 0;
1434
1435 module_put(rdev->owner);
1436 }
1437
1438 /**
1439 * regulator_put - "free" the regulator source
1440 * @regulator: regulator source
1441 *
1442 * Note: drivers must ensure that all regulator_enable calls made on this
1443 * regulator source are balanced by regulator_disable calls prior to calling
1444 * this function.
1445 */
1446 void regulator_put(struct regulator *regulator)
1447 {
1448 mutex_lock(&regulator_list_mutex);
1449 _regulator_put(regulator);
1450 mutex_unlock(&regulator_list_mutex);
1451 }
1452 EXPORT_SYMBOL_GPL(regulator_put);
1453
1454 static int devm_regulator_match(struct device *dev, void *res, void *data)
1455 {
1456 struct regulator **r = res;
1457 if (!r || !*r) {
1458 WARN_ON(!r || !*r);
1459 return 0;
1460 }
1461 return *r == data;
1462 }
1463
1464 /**
1465 * devm_regulator_put - Resource managed regulator_put()
1466 * @regulator: regulator to free
1467 *
1468 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1469 * this function will not need to be called and the resource management
1470 * code will ensure that the resource is freed.
1471 */
1472 void devm_regulator_put(struct regulator *regulator)
1473 {
1474 int rc;
1475
1476 rc = devres_release(regulator->dev, devm_regulator_release,
1477 devm_regulator_match, regulator);
1478 if (rc != 0)
1479 WARN_ON(rc);
1480 }
1481 EXPORT_SYMBOL_GPL(devm_regulator_put);
1482
1483 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1484 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1485 const struct regulator_config *config)
1486 {
1487 struct regulator_enable_gpio *pin;
1488 int ret;
1489
1490 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1491 if (pin->gpio == config->ena_gpio) {
1492 rdev_dbg(rdev, "GPIO %d is already used\n",
1493 config->ena_gpio);
1494 goto update_ena_gpio_to_rdev;
1495 }
1496 }
1497
1498 ret = gpio_request_one(config->ena_gpio,
1499 GPIOF_DIR_OUT | config->ena_gpio_flags,
1500 rdev_get_name(rdev));
1501 if (ret)
1502 return ret;
1503
1504 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1505 if (pin == NULL) {
1506 gpio_free(config->ena_gpio);
1507 return -ENOMEM;
1508 }
1509
1510 pin->gpio = config->ena_gpio;
1511 pin->ena_gpio_invert = config->ena_gpio_invert;
1512 list_add(&pin->list, &regulator_ena_gpio_list);
1513
1514 update_ena_gpio_to_rdev:
1515 pin->request_count++;
1516 rdev->ena_pin = pin;
1517 return 0;
1518 }
1519
1520 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1521 {
1522 struct regulator_enable_gpio *pin, *n;
1523
1524 if (!rdev->ena_pin)
1525 return;
1526
1527 /* Free the GPIO only in case of no use */
1528 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1529 if (pin->gpio == rdev->ena_pin->gpio) {
1530 if (pin->request_count <= 1) {
1531 pin->request_count = 0;
1532 gpio_free(pin->gpio);
1533 list_del(&pin->list);
1534 kfree(pin);
1535 } else {
1536 pin->request_count--;
1537 }
1538 }
1539 }
1540 }
1541
1542 /**
1543 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1544 * @rdev: regulator_dev structure
1545 * @enable: enable GPIO at initial use?
1546 *
1547 * GPIO is enabled in case of initial use. (enable_count is 0)
1548 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1549 */
1550 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1551 {
1552 struct regulator_enable_gpio *pin = rdev->ena_pin;
1553
1554 if (!pin)
1555 return -EINVAL;
1556
1557 if (enable) {
1558 /* Enable GPIO at initial use */
1559 if (pin->enable_count == 0)
1560 gpio_set_value_cansleep(pin->gpio,
1561 !pin->ena_gpio_invert);
1562
1563 pin->enable_count++;
1564 } else {
1565 if (pin->enable_count > 1) {
1566 pin->enable_count--;
1567 return 0;
1568 }
1569
1570 /* Disable GPIO if not used */
1571 if (pin->enable_count <= 1) {
1572 gpio_set_value_cansleep(pin->gpio,
1573 pin->ena_gpio_invert);
1574 pin->enable_count = 0;
1575 }
1576 }
1577
1578 return 0;
1579 }
1580
1581 static int _regulator_do_enable(struct regulator_dev *rdev)
1582 {
1583 int ret, delay;
1584
1585 /* Query before enabling in case configuration dependent. */
1586 ret = _regulator_get_enable_time(rdev);
1587 if (ret >= 0) {
1588 delay = ret;
1589 } else {
1590 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1591 delay = 0;
1592 }
1593
1594 trace_regulator_enable(rdev_get_name(rdev));
1595
1596 if (rdev->ena_pin) {
1597 ret = regulator_ena_gpio_ctrl(rdev, true);
1598 if (ret < 0)
1599 return ret;
1600 rdev->ena_gpio_state = 1;
1601 } else if (rdev->desc->ops->enable) {
1602 ret = rdev->desc->ops->enable(rdev);
1603 if (ret < 0)
1604 return ret;
1605 } else {
1606 return -EINVAL;
1607 }
1608
1609 /* Allow the regulator to ramp; it would be useful to extend
1610 * this for bulk operations so that the regulators can ramp
1611 * together. */
1612 trace_regulator_enable_delay(rdev_get_name(rdev));
1613
1614 if (delay >= 1000) {
1615 mdelay(delay / 1000);
1616 udelay(delay % 1000);
1617 } else if (delay) {
1618 udelay(delay);
1619 }
1620
1621 trace_regulator_enable_complete(rdev_get_name(rdev));
1622
1623 return 0;
1624 }
1625
1626 /* locks held by regulator_enable() */
1627 static int _regulator_enable(struct regulator_dev *rdev)
1628 {
1629 int ret;
1630
1631 /* check voltage and requested load before enabling */
1632 if (rdev->constraints &&
1633 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1634 drms_uA_update(rdev);
1635
1636 if (rdev->use_count == 0) {
1637 /* The regulator may on if it's not switchable or left on */
1638 ret = _regulator_is_enabled(rdev);
1639 if (ret == -EINVAL || ret == 0) {
1640 if (!_regulator_can_change_status(rdev))
1641 return -EPERM;
1642
1643 ret = _regulator_do_enable(rdev);
1644 if (ret < 0)
1645 return ret;
1646
1647 } else if (ret < 0) {
1648 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1649 return ret;
1650 }
1651 /* Fallthrough on positive return values - already enabled */
1652 }
1653
1654 rdev->use_count++;
1655
1656 return 0;
1657 }
1658
1659 /**
1660 * regulator_enable - enable regulator output
1661 * @regulator: regulator source
1662 *
1663 * Request that the regulator be enabled with the regulator output at
1664 * the predefined voltage or current value. Calls to regulator_enable()
1665 * must be balanced with calls to regulator_disable().
1666 *
1667 * NOTE: the output value can be set by other drivers, boot loader or may be
1668 * hardwired in the regulator.
1669 */
1670 int regulator_enable(struct regulator *regulator)
1671 {
1672 struct regulator_dev *rdev = regulator->rdev;
1673 int ret = 0;
1674
1675 if (regulator->always_on)
1676 return 0;
1677
1678 if (rdev->supply) {
1679 ret = regulator_enable(rdev->supply);
1680 if (ret != 0)
1681 return ret;
1682 }
1683
1684 mutex_lock(&rdev->mutex);
1685 ret = _regulator_enable(rdev);
1686 mutex_unlock(&rdev->mutex);
1687
1688 if (ret != 0 && rdev->supply)
1689 regulator_disable(rdev->supply);
1690
1691 return ret;
1692 }
1693 EXPORT_SYMBOL_GPL(regulator_enable);
1694
1695 static int _regulator_do_disable(struct regulator_dev *rdev)
1696 {
1697 int ret;
1698
1699 trace_regulator_disable(rdev_get_name(rdev));
1700
1701 if (rdev->ena_pin) {
1702 ret = regulator_ena_gpio_ctrl(rdev, false);
1703 if (ret < 0)
1704 return ret;
1705 rdev->ena_gpio_state = 0;
1706
1707 } else if (rdev->desc->ops->disable) {
1708 ret = rdev->desc->ops->disable(rdev);
1709 if (ret != 0)
1710 return ret;
1711 }
1712
1713 trace_regulator_disable_complete(rdev_get_name(rdev));
1714
1715 return 0;
1716 }
1717
1718 /* locks held by regulator_disable() */
1719 static int _regulator_disable(struct regulator_dev *rdev)
1720 {
1721 int ret = 0;
1722
1723 if (WARN(rdev->use_count <= 0,
1724 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1725 return -EIO;
1726
1727 /* are we the last user and permitted to disable ? */
1728 if (rdev->use_count == 1 &&
1729 (rdev->constraints && !rdev->constraints->always_on)) {
1730
1731 /* we are last user */
1732 if (_regulator_can_change_status(rdev)) {
1733 ret = _regulator_do_disable(rdev);
1734 if (ret < 0) {
1735 rdev_err(rdev, "failed to disable\n");
1736 return ret;
1737 }
1738 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1739 NULL);
1740 }
1741
1742 rdev->use_count = 0;
1743 } else if (rdev->use_count > 1) {
1744
1745 if (rdev->constraints &&
1746 (rdev->constraints->valid_ops_mask &
1747 REGULATOR_CHANGE_DRMS))
1748 drms_uA_update(rdev);
1749
1750 rdev->use_count--;
1751 }
1752
1753 return ret;
1754 }
1755
1756 /**
1757 * regulator_disable - disable regulator output
1758 * @regulator: regulator source
1759 *
1760 * Disable the regulator output voltage or current. Calls to
1761 * regulator_enable() must be balanced with calls to
1762 * regulator_disable().
1763 *
1764 * NOTE: this will only disable the regulator output if no other consumer
1765 * devices have it enabled, the regulator device supports disabling and
1766 * machine constraints permit this operation.
1767 */
1768 int regulator_disable(struct regulator *regulator)
1769 {
1770 struct regulator_dev *rdev = regulator->rdev;
1771 int ret = 0;
1772
1773 if (regulator->always_on)
1774 return 0;
1775
1776 mutex_lock(&rdev->mutex);
1777 ret = _regulator_disable(rdev);
1778 mutex_unlock(&rdev->mutex);
1779
1780 if (ret == 0 && rdev->supply)
1781 regulator_disable(rdev->supply);
1782
1783 return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(regulator_disable);
1786
1787 /* locks held by regulator_force_disable() */
1788 static int _regulator_force_disable(struct regulator_dev *rdev)
1789 {
1790 int ret = 0;
1791
1792 ret = _regulator_do_disable(rdev);
1793 if (ret < 0) {
1794 rdev_err(rdev, "failed to force disable\n");
1795 return ret;
1796 }
1797
1798 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1799 REGULATOR_EVENT_DISABLE, NULL);
1800
1801 return 0;
1802 }
1803
1804 /**
1805 * regulator_force_disable - force disable regulator output
1806 * @regulator: regulator source
1807 *
1808 * Forcibly disable the regulator output voltage or current.
1809 * NOTE: this *will* disable the regulator output even if other consumer
1810 * devices have it enabled. This should be used for situations when device
1811 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1812 */
1813 int regulator_force_disable(struct regulator *regulator)
1814 {
1815 struct regulator_dev *rdev = regulator->rdev;
1816 int ret;
1817
1818 mutex_lock(&rdev->mutex);
1819 regulator->uA_load = 0;
1820 ret = _regulator_force_disable(regulator->rdev);
1821 mutex_unlock(&rdev->mutex);
1822
1823 if (rdev->supply)
1824 while (rdev->open_count--)
1825 regulator_disable(rdev->supply);
1826
1827 return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_force_disable);
1830
1831 static void regulator_disable_work(struct work_struct *work)
1832 {
1833 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1834 disable_work.work);
1835 int count, i, ret;
1836
1837 mutex_lock(&rdev->mutex);
1838
1839 BUG_ON(!rdev->deferred_disables);
1840
1841 count = rdev->deferred_disables;
1842 rdev->deferred_disables = 0;
1843
1844 for (i = 0; i < count; i++) {
1845 ret = _regulator_disable(rdev);
1846 if (ret != 0)
1847 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1848 }
1849
1850 mutex_unlock(&rdev->mutex);
1851
1852 if (rdev->supply) {
1853 for (i = 0; i < count; i++) {
1854 ret = regulator_disable(rdev->supply);
1855 if (ret != 0) {
1856 rdev_err(rdev,
1857 "Supply disable failed: %d\n", ret);
1858 }
1859 }
1860 }
1861 }
1862
1863 /**
1864 * regulator_disable_deferred - disable regulator output with delay
1865 * @regulator: regulator source
1866 * @ms: miliseconds until the regulator is disabled
1867 *
1868 * Execute regulator_disable() on the regulator after a delay. This
1869 * is intended for use with devices that require some time to quiesce.
1870 *
1871 * NOTE: this will only disable the regulator output if no other consumer
1872 * devices have it enabled, the regulator device supports disabling and
1873 * machine constraints permit this operation.
1874 */
1875 int regulator_disable_deferred(struct regulator *regulator, int ms)
1876 {
1877 struct regulator_dev *rdev = regulator->rdev;
1878 int ret;
1879
1880 if (regulator->always_on)
1881 return 0;
1882
1883 if (!ms)
1884 return regulator_disable(regulator);
1885
1886 mutex_lock(&rdev->mutex);
1887 rdev->deferred_disables++;
1888 mutex_unlock(&rdev->mutex);
1889
1890 ret = schedule_delayed_work(&rdev->disable_work,
1891 msecs_to_jiffies(ms));
1892 if (ret < 0)
1893 return ret;
1894 else
1895 return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1898
1899 /**
1900 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1901 *
1902 * @rdev: regulator to operate on
1903 *
1904 * Regulators that use regmap for their register I/O can set the
1905 * enable_reg and enable_mask fields in their descriptor and then use
1906 * this as their is_enabled operation, saving some code.
1907 */
1908 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1909 {
1910 unsigned int val;
1911 int ret;
1912
1913 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1914 if (ret != 0)
1915 return ret;
1916
1917 if (rdev->desc->enable_is_inverted)
1918 return (val & rdev->desc->enable_mask) == 0;
1919 else
1920 return (val & rdev->desc->enable_mask) != 0;
1921 }
1922 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1923
1924 /**
1925 * regulator_enable_regmap - standard enable() for regmap users
1926 *
1927 * @rdev: regulator to operate on
1928 *
1929 * Regulators that use regmap for their register I/O can set the
1930 * enable_reg and enable_mask fields in their descriptor and then use
1931 * this as their enable() operation, saving some code.
1932 */
1933 int regulator_enable_regmap(struct regulator_dev *rdev)
1934 {
1935 unsigned int val;
1936
1937 if (rdev->desc->enable_is_inverted)
1938 val = 0;
1939 else
1940 val = rdev->desc->enable_mask;
1941
1942 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1943 rdev->desc->enable_mask, val);
1944 }
1945 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1946
1947 /**
1948 * regulator_disable_regmap - standard disable() for regmap users
1949 *
1950 * @rdev: regulator to operate on
1951 *
1952 * Regulators that use regmap for their register I/O can set the
1953 * enable_reg and enable_mask fields in their descriptor and then use
1954 * this as their disable() operation, saving some code.
1955 */
1956 int regulator_disable_regmap(struct regulator_dev *rdev)
1957 {
1958 unsigned int val;
1959
1960 if (rdev->desc->enable_is_inverted)
1961 val = rdev->desc->enable_mask;
1962 else
1963 val = 0;
1964
1965 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1966 rdev->desc->enable_mask, val);
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1969
1970 static int _regulator_is_enabled(struct regulator_dev *rdev)
1971 {
1972 /* A GPIO control always takes precedence */
1973 if (rdev->ena_pin)
1974 return rdev->ena_gpio_state;
1975
1976 /* If we don't know then assume that the regulator is always on */
1977 if (!rdev->desc->ops->is_enabled)
1978 return 1;
1979
1980 return rdev->desc->ops->is_enabled(rdev);
1981 }
1982
1983 /**
1984 * regulator_is_enabled - is the regulator output enabled
1985 * @regulator: regulator source
1986 *
1987 * Returns positive if the regulator driver backing the source/client
1988 * has requested that the device be enabled, zero if it hasn't, else a
1989 * negative errno code.
1990 *
1991 * Note that the device backing this regulator handle can have multiple
1992 * users, so it might be enabled even if regulator_enable() was never
1993 * called for this particular source.
1994 */
1995 int regulator_is_enabled(struct regulator *regulator)
1996 {
1997 int ret;
1998
1999 if (regulator->always_on)
2000 return 1;
2001
2002 mutex_lock(&regulator->rdev->mutex);
2003 ret = _regulator_is_enabled(regulator->rdev);
2004 mutex_unlock(&regulator->rdev->mutex);
2005
2006 return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2009
2010 /**
2011 * regulator_can_change_voltage - check if regulator can change voltage
2012 * @regulator: regulator source
2013 *
2014 * Returns positive if the regulator driver backing the source/client
2015 * can change its voltage, false otherwise. Usefull for detecting fixed
2016 * or dummy regulators and disabling voltage change logic in the client
2017 * driver.
2018 */
2019 int regulator_can_change_voltage(struct regulator *regulator)
2020 {
2021 struct regulator_dev *rdev = regulator->rdev;
2022
2023 if (rdev->constraints &&
2024 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2025 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2026 return 1;
2027
2028 if (rdev->desc->continuous_voltage_range &&
2029 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2030 rdev->constraints->min_uV != rdev->constraints->max_uV)
2031 return 1;
2032 }
2033
2034 return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2037
2038 /**
2039 * regulator_count_voltages - count regulator_list_voltage() selectors
2040 * @regulator: regulator source
2041 *
2042 * Returns number of selectors, or negative errno. Selectors are
2043 * numbered starting at zero, and typically correspond to bitfields
2044 * in hardware registers.
2045 */
2046 int regulator_count_voltages(struct regulator *regulator)
2047 {
2048 struct regulator_dev *rdev = regulator->rdev;
2049
2050 return rdev->desc->n_voltages ? : -EINVAL;
2051 }
2052 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2053
2054 /**
2055 * regulator_list_voltage_linear - List voltages with simple calculation
2056 *
2057 * @rdev: Regulator device
2058 * @selector: Selector to convert into a voltage
2059 *
2060 * Regulators with a simple linear mapping between voltages and
2061 * selectors can set min_uV and uV_step in the regulator descriptor
2062 * and then use this function as their list_voltage() operation,
2063 */
2064 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2065 unsigned int selector)
2066 {
2067 if (selector >= rdev->desc->n_voltages)
2068 return -EINVAL;
2069 if (selector < rdev->desc->linear_min_sel)
2070 return 0;
2071
2072 selector -= rdev->desc->linear_min_sel;
2073
2074 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2075 }
2076 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2077
2078 /**
2079 * regulator_list_voltage_table - List voltages with table based mapping
2080 *
2081 * @rdev: Regulator device
2082 * @selector: Selector to convert into a voltage
2083 *
2084 * Regulators with table based mapping between voltages and
2085 * selectors can set volt_table in the regulator descriptor
2086 * and then use this function as their list_voltage() operation.
2087 */
2088 int regulator_list_voltage_table(struct regulator_dev *rdev,
2089 unsigned int selector)
2090 {
2091 if (!rdev->desc->volt_table) {
2092 BUG_ON(!rdev->desc->volt_table);
2093 return -EINVAL;
2094 }
2095
2096 if (selector >= rdev->desc->n_voltages)
2097 return -EINVAL;
2098
2099 return rdev->desc->volt_table[selector];
2100 }
2101 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2102
2103 /**
2104 * regulator_list_voltage - enumerate supported voltages
2105 * @regulator: regulator source
2106 * @selector: identify voltage to list
2107 * Context: can sleep
2108 *
2109 * Returns a voltage that can be passed to @regulator_set_voltage(),
2110 * zero if this selector code can't be used on this system, or a
2111 * negative errno.
2112 */
2113 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2114 {
2115 struct regulator_dev *rdev = regulator->rdev;
2116 struct regulator_ops *ops = rdev->desc->ops;
2117 int ret;
2118
2119 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2120 return -EINVAL;
2121
2122 mutex_lock(&rdev->mutex);
2123 ret = ops->list_voltage(rdev, selector);
2124 mutex_unlock(&rdev->mutex);
2125
2126 if (ret > 0) {
2127 if (ret < rdev->constraints->min_uV)
2128 ret = 0;
2129 else if (ret > rdev->constraints->max_uV)
2130 ret = 0;
2131 }
2132
2133 return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2136
2137 /**
2138 * regulator_is_supported_voltage - check if a voltage range can be supported
2139 *
2140 * @regulator: Regulator to check.
2141 * @min_uV: Minimum required voltage in uV.
2142 * @max_uV: Maximum required voltage in uV.
2143 *
2144 * Returns a boolean or a negative error code.
2145 */
2146 int regulator_is_supported_voltage(struct regulator *regulator,
2147 int min_uV, int max_uV)
2148 {
2149 struct regulator_dev *rdev = regulator->rdev;
2150 int i, voltages, ret;
2151
2152 /* If we can't change voltage check the current voltage */
2153 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2154 ret = regulator_get_voltage(regulator);
2155 if (ret >= 0)
2156 return (min_uV <= ret && ret <= max_uV);
2157 else
2158 return ret;
2159 }
2160
2161 /* Any voltage within constrains range is fine? */
2162 if (rdev->desc->continuous_voltage_range)
2163 return min_uV >= rdev->constraints->min_uV &&
2164 max_uV <= rdev->constraints->max_uV;
2165
2166 ret = regulator_count_voltages(regulator);
2167 if (ret < 0)
2168 return ret;
2169 voltages = ret;
2170
2171 for (i = 0; i < voltages; i++) {
2172 ret = regulator_list_voltage(regulator, i);
2173
2174 if (ret >= min_uV && ret <= max_uV)
2175 return 1;
2176 }
2177
2178 return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2181
2182 /**
2183 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2184 *
2185 * @rdev: regulator to operate on
2186 *
2187 * Regulators that use regmap for their register I/O can set the
2188 * vsel_reg and vsel_mask fields in their descriptor and then use this
2189 * as their get_voltage_vsel operation, saving some code.
2190 */
2191 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2192 {
2193 unsigned int val;
2194 int ret;
2195
2196 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2197 if (ret != 0)
2198 return ret;
2199
2200 val &= rdev->desc->vsel_mask;
2201 val >>= ffs(rdev->desc->vsel_mask) - 1;
2202
2203 return val;
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2206
2207 /**
2208 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2209 *
2210 * @rdev: regulator to operate on
2211 * @sel: Selector to set
2212 *
2213 * Regulators that use regmap for their register I/O can set the
2214 * vsel_reg and vsel_mask fields in their descriptor and then use this
2215 * as their set_voltage_vsel operation, saving some code.
2216 */
2217 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2218 {
2219 int ret;
2220
2221 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2222
2223 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2224 rdev->desc->vsel_mask, sel);
2225 if (ret)
2226 return ret;
2227
2228 if (rdev->desc->apply_bit)
2229 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2230 rdev->desc->apply_bit,
2231 rdev->desc->apply_bit);
2232 return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2235
2236 /**
2237 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2238 *
2239 * @rdev: Regulator to operate on
2240 * @min_uV: Lower bound for voltage
2241 * @max_uV: Upper bound for voltage
2242 *
2243 * Drivers implementing set_voltage_sel() and list_voltage() can use
2244 * this as their map_voltage() operation. It will find a suitable
2245 * voltage by calling list_voltage() until it gets something in bounds
2246 * for the requested voltages.
2247 */
2248 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2249 int min_uV, int max_uV)
2250 {
2251 int best_val = INT_MAX;
2252 int selector = 0;
2253 int i, ret;
2254
2255 /* Find the smallest voltage that falls within the specified
2256 * range.
2257 */
2258 for (i = 0; i < rdev->desc->n_voltages; i++) {
2259 ret = rdev->desc->ops->list_voltage(rdev, i);
2260 if (ret < 0)
2261 continue;
2262
2263 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2264 best_val = ret;
2265 selector = i;
2266 }
2267 }
2268
2269 if (best_val != INT_MAX)
2270 return selector;
2271 else
2272 return -EINVAL;
2273 }
2274 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2275
2276 /**
2277 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2278 *
2279 * @rdev: Regulator to operate on
2280 * @min_uV: Lower bound for voltage
2281 * @max_uV: Upper bound for voltage
2282 *
2283 * Drivers that have ascendant voltage list can use this as their
2284 * map_voltage() operation.
2285 */
2286 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2287 int min_uV, int max_uV)
2288 {
2289 int i, ret;
2290
2291 for (i = 0; i < rdev->desc->n_voltages; i++) {
2292 ret = rdev->desc->ops->list_voltage(rdev, i);
2293 if (ret < 0)
2294 continue;
2295
2296 if (ret > max_uV)
2297 break;
2298
2299 if (ret >= min_uV && ret <= max_uV)
2300 return i;
2301 }
2302
2303 return -EINVAL;
2304 }
2305 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2306
2307 /**
2308 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2309 *
2310 * @rdev: Regulator to operate on
2311 * @min_uV: Lower bound for voltage
2312 * @max_uV: Upper bound for voltage
2313 *
2314 * Drivers providing min_uV and uV_step in their regulator_desc can
2315 * use this as their map_voltage() operation.
2316 */
2317 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2318 int min_uV, int max_uV)
2319 {
2320 int ret, voltage;
2321
2322 /* Allow uV_step to be 0 for fixed voltage */
2323 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2324 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2325 return 0;
2326 else
2327 return -EINVAL;
2328 }
2329
2330 if (!rdev->desc->uV_step) {
2331 BUG_ON(!rdev->desc->uV_step);
2332 return -EINVAL;
2333 }
2334
2335 if (min_uV < rdev->desc->min_uV)
2336 min_uV = rdev->desc->min_uV;
2337
2338 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2339 if (ret < 0)
2340 return ret;
2341
2342 ret += rdev->desc->linear_min_sel;
2343
2344 /* Map back into a voltage to verify we're still in bounds */
2345 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2346 if (voltage < min_uV || voltage > max_uV)
2347 return -EINVAL;
2348
2349 return ret;
2350 }
2351 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2352
2353 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2354 int min_uV, int max_uV)
2355 {
2356 int ret;
2357 int delay = 0;
2358 int best_val = 0;
2359 unsigned int selector;
2360 int old_selector = -1;
2361
2362 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2363
2364 min_uV += rdev->constraints->uV_offset;
2365 max_uV += rdev->constraints->uV_offset;
2366
2367 /*
2368 * If we can't obtain the old selector there is not enough
2369 * info to call set_voltage_time_sel().
2370 */
2371 if (_regulator_is_enabled(rdev) &&
2372 rdev->desc->ops->set_voltage_time_sel &&
2373 rdev->desc->ops->get_voltage_sel) {
2374 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2375 if (old_selector < 0)
2376 return old_selector;
2377 }
2378
2379 if (rdev->desc->ops->set_voltage) {
2380 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2381 &selector);
2382
2383 if (ret >= 0) {
2384 if (rdev->desc->ops->list_voltage)
2385 best_val = rdev->desc->ops->list_voltage(rdev,
2386 selector);
2387 else
2388 best_val = _regulator_get_voltage(rdev);
2389 }
2390
2391 } else if (rdev->desc->ops->set_voltage_sel) {
2392 if (rdev->desc->ops->map_voltage) {
2393 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2394 max_uV);
2395 } else {
2396 if (rdev->desc->ops->list_voltage ==
2397 regulator_list_voltage_linear)
2398 ret = regulator_map_voltage_linear(rdev,
2399 min_uV, max_uV);
2400 else
2401 ret = regulator_map_voltage_iterate(rdev,
2402 min_uV, max_uV);
2403 }
2404
2405 if (ret >= 0) {
2406 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2407 if (min_uV <= best_val && max_uV >= best_val) {
2408 selector = ret;
2409 if (old_selector == selector)
2410 ret = 0;
2411 else
2412 ret = rdev->desc->ops->set_voltage_sel(
2413 rdev, ret);
2414 } else {
2415 ret = -EINVAL;
2416 }
2417 }
2418 } else {
2419 ret = -EINVAL;
2420 }
2421
2422 /* Call set_voltage_time_sel if successfully obtained old_selector */
2423 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2424 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2425
2426 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2427 old_selector, selector);
2428 if (delay < 0) {
2429 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2430 delay);
2431 delay = 0;
2432 }
2433
2434 /* Insert any necessary delays */
2435 if (delay >= 1000) {
2436 mdelay(delay / 1000);
2437 udelay(delay % 1000);
2438 } else if (delay) {
2439 udelay(delay);
2440 }
2441 }
2442
2443 if (ret == 0 && best_val >= 0) {
2444 unsigned long data = best_val;
2445
2446 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2447 (void *)data);
2448 }
2449
2450 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2451
2452 return ret;
2453 }
2454
2455 /**
2456 * regulator_set_voltage - set regulator output voltage
2457 * @regulator: regulator source
2458 * @min_uV: Minimum required voltage in uV
2459 * @max_uV: Maximum acceptable voltage in uV
2460 *
2461 * Sets a voltage regulator to the desired output voltage. This can be set
2462 * during any regulator state. IOW, regulator can be disabled or enabled.
2463 *
2464 * If the regulator is enabled then the voltage will change to the new value
2465 * immediately otherwise if the regulator is disabled the regulator will
2466 * output at the new voltage when enabled.
2467 *
2468 * NOTE: If the regulator is shared between several devices then the lowest
2469 * request voltage that meets the system constraints will be used.
2470 * Regulator system constraints must be set for this regulator before
2471 * calling this function otherwise this call will fail.
2472 */
2473 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2474 {
2475 struct regulator_dev *rdev = regulator->rdev;
2476 int ret = 0;
2477 int old_min_uV, old_max_uV;
2478
2479 mutex_lock(&rdev->mutex);
2480
2481 /* If we're setting the same range as last time the change
2482 * should be a noop (some cpufreq implementations use the same
2483 * voltage for multiple frequencies, for example).
2484 */
2485 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2486 goto out;
2487
2488 /* sanity check */
2489 if (!rdev->desc->ops->set_voltage &&
2490 !rdev->desc->ops->set_voltage_sel) {
2491 ret = -EINVAL;
2492 goto out;
2493 }
2494
2495 /* constraints check */
2496 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2497 if (ret < 0)
2498 goto out;
2499
2500 /* restore original values in case of error */
2501 old_min_uV = regulator->min_uV;
2502 old_max_uV = regulator->max_uV;
2503 regulator->min_uV = min_uV;
2504 regulator->max_uV = max_uV;
2505
2506 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2507 if (ret < 0)
2508 goto out2;
2509
2510 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2511 if (ret < 0)
2512 goto out2;
2513
2514 out:
2515 mutex_unlock(&rdev->mutex);
2516 return ret;
2517 out2:
2518 regulator->min_uV = old_min_uV;
2519 regulator->max_uV = old_max_uV;
2520 mutex_unlock(&rdev->mutex);
2521 return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2524
2525 /**
2526 * regulator_set_voltage_time - get raise/fall time
2527 * @regulator: regulator source
2528 * @old_uV: starting voltage in microvolts
2529 * @new_uV: target voltage in microvolts
2530 *
2531 * Provided with the starting and ending voltage, this function attempts to
2532 * calculate the time in microseconds required to rise or fall to this new
2533 * voltage.
2534 */
2535 int regulator_set_voltage_time(struct regulator *regulator,
2536 int old_uV, int new_uV)
2537 {
2538 struct regulator_dev *rdev = regulator->rdev;
2539 struct regulator_ops *ops = rdev->desc->ops;
2540 int old_sel = -1;
2541 int new_sel = -1;
2542 int voltage;
2543 int i;
2544
2545 /* Currently requires operations to do this */
2546 if (!ops->list_voltage || !ops->set_voltage_time_sel
2547 || !rdev->desc->n_voltages)
2548 return -EINVAL;
2549
2550 for (i = 0; i < rdev->desc->n_voltages; i++) {
2551 /* We only look for exact voltage matches here */
2552 voltage = regulator_list_voltage(regulator, i);
2553 if (voltage < 0)
2554 return -EINVAL;
2555 if (voltage == 0)
2556 continue;
2557 if (voltage == old_uV)
2558 old_sel = i;
2559 if (voltage == new_uV)
2560 new_sel = i;
2561 }
2562
2563 if (old_sel < 0 || new_sel < 0)
2564 return -EINVAL;
2565
2566 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2569
2570 /**
2571 * regulator_set_voltage_time_sel - get raise/fall time
2572 * @rdev: regulator source device
2573 * @old_selector: selector for starting voltage
2574 * @new_selector: selector for target voltage
2575 *
2576 * Provided with the starting and target voltage selectors, this function
2577 * returns time in microseconds required to rise or fall to this new voltage
2578 *
2579 * Drivers providing ramp_delay in regulation_constraints can use this as their
2580 * set_voltage_time_sel() operation.
2581 */
2582 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2583 unsigned int old_selector,
2584 unsigned int new_selector)
2585 {
2586 unsigned int ramp_delay = 0;
2587 int old_volt, new_volt;
2588
2589 if (rdev->constraints->ramp_delay)
2590 ramp_delay = rdev->constraints->ramp_delay;
2591 else if (rdev->desc->ramp_delay)
2592 ramp_delay = rdev->desc->ramp_delay;
2593
2594 if (ramp_delay == 0) {
2595 rdev_warn(rdev, "ramp_delay not set\n");
2596 return 0;
2597 }
2598
2599 /* sanity check */
2600 if (!rdev->desc->ops->list_voltage)
2601 return -EINVAL;
2602
2603 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2604 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2605
2606 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2607 }
2608 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2609
2610 /**
2611 * regulator_sync_voltage - re-apply last regulator output voltage
2612 * @regulator: regulator source
2613 *
2614 * Re-apply the last configured voltage. This is intended to be used
2615 * where some external control source the consumer is cooperating with
2616 * has caused the configured voltage to change.
2617 */
2618 int regulator_sync_voltage(struct regulator *regulator)
2619 {
2620 struct regulator_dev *rdev = regulator->rdev;
2621 int ret, min_uV, max_uV;
2622
2623 mutex_lock(&rdev->mutex);
2624
2625 if (!rdev->desc->ops->set_voltage &&
2626 !rdev->desc->ops->set_voltage_sel) {
2627 ret = -EINVAL;
2628 goto out;
2629 }
2630
2631 /* This is only going to work if we've had a voltage configured. */
2632 if (!regulator->min_uV && !regulator->max_uV) {
2633 ret = -EINVAL;
2634 goto out;
2635 }
2636
2637 min_uV = regulator->min_uV;
2638 max_uV = regulator->max_uV;
2639
2640 /* This should be a paranoia check... */
2641 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2642 if (ret < 0)
2643 goto out;
2644
2645 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2646 if (ret < 0)
2647 goto out;
2648
2649 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2650
2651 out:
2652 mutex_unlock(&rdev->mutex);
2653 return ret;
2654 }
2655 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2656
2657 static int _regulator_get_voltage(struct regulator_dev *rdev)
2658 {
2659 int sel, ret;
2660
2661 if (rdev->desc->ops->get_voltage_sel) {
2662 sel = rdev->desc->ops->get_voltage_sel(rdev);
2663 if (sel < 0)
2664 return sel;
2665 ret = rdev->desc->ops->list_voltage(rdev, sel);
2666 } else if (rdev->desc->ops->get_voltage) {
2667 ret = rdev->desc->ops->get_voltage(rdev);
2668 } else if (rdev->desc->ops->list_voltage) {
2669 ret = rdev->desc->ops->list_voltage(rdev, 0);
2670 } else {
2671 return -EINVAL;
2672 }
2673
2674 if (ret < 0)
2675 return ret;
2676 return ret - rdev->constraints->uV_offset;
2677 }
2678
2679 /**
2680 * regulator_get_voltage - get regulator output voltage
2681 * @regulator: regulator source
2682 *
2683 * This returns the current regulator voltage in uV.
2684 *
2685 * NOTE: If the regulator is disabled it will return the voltage value. This
2686 * function should not be used to determine regulator state.
2687 */
2688 int regulator_get_voltage(struct regulator *regulator)
2689 {
2690 int ret;
2691
2692 mutex_lock(&regulator->rdev->mutex);
2693
2694 ret = _regulator_get_voltage(regulator->rdev);
2695
2696 mutex_unlock(&regulator->rdev->mutex);
2697
2698 return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2701
2702 /**
2703 * regulator_set_current_limit - set regulator output current limit
2704 * @regulator: regulator source
2705 * @min_uA: Minimum supported current in uA
2706 * @max_uA: Maximum supported current in uA
2707 *
2708 * Sets current sink to the desired output current. This can be set during
2709 * any regulator state. IOW, regulator can be disabled or enabled.
2710 *
2711 * If the regulator is enabled then the current will change to the new value
2712 * immediately otherwise if the regulator is disabled the regulator will
2713 * output at the new current when enabled.
2714 *
2715 * NOTE: Regulator system constraints must be set for this regulator before
2716 * calling this function otherwise this call will fail.
2717 */
2718 int regulator_set_current_limit(struct regulator *regulator,
2719 int min_uA, int max_uA)
2720 {
2721 struct regulator_dev *rdev = regulator->rdev;
2722 int ret;
2723
2724 mutex_lock(&rdev->mutex);
2725
2726 /* sanity check */
2727 if (!rdev->desc->ops->set_current_limit) {
2728 ret = -EINVAL;
2729 goto out;
2730 }
2731
2732 /* constraints check */
2733 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2734 if (ret < 0)
2735 goto out;
2736
2737 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2738 out:
2739 mutex_unlock(&rdev->mutex);
2740 return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2743
2744 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2745 {
2746 int ret;
2747
2748 mutex_lock(&rdev->mutex);
2749
2750 /* sanity check */
2751 if (!rdev->desc->ops->get_current_limit) {
2752 ret = -EINVAL;
2753 goto out;
2754 }
2755
2756 ret = rdev->desc->ops->get_current_limit(rdev);
2757 out:
2758 mutex_unlock(&rdev->mutex);
2759 return ret;
2760 }
2761
2762 /**
2763 * regulator_get_current_limit - get regulator output current
2764 * @regulator: regulator source
2765 *
2766 * This returns the current supplied by the specified current sink in uA.
2767 *
2768 * NOTE: If the regulator is disabled it will return the current value. This
2769 * function should not be used to determine regulator state.
2770 */
2771 int regulator_get_current_limit(struct regulator *regulator)
2772 {
2773 return _regulator_get_current_limit(regulator->rdev);
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2776
2777 /**
2778 * regulator_set_mode - set regulator operating mode
2779 * @regulator: regulator source
2780 * @mode: operating mode - one of the REGULATOR_MODE constants
2781 *
2782 * Set regulator operating mode to increase regulator efficiency or improve
2783 * regulation performance.
2784 *
2785 * NOTE: Regulator system constraints must be set for this regulator before
2786 * calling this function otherwise this call will fail.
2787 */
2788 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2789 {
2790 struct regulator_dev *rdev = regulator->rdev;
2791 int ret;
2792 int regulator_curr_mode;
2793
2794 mutex_lock(&rdev->mutex);
2795
2796 /* sanity check */
2797 if (!rdev->desc->ops->set_mode) {
2798 ret = -EINVAL;
2799 goto out;
2800 }
2801
2802 /* return if the same mode is requested */
2803 if (rdev->desc->ops->get_mode) {
2804 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2805 if (regulator_curr_mode == mode) {
2806 ret = 0;
2807 goto out;
2808 }
2809 }
2810
2811 /* constraints check */
2812 ret = regulator_mode_constrain(rdev, &mode);
2813 if (ret < 0)
2814 goto out;
2815
2816 ret = rdev->desc->ops->set_mode(rdev, mode);
2817 out:
2818 mutex_unlock(&rdev->mutex);
2819 return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(regulator_set_mode);
2822
2823 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2824 {
2825 int ret;
2826
2827 mutex_lock(&rdev->mutex);
2828
2829 /* sanity check */
2830 if (!rdev->desc->ops->get_mode) {
2831 ret = -EINVAL;
2832 goto out;
2833 }
2834
2835 ret = rdev->desc->ops->get_mode(rdev);
2836 out:
2837 mutex_unlock(&rdev->mutex);
2838 return ret;
2839 }
2840
2841 /**
2842 * regulator_get_mode - get regulator operating mode
2843 * @regulator: regulator source
2844 *
2845 * Get the current regulator operating mode.
2846 */
2847 unsigned int regulator_get_mode(struct regulator *regulator)
2848 {
2849 return _regulator_get_mode(regulator->rdev);
2850 }
2851 EXPORT_SYMBOL_GPL(regulator_get_mode);
2852
2853 /**
2854 * regulator_set_optimum_mode - set regulator optimum operating mode
2855 * @regulator: regulator source
2856 * @uA_load: load current
2857 *
2858 * Notifies the regulator core of a new device load. This is then used by
2859 * DRMS (if enabled by constraints) to set the most efficient regulator
2860 * operating mode for the new regulator loading.
2861 *
2862 * Consumer devices notify their supply regulator of the maximum power
2863 * they will require (can be taken from device datasheet in the power
2864 * consumption tables) when they change operational status and hence power
2865 * state. Examples of operational state changes that can affect power
2866 * consumption are :-
2867 *
2868 * o Device is opened / closed.
2869 * o Device I/O is about to begin or has just finished.
2870 * o Device is idling in between work.
2871 *
2872 * This information is also exported via sysfs to userspace.
2873 *
2874 * DRMS will sum the total requested load on the regulator and change
2875 * to the most efficient operating mode if platform constraints allow.
2876 *
2877 * Returns the new regulator mode or error.
2878 */
2879 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2880 {
2881 struct regulator_dev *rdev = regulator->rdev;
2882 struct regulator *consumer;
2883 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2884 unsigned int mode;
2885
2886 if (rdev->supply)
2887 input_uV = regulator_get_voltage(rdev->supply);
2888
2889 mutex_lock(&rdev->mutex);
2890
2891 /*
2892 * first check to see if we can set modes at all, otherwise just
2893 * tell the consumer everything is OK.
2894 */
2895 regulator->uA_load = uA_load;
2896 ret = regulator_check_drms(rdev);
2897 if (ret < 0) {
2898 ret = 0;
2899 goto out;
2900 }
2901
2902 if (!rdev->desc->ops->get_optimum_mode)
2903 goto out;
2904
2905 /*
2906 * we can actually do this so any errors are indicators of
2907 * potential real failure.
2908 */
2909 ret = -EINVAL;
2910
2911 if (!rdev->desc->ops->set_mode)
2912 goto out;
2913
2914 /* get output voltage */
2915 output_uV = _regulator_get_voltage(rdev);
2916 if (output_uV <= 0) {
2917 rdev_err(rdev, "invalid output voltage found\n");
2918 goto out;
2919 }
2920
2921 /* No supply? Use constraint voltage */
2922 if (input_uV <= 0)
2923 input_uV = rdev->constraints->input_uV;
2924 if (input_uV <= 0) {
2925 rdev_err(rdev, "invalid input voltage found\n");
2926 goto out;
2927 }
2928
2929 /* calc total requested load for this regulator */
2930 list_for_each_entry(consumer, &rdev->consumer_list, list)
2931 total_uA_load += consumer->uA_load;
2932
2933 mode = rdev->desc->ops->get_optimum_mode(rdev,
2934 input_uV, output_uV,
2935 total_uA_load);
2936 ret = regulator_mode_constrain(rdev, &mode);
2937 if (ret < 0) {
2938 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2939 total_uA_load, input_uV, output_uV);
2940 goto out;
2941 }
2942
2943 ret = rdev->desc->ops->set_mode(rdev, mode);
2944 if (ret < 0) {
2945 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2946 goto out;
2947 }
2948 ret = mode;
2949 out:
2950 mutex_unlock(&rdev->mutex);
2951 return ret;
2952 }
2953 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2954
2955 /**
2956 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2957 *
2958 * @rdev: device to operate on.
2959 * @enable: state to set.
2960 */
2961 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2962 {
2963 unsigned int val;
2964
2965 if (enable)
2966 val = rdev->desc->bypass_mask;
2967 else
2968 val = 0;
2969
2970 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2971 rdev->desc->bypass_mask, val);
2972 }
2973 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2974
2975 /**
2976 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2977 *
2978 * @rdev: device to operate on.
2979 * @enable: current state.
2980 */
2981 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2982 {
2983 unsigned int val;
2984 int ret;
2985
2986 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2987 if (ret != 0)
2988 return ret;
2989
2990 *enable = val & rdev->desc->bypass_mask;
2991
2992 return 0;
2993 }
2994 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2995
2996 /**
2997 * regulator_allow_bypass - allow the regulator to go into bypass mode
2998 *
2999 * @regulator: Regulator to configure
3000 * @enable: enable or disable bypass mode
3001 *
3002 * Allow the regulator to go into bypass mode if all other consumers
3003 * for the regulator also enable bypass mode and the machine
3004 * constraints allow this. Bypass mode means that the regulator is
3005 * simply passing the input directly to the output with no regulation.
3006 */
3007 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3008 {
3009 struct regulator_dev *rdev = regulator->rdev;
3010 int ret = 0;
3011
3012 if (!rdev->desc->ops->set_bypass)
3013 return 0;
3014
3015 if (rdev->constraints &&
3016 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3017 return 0;
3018
3019 mutex_lock(&rdev->mutex);
3020
3021 if (enable && !regulator->bypass) {
3022 rdev->bypass_count++;
3023
3024 if (rdev->bypass_count == rdev->open_count) {
3025 ret = rdev->desc->ops->set_bypass(rdev, enable);
3026 if (ret != 0)
3027 rdev->bypass_count--;
3028 }
3029
3030 } else if (!enable && regulator->bypass) {
3031 rdev->bypass_count--;
3032
3033 if (rdev->bypass_count != rdev->open_count) {
3034 ret = rdev->desc->ops->set_bypass(rdev, enable);
3035 if (ret != 0)
3036 rdev->bypass_count++;
3037 }
3038 }
3039
3040 if (ret == 0)
3041 regulator->bypass = enable;
3042
3043 mutex_unlock(&rdev->mutex);
3044
3045 return ret;
3046 }
3047 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3048
3049 /**
3050 * regulator_register_notifier - register regulator event notifier
3051 * @regulator: regulator source
3052 * @nb: notifier block
3053 *
3054 * Register notifier block to receive regulator events.
3055 */
3056 int regulator_register_notifier(struct regulator *regulator,
3057 struct notifier_block *nb)
3058 {
3059 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3060 nb);
3061 }
3062 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3063
3064 /**
3065 * regulator_unregister_notifier - unregister regulator event notifier
3066 * @regulator: regulator source
3067 * @nb: notifier block
3068 *
3069 * Unregister regulator event notifier block.
3070 */
3071 int regulator_unregister_notifier(struct regulator *regulator,
3072 struct notifier_block *nb)
3073 {
3074 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3075 nb);
3076 }
3077 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3078
3079 /* notify regulator consumers and downstream regulator consumers.
3080 * Note mutex must be held by caller.
3081 */
3082 static void _notifier_call_chain(struct regulator_dev *rdev,
3083 unsigned long event, void *data)
3084 {
3085 /* call rdev chain first */
3086 blocking_notifier_call_chain(&rdev->notifier, event, data);
3087 }
3088
3089 /**
3090 * regulator_bulk_get - get multiple regulator consumers
3091 *
3092 * @dev: Device to supply
3093 * @num_consumers: Number of consumers to register
3094 * @consumers: Configuration of consumers; clients are stored here.
3095 *
3096 * @return 0 on success, an errno on failure.
3097 *
3098 * This helper function allows drivers to get several regulator
3099 * consumers in one operation. If any of the regulators cannot be
3100 * acquired then any regulators that were allocated will be freed
3101 * before returning to the caller.
3102 */
3103 int regulator_bulk_get(struct device *dev, int num_consumers,
3104 struct regulator_bulk_data *consumers)
3105 {
3106 int i;
3107 int ret;
3108
3109 for (i = 0; i < num_consumers; i++)
3110 consumers[i].consumer = NULL;
3111
3112 for (i = 0; i < num_consumers; i++) {
3113 consumers[i].consumer = regulator_get(dev,
3114 consumers[i].supply);
3115 if (IS_ERR(consumers[i].consumer)) {
3116 ret = PTR_ERR(consumers[i].consumer);
3117 dev_err(dev, "Failed to get supply '%s': %d\n",
3118 consumers[i].supply, ret);
3119 consumers[i].consumer = NULL;
3120 goto err;
3121 }
3122 }
3123
3124 return 0;
3125
3126 err:
3127 while (--i >= 0)
3128 regulator_put(consumers[i].consumer);
3129
3130 return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3133
3134 /**
3135 * devm_regulator_bulk_get - managed get multiple regulator consumers
3136 *
3137 * @dev: Device to supply
3138 * @num_consumers: Number of consumers to register
3139 * @consumers: Configuration of consumers; clients are stored here.
3140 *
3141 * @return 0 on success, an errno on failure.
3142 *
3143 * This helper function allows drivers to get several regulator
3144 * consumers in one operation with management, the regulators will
3145 * automatically be freed when the device is unbound. If any of the
3146 * regulators cannot be acquired then any regulators that were
3147 * allocated will be freed before returning to the caller.
3148 */
3149 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3150 struct regulator_bulk_data *consumers)
3151 {
3152 int i;
3153 int ret;
3154
3155 for (i = 0; i < num_consumers; i++)
3156 consumers[i].consumer = NULL;
3157
3158 for (i = 0; i < num_consumers; i++) {
3159 consumers[i].consumer = devm_regulator_get(dev,
3160 consumers[i].supply);
3161 if (IS_ERR(consumers[i].consumer)) {
3162 ret = PTR_ERR(consumers[i].consumer);
3163 dev_err(dev, "Failed to get supply '%s': %d\n",
3164 consumers[i].supply, ret);
3165 consumers[i].consumer = NULL;
3166 goto err;
3167 }
3168 }
3169
3170 return 0;
3171
3172 err:
3173 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3174 devm_regulator_put(consumers[i].consumer);
3175
3176 return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3179
3180 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3181 {
3182 struct regulator_bulk_data *bulk = data;
3183
3184 bulk->ret = regulator_enable(bulk->consumer);
3185 }
3186
3187 /**
3188 * regulator_bulk_enable - enable multiple regulator consumers
3189 *
3190 * @num_consumers: Number of consumers
3191 * @consumers: Consumer data; clients are stored here.
3192 * @return 0 on success, an errno on failure
3193 *
3194 * This convenience API allows consumers to enable multiple regulator
3195 * clients in a single API call. If any consumers cannot be enabled
3196 * then any others that were enabled will be disabled again prior to
3197 * return.
3198 */
3199 int regulator_bulk_enable(int num_consumers,
3200 struct regulator_bulk_data *consumers)
3201 {
3202 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3203 int i;
3204 int ret = 0;
3205
3206 for (i = 0; i < num_consumers; i++) {
3207 if (consumers[i].consumer->always_on)
3208 consumers[i].ret = 0;
3209 else
3210 async_schedule_domain(regulator_bulk_enable_async,
3211 &consumers[i], &async_domain);
3212 }
3213
3214 async_synchronize_full_domain(&async_domain);
3215
3216 /* If any consumer failed we need to unwind any that succeeded */
3217 for (i = 0; i < num_consumers; i++) {
3218 if (consumers[i].ret != 0) {
3219 ret = consumers[i].ret;
3220 goto err;
3221 }
3222 }
3223
3224 return 0;
3225
3226 err:
3227 for (i = 0; i < num_consumers; i++) {
3228 if (consumers[i].ret < 0)
3229 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3230 consumers[i].ret);
3231 else
3232 regulator_disable(consumers[i].consumer);
3233 }
3234
3235 return ret;
3236 }
3237 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3238
3239 /**
3240 * regulator_bulk_disable - disable multiple regulator consumers
3241 *
3242 * @num_consumers: Number of consumers
3243 * @consumers: Consumer data; clients are stored here.
3244 * @return 0 on success, an errno on failure
3245 *
3246 * This convenience API allows consumers to disable multiple regulator
3247 * clients in a single API call. If any consumers cannot be disabled
3248 * then any others that were disabled will be enabled again prior to
3249 * return.
3250 */
3251 int regulator_bulk_disable(int num_consumers,
3252 struct regulator_bulk_data *consumers)
3253 {
3254 int i;
3255 int ret, r;
3256
3257 for (i = num_consumers - 1; i >= 0; --i) {
3258 ret = regulator_disable(consumers[i].consumer);
3259 if (ret != 0)
3260 goto err;
3261 }
3262
3263 return 0;
3264
3265 err:
3266 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3267 for (++i; i < num_consumers; ++i) {
3268 r = regulator_enable(consumers[i].consumer);
3269 if (r != 0)
3270 pr_err("Failed to reename %s: %d\n",
3271 consumers[i].supply, r);
3272 }
3273
3274 return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3277
3278 /**
3279 * regulator_bulk_force_disable - force disable multiple regulator consumers
3280 *
3281 * @num_consumers: Number of consumers
3282 * @consumers: Consumer data; clients are stored here.
3283 * @return 0 on success, an errno on failure
3284 *
3285 * This convenience API allows consumers to forcibly disable multiple regulator
3286 * clients in a single API call.
3287 * NOTE: This should be used for situations when device damage will
3288 * likely occur if the regulators are not disabled (e.g. over temp).
3289 * Although regulator_force_disable function call for some consumers can
3290 * return error numbers, the function is called for all consumers.
3291 */
3292 int regulator_bulk_force_disable(int num_consumers,
3293 struct regulator_bulk_data *consumers)
3294 {
3295 int i;
3296 int ret;
3297
3298 for (i = 0; i < num_consumers; i++)
3299 consumers[i].ret =
3300 regulator_force_disable(consumers[i].consumer);
3301
3302 for (i = 0; i < num_consumers; i++) {
3303 if (consumers[i].ret != 0) {
3304 ret = consumers[i].ret;
3305 goto out;
3306 }
3307 }
3308
3309 return 0;
3310 out:
3311 return ret;
3312 }
3313 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3314
3315 /**
3316 * regulator_bulk_free - free multiple regulator consumers
3317 *
3318 * @num_consumers: Number of consumers
3319 * @consumers: Consumer data; clients are stored here.
3320 *
3321 * This convenience API allows consumers to free multiple regulator
3322 * clients in a single API call.
3323 */
3324 void regulator_bulk_free(int num_consumers,
3325 struct regulator_bulk_data *consumers)
3326 {
3327 int i;
3328
3329 for (i = 0; i < num_consumers; i++) {
3330 regulator_put(consumers[i].consumer);
3331 consumers[i].consumer = NULL;
3332 }
3333 }
3334 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3335
3336 /**
3337 * regulator_notifier_call_chain - call regulator event notifier
3338 * @rdev: regulator source
3339 * @event: notifier block
3340 * @data: callback-specific data.
3341 *
3342 * Called by regulator drivers to notify clients a regulator event has
3343 * occurred. We also notify regulator clients downstream.
3344 * Note lock must be held by caller.
3345 */
3346 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3347 unsigned long event, void *data)
3348 {
3349 _notifier_call_chain(rdev, event, data);
3350 return NOTIFY_DONE;
3351
3352 }
3353 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3354
3355 /**
3356 * regulator_mode_to_status - convert a regulator mode into a status
3357 *
3358 * @mode: Mode to convert
3359 *
3360 * Convert a regulator mode into a status.
3361 */
3362 int regulator_mode_to_status(unsigned int mode)
3363 {
3364 switch (mode) {
3365 case REGULATOR_MODE_FAST:
3366 return REGULATOR_STATUS_FAST;
3367 case REGULATOR_MODE_NORMAL:
3368 return REGULATOR_STATUS_NORMAL;
3369 case REGULATOR_MODE_IDLE:
3370 return REGULATOR_STATUS_IDLE;
3371 case REGULATOR_MODE_STANDBY:
3372 return REGULATOR_STATUS_STANDBY;
3373 default:
3374 return REGULATOR_STATUS_UNDEFINED;
3375 }
3376 }
3377 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3378
3379 /*
3380 * To avoid cluttering sysfs (and memory) with useless state, only
3381 * create attributes that can be meaningfully displayed.
3382 */
3383 static int add_regulator_attributes(struct regulator_dev *rdev)
3384 {
3385 struct device *dev = &rdev->dev;
3386 struct regulator_ops *ops = rdev->desc->ops;
3387 int status = 0;
3388
3389 /* some attributes need specific methods to be displayed */
3390 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3391 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3392 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3393 status = device_create_file(dev, &dev_attr_microvolts);
3394 if (status < 0)
3395 return status;
3396 }
3397 if (ops->get_current_limit) {
3398 status = device_create_file(dev, &dev_attr_microamps);
3399 if (status < 0)
3400 return status;
3401 }
3402 if (ops->get_mode) {
3403 status = device_create_file(dev, &dev_attr_opmode);
3404 if (status < 0)
3405 return status;
3406 }
3407 if (rdev->ena_pin || ops->is_enabled) {
3408 status = device_create_file(dev, &dev_attr_state);
3409 if (status < 0)
3410 return status;
3411 }
3412 if (ops->get_status) {
3413 status = device_create_file(dev, &dev_attr_status);
3414 if (status < 0)
3415 return status;
3416 }
3417 if (ops->get_bypass) {
3418 status = device_create_file(dev, &dev_attr_bypass);
3419 if (status < 0)
3420 return status;
3421 }
3422
3423 /* some attributes are type-specific */
3424 if (rdev->desc->type == REGULATOR_CURRENT) {
3425 status = device_create_file(dev, &dev_attr_requested_microamps);
3426 if (status < 0)
3427 return status;
3428 }
3429
3430 /* all the other attributes exist to support constraints;
3431 * don't show them if there are no constraints, or if the
3432 * relevant supporting methods are missing.
3433 */
3434 if (!rdev->constraints)
3435 return status;
3436
3437 /* constraints need specific supporting methods */
3438 if (ops->set_voltage || ops->set_voltage_sel) {
3439 status = device_create_file(dev, &dev_attr_min_microvolts);
3440 if (status < 0)
3441 return status;
3442 status = device_create_file(dev, &dev_attr_max_microvolts);
3443 if (status < 0)
3444 return status;
3445 }
3446 if (ops->set_current_limit) {
3447 status = device_create_file(dev, &dev_attr_min_microamps);
3448 if (status < 0)
3449 return status;
3450 status = device_create_file(dev, &dev_attr_max_microamps);
3451 if (status < 0)
3452 return status;
3453 }
3454
3455 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3456 if (status < 0)
3457 return status;
3458 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3459 if (status < 0)
3460 return status;
3461 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3462 if (status < 0)
3463 return status;
3464
3465 if (ops->set_suspend_voltage) {
3466 status = device_create_file(dev,
3467 &dev_attr_suspend_standby_microvolts);
3468 if (status < 0)
3469 return status;
3470 status = device_create_file(dev,
3471 &dev_attr_suspend_mem_microvolts);
3472 if (status < 0)
3473 return status;
3474 status = device_create_file(dev,
3475 &dev_attr_suspend_disk_microvolts);
3476 if (status < 0)
3477 return status;
3478 }
3479
3480 if (ops->set_suspend_mode) {
3481 status = device_create_file(dev,
3482 &dev_attr_suspend_standby_mode);
3483 if (status < 0)
3484 return status;
3485 status = device_create_file(dev,
3486 &dev_attr_suspend_mem_mode);
3487 if (status < 0)
3488 return status;
3489 status = device_create_file(dev,
3490 &dev_attr_suspend_disk_mode);
3491 if (status < 0)
3492 return status;
3493 }
3494
3495 return status;
3496 }
3497
3498 static void rdev_init_debugfs(struct regulator_dev *rdev)
3499 {
3500 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3501 if (!rdev->debugfs) {
3502 rdev_warn(rdev, "Failed to create debugfs directory\n");
3503 return;
3504 }
3505
3506 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3507 &rdev->use_count);
3508 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3509 &rdev->open_count);
3510 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3511 &rdev->bypass_count);
3512 }
3513
3514 /**
3515 * regulator_register - register regulator
3516 * @regulator_desc: regulator to register
3517 * @config: runtime configuration for regulator
3518 *
3519 * Called by regulator drivers to register a regulator.
3520 * Returns a valid pointer to struct regulator_dev on success
3521 * or an ERR_PTR() on error.
3522 */
3523 struct regulator_dev *
3524 regulator_register(const struct regulator_desc *regulator_desc,
3525 const struct regulator_config *config)
3526 {
3527 const struct regulation_constraints *constraints = NULL;
3528 const struct regulator_init_data *init_data;
3529 static atomic_t regulator_no = ATOMIC_INIT(0);
3530 struct regulator_dev *rdev;
3531 struct device *dev;
3532 int ret, i;
3533 const char *supply = NULL;
3534
3535 if (regulator_desc == NULL || config == NULL)
3536 return ERR_PTR(-EINVAL);
3537
3538 dev = config->dev;
3539 WARN_ON(!dev);
3540
3541 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3542 return ERR_PTR(-EINVAL);
3543
3544 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3545 regulator_desc->type != REGULATOR_CURRENT)
3546 return ERR_PTR(-EINVAL);
3547
3548 /* Only one of each should be implemented */
3549 WARN_ON(regulator_desc->ops->get_voltage &&
3550 regulator_desc->ops->get_voltage_sel);
3551 WARN_ON(regulator_desc->ops->set_voltage &&
3552 regulator_desc->ops->set_voltage_sel);
3553
3554 /* If we're using selectors we must implement list_voltage. */
3555 if (regulator_desc->ops->get_voltage_sel &&
3556 !regulator_desc->ops->list_voltage) {
3557 return ERR_PTR(-EINVAL);
3558 }
3559 if (regulator_desc->ops->set_voltage_sel &&
3560 !regulator_desc->ops->list_voltage) {
3561 return ERR_PTR(-EINVAL);
3562 }
3563
3564 init_data = config->init_data;
3565
3566 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3567 if (rdev == NULL)
3568 return ERR_PTR(-ENOMEM);
3569
3570 mutex_lock(&regulator_list_mutex);
3571
3572 mutex_init(&rdev->mutex);
3573 rdev->reg_data = config->driver_data;
3574 rdev->owner = regulator_desc->owner;
3575 rdev->desc = regulator_desc;
3576 if (config->regmap)
3577 rdev->regmap = config->regmap;
3578 else if (dev_get_regmap(dev, NULL))
3579 rdev->regmap = dev_get_regmap(dev, NULL);
3580 else if (dev->parent)
3581 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3582 INIT_LIST_HEAD(&rdev->consumer_list);
3583 INIT_LIST_HEAD(&rdev->list);
3584 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3585 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3586
3587 /* preform any regulator specific init */
3588 if (init_data && init_data->regulator_init) {
3589 ret = init_data->regulator_init(rdev->reg_data);
3590 if (ret < 0)
3591 goto clean;
3592 }
3593
3594 /* register with sysfs */
3595 rdev->dev.class = &regulator_class;
3596 rdev->dev.of_node = config->of_node;
3597 rdev->dev.parent = dev;
3598 dev_set_name(&rdev->dev, "regulator.%d",
3599 atomic_inc_return(&regulator_no) - 1);
3600 ret = device_register(&rdev->dev);
3601 if (ret != 0) {
3602 put_device(&rdev->dev);
3603 goto clean;
3604 }
3605
3606 dev_set_drvdata(&rdev->dev, rdev);
3607
3608 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3609 ret = regulator_ena_gpio_request(rdev, config);
3610 if (ret != 0) {
3611 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3612 config->ena_gpio, ret);
3613 goto wash;
3614 }
3615
3616 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3617 rdev->ena_gpio_state = 1;
3618
3619 if (config->ena_gpio_invert)
3620 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3621 }
3622
3623 /* set regulator constraints */
3624 if (init_data)
3625 constraints = &init_data->constraints;
3626
3627 ret = set_machine_constraints(rdev, constraints);
3628 if (ret < 0)
3629 goto scrub;
3630
3631 /* add attributes supported by this regulator */
3632 ret = add_regulator_attributes(rdev);
3633 if (ret < 0)
3634 goto scrub;
3635
3636 if (init_data && init_data->supply_regulator)
3637 supply = init_data->supply_regulator;
3638 else if (regulator_desc->supply_name)
3639 supply = regulator_desc->supply_name;
3640
3641 if (supply) {
3642 struct regulator_dev *r;
3643
3644 r = regulator_dev_lookup(dev, supply, &ret);
3645
3646 if (ret == -ENODEV) {
3647 /*
3648 * No supply was specified for this regulator and
3649 * there will never be one.
3650 */
3651 ret = 0;
3652 goto add_dev;
3653 } else if (!r) {
3654 dev_err(dev, "Failed to find supply %s\n", supply);
3655 ret = -EPROBE_DEFER;
3656 goto scrub;
3657 }
3658
3659 ret = set_supply(rdev, r);
3660 if (ret < 0)
3661 goto scrub;
3662
3663 /* Enable supply if rail is enabled */
3664 if (_regulator_is_enabled(rdev)) {
3665 ret = regulator_enable(rdev->supply);
3666 if (ret < 0)
3667 goto scrub;
3668 }
3669 }
3670
3671 add_dev:
3672 /* add consumers devices */
3673 if (init_data) {
3674 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3675 ret = set_consumer_device_supply(rdev,
3676 init_data->consumer_supplies[i].dev_name,
3677 init_data->consumer_supplies[i].supply);
3678 if (ret < 0) {
3679 dev_err(dev, "Failed to set supply %s\n",
3680 init_data->consumer_supplies[i].supply);
3681 goto unset_supplies;
3682 }
3683 }
3684 }
3685
3686 list_add(&rdev->list, &regulator_list);
3687
3688 rdev_init_debugfs(rdev);
3689 out:
3690 mutex_unlock(&regulator_list_mutex);
3691 return rdev;
3692
3693 unset_supplies:
3694 unset_regulator_supplies(rdev);
3695
3696 scrub:
3697 if (rdev->supply)
3698 _regulator_put(rdev->supply);
3699 regulator_ena_gpio_free(rdev);
3700 kfree(rdev->constraints);
3701 wash:
3702 device_unregister(&rdev->dev);
3703 /* device core frees rdev */
3704 rdev = ERR_PTR(ret);
3705 goto out;
3706
3707 clean:
3708 kfree(rdev);
3709 rdev = ERR_PTR(ret);
3710 goto out;
3711 }
3712 EXPORT_SYMBOL_GPL(regulator_register);
3713
3714 /**
3715 * regulator_unregister - unregister regulator
3716 * @rdev: regulator to unregister
3717 *
3718 * Called by regulator drivers to unregister a regulator.
3719 */
3720 void regulator_unregister(struct regulator_dev *rdev)
3721 {
3722 if (rdev == NULL)
3723 return;
3724
3725 if (rdev->supply)
3726 regulator_put(rdev->supply);
3727 mutex_lock(&regulator_list_mutex);
3728 debugfs_remove_recursive(rdev->debugfs);
3729 flush_work(&rdev->disable_work.work);
3730 WARN_ON(rdev->open_count);
3731 unset_regulator_supplies(rdev);
3732 list_del(&rdev->list);
3733 kfree(rdev->constraints);
3734 regulator_ena_gpio_free(rdev);
3735 device_unregister(&rdev->dev);
3736 mutex_unlock(&regulator_list_mutex);
3737 }
3738 EXPORT_SYMBOL_GPL(regulator_unregister);
3739
3740 /**
3741 * regulator_suspend_prepare - prepare regulators for system wide suspend
3742 * @state: system suspend state
3743 *
3744 * Configure each regulator with it's suspend operating parameters for state.
3745 * This will usually be called by machine suspend code prior to supending.
3746 */
3747 int regulator_suspend_prepare(suspend_state_t state)
3748 {
3749 struct regulator_dev *rdev;
3750 int ret = 0;
3751
3752 /* ON is handled by regulator active state */
3753 if (state == PM_SUSPEND_ON)
3754 return -EINVAL;
3755
3756 mutex_lock(&regulator_list_mutex);
3757 list_for_each_entry(rdev, &regulator_list, list) {
3758
3759 mutex_lock(&rdev->mutex);
3760 ret = suspend_prepare(rdev, state);
3761 mutex_unlock(&rdev->mutex);
3762
3763 if (ret < 0) {
3764 rdev_err(rdev, "failed to prepare\n");
3765 goto out;
3766 }
3767 }
3768 out:
3769 mutex_unlock(&regulator_list_mutex);
3770 return ret;
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3773
3774 /**
3775 * regulator_suspend_finish - resume regulators from system wide suspend
3776 *
3777 * Turn on regulators that might be turned off by regulator_suspend_prepare
3778 * and that should be turned on according to the regulators properties.
3779 */
3780 int regulator_suspend_finish(void)
3781 {
3782 struct regulator_dev *rdev;
3783 int ret = 0, error;
3784
3785 mutex_lock(&regulator_list_mutex);
3786 list_for_each_entry(rdev, &regulator_list, list) {
3787 mutex_lock(&rdev->mutex);
3788 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3789 error = _regulator_do_enable(rdev);
3790 if (error)
3791 ret = error;
3792 } else {
3793 if (!has_full_constraints)
3794 goto unlock;
3795 if (!_regulator_is_enabled(rdev))
3796 goto unlock;
3797
3798 error = _regulator_do_disable(rdev);
3799 if (error)
3800 ret = error;
3801 }
3802 unlock:
3803 mutex_unlock(&rdev->mutex);
3804 }
3805 mutex_unlock(&regulator_list_mutex);
3806 return ret;
3807 }
3808 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3809
3810 /**
3811 * regulator_has_full_constraints - the system has fully specified constraints
3812 *
3813 * Calling this function will cause the regulator API to disable all
3814 * regulators which have a zero use count and don't have an always_on
3815 * constraint in a late_initcall.
3816 *
3817 * The intention is that this will become the default behaviour in a
3818 * future kernel release so users are encouraged to use this facility
3819 * now.
3820 */
3821 void regulator_has_full_constraints(void)
3822 {
3823 has_full_constraints = 1;
3824 }
3825 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3826
3827 /**
3828 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3829 *
3830 * Calling this function will cause the regulator API to provide a
3831 * dummy regulator to consumers if no physical regulator is found,
3832 * allowing most consumers to proceed as though a regulator were
3833 * configured. This allows systems such as those with software
3834 * controllable regulators for the CPU core only to be brought up more
3835 * readily.
3836 */
3837 void regulator_use_dummy_regulator(void)
3838 {
3839 board_wants_dummy_regulator = true;
3840 }
3841 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3842
3843 /**
3844 * rdev_get_drvdata - get rdev regulator driver data
3845 * @rdev: regulator
3846 *
3847 * Get rdev regulator driver private data. This call can be used in the
3848 * regulator driver context.
3849 */
3850 void *rdev_get_drvdata(struct regulator_dev *rdev)
3851 {
3852 return rdev->reg_data;
3853 }
3854 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3855
3856 /**
3857 * regulator_get_drvdata - get regulator driver data
3858 * @regulator: regulator
3859 *
3860 * Get regulator driver private data. This call can be used in the consumer
3861 * driver context when non API regulator specific functions need to be called.
3862 */
3863 void *regulator_get_drvdata(struct regulator *regulator)
3864 {
3865 return regulator->rdev->reg_data;
3866 }
3867 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3868
3869 /**
3870 * regulator_set_drvdata - set regulator driver data
3871 * @regulator: regulator
3872 * @data: data
3873 */
3874 void regulator_set_drvdata(struct regulator *regulator, void *data)
3875 {
3876 regulator->rdev->reg_data = data;
3877 }
3878 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3879
3880 /**
3881 * regulator_get_id - get regulator ID
3882 * @rdev: regulator
3883 */
3884 int rdev_get_id(struct regulator_dev *rdev)
3885 {
3886 return rdev->desc->id;
3887 }
3888 EXPORT_SYMBOL_GPL(rdev_get_id);
3889
3890 struct device *rdev_get_dev(struct regulator_dev *rdev)
3891 {
3892 return &rdev->dev;
3893 }
3894 EXPORT_SYMBOL_GPL(rdev_get_dev);
3895
3896 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3897 {
3898 return reg_init_data->driver_data;
3899 }
3900 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3901
3902 #ifdef CONFIG_DEBUG_FS
3903 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3904 size_t count, loff_t *ppos)
3905 {
3906 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3907 ssize_t len, ret = 0;
3908 struct regulator_map *map;
3909
3910 if (!buf)
3911 return -ENOMEM;
3912
3913 list_for_each_entry(map, &regulator_map_list, list) {
3914 len = snprintf(buf + ret, PAGE_SIZE - ret,
3915 "%s -> %s.%s\n",
3916 rdev_get_name(map->regulator), map->dev_name,
3917 map->supply);
3918 if (len >= 0)
3919 ret += len;
3920 if (ret > PAGE_SIZE) {
3921 ret = PAGE_SIZE;
3922 break;
3923 }
3924 }
3925
3926 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3927
3928 kfree(buf);
3929
3930 return ret;
3931 }
3932 #endif
3933
3934 static const struct file_operations supply_map_fops = {
3935 #ifdef CONFIG_DEBUG_FS
3936 .read = supply_map_read_file,
3937 .llseek = default_llseek,
3938 #endif
3939 };
3940
3941 static int __init regulator_init(void)
3942 {
3943 int ret;
3944
3945 ret = class_register(&regulator_class);
3946
3947 debugfs_root = debugfs_create_dir("regulator", NULL);
3948 if (!debugfs_root)
3949 pr_warn("regulator: Failed to create debugfs directory\n");
3950
3951 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3952 &supply_map_fops);
3953
3954 regulator_dummy_init();
3955
3956 return ret;
3957 }
3958
3959 /* init early to allow our consumers to complete system booting */
3960 core_initcall(regulator_init);
3961
3962 static int __init regulator_init_complete(void)
3963 {
3964 struct regulator_dev *rdev;
3965 struct regulator_ops *ops;
3966 struct regulation_constraints *c;
3967 int enabled, ret;
3968
3969 /*
3970 * Since DT doesn't provide an idiomatic mechanism for
3971 * enabling full constraints and since it's much more natural
3972 * with DT to provide them just assume that a DT enabled
3973 * system has full constraints.
3974 */
3975 if (of_have_populated_dt())
3976 has_full_constraints = true;
3977
3978 mutex_lock(&regulator_list_mutex);
3979
3980 /* If we have a full configuration then disable any regulators
3981 * which are not in use or always_on. This will become the
3982 * default behaviour in the future.
3983 */
3984 list_for_each_entry(rdev, &regulator_list, list) {
3985 ops = rdev->desc->ops;
3986 c = rdev->constraints;
3987
3988 if (c && c->always_on)
3989 continue;
3990
3991 mutex_lock(&rdev->mutex);
3992
3993 if (rdev->use_count)
3994 goto unlock;
3995
3996 /* If we can't read the status assume it's on. */
3997 if (ops->is_enabled)
3998 enabled = ops->is_enabled(rdev);
3999 else
4000 enabled = 1;
4001
4002 if (!enabled)
4003 goto unlock;
4004
4005 if (has_full_constraints) {
4006 /* We log since this may kill the system if it
4007 * goes wrong. */
4008 rdev_info(rdev, "disabling\n");
4009 ret = _regulator_do_disable(rdev);
4010 if (ret != 0) {
4011 rdev_err(rdev, "couldn't disable: %d\n", ret);
4012 }
4013 } else {
4014 /* The intention is that in future we will
4015 * assume that full constraints are provided
4016 * so warn even if we aren't going to do
4017 * anything here.
4018 */
4019 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4020 }
4021
4022 unlock:
4023 mutex_unlock(&rdev->mutex);
4024 }
4025
4026 mutex_unlock(&regulator_list_mutex);
4027
4028 return 0;
4029 }
4030 late_initcall(regulator_init_complete);