Merge tag 'trace-fixes-v3.10-rc3-v3' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
70 };
71
72 /*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
125 }
126
127 /**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199 {
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228 {
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336 switch (mode) {
337 case REGULATOR_MODE_FAST:
338 return sprintf(buf, "fast\n");
339 case REGULATOR_MODE_NORMAL:
340 return sprintf(buf, "normal\n");
341 case REGULATOR_MODE_IDLE:
342 return sprintf(buf, "idle\n");
343 case REGULATOR_MODE_STANDBY:
344 return sprintf(buf, "standby\n");
345 }
346 return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351 {
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360 if (state > 0)
361 return sprintf(buf, "enabled\n");
362 else if (state == 0)
363 return sprintf(buf, "disabled\n");
364 else
365 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372 ssize_t ret;
373
374 mutex_lock(&rdev->mutex);
375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376 mutex_unlock(&rdev->mutex);
377
378 return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
384 {
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 int status;
387 char *label;
388
389 status = rdev->desc->ops->get_status(rdev);
390 if (status < 0)
391 return status;
392
393 switch (status) {
394 case REGULATOR_STATUS_OFF:
395 label = "off";
396 break;
397 case REGULATOR_STATUS_ON:
398 label = "on";
399 break;
400 case REGULATOR_STATUS_ERROR:
401 label = "error";
402 break;
403 case REGULATOR_STATUS_FAST:
404 label = "fast";
405 break;
406 case REGULATOR_STATUS_NORMAL:
407 label = "normal";
408 break;
409 case REGULATOR_STATUS_IDLE:
410 label = "idle";
411 break;
412 case REGULATOR_STATUS_STANDBY:
413 label = "standby";
414 break;
415 case REGULATOR_STATUS_BYPASS:
416 label = "bypass";
417 break;
418 case REGULATOR_STATUS_UNDEFINED:
419 label = "undefined";
420 break;
421 default:
422 return -ERANGE;
423 }
424
425 return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434 if (!rdev->constraints)
435 return sprintf(buf, "constraint not defined\n");
436
437 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443 {
444 struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446 if (!rdev->constraints)
447 return sprintf(buf, "constraint not defined\n");
448
449 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
460
461 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
467 {
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
472
473 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 struct regulator *regulator;
482 int uA = 0;
483
484 mutex_lock(&rdev->mutex);
485 list_for_each_entry(regulator, &rdev->consumer_list, list)
486 uA += regulator->uA_load;
487 mutex_unlock(&rdev->mutex);
488 return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496 return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504 switch (rdev->desc->type) {
505 case REGULATOR_VOLTAGE:
506 return sprintf(buf, "voltage\n");
507 case REGULATOR_CURRENT:
508 return sprintf(buf, "current\n");
509 }
510 return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
525 {
526 struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544 struct device_attribute *attr, char *buf)
545 {
546 struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548 return regulator_print_opmode(buf,
549 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559 return regulator_print_opmode(buf,
560 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570 return regulator_print_opmode(buf,
571 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581 return regulator_print_state(buf,
582 rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return regulator_print_state(buf,
593 rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
600 {
601 struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603 return regulator_print_state(buf,
604 rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613 const char *report;
614 bool bypass;
615 int ret;
616
617 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619 if (ret != 0)
620 report = "unknown";
621 else if (bypass)
622 report = "enabled";
623 else
624 report = "disabled";
625
626 return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629 regulator_bypass_show, NULL);
630
631 /*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635 static struct device_attribute regulator_dev_attrs[] = {
636 __ATTR(name, 0444, regulator_name_show, NULL),
637 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638 __ATTR(type, 0444, regulator_type_show, NULL),
639 __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649 .name = "regulator",
650 .dev_release = regulator_dev_release,
651 .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658 struct regulator *sibling;
659 int current_uA = 0, output_uV, input_uV, err;
660 unsigned int mode;
661
662 err = regulator_check_drms(rdev);
663 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 (!rdev->desc->ops->get_voltage &&
665 !rdev->desc->ops->get_voltage_sel) ||
666 !rdev->desc->ops->set_mode)
667 return;
668
669 /* get output voltage */
670 output_uV = _regulator_get_voltage(rdev);
671 if (output_uV <= 0)
672 return;
673
674 /* get input voltage */
675 input_uV = 0;
676 if (rdev->supply)
677 input_uV = regulator_get_voltage(rdev->supply);
678 if (input_uV <= 0)
679 input_uV = rdev->constraints->input_uV;
680 if (input_uV <= 0)
681 return;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 /* now get the optimum mode for our new total regulator load */
688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 output_uV, current_uA);
690
691 /* check the new mode is allowed */
692 err = regulator_mode_constrain(rdev, &mode);
693 if (err == 0)
694 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698 struct regulator_state *rstate)
699 {
700 int ret = 0;
701
702 /* If we have no suspend mode configration don't set anything;
703 * only warn if the driver implements set_suspend_voltage or
704 * set_suspend_mode callback.
705 */
706 if (!rstate->enabled && !rstate->disabled) {
707 if (rdev->desc->ops->set_suspend_voltage ||
708 rdev->desc->ops->set_suspend_mode)
709 rdev_warn(rdev, "No configuration\n");
710 return 0;
711 }
712
713 if (rstate->enabled && rstate->disabled) {
714 rdev_err(rdev, "invalid configuration\n");
715 return -EINVAL;
716 }
717
718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719 ret = rdev->desc->ops->set_suspend_enable(rdev);
720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721 ret = rdev->desc->ops->set_suspend_disable(rdev);
722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723 ret = 0;
724
725 if (ret < 0) {
726 rdev_err(rdev, "failed to enabled/disable\n");
727 return ret;
728 }
729
730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732 if (ret < 0) {
733 rdev_err(rdev, "failed to set voltage\n");
734 return ret;
735 }
736 }
737
738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740 if (ret < 0) {
741 rdev_err(rdev, "failed to set mode\n");
742 return ret;
743 }
744 }
745 return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751 if (!rdev->constraints)
752 return -EINVAL;
753
754 switch (state) {
755 case PM_SUSPEND_STANDBY:
756 return suspend_set_state(rdev,
757 &rdev->constraints->state_standby);
758 case PM_SUSPEND_MEM:
759 return suspend_set_state(rdev,
760 &rdev->constraints->state_mem);
761 case PM_SUSPEND_MAX:
762 return suspend_set_state(rdev,
763 &rdev->constraints->state_disk);
764 default:
765 return -EINVAL;
766 }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771 struct regulation_constraints *constraints = rdev->constraints;
772 char buf[80] = "";
773 int count = 0;
774 int ret;
775
776 if (constraints->min_uV && constraints->max_uV) {
777 if (constraints->min_uV == constraints->max_uV)
778 count += sprintf(buf + count, "%d mV ",
779 constraints->min_uV / 1000);
780 else
781 count += sprintf(buf + count, "%d <--> %d mV ",
782 constraints->min_uV / 1000,
783 constraints->max_uV / 1000);
784 }
785
786 if (!constraints->min_uV ||
787 constraints->min_uV != constraints->max_uV) {
788 ret = _regulator_get_voltage(rdev);
789 if (ret > 0)
790 count += sprintf(buf + count, "at %d mV ", ret / 1000);
791 }
792
793 if (constraints->uV_offset)
794 count += sprintf(buf, "%dmV offset ",
795 constraints->uV_offset / 1000);
796
797 if (constraints->min_uA && constraints->max_uA) {
798 if (constraints->min_uA == constraints->max_uA)
799 count += sprintf(buf + count, "%d mA ",
800 constraints->min_uA / 1000);
801 else
802 count += sprintf(buf + count, "%d <--> %d mA ",
803 constraints->min_uA / 1000,
804 constraints->max_uA / 1000);
805 }
806
807 if (!constraints->min_uA ||
808 constraints->min_uA != constraints->max_uA) {
809 ret = _regulator_get_current_limit(rdev);
810 if (ret > 0)
811 count += sprintf(buf + count, "at %d mA ", ret / 1000);
812 }
813
814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815 count += sprintf(buf + count, "fast ");
816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817 count += sprintf(buf + count, "normal ");
818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819 count += sprintf(buf + count, "idle ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821 count += sprintf(buf + count, "standby");
822
823 if (!count)
824 sprintf(buf, "no parameters");
825
826 rdev_info(rdev, "%s\n", buf);
827
828 if ((constraints->min_uV != constraints->max_uV) &&
829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830 rdev_warn(rdev,
831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835 struct regulation_constraints *constraints)
836 {
837 struct regulator_ops *ops = rdev->desc->ops;
838 int ret;
839
840 /* do we need to apply the constraint voltage */
841 if (rdev->constraints->apply_uV &&
842 rdev->constraints->min_uV == rdev->constraints->max_uV) {
843 ret = _regulator_do_set_voltage(rdev,
844 rdev->constraints->min_uV,
845 rdev->constraints->max_uV);
846 if (ret < 0) {
847 rdev_err(rdev, "failed to apply %duV constraint\n",
848 rdev->constraints->min_uV);
849 return ret;
850 }
851 }
852
853 /* constrain machine-level voltage specs to fit
854 * the actual range supported by this regulator.
855 */
856 if (ops->list_voltage && rdev->desc->n_voltages) {
857 int count = rdev->desc->n_voltages;
858 int i;
859 int min_uV = INT_MAX;
860 int max_uV = INT_MIN;
861 int cmin = constraints->min_uV;
862 int cmax = constraints->max_uV;
863
864 /* it's safe to autoconfigure fixed-voltage supplies
865 and the constraints are used by list_voltage. */
866 if (count == 1 && !cmin) {
867 cmin = 1;
868 cmax = INT_MAX;
869 constraints->min_uV = cmin;
870 constraints->max_uV = cmax;
871 }
872
873 /* voltage constraints are optional */
874 if ((cmin == 0) && (cmax == 0))
875 return 0;
876
877 /* else require explicit machine-level constraints */
878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879 rdev_err(rdev, "invalid voltage constraints\n");
880 return -EINVAL;
881 }
882
883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884 for (i = 0; i < count; i++) {
885 int value;
886
887 value = ops->list_voltage(rdev, i);
888 if (value <= 0)
889 continue;
890
891 /* maybe adjust [min_uV..max_uV] */
892 if (value >= cmin && value < min_uV)
893 min_uV = value;
894 if (value <= cmax && value > max_uV)
895 max_uV = value;
896 }
897
898 /* final: [min_uV..max_uV] valid iff constraints valid */
899 if (max_uV < min_uV) {
900 rdev_err(rdev,
901 "unsupportable voltage constraints %u-%uuV\n",
902 min_uV, max_uV);
903 return -EINVAL;
904 }
905
906 /* use regulator's subset of machine constraints */
907 if (constraints->min_uV < min_uV) {
908 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909 constraints->min_uV, min_uV);
910 constraints->min_uV = min_uV;
911 }
912 if (constraints->max_uV > max_uV) {
913 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914 constraints->max_uV, max_uV);
915 constraints->max_uV = max_uV;
916 }
917 }
918
919 return 0;
920 }
921
922 /**
923 * set_machine_constraints - sets regulator constraints
924 * @rdev: regulator source
925 * @constraints: constraints to apply
926 *
927 * Allows platform initialisation code to define and constrain
928 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
929 * Constraints *must* be set by platform code in order for some
930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
931 * set_mode.
932 */
933 static int set_machine_constraints(struct regulator_dev *rdev,
934 const struct regulation_constraints *constraints)
935 {
936 int ret = 0;
937 struct regulator_ops *ops = rdev->desc->ops;
938
939 if (constraints)
940 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941 GFP_KERNEL);
942 else
943 rdev->constraints = kzalloc(sizeof(*constraints),
944 GFP_KERNEL);
945 if (!rdev->constraints)
946 return -ENOMEM;
947
948 ret = machine_constraints_voltage(rdev, rdev->constraints);
949 if (ret != 0)
950 goto out;
951
952 /* do we need to setup our suspend state */
953 if (rdev->constraints->initial_state) {
954 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955 if (ret < 0) {
956 rdev_err(rdev, "failed to set suspend state\n");
957 goto out;
958 }
959 }
960
961 if (rdev->constraints->initial_mode) {
962 if (!ops->set_mode) {
963 rdev_err(rdev, "no set_mode operation\n");
964 ret = -EINVAL;
965 goto out;
966 }
967
968 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969 if (ret < 0) {
970 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971 goto out;
972 }
973 }
974
975 /* If the constraints say the regulator should be on at this point
976 * and we have control then make sure it is enabled.
977 */
978 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979 ops->enable) {
980 ret = ops->enable(rdev);
981 if (ret < 0) {
982 rdev_err(rdev, "failed to enable\n");
983 goto out;
984 }
985 }
986
987 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989 if (ret < 0) {
990 rdev_err(rdev, "failed to set ramp_delay\n");
991 goto out;
992 }
993 }
994
995 print_constraints(rdev);
996 return 0;
997 out:
998 kfree(rdev->constraints);
999 rdev->constraints = NULL;
1000 return ret;
1001 }
1002
1003 /**
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1007 *
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1011 */
1012 static int set_supply(struct regulator_dev *rdev,
1013 struct regulator_dev *supply_rdev)
1014 {
1015 int err;
1016
1017 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020 if (rdev->supply == NULL) {
1021 err = -ENOMEM;
1022 return err;
1023 }
1024 supply_rdev->open_count++;
1025
1026 return 0;
1027 }
1028
1029 /**
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev: regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply: symbolic name for supply
1034 *
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices. Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1039 */
1040 static int set_consumer_device_supply(struct regulator_dev *rdev,
1041 const char *consumer_dev_name,
1042 const char *supply)
1043 {
1044 struct regulator_map *node;
1045 int has_dev;
1046
1047 if (supply == NULL)
1048 return -EINVAL;
1049
1050 if (consumer_dev_name != NULL)
1051 has_dev = 1;
1052 else
1053 has_dev = 0;
1054
1055 list_for_each_entry(node, &regulator_map_list, list) {
1056 if (node->dev_name && consumer_dev_name) {
1057 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058 continue;
1059 } else if (node->dev_name || consumer_dev_name) {
1060 continue;
1061 }
1062
1063 if (strcmp(node->supply, supply) != 0)
1064 continue;
1065
1066 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067 consumer_dev_name,
1068 dev_name(&node->regulator->dev),
1069 node->regulator->desc->name,
1070 supply,
1071 dev_name(&rdev->dev), rdev_get_name(rdev));
1072 return -EBUSY;
1073 }
1074
1075 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076 if (node == NULL)
1077 return -ENOMEM;
1078
1079 node->regulator = rdev;
1080 node->supply = supply;
1081
1082 if (has_dev) {
1083 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084 if (node->dev_name == NULL) {
1085 kfree(node);
1086 return -ENOMEM;
1087 }
1088 }
1089
1090 list_add(&node->list, &regulator_map_list);
1091 return 0;
1092 }
1093
1094 static void unset_regulator_supplies(struct regulator_dev *rdev)
1095 {
1096 struct regulator_map *node, *n;
1097
1098 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099 if (rdev == node->regulator) {
1100 list_del(&node->list);
1101 kfree(node->dev_name);
1102 kfree(node);
1103 }
1104 }
1105 }
1106
1107 #define REG_STR_SIZE 64
1108
1109 static struct regulator *create_regulator(struct regulator_dev *rdev,
1110 struct device *dev,
1111 const char *supply_name)
1112 {
1113 struct regulator *regulator;
1114 char buf[REG_STR_SIZE];
1115 int err, size;
1116
1117 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118 if (regulator == NULL)
1119 return NULL;
1120
1121 mutex_lock(&rdev->mutex);
1122 regulator->rdev = rdev;
1123 list_add(&regulator->list, &rdev->consumer_list);
1124
1125 if (dev) {
1126 regulator->dev = dev;
1127
1128 /* Add a link to the device sysfs entry */
1129 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130 dev->kobj.name, supply_name);
1131 if (size >= REG_STR_SIZE)
1132 goto overflow_err;
1133
1134 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135 if (regulator->supply_name == NULL)
1136 goto overflow_err;
1137
1138 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139 buf);
1140 if (err) {
1141 rdev_warn(rdev, "could not add device link %s err %d\n",
1142 dev->kobj.name, err);
1143 /* non-fatal */
1144 }
1145 } else {
1146 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147 if (regulator->supply_name == NULL)
1148 goto overflow_err;
1149 }
1150
1151 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152 rdev->debugfs);
1153 if (!regulator->debugfs) {
1154 rdev_warn(rdev, "Failed to create debugfs directory\n");
1155 } else {
1156 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157 &regulator->uA_load);
1158 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159 &regulator->min_uV);
1160 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161 &regulator->max_uV);
1162 }
1163
1164 /*
1165 * Check now if the regulator is an always on regulator - if
1166 * it is then we don't need to do nearly so much work for
1167 * enable/disable calls.
1168 */
1169 if (!_regulator_can_change_status(rdev) &&
1170 _regulator_is_enabled(rdev))
1171 regulator->always_on = true;
1172
1173 mutex_unlock(&rdev->mutex);
1174 return regulator;
1175 overflow_err:
1176 list_del(&regulator->list);
1177 kfree(regulator);
1178 mutex_unlock(&rdev->mutex);
1179 return NULL;
1180 }
1181
1182 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183 {
1184 if (!rdev->desc->ops->enable_time)
1185 return rdev->desc->enable_time;
1186 return rdev->desc->ops->enable_time(rdev);
1187 }
1188
1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190 const char *supply,
1191 int *ret)
1192 {
1193 struct regulator_dev *r;
1194 struct device_node *node;
1195 struct regulator_map *map;
1196 const char *devname = NULL;
1197
1198 /* first do a dt based lookup */
1199 if (dev && dev->of_node) {
1200 node = of_get_regulator(dev, supply);
1201 if (node) {
1202 list_for_each_entry(r, &regulator_list, list)
1203 if (r->dev.parent &&
1204 node == r->dev.of_node)
1205 return r;
1206 } else {
1207 /*
1208 * If we couldn't even get the node then it's
1209 * not just that the device didn't register
1210 * yet, there's no node and we'll never
1211 * succeed.
1212 */
1213 *ret = -ENODEV;
1214 }
1215 }
1216
1217 /* if not found, try doing it non-dt way */
1218 if (dev)
1219 devname = dev_name(dev);
1220
1221 list_for_each_entry(r, &regulator_list, list)
1222 if (strcmp(rdev_get_name(r), supply) == 0)
1223 return r;
1224
1225 list_for_each_entry(map, &regulator_map_list, list) {
1226 /* If the mapping has a device set up it must match */
1227 if (map->dev_name &&
1228 (!devname || strcmp(map->dev_name, devname)))
1229 continue;
1230
1231 if (strcmp(map->supply, supply) == 0)
1232 return map->regulator;
1233 }
1234
1235
1236 return NULL;
1237 }
1238
1239 /* Internal regulator request function */
1240 static struct regulator *_regulator_get(struct device *dev, const char *id,
1241 int exclusive)
1242 {
1243 struct regulator_dev *rdev;
1244 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245 const char *devname = NULL;
1246 int ret = 0;
1247
1248 if (id == NULL) {
1249 pr_err("get() with no identifier\n");
1250 return regulator;
1251 }
1252
1253 if (dev)
1254 devname = dev_name(dev);
1255
1256 mutex_lock(&regulator_list_mutex);
1257
1258 rdev = regulator_dev_lookup(dev, id, &ret);
1259 if (rdev)
1260 goto found;
1261
1262 /*
1263 * If we have return value from dev_lookup fail, we do not expect to
1264 * succeed, so, quit with appropriate error value
1265 */
1266 if (ret) {
1267 regulator = ERR_PTR(ret);
1268 goto out;
1269 }
1270
1271 if (board_wants_dummy_regulator) {
1272 rdev = dummy_regulator_rdev;
1273 goto found;
1274 }
1275
1276 #ifdef CONFIG_REGULATOR_DUMMY
1277 if (!devname)
1278 devname = "deviceless";
1279
1280 /* If the board didn't flag that it was fully constrained then
1281 * substitute in a dummy regulator so consumers can continue.
1282 */
1283 if (!has_full_constraints) {
1284 pr_warn("%s supply %s not found, using dummy regulator\n",
1285 devname, id);
1286 rdev = dummy_regulator_rdev;
1287 goto found;
1288 }
1289 #endif
1290
1291 mutex_unlock(&regulator_list_mutex);
1292 return regulator;
1293
1294 found:
1295 if (rdev->exclusive) {
1296 regulator = ERR_PTR(-EPERM);
1297 goto out;
1298 }
1299
1300 if (exclusive && rdev->open_count) {
1301 regulator = ERR_PTR(-EBUSY);
1302 goto out;
1303 }
1304
1305 if (!try_module_get(rdev->owner))
1306 goto out;
1307
1308 regulator = create_regulator(rdev, dev, id);
1309 if (regulator == NULL) {
1310 regulator = ERR_PTR(-ENOMEM);
1311 module_put(rdev->owner);
1312 goto out;
1313 }
1314
1315 rdev->open_count++;
1316 if (exclusive) {
1317 rdev->exclusive = 1;
1318
1319 ret = _regulator_is_enabled(rdev);
1320 if (ret > 0)
1321 rdev->use_count = 1;
1322 else
1323 rdev->use_count = 0;
1324 }
1325
1326 out:
1327 mutex_unlock(&regulator_list_mutex);
1328
1329 return regulator;
1330 }
1331
1332 /**
1333 * regulator_get - lookup and obtain a reference to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1336 *
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno.
1339 *
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged. It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1344 */
1345 struct regulator *regulator_get(struct device *dev, const char *id)
1346 {
1347 return _regulator_get(dev, id, 0);
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_get);
1350
1351 static void devm_regulator_release(struct device *dev, void *res)
1352 {
1353 regulator_put(*(struct regulator **)res);
1354 }
1355
1356 /**
1357 * devm_regulator_get - Resource managed regulator_get()
1358 * @dev: device for regulator "consumer"
1359 * @id: Supply name or regulator ID.
1360 *
1361 * Managed regulator_get(). Regulators returned from this function are
1362 * automatically regulator_put() on driver detach. See regulator_get() for more
1363 * information.
1364 */
1365 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366 {
1367 struct regulator **ptr, *regulator;
1368
1369 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370 if (!ptr)
1371 return ERR_PTR(-ENOMEM);
1372
1373 regulator = regulator_get(dev, id);
1374 if (!IS_ERR(regulator)) {
1375 *ptr = regulator;
1376 devres_add(dev, ptr);
1377 } else {
1378 devres_free(ptr);
1379 }
1380
1381 return regulator;
1382 }
1383 EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385 /**
1386 * regulator_get_exclusive - obtain exclusive access to a regulator.
1387 * @dev: device for regulator "consumer"
1388 * @id: Supply name or regulator ID.
1389 *
1390 * Returns a struct regulator corresponding to the regulator producer,
1391 * or IS_ERR() condition containing errno. Other consumers will be
1392 * unable to obtain this reference is held and the use count for the
1393 * regulator will be initialised to reflect the current state of the
1394 * regulator.
1395 *
1396 * This is intended for use by consumers which cannot tolerate shared
1397 * use of the regulator such as those which need to force the
1398 * regulator off for correct operation of the hardware they are
1399 * controlling.
1400 *
1401 * Use of supply names configured via regulator_set_device_supply() is
1402 * strongly encouraged. It is recommended that the supply name used
1403 * should match the name used for the supply and/or the relevant
1404 * device pins in the datasheet.
1405 */
1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407 {
1408 return _regulator_get(dev, id, 1);
1409 }
1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412 /* Locks held by regulator_put() */
1413 static void _regulator_put(struct regulator *regulator)
1414 {
1415 struct regulator_dev *rdev;
1416
1417 if (regulator == NULL || IS_ERR(regulator))
1418 return;
1419
1420 rdev = regulator->rdev;
1421
1422 debugfs_remove_recursive(regulator->debugfs);
1423
1424 /* remove any sysfs entries */
1425 if (regulator->dev)
1426 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427 kfree(regulator->supply_name);
1428 list_del(&regulator->list);
1429 kfree(regulator);
1430
1431 rdev->open_count--;
1432 rdev->exclusive = 0;
1433
1434 module_put(rdev->owner);
1435 }
1436
1437 /**
1438 * regulator_put - "free" the regulator source
1439 * @regulator: regulator source
1440 *
1441 * Note: drivers must ensure that all regulator_enable calls made on this
1442 * regulator source are balanced by regulator_disable calls prior to calling
1443 * this function.
1444 */
1445 void regulator_put(struct regulator *regulator)
1446 {
1447 mutex_lock(&regulator_list_mutex);
1448 _regulator_put(regulator);
1449 mutex_unlock(&regulator_list_mutex);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_put);
1452
1453 static int devm_regulator_match(struct device *dev, void *res, void *data)
1454 {
1455 struct regulator **r = res;
1456 if (!r || !*r) {
1457 WARN_ON(!r || !*r);
1458 return 0;
1459 }
1460 return *r == data;
1461 }
1462
1463 /**
1464 * devm_regulator_put - Resource managed regulator_put()
1465 * @regulator: regulator to free
1466 *
1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468 * this function will not need to be called and the resource management
1469 * code will ensure that the resource is freed.
1470 */
1471 void devm_regulator_put(struct regulator *regulator)
1472 {
1473 int rc;
1474
1475 rc = devres_release(regulator->dev, devm_regulator_release,
1476 devm_regulator_match, regulator);
1477 if (rc != 0)
1478 WARN_ON(rc);
1479 }
1480 EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484 const struct regulator_config *config)
1485 {
1486 struct regulator_enable_gpio *pin;
1487 int ret;
1488
1489 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490 if (pin->gpio == config->ena_gpio) {
1491 rdev_dbg(rdev, "GPIO %d is already used\n",
1492 config->ena_gpio);
1493 goto update_ena_gpio_to_rdev;
1494 }
1495 }
1496
1497 ret = gpio_request_one(config->ena_gpio,
1498 GPIOF_DIR_OUT | config->ena_gpio_flags,
1499 rdev_get_name(rdev));
1500 if (ret)
1501 return ret;
1502
1503 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504 if (pin == NULL) {
1505 gpio_free(config->ena_gpio);
1506 return -ENOMEM;
1507 }
1508
1509 pin->gpio = config->ena_gpio;
1510 pin->ena_gpio_invert = config->ena_gpio_invert;
1511 list_add(&pin->list, &regulator_ena_gpio_list);
1512
1513 update_ena_gpio_to_rdev:
1514 pin->request_count++;
1515 rdev->ena_pin = pin;
1516 return 0;
1517 }
1518
1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520 {
1521 struct regulator_enable_gpio *pin, *n;
1522
1523 if (!rdev->ena_pin)
1524 return;
1525
1526 /* Free the GPIO only in case of no use */
1527 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528 if (pin->gpio == rdev->ena_pin->gpio) {
1529 if (pin->request_count <= 1) {
1530 pin->request_count = 0;
1531 gpio_free(pin->gpio);
1532 list_del(&pin->list);
1533 kfree(pin);
1534 } else {
1535 pin->request_count--;
1536 }
1537 }
1538 }
1539 }
1540
1541 /**
1542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1543 * @rdev: regulator_dev structure
1544 * @enable: enable GPIO at initial use?
1545 *
1546 * GPIO is enabled in case of initial use. (enable_count is 0)
1547 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1548 */
1549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1550 {
1551 struct regulator_enable_gpio *pin = rdev->ena_pin;
1552
1553 if (!pin)
1554 return -EINVAL;
1555
1556 if (enable) {
1557 /* Enable GPIO at initial use */
1558 if (pin->enable_count == 0)
1559 gpio_set_value_cansleep(pin->gpio,
1560 !pin->ena_gpio_invert);
1561
1562 pin->enable_count++;
1563 } else {
1564 if (pin->enable_count > 1) {
1565 pin->enable_count--;
1566 return 0;
1567 }
1568
1569 /* Disable GPIO if not used */
1570 if (pin->enable_count <= 1) {
1571 gpio_set_value_cansleep(pin->gpio,
1572 pin->ena_gpio_invert);
1573 pin->enable_count = 0;
1574 }
1575 }
1576
1577 return 0;
1578 }
1579
1580 static int _regulator_do_enable(struct regulator_dev *rdev)
1581 {
1582 int ret, delay;
1583
1584 /* Query before enabling in case configuration dependent. */
1585 ret = _regulator_get_enable_time(rdev);
1586 if (ret >= 0) {
1587 delay = ret;
1588 } else {
1589 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1590 delay = 0;
1591 }
1592
1593 trace_regulator_enable(rdev_get_name(rdev));
1594
1595 if (rdev->ena_pin) {
1596 ret = regulator_ena_gpio_ctrl(rdev, true);
1597 if (ret < 0)
1598 return ret;
1599 rdev->ena_gpio_state = 1;
1600 } else if (rdev->desc->ops->enable) {
1601 ret = rdev->desc->ops->enable(rdev);
1602 if (ret < 0)
1603 return ret;
1604 } else {
1605 return -EINVAL;
1606 }
1607
1608 /* Allow the regulator to ramp; it would be useful to extend
1609 * this for bulk operations so that the regulators can ramp
1610 * together. */
1611 trace_regulator_enable_delay(rdev_get_name(rdev));
1612
1613 if (delay >= 1000) {
1614 mdelay(delay / 1000);
1615 udelay(delay % 1000);
1616 } else if (delay) {
1617 udelay(delay);
1618 }
1619
1620 trace_regulator_enable_complete(rdev_get_name(rdev));
1621
1622 return 0;
1623 }
1624
1625 /* locks held by regulator_enable() */
1626 static int _regulator_enable(struct regulator_dev *rdev)
1627 {
1628 int ret;
1629
1630 /* check voltage and requested load before enabling */
1631 if (rdev->constraints &&
1632 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1633 drms_uA_update(rdev);
1634
1635 if (rdev->use_count == 0) {
1636 /* The regulator may on if it's not switchable or left on */
1637 ret = _regulator_is_enabled(rdev);
1638 if (ret == -EINVAL || ret == 0) {
1639 if (!_regulator_can_change_status(rdev))
1640 return -EPERM;
1641
1642 ret = _regulator_do_enable(rdev);
1643 if (ret < 0)
1644 return ret;
1645
1646 } else if (ret < 0) {
1647 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648 return ret;
1649 }
1650 /* Fallthrough on positive return values - already enabled */
1651 }
1652
1653 rdev->use_count++;
1654
1655 return 0;
1656 }
1657
1658 /**
1659 * regulator_enable - enable regulator output
1660 * @regulator: regulator source
1661 *
1662 * Request that the regulator be enabled with the regulator output at
1663 * the predefined voltage or current value. Calls to regulator_enable()
1664 * must be balanced with calls to regulator_disable().
1665 *
1666 * NOTE: the output value can be set by other drivers, boot loader or may be
1667 * hardwired in the regulator.
1668 */
1669 int regulator_enable(struct regulator *regulator)
1670 {
1671 struct regulator_dev *rdev = regulator->rdev;
1672 int ret = 0;
1673
1674 if (regulator->always_on)
1675 return 0;
1676
1677 if (rdev->supply) {
1678 ret = regulator_enable(rdev->supply);
1679 if (ret != 0)
1680 return ret;
1681 }
1682
1683 mutex_lock(&rdev->mutex);
1684 ret = _regulator_enable(rdev);
1685 mutex_unlock(&rdev->mutex);
1686
1687 if (ret != 0 && rdev->supply)
1688 regulator_disable(rdev->supply);
1689
1690 return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(regulator_enable);
1693
1694 static int _regulator_do_disable(struct regulator_dev *rdev)
1695 {
1696 int ret;
1697
1698 trace_regulator_disable(rdev_get_name(rdev));
1699
1700 if (rdev->ena_pin) {
1701 ret = regulator_ena_gpio_ctrl(rdev, false);
1702 if (ret < 0)
1703 return ret;
1704 rdev->ena_gpio_state = 0;
1705
1706 } else if (rdev->desc->ops->disable) {
1707 ret = rdev->desc->ops->disable(rdev);
1708 if (ret != 0)
1709 return ret;
1710 }
1711
1712 trace_regulator_disable_complete(rdev_get_name(rdev));
1713
1714 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1715 NULL);
1716 return 0;
1717 }
1718
1719 /* locks held by regulator_disable() */
1720 static int _regulator_disable(struct regulator_dev *rdev)
1721 {
1722 int ret = 0;
1723
1724 if (WARN(rdev->use_count <= 0,
1725 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1726 return -EIO;
1727
1728 /* are we the last user and permitted to disable ? */
1729 if (rdev->use_count == 1 &&
1730 (rdev->constraints && !rdev->constraints->always_on)) {
1731
1732 /* we are last user */
1733 if (_regulator_can_change_status(rdev)) {
1734 ret = _regulator_do_disable(rdev);
1735 if (ret < 0) {
1736 rdev_err(rdev, "failed to disable\n");
1737 return ret;
1738 }
1739 }
1740
1741 rdev->use_count = 0;
1742 } else if (rdev->use_count > 1) {
1743
1744 if (rdev->constraints &&
1745 (rdev->constraints->valid_ops_mask &
1746 REGULATOR_CHANGE_DRMS))
1747 drms_uA_update(rdev);
1748
1749 rdev->use_count--;
1750 }
1751
1752 return ret;
1753 }
1754
1755 /**
1756 * regulator_disable - disable regulator output
1757 * @regulator: regulator source
1758 *
1759 * Disable the regulator output voltage or current. Calls to
1760 * regulator_enable() must be balanced with calls to
1761 * regulator_disable().
1762 *
1763 * NOTE: this will only disable the regulator output if no other consumer
1764 * devices have it enabled, the regulator device supports disabling and
1765 * machine constraints permit this operation.
1766 */
1767 int regulator_disable(struct regulator *regulator)
1768 {
1769 struct regulator_dev *rdev = regulator->rdev;
1770 int ret = 0;
1771
1772 if (regulator->always_on)
1773 return 0;
1774
1775 mutex_lock(&rdev->mutex);
1776 ret = _regulator_disable(rdev);
1777 mutex_unlock(&rdev->mutex);
1778
1779 if (ret == 0 && rdev->supply)
1780 regulator_disable(rdev->supply);
1781
1782 return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(regulator_disable);
1785
1786 /* locks held by regulator_force_disable() */
1787 static int _regulator_force_disable(struct regulator_dev *rdev)
1788 {
1789 int ret = 0;
1790
1791 /* force disable */
1792 if (rdev->desc->ops->disable) {
1793 /* ah well, who wants to live forever... */
1794 ret = rdev->desc->ops->disable(rdev);
1795 if (ret < 0) {
1796 rdev_err(rdev, "failed to force disable\n");
1797 return ret;
1798 }
1799 /* notify other consumers that power has been forced off */
1800 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1801 REGULATOR_EVENT_DISABLE, NULL);
1802 }
1803
1804 return ret;
1805 }
1806
1807 /**
1808 * regulator_force_disable - force disable regulator output
1809 * @regulator: regulator source
1810 *
1811 * Forcibly disable the regulator output voltage or current.
1812 * NOTE: this *will* disable the regulator output even if other consumer
1813 * devices have it enabled. This should be used for situations when device
1814 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1815 */
1816 int regulator_force_disable(struct regulator *regulator)
1817 {
1818 struct regulator_dev *rdev = regulator->rdev;
1819 int ret;
1820
1821 mutex_lock(&rdev->mutex);
1822 regulator->uA_load = 0;
1823 ret = _regulator_force_disable(regulator->rdev);
1824 mutex_unlock(&rdev->mutex);
1825
1826 if (rdev->supply)
1827 while (rdev->open_count--)
1828 regulator_disable(rdev->supply);
1829
1830 return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_force_disable);
1833
1834 static void regulator_disable_work(struct work_struct *work)
1835 {
1836 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837 disable_work.work);
1838 int count, i, ret;
1839
1840 mutex_lock(&rdev->mutex);
1841
1842 BUG_ON(!rdev->deferred_disables);
1843
1844 count = rdev->deferred_disables;
1845 rdev->deferred_disables = 0;
1846
1847 for (i = 0; i < count; i++) {
1848 ret = _regulator_disable(rdev);
1849 if (ret != 0)
1850 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1851 }
1852
1853 mutex_unlock(&rdev->mutex);
1854
1855 if (rdev->supply) {
1856 for (i = 0; i < count; i++) {
1857 ret = regulator_disable(rdev->supply);
1858 if (ret != 0) {
1859 rdev_err(rdev,
1860 "Supply disable failed: %d\n", ret);
1861 }
1862 }
1863 }
1864 }
1865
1866 /**
1867 * regulator_disable_deferred - disable regulator output with delay
1868 * @regulator: regulator source
1869 * @ms: miliseconds until the regulator is disabled
1870 *
1871 * Execute regulator_disable() on the regulator after a delay. This
1872 * is intended for use with devices that require some time to quiesce.
1873 *
1874 * NOTE: this will only disable the regulator output if no other consumer
1875 * devices have it enabled, the regulator device supports disabling and
1876 * machine constraints permit this operation.
1877 */
1878 int regulator_disable_deferred(struct regulator *regulator, int ms)
1879 {
1880 struct regulator_dev *rdev = regulator->rdev;
1881 int ret;
1882
1883 if (regulator->always_on)
1884 return 0;
1885
1886 if (!ms)
1887 return regulator_disable(regulator);
1888
1889 mutex_lock(&rdev->mutex);
1890 rdev->deferred_disables++;
1891 mutex_unlock(&rdev->mutex);
1892
1893 ret = schedule_delayed_work(&rdev->disable_work,
1894 msecs_to_jiffies(ms));
1895 if (ret < 0)
1896 return ret;
1897 else
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1901
1902 /**
1903 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1904 *
1905 * @rdev: regulator to operate on
1906 *
1907 * Regulators that use regmap for their register I/O can set the
1908 * enable_reg and enable_mask fields in their descriptor and then use
1909 * this as their is_enabled operation, saving some code.
1910 */
1911 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1912 {
1913 unsigned int val;
1914 int ret;
1915
1916 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1917 if (ret != 0)
1918 return ret;
1919
1920 if (rdev->desc->enable_is_inverted)
1921 return (val & rdev->desc->enable_mask) == 0;
1922 else
1923 return (val & rdev->desc->enable_mask) != 0;
1924 }
1925 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1926
1927 /**
1928 * regulator_enable_regmap - standard enable() for regmap users
1929 *
1930 * @rdev: regulator to operate on
1931 *
1932 * Regulators that use regmap for their register I/O can set the
1933 * enable_reg and enable_mask fields in their descriptor and then use
1934 * this as their enable() operation, saving some code.
1935 */
1936 int regulator_enable_regmap(struct regulator_dev *rdev)
1937 {
1938 unsigned int val;
1939
1940 if (rdev->desc->enable_is_inverted)
1941 val = 0;
1942 else
1943 val = rdev->desc->enable_mask;
1944
1945 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946 rdev->desc->enable_mask, val);
1947 }
1948 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1949
1950 /**
1951 * regulator_disable_regmap - standard disable() for regmap users
1952 *
1953 * @rdev: regulator to operate on
1954 *
1955 * Regulators that use regmap for their register I/O can set the
1956 * enable_reg and enable_mask fields in their descriptor and then use
1957 * this as their disable() operation, saving some code.
1958 */
1959 int regulator_disable_regmap(struct regulator_dev *rdev)
1960 {
1961 unsigned int val;
1962
1963 if (rdev->desc->enable_is_inverted)
1964 val = rdev->desc->enable_mask;
1965 else
1966 val = 0;
1967
1968 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969 rdev->desc->enable_mask, val);
1970 }
1971 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1972
1973 static int _regulator_is_enabled(struct regulator_dev *rdev)
1974 {
1975 /* A GPIO control always takes precedence */
1976 if (rdev->ena_pin)
1977 return rdev->ena_gpio_state;
1978
1979 /* If we don't know then assume that the regulator is always on */
1980 if (!rdev->desc->ops->is_enabled)
1981 return 1;
1982
1983 return rdev->desc->ops->is_enabled(rdev);
1984 }
1985
1986 /**
1987 * regulator_is_enabled - is the regulator output enabled
1988 * @regulator: regulator source
1989 *
1990 * Returns positive if the regulator driver backing the source/client
1991 * has requested that the device be enabled, zero if it hasn't, else a
1992 * negative errno code.
1993 *
1994 * Note that the device backing this regulator handle can have multiple
1995 * users, so it might be enabled even if regulator_enable() was never
1996 * called for this particular source.
1997 */
1998 int regulator_is_enabled(struct regulator *regulator)
1999 {
2000 int ret;
2001
2002 if (regulator->always_on)
2003 return 1;
2004
2005 mutex_lock(&regulator->rdev->mutex);
2006 ret = _regulator_is_enabled(regulator->rdev);
2007 mutex_unlock(&regulator->rdev->mutex);
2008
2009 return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2012
2013 /**
2014 * regulator_can_change_voltage - check if regulator can change voltage
2015 * @regulator: regulator source
2016 *
2017 * Returns positive if the regulator driver backing the source/client
2018 * can change its voltage, false otherwise. Usefull for detecting fixed
2019 * or dummy regulators and disabling voltage change logic in the client
2020 * driver.
2021 */
2022 int regulator_can_change_voltage(struct regulator *regulator)
2023 {
2024 struct regulator_dev *rdev = regulator->rdev;
2025
2026 if (rdev->constraints &&
2027 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2028 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2029 return 1;
2030
2031 if (rdev->desc->continuous_voltage_range &&
2032 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2033 rdev->constraints->min_uV != rdev->constraints->max_uV)
2034 return 1;
2035 }
2036
2037 return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2040
2041 /**
2042 * regulator_count_voltages - count regulator_list_voltage() selectors
2043 * @regulator: regulator source
2044 *
2045 * Returns number of selectors, or negative errno. Selectors are
2046 * numbered starting at zero, and typically correspond to bitfields
2047 * in hardware registers.
2048 */
2049 int regulator_count_voltages(struct regulator *regulator)
2050 {
2051 struct regulator_dev *rdev = regulator->rdev;
2052
2053 return rdev->desc->n_voltages ? : -EINVAL;
2054 }
2055 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2056
2057 /**
2058 * regulator_list_voltage_linear - List voltages with simple calculation
2059 *
2060 * @rdev: Regulator device
2061 * @selector: Selector to convert into a voltage
2062 *
2063 * Regulators with a simple linear mapping between voltages and
2064 * selectors can set min_uV and uV_step in the regulator descriptor
2065 * and then use this function as their list_voltage() operation,
2066 */
2067 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2068 unsigned int selector)
2069 {
2070 if (selector >= rdev->desc->n_voltages)
2071 return -EINVAL;
2072 if (selector < rdev->desc->linear_min_sel)
2073 return 0;
2074
2075 selector -= rdev->desc->linear_min_sel;
2076
2077 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2080
2081 /**
2082 * regulator_list_voltage_table - List voltages with table based mapping
2083 *
2084 * @rdev: Regulator device
2085 * @selector: Selector to convert into a voltage
2086 *
2087 * Regulators with table based mapping between voltages and
2088 * selectors can set volt_table in the regulator descriptor
2089 * and then use this function as their list_voltage() operation.
2090 */
2091 int regulator_list_voltage_table(struct regulator_dev *rdev,
2092 unsigned int selector)
2093 {
2094 if (!rdev->desc->volt_table) {
2095 BUG_ON(!rdev->desc->volt_table);
2096 return -EINVAL;
2097 }
2098
2099 if (selector >= rdev->desc->n_voltages)
2100 return -EINVAL;
2101
2102 return rdev->desc->volt_table[selector];
2103 }
2104 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2105
2106 /**
2107 * regulator_list_voltage - enumerate supported voltages
2108 * @regulator: regulator source
2109 * @selector: identify voltage to list
2110 * Context: can sleep
2111 *
2112 * Returns a voltage that can be passed to @regulator_set_voltage(),
2113 * zero if this selector code can't be used on this system, or a
2114 * negative errno.
2115 */
2116 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2117 {
2118 struct regulator_dev *rdev = regulator->rdev;
2119 struct regulator_ops *ops = rdev->desc->ops;
2120 int ret;
2121
2122 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2123 return -EINVAL;
2124
2125 mutex_lock(&rdev->mutex);
2126 ret = ops->list_voltage(rdev, selector);
2127 mutex_unlock(&rdev->mutex);
2128
2129 if (ret > 0) {
2130 if (ret < rdev->constraints->min_uV)
2131 ret = 0;
2132 else if (ret > rdev->constraints->max_uV)
2133 ret = 0;
2134 }
2135
2136 return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2139
2140 /**
2141 * regulator_is_supported_voltage - check if a voltage range can be supported
2142 *
2143 * @regulator: Regulator to check.
2144 * @min_uV: Minimum required voltage in uV.
2145 * @max_uV: Maximum required voltage in uV.
2146 *
2147 * Returns a boolean or a negative error code.
2148 */
2149 int regulator_is_supported_voltage(struct regulator *regulator,
2150 int min_uV, int max_uV)
2151 {
2152 struct regulator_dev *rdev = regulator->rdev;
2153 int i, voltages, ret;
2154
2155 /* If we can't change voltage check the current voltage */
2156 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2157 ret = regulator_get_voltage(regulator);
2158 if (ret >= 0)
2159 return (min_uV <= ret && ret <= max_uV);
2160 else
2161 return ret;
2162 }
2163
2164 /* Any voltage within constrains range is fine? */
2165 if (rdev->desc->continuous_voltage_range)
2166 return min_uV >= rdev->constraints->min_uV &&
2167 max_uV <= rdev->constraints->max_uV;
2168
2169 ret = regulator_count_voltages(regulator);
2170 if (ret < 0)
2171 return ret;
2172 voltages = ret;
2173
2174 for (i = 0; i < voltages; i++) {
2175 ret = regulator_list_voltage(regulator, i);
2176
2177 if (ret >= min_uV && ret <= max_uV)
2178 return 1;
2179 }
2180
2181 return 0;
2182 }
2183 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2184
2185 /**
2186 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2187 *
2188 * @rdev: regulator to operate on
2189 *
2190 * Regulators that use regmap for their register I/O can set the
2191 * vsel_reg and vsel_mask fields in their descriptor and then use this
2192 * as their get_voltage_vsel operation, saving some code.
2193 */
2194 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2195 {
2196 unsigned int val;
2197 int ret;
2198
2199 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2200 if (ret != 0)
2201 return ret;
2202
2203 val &= rdev->desc->vsel_mask;
2204 val >>= ffs(rdev->desc->vsel_mask) - 1;
2205
2206 return val;
2207 }
2208 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2209
2210 /**
2211 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2212 *
2213 * @rdev: regulator to operate on
2214 * @sel: Selector to set
2215 *
2216 * Regulators that use regmap for their register I/O can set the
2217 * vsel_reg and vsel_mask fields in their descriptor and then use this
2218 * as their set_voltage_vsel operation, saving some code.
2219 */
2220 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2221 {
2222 int ret;
2223
2224 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2225
2226 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2227 rdev->desc->vsel_mask, sel);
2228 if (ret)
2229 return ret;
2230
2231 if (rdev->desc->apply_bit)
2232 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2233 rdev->desc->apply_bit,
2234 rdev->desc->apply_bit);
2235 return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2238
2239 /**
2240 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2241 *
2242 * @rdev: Regulator to operate on
2243 * @min_uV: Lower bound for voltage
2244 * @max_uV: Upper bound for voltage
2245 *
2246 * Drivers implementing set_voltage_sel() and list_voltage() can use
2247 * this as their map_voltage() operation. It will find a suitable
2248 * voltage by calling list_voltage() until it gets something in bounds
2249 * for the requested voltages.
2250 */
2251 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2252 int min_uV, int max_uV)
2253 {
2254 int best_val = INT_MAX;
2255 int selector = 0;
2256 int i, ret;
2257
2258 /* Find the smallest voltage that falls within the specified
2259 * range.
2260 */
2261 for (i = 0; i < rdev->desc->n_voltages; i++) {
2262 ret = rdev->desc->ops->list_voltage(rdev, i);
2263 if (ret < 0)
2264 continue;
2265
2266 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2267 best_val = ret;
2268 selector = i;
2269 }
2270 }
2271
2272 if (best_val != INT_MAX)
2273 return selector;
2274 else
2275 return -EINVAL;
2276 }
2277 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2278
2279 /**
2280 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2281 *
2282 * @rdev: Regulator to operate on
2283 * @min_uV: Lower bound for voltage
2284 * @max_uV: Upper bound for voltage
2285 *
2286 * Drivers that have ascendant voltage list can use this as their
2287 * map_voltage() operation.
2288 */
2289 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2290 int min_uV, int max_uV)
2291 {
2292 int i, ret;
2293
2294 for (i = 0; i < rdev->desc->n_voltages; i++) {
2295 ret = rdev->desc->ops->list_voltage(rdev, i);
2296 if (ret < 0)
2297 continue;
2298
2299 if (ret > max_uV)
2300 break;
2301
2302 if (ret >= min_uV && ret <= max_uV)
2303 return i;
2304 }
2305
2306 return -EINVAL;
2307 }
2308 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2309
2310 /**
2311 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2312 *
2313 * @rdev: Regulator to operate on
2314 * @min_uV: Lower bound for voltage
2315 * @max_uV: Upper bound for voltage
2316 *
2317 * Drivers providing min_uV and uV_step in their regulator_desc can
2318 * use this as their map_voltage() operation.
2319 */
2320 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2321 int min_uV, int max_uV)
2322 {
2323 int ret, voltage;
2324
2325 /* Allow uV_step to be 0 for fixed voltage */
2326 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2327 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2328 return 0;
2329 else
2330 return -EINVAL;
2331 }
2332
2333 if (!rdev->desc->uV_step) {
2334 BUG_ON(!rdev->desc->uV_step);
2335 return -EINVAL;
2336 }
2337
2338 if (min_uV < rdev->desc->min_uV)
2339 min_uV = rdev->desc->min_uV;
2340
2341 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2342 if (ret < 0)
2343 return ret;
2344
2345 ret += rdev->desc->linear_min_sel;
2346
2347 /* Map back into a voltage to verify we're still in bounds */
2348 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2349 if (voltage < min_uV || voltage > max_uV)
2350 return -EINVAL;
2351
2352 return ret;
2353 }
2354 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2355
2356 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2357 int min_uV, int max_uV)
2358 {
2359 int ret;
2360 int delay = 0;
2361 int best_val = 0;
2362 unsigned int selector;
2363 int old_selector = -1;
2364
2365 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2366
2367 min_uV += rdev->constraints->uV_offset;
2368 max_uV += rdev->constraints->uV_offset;
2369
2370 /*
2371 * If we can't obtain the old selector there is not enough
2372 * info to call set_voltage_time_sel().
2373 */
2374 if (_regulator_is_enabled(rdev) &&
2375 rdev->desc->ops->set_voltage_time_sel &&
2376 rdev->desc->ops->get_voltage_sel) {
2377 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2378 if (old_selector < 0)
2379 return old_selector;
2380 }
2381
2382 if (rdev->desc->ops->set_voltage) {
2383 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2384 &selector);
2385
2386 if (ret >= 0) {
2387 if (rdev->desc->ops->list_voltage)
2388 best_val = rdev->desc->ops->list_voltage(rdev,
2389 selector);
2390 else
2391 best_val = _regulator_get_voltage(rdev);
2392 }
2393
2394 } else if (rdev->desc->ops->set_voltage_sel) {
2395 if (rdev->desc->ops->map_voltage) {
2396 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2397 max_uV);
2398 } else {
2399 if (rdev->desc->ops->list_voltage ==
2400 regulator_list_voltage_linear)
2401 ret = regulator_map_voltage_linear(rdev,
2402 min_uV, max_uV);
2403 else
2404 ret = regulator_map_voltage_iterate(rdev,
2405 min_uV, max_uV);
2406 }
2407
2408 if (ret >= 0) {
2409 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2410 if (min_uV <= best_val && max_uV >= best_val) {
2411 selector = ret;
2412 if (old_selector == selector)
2413 ret = 0;
2414 else
2415 ret = rdev->desc->ops->set_voltage_sel(
2416 rdev, ret);
2417 } else {
2418 ret = -EINVAL;
2419 }
2420 }
2421 } else {
2422 ret = -EINVAL;
2423 }
2424
2425 /* Call set_voltage_time_sel if successfully obtained old_selector */
2426 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2427 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2428
2429 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2430 old_selector, selector);
2431 if (delay < 0) {
2432 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2433 delay);
2434 delay = 0;
2435 }
2436
2437 /* Insert any necessary delays */
2438 if (delay >= 1000) {
2439 mdelay(delay / 1000);
2440 udelay(delay % 1000);
2441 } else if (delay) {
2442 udelay(delay);
2443 }
2444 }
2445
2446 if (ret == 0 && best_val >= 0) {
2447 unsigned long data = best_val;
2448
2449 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2450 (void *)data);
2451 }
2452
2453 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2454
2455 return ret;
2456 }
2457
2458 /**
2459 * regulator_set_voltage - set regulator output voltage
2460 * @regulator: regulator source
2461 * @min_uV: Minimum required voltage in uV
2462 * @max_uV: Maximum acceptable voltage in uV
2463 *
2464 * Sets a voltage regulator to the desired output voltage. This can be set
2465 * during any regulator state. IOW, regulator can be disabled or enabled.
2466 *
2467 * If the regulator is enabled then the voltage will change to the new value
2468 * immediately otherwise if the regulator is disabled the regulator will
2469 * output at the new voltage when enabled.
2470 *
2471 * NOTE: If the regulator is shared between several devices then the lowest
2472 * request voltage that meets the system constraints will be used.
2473 * Regulator system constraints must be set for this regulator before
2474 * calling this function otherwise this call will fail.
2475 */
2476 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2477 {
2478 struct regulator_dev *rdev = regulator->rdev;
2479 int ret = 0;
2480 int old_min_uV, old_max_uV;
2481
2482 mutex_lock(&rdev->mutex);
2483
2484 /* If we're setting the same range as last time the change
2485 * should be a noop (some cpufreq implementations use the same
2486 * voltage for multiple frequencies, for example).
2487 */
2488 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2489 goto out;
2490
2491 /* sanity check */
2492 if (!rdev->desc->ops->set_voltage &&
2493 !rdev->desc->ops->set_voltage_sel) {
2494 ret = -EINVAL;
2495 goto out;
2496 }
2497
2498 /* constraints check */
2499 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2500 if (ret < 0)
2501 goto out;
2502
2503 /* restore original values in case of error */
2504 old_min_uV = regulator->min_uV;
2505 old_max_uV = regulator->max_uV;
2506 regulator->min_uV = min_uV;
2507 regulator->max_uV = max_uV;
2508
2509 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2510 if (ret < 0)
2511 goto out2;
2512
2513 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2514 if (ret < 0)
2515 goto out2;
2516
2517 out:
2518 mutex_unlock(&rdev->mutex);
2519 return ret;
2520 out2:
2521 regulator->min_uV = old_min_uV;
2522 regulator->max_uV = old_max_uV;
2523 mutex_unlock(&rdev->mutex);
2524 return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2527
2528 /**
2529 * regulator_set_voltage_time - get raise/fall time
2530 * @regulator: regulator source
2531 * @old_uV: starting voltage in microvolts
2532 * @new_uV: target voltage in microvolts
2533 *
2534 * Provided with the starting and ending voltage, this function attempts to
2535 * calculate the time in microseconds required to rise or fall to this new
2536 * voltage.
2537 */
2538 int regulator_set_voltage_time(struct regulator *regulator,
2539 int old_uV, int new_uV)
2540 {
2541 struct regulator_dev *rdev = regulator->rdev;
2542 struct regulator_ops *ops = rdev->desc->ops;
2543 int old_sel = -1;
2544 int new_sel = -1;
2545 int voltage;
2546 int i;
2547
2548 /* Currently requires operations to do this */
2549 if (!ops->list_voltage || !ops->set_voltage_time_sel
2550 || !rdev->desc->n_voltages)
2551 return -EINVAL;
2552
2553 for (i = 0; i < rdev->desc->n_voltages; i++) {
2554 /* We only look for exact voltage matches here */
2555 voltage = regulator_list_voltage(regulator, i);
2556 if (voltage < 0)
2557 return -EINVAL;
2558 if (voltage == 0)
2559 continue;
2560 if (voltage == old_uV)
2561 old_sel = i;
2562 if (voltage == new_uV)
2563 new_sel = i;
2564 }
2565
2566 if (old_sel < 0 || new_sel < 0)
2567 return -EINVAL;
2568
2569 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2570 }
2571 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2572
2573 /**
2574 * regulator_set_voltage_time_sel - get raise/fall time
2575 * @rdev: regulator source device
2576 * @old_selector: selector for starting voltage
2577 * @new_selector: selector for target voltage
2578 *
2579 * Provided with the starting and target voltage selectors, this function
2580 * returns time in microseconds required to rise or fall to this new voltage
2581 *
2582 * Drivers providing ramp_delay in regulation_constraints can use this as their
2583 * set_voltage_time_sel() operation.
2584 */
2585 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2586 unsigned int old_selector,
2587 unsigned int new_selector)
2588 {
2589 unsigned int ramp_delay = 0;
2590 int old_volt, new_volt;
2591
2592 if (rdev->constraints->ramp_delay)
2593 ramp_delay = rdev->constraints->ramp_delay;
2594 else if (rdev->desc->ramp_delay)
2595 ramp_delay = rdev->desc->ramp_delay;
2596
2597 if (ramp_delay == 0) {
2598 rdev_warn(rdev, "ramp_delay not set\n");
2599 return 0;
2600 }
2601
2602 /* sanity check */
2603 if (!rdev->desc->ops->list_voltage)
2604 return -EINVAL;
2605
2606 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2607 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2608
2609 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2610 }
2611 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2612
2613 /**
2614 * regulator_sync_voltage - re-apply last regulator output voltage
2615 * @regulator: regulator source
2616 *
2617 * Re-apply the last configured voltage. This is intended to be used
2618 * where some external control source the consumer is cooperating with
2619 * has caused the configured voltage to change.
2620 */
2621 int regulator_sync_voltage(struct regulator *regulator)
2622 {
2623 struct regulator_dev *rdev = regulator->rdev;
2624 int ret, min_uV, max_uV;
2625
2626 mutex_lock(&rdev->mutex);
2627
2628 if (!rdev->desc->ops->set_voltage &&
2629 !rdev->desc->ops->set_voltage_sel) {
2630 ret = -EINVAL;
2631 goto out;
2632 }
2633
2634 /* This is only going to work if we've had a voltage configured. */
2635 if (!regulator->min_uV && !regulator->max_uV) {
2636 ret = -EINVAL;
2637 goto out;
2638 }
2639
2640 min_uV = regulator->min_uV;
2641 max_uV = regulator->max_uV;
2642
2643 /* This should be a paranoia check... */
2644 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2645 if (ret < 0)
2646 goto out;
2647
2648 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2649 if (ret < 0)
2650 goto out;
2651
2652 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2653
2654 out:
2655 mutex_unlock(&rdev->mutex);
2656 return ret;
2657 }
2658 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2659
2660 static int _regulator_get_voltage(struct regulator_dev *rdev)
2661 {
2662 int sel, ret;
2663
2664 if (rdev->desc->ops->get_voltage_sel) {
2665 sel = rdev->desc->ops->get_voltage_sel(rdev);
2666 if (sel < 0)
2667 return sel;
2668 ret = rdev->desc->ops->list_voltage(rdev, sel);
2669 } else if (rdev->desc->ops->get_voltage) {
2670 ret = rdev->desc->ops->get_voltage(rdev);
2671 } else if (rdev->desc->ops->list_voltage) {
2672 ret = rdev->desc->ops->list_voltage(rdev, 0);
2673 } else {
2674 return -EINVAL;
2675 }
2676
2677 if (ret < 0)
2678 return ret;
2679 return ret - rdev->constraints->uV_offset;
2680 }
2681
2682 /**
2683 * regulator_get_voltage - get regulator output voltage
2684 * @regulator: regulator source
2685 *
2686 * This returns the current regulator voltage in uV.
2687 *
2688 * NOTE: If the regulator is disabled it will return the voltage value. This
2689 * function should not be used to determine regulator state.
2690 */
2691 int regulator_get_voltage(struct regulator *regulator)
2692 {
2693 int ret;
2694
2695 mutex_lock(&regulator->rdev->mutex);
2696
2697 ret = _regulator_get_voltage(regulator->rdev);
2698
2699 mutex_unlock(&regulator->rdev->mutex);
2700
2701 return ret;
2702 }
2703 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2704
2705 /**
2706 * regulator_set_current_limit - set regulator output current limit
2707 * @regulator: regulator source
2708 * @min_uA: Minimum supported current in uA
2709 * @max_uA: Maximum supported current in uA
2710 *
2711 * Sets current sink to the desired output current. This can be set during
2712 * any regulator state. IOW, regulator can be disabled or enabled.
2713 *
2714 * If the regulator is enabled then the current will change to the new value
2715 * immediately otherwise if the regulator is disabled the regulator will
2716 * output at the new current when enabled.
2717 *
2718 * NOTE: Regulator system constraints must be set for this regulator before
2719 * calling this function otherwise this call will fail.
2720 */
2721 int regulator_set_current_limit(struct regulator *regulator,
2722 int min_uA, int max_uA)
2723 {
2724 struct regulator_dev *rdev = regulator->rdev;
2725 int ret;
2726
2727 mutex_lock(&rdev->mutex);
2728
2729 /* sanity check */
2730 if (!rdev->desc->ops->set_current_limit) {
2731 ret = -EINVAL;
2732 goto out;
2733 }
2734
2735 /* constraints check */
2736 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2737 if (ret < 0)
2738 goto out;
2739
2740 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2741 out:
2742 mutex_unlock(&rdev->mutex);
2743 return ret;
2744 }
2745 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2746
2747 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2748 {
2749 int ret;
2750
2751 mutex_lock(&rdev->mutex);
2752
2753 /* sanity check */
2754 if (!rdev->desc->ops->get_current_limit) {
2755 ret = -EINVAL;
2756 goto out;
2757 }
2758
2759 ret = rdev->desc->ops->get_current_limit(rdev);
2760 out:
2761 mutex_unlock(&rdev->mutex);
2762 return ret;
2763 }
2764
2765 /**
2766 * regulator_get_current_limit - get regulator output current
2767 * @regulator: regulator source
2768 *
2769 * This returns the current supplied by the specified current sink in uA.
2770 *
2771 * NOTE: If the regulator is disabled it will return the current value. This
2772 * function should not be used to determine regulator state.
2773 */
2774 int regulator_get_current_limit(struct regulator *regulator)
2775 {
2776 return _regulator_get_current_limit(regulator->rdev);
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2779
2780 /**
2781 * regulator_set_mode - set regulator operating mode
2782 * @regulator: regulator source
2783 * @mode: operating mode - one of the REGULATOR_MODE constants
2784 *
2785 * Set regulator operating mode to increase regulator efficiency or improve
2786 * regulation performance.
2787 *
2788 * NOTE: Regulator system constraints must be set for this regulator before
2789 * calling this function otherwise this call will fail.
2790 */
2791 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2792 {
2793 struct regulator_dev *rdev = regulator->rdev;
2794 int ret;
2795 int regulator_curr_mode;
2796
2797 mutex_lock(&rdev->mutex);
2798
2799 /* sanity check */
2800 if (!rdev->desc->ops->set_mode) {
2801 ret = -EINVAL;
2802 goto out;
2803 }
2804
2805 /* return if the same mode is requested */
2806 if (rdev->desc->ops->get_mode) {
2807 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2808 if (regulator_curr_mode == mode) {
2809 ret = 0;
2810 goto out;
2811 }
2812 }
2813
2814 /* constraints check */
2815 ret = regulator_mode_constrain(rdev, &mode);
2816 if (ret < 0)
2817 goto out;
2818
2819 ret = rdev->desc->ops->set_mode(rdev, mode);
2820 out:
2821 mutex_unlock(&rdev->mutex);
2822 return ret;
2823 }
2824 EXPORT_SYMBOL_GPL(regulator_set_mode);
2825
2826 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2827 {
2828 int ret;
2829
2830 mutex_lock(&rdev->mutex);
2831
2832 /* sanity check */
2833 if (!rdev->desc->ops->get_mode) {
2834 ret = -EINVAL;
2835 goto out;
2836 }
2837
2838 ret = rdev->desc->ops->get_mode(rdev);
2839 out:
2840 mutex_unlock(&rdev->mutex);
2841 return ret;
2842 }
2843
2844 /**
2845 * regulator_get_mode - get regulator operating mode
2846 * @regulator: regulator source
2847 *
2848 * Get the current regulator operating mode.
2849 */
2850 unsigned int regulator_get_mode(struct regulator *regulator)
2851 {
2852 return _regulator_get_mode(regulator->rdev);
2853 }
2854 EXPORT_SYMBOL_GPL(regulator_get_mode);
2855
2856 /**
2857 * regulator_set_optimum_mode - set regulator optimum operating mode
2858 * @regulator: regulator source
2859 * @uA_load: load current
2860 *
2861 * Notifies the regulator core of a new device load. This is then used by
2862 * DRMS (if enabled by constraints) to set the most efficient regulator
2863 * operating mode for the new regulator loading.
2864 *
2865 * Consumer devices notify their supply regulator of the maximum power
2866 * they will require (can be taken from device datasheet in the power
2867 * consumption tables) when they change operational status and hence power
2868 * state. Examples of operational state changes that can affect power
2869 * consumption are :-
2870 *
2871 * o Device is opened / closed.
2872 * o Device I/O is about to begin or has just finished.
2873 * o Device is idling in between work.
2874 *
2875 * This information is also exported via sysfs to userspace.
2876 *
2877 * DRMS will sum the total requested load on the regulator and change
2878 * to the most efficient operating mode if platform constraints allow.
2879 *
2880 * Returns the new regulator mode or error.
2881 */
2882 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2883 {
2884 struct regulator_dev *rdev = regulator->rdev;
2885 struct regulator *consumer;
2886 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2887 unsigned int mode;
2888
2889 if (rdev->supply)
2890 input_uV = regulator_get_voltage(rdev->supply);
2891
2892 mutex_lock(&rdev->mutex);
2893
2894 /*
2895 * first check to see if we can set modes at all, otherwise just
2896 * tell the consumer everything is OK.
2897 */
2898 regulator->uA_load = uA_load;
2899 ret = regulator_check_drms(rdev);
2900 if (ret < 0) {
2901 ret = 0;
2902 goto out;
2903 }
2904
2905 if (!rdev->desc->ops->get_optimum_mode)
2906 goto out;
2907
2908 /*
2909 * we can actually do this so any errors are indicators of
2910 * potential real failure.
2911 */
2912 ret = -EINVAL;
2913
2914 if (!rdev->desc->ops->set_mode)
2915 goto out;
2916
2917 /* get output voltage */
2918 output_uV = _regulator_get_voltage(rdev);
2919 if (output_uV <= 0) {
2920 rdev_err(rdev, "invalid output voltage found\n");
2921 goto out;
2922 }
2923
2924 /* No supply? Use constraint voltage */
2925 if (input_uV <= 0)
2926 input_uV = rdev->constraints->input_uV;
2927 if (input_uV <= 0) {
2928 rdev_err(rdev, "invalid input voltage found\n");
2929 goto out;
2930 }
2931
2932 /* calc total requested load for this regulator */
2933 list_for_each_entry(consumer, &rdev->consumer_list, list)
2934 total_uA_load += consumer->uA_load;
2935
2936 mode = rdev->desc->ops->get_optimum_mode(rdev,
2937 input_uV, output_uV,
2938 total_uA_load);
2939 ret = regulator_mode_constrain(rdev, &mode);
2940 if (ret < 0) {
2941 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2942 total_uA_load, input_uV, output_uV);
2943 goto out;
2944 }
2945
2946 ret = rdev->desc->ops->set_mode(rdev, mode);
2947 if (ret < 0) {
2948 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2949 goto out;
2950 }
2951 ret = mode;
2952 out:
2953 mutex_unlock(&rdev->mutex);
2954 return ret;
2955 }
2956 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2957
2958 /**
2959 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2960 *
2961 * @rdev: device to operate on.
2962 * @enable: state to set.
2963 */
2964 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2965 {
2966 unsigned int val;
2967
2968 if (enable)
2969 val = rdev->desc->bypass_mask;
2970 else
2971 val = 0;
2972
2973 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2974 rdev->desc->bypass_mask, val);
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2977
2978 /**
2979 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2980 *
2981 * @rdev: device to operate on.
2982 * @enable: current state.
2983 */
2984 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2985 {
2986 unsigned int val;
2987 int ret;
2988
2989 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2990 if (ret != 0)
2991 return ret;
2992
2993 *enable = val & rdev->desc->bypass_mask;
2994
2995 return 0;
2996 }
2997 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2998
2999 /**
3000 * regulator_allow_bypass - allow the regulator to go into bypass mode
3001 *
3002 * @regulator: Regulator to configure
3003 * @enable: enable or disable bypass mode
3004 *
3005 * Allow the regulator to go into bypass mode if all other consumers
3006 * for the regulator also enable bypass mode and the machine
3007 * constraints allow this. Bypass mode means that the regulator is
3008 * simply passing the input directly to the output with no regulation.
3009 */
3010 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3011 {
3012 struct regulator_dev *rdev = regulator->rdev;
3013 int ret = 0;
3014
3015 if (!rdev->desc->ops->set_bypass)
3016 return 0;
3017
3018 if (rdev->constraints &&
3019 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3020 return 0;
3021
3022 mutex_lock(&rdev->mutex);
3023
3024 if (enable && !regulator->bypass) {
3025 rdev->bypass_count++;
3026
3027 if (rdev->bypass_count == rdev->open_count) {
3028 ret = rdev->desc->ops->set_bypass(rdev, enable);
3029 if (ret != 0)
3030 rdev->bypass_count--;
3031 }
3032
3033 } else if (!enable && regulator->bypass) {
3034 rdev->bypass_count--;
3035
3036 if (rdev->bypass_count != rdev->open_count) {
3037 ret = rdev->desc->ops->set_bypass(rdev, enable);
3038 if (ret != 0)
3039 rdev->bypass_count++;
3040 }
3041 }
3042
3043 if (ret == 0)
3044 regulator->bypass = enable;
3045
3046 mutex_unlock(&rdev->mutex);
3047
3048 return ret;
3049 }
3050 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3051
3052 /**
3053 * regulator_register_notifier - register regulator event notifier
3054 * @regulator: regulator source
3055 * @nb: notifier block
3056 *
3057 * Register notifier block to receive regulator events.
3058 */
3059 int regulator_register_notifier(struct regulator *regulator,
3060 struct notifier_block *nb)
3061 {
3062 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3063 nb);
3064 }
3065 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3066
3067 /**
3068 * regulator_unregister_notifier - unregister regulator event notifier
3069 * @regulator: regulator source
3070 * @nb: notifier block
3071 *
3072 * Unregister regulator event notifier block.
3073 */
3074 int regulator_unregister_notifier(struct regulator *regulator,
3075 struct notifier_block *nb)
3076 {
3077 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3078 nb);
3079 }
3080 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3081
3082 /* notify regulator consumers and downstream regulator consumers.
3083 * Note mutex must be held by caller.
3084 */
3085 static void _notifier_call_chain(struct regulator_dev *rdev,
3086 unsigned long event, void *data)
3087 {
3088 /* call rdev chain first */
3089 blocking_notifier_call_chain(&rdev->notifier, event, data);
3090 }
3091
3092 /**
3093 * regulator_bulk_get - get multiple regulator consumers
3094 *
3095 * @dev: Device to supply
3096 * @num_consumers: Number of consumers to register
3097 * @consumers: Configuration of consumers; clients are stored here.
3098 *
3099 * @return 0 on success, an errno on failure.
3100 *
3101 * This helper function allows drivers to get several regulator
3102 * consumers in one operation. If any of the regulators cannot be
3103 * acquired then any regulators that were allocated will be freed
3104 * before returning to the caller.
3105 */
3106 int regulator_bulk_get(struct device *dev, int num_consumers,
3107 struct regulator_bulk_data *consumers)
3108 {
3109 int i;
3110 int ret;
3111
3112 for (i = 0; i < num_consumers; i++)
3113 consumers[i].consumer = NULL;
3114
3115 for (i = 0; i < num_consumers; i++) {
3116 consumers[i].consumer = regulator_get(dev,
3117 consumers[i].supply);
3118 if (IS_ERR(consumers[i].consumer)) {
3119 ret = PTR_ERR(consumers[i].consumer);
3120 dev_err(dev, "Failed to get supply '%s': %d\n",
3121 consumers[i].supply, ret);
3122 consumers[i].consumer = NULL;
3123 goto err;
3124 }
3125 }
3126
3127 return 0;
3128
3129 err:
3130 while (--i >= 0)
3131 regulator_put(consumers[i].consumer);
3132
3133 return ret;
3134 }
3135 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3136
3137 /**
3138 * devm_regulator_bulk_get - managed get multiple regulator consumers
3139 *
3140 * @dev: Device to supply
3141 * @num_consumers: Number of consumers to register
3142 * @consumers: Configuration of consumers; clients are stored here.
3143 *
3144 * @return 0 on success, an errno on failure.
3145 *
3146 * This helper function allows drivers to get several regulator
3147 * consumers in one operation with management, the regulators will
3148 * automatically be freed when the device is unbound. If any of the
3149 * regulators cannot be acquired then any regulators that were
3150 * allocated will be freed before returning to the caller.
3151 */
3152 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3153 struct regulator_bulk_data *consumers)
3154 {
3155 int i;
3156 int ret;
3157
3158 for (i = 0; i < num_consumers; i++)
3159 consumers[i].consumer = NULL;
3160
3161 for (i = 0; i < num_consumers; i++) {
3162 consumers[i].consumer = devm_regulator_get(dev,
3163 consumers[i].supply);
3164 if (IS_ERR(consumers[i].consumer)) {
3165 ret = PTR_ERR(consumers[i].consumer);
3166 dev_err(dev, "Failed to get supply '%s': %d\n",
3167 consumers[i].supply, ret);
3168 consumers[i].consumer = NULL;
3169 goto err;
3170 }
3171 }
3172
3173 return 0;
3174
3175 err:
3176 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3177 devm_regulator_put(consumers[i].consumer);
3178
3179 return ret;
3180 }
3181 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3182
3183 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3184 {
3185 struct regulator_bulk_data *bulk = data;
3186
3187 bulk->ret = regulator_enable(bulk->consumer);
3188 }
3189
3190 /**
3191 * regulator_bulk_enable - enable multiple regulator consumers
3192 *
3193 * @num_consumers: Number of consumers
3194 * @consumers: Consumer data; clients are stored here.
3195 * @return 0 on success, an errno on failure
3196 *
3197 * This convenience API allows consumers to enable multiple regulator
3198 * clients in a single API call. If any consumers cannot be enabled
3199 * then any others that were enabled will be disabled again prior to
3200 * return.
3201 */
3202 int regulator_bulk_enable(int num_consumers,
3203 struct regulator_bulk_data *consumers)
3204 {
3205 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3206 int i;
3207 int ret = 0;
3208
3209 for (i = 0; i < num_consumers; i++) {
3210 if (consumers[i].consumer->always_on)
3211 consumers[i].ret = 0;
3212 else
3213 async_schedule_domain(regulator_bulk_enable_async,
3214 &consumers[i], &async_domain);
3215 }
3216
3217 async_synchronize_full_domain(&async_domain);
3218
3219 /* If any consumer failed we need to unwind any that succeeded */
3220 for (i = 0; i < num_consumers; i++) {
3221 if (consumers[i].ret != 0) {
3222 ret = consumers[i].ret;
3223 goto err;
3224 }
3225 }
3226
3227 return 0;
3228
3229 err:
3230 for (i = 0; i < num_consumers; i++) {
3231 if (consumers[i].ret < 0)
3232 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3233 consumers[i].ret);
3234 else
3235 regulator_disable(consumers[i].consumer);
3236 }
3237
3238 return ret;
3239 }
3240 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3241
3242 /**
3243 * regulator_bulk_disable - disable multiple regulator consumers
3244 *
3245 * @num_consumers: Number of consumers
3246 * @consumers: Consumer data; clients are stored here.
3247 * @return 0 on success, an errno on failure
3248 *
3249 * This convenience API allows consumers to disable multiple regulator
3250 * clients in a single API call. If any consumers cannot be disabled
3251 * then any others that were disabled will be enabled again prior to
3252 * return.
3253 */
3254 int regulator_bulk_disable(int num_consumers,
3255 struct regulator_bulk_data *consumers)
3256 {
3257 int i;
3258 int ret, r;
3259
3260 for (i = num_consumers - 1; i >= 0; --i) {
3261 ret = regulator_disable(consumers[i].consumer);
3262 if (ret != 0)
3263 goto err;
3264 }
3265
3266 return 0;
3267
3268 err:
3269 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3270 for (++i; i < num_consumers; ++i) {
3271 r = regulator_enable(consumers[i].consumer);
3272 if (r != 0)
3273 pr_err("Failed to reename %s: %d\n",
3274 consumers[i].supply, r);
3275 }
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3280
3281 /**
3282 * regulator_bulk_force_disable - force disable multiple regulator consumers
3283 *
3284 * @num_consumers: Number of consumers
3285 * @consumers: Consumer data; clients are stored here.
3286 * @return 0 on success, an errno on failure
3287 *
3288 * This convenience API allows consumers to forcibly disable multiple regulator
3289 * clients in a single API call.
3290 * NOTE: This should be used for situations when device damage will
3291 * likely occur if the regulators are not disabled (e.g. over temp).
3292 * Although regulator_force_disable function call for some consumers can
3293 * return error numbers, the function is called for all consumers.
3294 */
3295 int regulator_bulk_force_disable(int num_consumers,
3296 struct regulator_bulk_data *consumers)
3297 {
3298 int i;
3299 int ret;
3300
3301 for (i = 0; i < num_consumers; i++)
3302 consumers[i].ret =
3303 regulator_force_disable(consumers[i].consumer);
3304
3305 for (i = 0; i < num_consumers; i++) {
3306 if (consumers[i].ret != 0) {
3307 ret = consumers[i].ret;
3308 goto out;
3309 }
3310 }
3311
3312 return 0;
3313 out:
3314 return ret;
3315 }
3316 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3317
3318 /**
3319 * regulator_bulk_free - free multiple regulator consumers
3320 *
3321 * @num_consumers: Number of consumers
3322 * @consumers: Consumer data; clients are stored here.
3323 *
3324 * This convenience API allows consumers to free multiple regulator
3325 * clients in a single API call.
3326 */
3327 void regulator_bulk_free(int num_consumers,
3328 struct regulator_bulk_data *consumers)
3329 {
3330 int i;
3331
3332 for (i = 0; i < num_consumers; i++) {
3333 regulator_put(consumers[i].consumer);
3334 consumers[i].consumer = NULL;
3335 }
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3338
3339 /**
3340 * regulator_notifier_call_chain - call regulator event notifier
3341 * @rdev: regulator source
3342 * @event: notifier block
3343 * @data: callback-specific data.
3344 *
3345 * Called by regulator drivers to notify clients a regulator event has
3346 * occurred. We also notify regulator clients downstream.
3347 * Note lock must be held by caller.
3348 */
3349 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3350 unsigned long event, void *data)
3351 {
3352 _notifier_call_chain(rdev, event, data);
3353 return NOTIFY_DONE;
3354
3355 }
3356 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3357
3358 /**
3359 * regulator_mode_to_status - convert a regulator mode into a status
3360 *
3361 * @mode: Mode to convert
3362 *
3363 * Convert a regulator mode into a status.
3364 */
3365 int regulator_mode_to_status(unsigned int mode)
3366 {
3367 switch (mode) {
3368 case REGULATOR_MODE_FAST:
3369 return REGULATOR_STATUS_FAST;
3370 case REGULATOR_MODE_NORMAL:
3371 return REGULATOR_STATUS_NORMAL;
3372 case REGULATOR_MODE_IDLE:
3373 return REGULATOR_STATUS_IDLE;
3374 case REGULATOR_MODE_STANDBY:
3375 return REGULATOR_STATUS_STANDBY;
3376 default:
3377 return REGULATOR_STATUS_UNDEFINED;
3378 }
3379 }
3380 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3381
3382 /*
3383 * To avoid cluttering sysfs (and memory) with useless state, only
3384 * create attributes that can be meaningfully displayed.
3385 */
3386 static int add_regulator_attributes(struct regulator_dev *rdev)
3387 {
3388 struct device *dev = &rdev->dev;
3389 struct regulator_ops *ops = rdev->desc->ops;
3390 int status = 0;
3391
3392 /* some attributes need specific methods to be displayed */
3393 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3394 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3395 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3396 status = device_create_file(dev, &dev_attr_microvolts);
3397 if (status < 0)
3398 return status;
3399 }
3400 if (ops->get_current_limit) {
3401 status = device_create_file(dev, &dev_attr_microamps);
3402 if (status < 0)
3403 return status;
3404 }
3405 if (ops->get_mode) {
3406 status = device_create_file(dev, &dev_attr_opmode);
3407 if (status < 0)
3408 return status;
3409 }
3410 if (rdev->ena_pin || ops->is_enabled) {
3411 status = device_create_file(dev, &dev_attr_state);
3412 if (status < 0)
3413 return status;
3414 }
3415 if (ops->get_status) {
3416 status = device_create_file(dev, &dev_attr_status);
3417 if (status < 0)
3418 return status;
3419 }
3420 if (ops->get_bypass) {
3421 status = device_create_file(dev, &dev_attr_bypass);
3422 if (status < 0)
3423 return status;
3424 }
3425
3426 /* some attributes are type-specific */
3427 if (rdev->desc->type == REGULATOR_CURRENT) {
3428 status = device_create_file(dev, &dev_attr_requested_microamps);
3429 if (status < 0)
3430 return status;
3431 }
3432
3433 /* all the other attributes exist to support constraints;
3434 * don't show them if there are no constraints, or if the
3435 * relevant supporting methods are missing.
3436 */
3437 if (!rdev->constraints)
3438 return status;
3439
3440 /* constraints need specific supporting methods */
3441 if (ops->set_voltage || ops->set_voltage_sel) {
3442 status = device_create_file(dev, &dev_attr_min_microvolts);
3443 if (status < 0)
3444 return status;
3445 status = device_create_file(dev, &dev_attr_max_microvolts);
3446 if (status < 0)
3447 return status;
3448 }
3449 if (ops->set_current_limit) {
3450 status = device_create_file(dev, &dev_attr_min_microamps);
3451 if (status < 0)
3452 return status;
3453 status = device_create_file(dev, &dev_attr_max_microamps);
3454 if (status < 0)
3455 return status;
3456 }
3457
3458 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3459 if (status < 0)
3460 return status;
3461 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3462 if (status < 0)
3463 return status;
3464 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3465 if (status < 0)
3466 return status;
3467
3468 if (ops->set_suspend_voltage) {
3469 status = device_create_file(dev,
3470 &dev_attr_suspend_standby_microvolts);
3471 if (status < 0)
3472 return status;
3473 status = device_create_file(dev,
3474 &dev_attr_suspend_mem_microvolts);
3475 if (status < 0)
3476 return status;
3477 status = device_create_file(dev,
3478 &dev_attr_suspend_disk_microvolts);
3479 if (status < 0)
3480 return status;
3481 }
3482
3483 if (ops->set_suspend_mode) {
3484 status = device_create_file(dev,
3485 &dev_attr_suspend_standby_mode);
3486 if (status < 0)
3487 return status;
3488 status = device_create_file(dev,
3489 &dev_attr_suspend_mem_mode);
3490 if (status < 0)
3491 return status;
3492 status = device_create_file(dev,
3493 &dev_attr_suspend_disk_mode);
3494 if (status < 0)
3495 return status;
3496 }
3497
3498 return status;
3499 }
3500
3501 static void rdev_init_debugfs(struct regulator_dev *rdev)
3502 {
3503 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3504 if (!rdev->debugfs) {
3505 rdev_warn(rdev, "Failed to create debugfs directory\n");
3506 return;
3507 }
3508
3509 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3510 &rdev->use_count);
3511 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3512 &rdev->open_count);
3513 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3514 &rdev->bypass_count);
3515 }
3516
3517 /**
3518 * regulator_register - register regulator
3519 * @regulator_desc: regulator to register
3520 * @config: runtime configuration for regulator
3521 *
3522 * Called by regulator drivers to register a regulator.
3523 * Returns a valid pointer to struct regulator_dev on success
3524 * or an ERR_PTR() on error.
3525 */
3526 struct regulator_dev *
3527 regulator_register(const struct regulator_desc *regulator_desc,
3528 const struct regulator_config *config)
3529 {
3530 const struct regulation_constraints *constraints = NULL;
3531 const struct regulator_init_data *init_data;
3532 static atomic_t regulator_no = ATOMIC_INIT(0);
3533 struct regulator_dev *rdev;
3534 struct device *dev;
3535 int ret, i;
3536 const char *supply = NULL;
3537
3538 if (regulator_desc == NULL || config == NULL)
3539 return ERR_PTR(-EINVAL);
3540
3541 dev = config->dev;
3542 WARN_ON(!dev);
3543
3544 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3545 return ERR_PTR(-EINVAL);
3546
3547 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3548 regulator_desc->type != REGULATOR_CURRENT)
3549 return ERR_PTR(-EINVAL);
3550
3551 /* Only one of each should be implemented */
3552 WARN_ON(regulator_desc->ops->get_voltage &&
3553 regulator_desc->ops->get_voltage_sel);
3554 WARN_ON(regulator_desc->ops->set_voltage &&
3555 regulator_desc->ops->set_voltage_sel);
3556
3557 /* If we're using selectors we must implement list_voltage. */
3558 if (regulator_desc->ops->get_voltage_sel &&
3559 !regulator_desc->ops->list_voltage) {
3560 return ERR_PTR(-EINVAL);
3561 }
3562 if (regulator_desc->ops->set_voltage_sel &&
3563 !regulator_desc->ops->list_voltage) {
3564 return ERR_PTR(-EINVAL);
3565 }
3566
3567 init_data = config->init_data;
3568
3569 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3570 if (rdev == NULL)
3571 return ERR_PTR(-ENOMEM);
3572
3573 mutex_lock(&regulator_list_mutex);
3574
3575 mutex_init(&rdev->mutex);
3576 rdev->reg_data = config->driver_data;
3577 rdev->owner = regulator_desc->owner;
3578 rdev->desc = regulator_desc;
3579 if (config->regmap)
3580 rdev->regmap = config->regmap;
3581 else if (dev_get_regmap(dev, NULL))
3582 rdev->regmap = dev_get_regmap(dev, NULL);
3583 else if (dev->parent)
3584 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3585 INIT_LIST_HEAD(&rdev->consumer_list);
3586 INIT_LIST_HEAD(&rdev->list);
3587 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3588 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3589
3590 /* preform any regulator specific init */
3591 if (init_data && init_data->regulator_init) {
3592 ret = init_data->regulator_init(rdev->reg_data);
3593 if (ret < 0)
3594 goto clean;
3595 }
3596
3597 /* register with sysfs */
3598 rdev->dev.class = &regulator_class;
3599 rdev->dev.of_node = config->of_node;
3600 rdev->dev.parent = dev;
3601 dev_set_name(&rdev->dev, "regulator.%d",
3602 atomic_inc_return(&regulator_no) - 1);
3603 ret = device_register(&rdev->dev);
3604 if (ret != 0) {
3605 put_device(&rdev->dev);
3606 goto clean;
3607 }
3608
3609 dev_set_drvdata(&rdev->dev, rdev);
3610
3611 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3612 ret = regulator_ena_gpio_request(rdev, config);
3613 if (ret != 0) {
3614 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3615 config->ena_gpio, ret);
3616 goto wash;
3617 }
3618
3619 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3620 rdev->ena_gpio_state = 1;
3621
3622 if (config->ena_gpio_invert)
3623 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3624 }
3625
3626 /* set regulator constraints */
3627 if (init_data)
3628 constraints = &init_data->constraints;
3629
3630 ret = set_machine_constraints(rdev, constraints);
3631 if (ret < 0)
3632 goto scrub;
3633
3634 /* add attributes supported by this regulator */
3635 ret = add_regulator_attributes(rdev);
3636 if (ret < 0)
3637 goto scrub;
3638
3639 if (init_data && init_data->supply_regulator)
3640 supply = init_data->supply_regulator;
3641 else if (regulator_desc->supply_name)
3642 supply = regulator_desc->supply_name;
3643
3644 if (supply) {
3645 struct regulator_dev *r;
3646
3647 r = regulator_dev_lookup(dev, supply, &ret);
3648
3649 if (ret == -ENODEV) {
3650 /*
3651 * No supply was specified for this regulator and
3652 * there will never be one.
3653 */
3654 ret = 0;
3655 goto add_dev;
3656 } else if (!r) {
3657 dev_err(dev, "Failed to find supply %s\n", supply);
3658 ret = -EPROBE_DEFER;
3659 goto scrub;
3660 }
3661
3662 ret = set_supply(rdev, r);
3663 if (ret < 0)
3664 goto scrub;
3665
3666 /* Enable supply if rail is enabled */
3667 if (_regulator_is_enabled(rdev)) {
3668 ret = regulator_enable(rdev->supply);
3669 if (ret < 0)
3670 goto scrub;
3671 }
3672 }
3673
3674 add_dev:
3675 /* add consumers devices */
3676 if (init_data) {
3677 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3678 ret = set_consumer_device_supply(rdev,
3679 init_data->consumer_supplies[i].dev_name,
3680 init_data->consumer_supplies[i].supply);
3681 if (ret < 0) {
3682 dev_err(dev, "Failed to set supply %s\n",
3683 init_data->consumer_supplies[i].supply);
3684 goto unset_supplies;
3685 }
3686 }
3687 }
3688
3689 list_add(&rdev->list, &regulator_list);
3690
3691 rdev_init_debugfs(rdev);
3692 out:
3693 mutex_unlock(&regulator_list_mutex);
3694 return rdev;
3695
3696 unset_supplies:
3697 unset_regulator_supplies(rdev);
3698
3699 scrub:
3700 if (rdev->supply)
3701 _regulator_put(rdev->supply);
3702 regulator_ena_gpio_free(rdev);
3703 kfree(rdev->constraints);
3704 wash:
3705 device_unregister(&rdev->dev);
3706 /* device core frees rdev */
3707 rdev = ERR_PTR(ret);
3708 goto out;
3709
3710 clean:
3711 kfree(rdev);
3712 rdev = ERR_PTR(ret);
3713 goto out;
3714 }
3715 EXPORT_SYMBOL_GPL(regulator_register);
3716
3717 /**
3718 * regulator_unregister - unregister regulator
3719 * @rdev: regulator to unregister
3720 *
3721 * Called by regulator drivers to unregister a regulator.
3722 */
3723 void regulator_unregister(struct regulator_dev *rdev)
3724 {
3725 if (rdev == NULL)
3726 return;
3727
3728 if (rdev->supply)
3729 regulator_put(rdev->supply);
3730 mutex_lock(&regulator_list_mutex);
3731 debugfs_remove_recursive(rdev->debugfs);
3732 flush_work(&rdev->disable_work.work);
3733 WARN_ON(rdev->open_count);
3734 unset_regulator_supplies(rdev);
3735 list_del(&rdev->list);
3736 kfree(rdev->constraints);
3737 regulator_ena_gpio_free(rdev);
3738 device_unregister(&rdev->dev);
3739 mutex_unlock(&regulator_list_mutex);
3740 }
3741 EXPORT_SYMBOL_GPL(regulator_unregister);
3742
3743 /**
3744 * regulator_suspend_prepare - prepare regulators for system wide suspend
3745 * @state: system suspend state
3746 *
3747 * Configure each regulator with it's suspend operating parameters for state.
3748 * This will usually be called by machine suspend code prior to supending.
3749 */
3750 int regulator_suspend_prepare(suspend_state_t state)
3751 {
3752 struct regulator_dev *rdev;
3753 int ret = 0;
3754
3755 /* ON is handled by regulator active state */
3756 if (state == PM_SUSPEND_ON)
3757 return -EINVAL;
3758
3759 mutex_lock(&regulator_list_mutex);
3760 list_for_each_entry(rdev, &regulator_list, list) {
3761
3762 mutex_lock(&rdev->mutex);
3763 ret = suspend_prepare(rdev, state);
3764 mutex_unlock(&rdev->mutex);
3765
3766 if (ret < 0) {
3767 rdev_err(rdev, "failed to prepare\n");
3768 goto out;
3769 }
3770 }
3771 out:
3772 mutex_unlock(&regulator_list_mutex);
3773 return ret;
3774 }
3775 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3776
3777 /**
3778 * regulator_suspend_finish - resume regulators from system wide suspend
3779 *
3780 * Turn on regulators that might be turned off by regulator_suspend_prepare
3781 * and that should be turned on according to the regulators properties.
3782 */
3783 int regulator_suspend_finish(void)
3784 {
3785 struct regulator_dev *rdev;
3786 int ret = 0, error;
3787
3788 mutex_lock(&regulator_list_mutex);
3789 list_for_each_entry(rdev, &regulator_list, list) {
3790 struct regulator_ops *ops = rdev->desc->ops;
3791
3792 mutex_lock(&rdev->mutex);
3793 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3794 ops->enable) {
3795 error = ops->enable(rdev);
3796 if (error)
3797 ret = error;
3798 } else {
3799 if (!has_full_constraints)
3800 goto unlock;
3801 if (!ops->disable)
3802 goto unlock;
3803 if (!_regulator_is_enabled(rdev))
3804 goto unlock;
3805
3806 error = ops->disable(rdev);
3807 if (error)
3808 ret = error;
3809 }
3810 unlock:
3811 mutex_unlock(&rdev->mutex);
3812 }
3813 mutex_unlock(&regulator_list_mutex);
3814 return ret;
3815 }
3816 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3817
3818 /**
3819 * regulator_has_full_constraints - the system has fully specified constraints
3820 *
3821 * Calling this function will cause the regulator API to disable all
3822 * regulators which have a zero use count and don't have an always_on
3823 * constraint in a late_initcall.
3824 *
3825 * The intention is that this will become the default behaviour in a
3826 * future kernel release so users are encouraged to use this facility
3827 * now.
3828 */
3829 void regulator_has_full_constraints(void)
3830 {
3831 has_full_constraints = 1;
3832 }
3833 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3834
3835 /**
3836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3837 *
3838 * Calling this function will cause the regulator API to provide a
3839 * dummy regulator to consumers if no physical regulator is found,
3840 * allowing most consumers to proceed as though a regulator were
3841 * configured. This allows systems such as those with software
3842 * controllable regulators for the CPU core only to be brought up more
3843 * readily.
3844 */
3845 void regulator_use_dummy_regulator(void)
3846 {
3847 board_wants_dummy_regulator = true;
3848 }
3849 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3850
3851 /**
3852 * rdev_get_drvdata - get rdev regulator driver data
3853 * @rdev: regulator
3854 *
3855 * Get rdev regulator driver private data. This call can be used in the
3856 * regulator driver context.
3857 */
3858 void *rdev_get_drvdata(struct regulator_dev *rdev)
3859 {
3860 return rdev->reg_data;
3861 }
3862 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3863
3864 /**
3865 * regulator_get_drvdata - get regulator driver data
3866 * @regulator: regulator
3867 *
3868 * Get regulator driver private data. This call can be used in the consumer
3869 * driver context when non API regulator specific functions need to be called.
3870 */
3871 void *regulator_get_drvdata(struct regulator *regulator)
3872 {
3873 return regulator->rdev->reg_data;
3874 }
3875 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3876
3877 /**
3878 * regulator_set_drvdata - set regulator driver data
3879 * @regulator: regulator
3880 * @data: data
3881 */
3882 void regulator_set_drvdata(struct regulator *regulator, void *data)
3883 {
3884 regulator->rdev->reg_data = data;
3885 }
3886 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3887
3888 /**
3889 * regulator_get_id - get regulator ID
3890 * @rdev: regulator
3891 */
3892 int rdev_get_id(struct regulator_dev *rdev)
3893 {
3894 return rdev->desc->id;
3895 }
3896 EXPORT_SYMBOL_GPL(rdev_get_id);
3897
3898 struct device *rdev_get_dev(struct regulator_dev *rdev)
3899 {
3900 return &rdev->dev;
3901 }
3902 EXPORT_SYMBOL_GPL(rdev_get_dev);
3903
3904 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3905 {
3906 return reg_init_data->driver_data;
3907 }
3908 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3909
3910 #ifdef CONFIG_DEBUG_FS
3911 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3912 size_t count, loff_t *ppos)
3913 {
3914 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3915 ssize_t len, ret = 0;
3916 struct regulator_map *map;
3917
3918 if (!buf)
3919 return -ENOMEM;
3920
3921 list_for_each_entry(map, &regulator_map_list, list) {
3922 len = snprintf(buf + ret, PAGE_SIZE - ret,
3923 "%s -> %s.%s\n",
3924 rdev_get_name(map->regulator), map->dev_name,
3925 map->supply);
3926 if (len >= 0)
3927 ret += len;
3928 if (ret > PAGE_SIZE) {
3929 ret = PAGE_SIZE;
3930 break;
3931 }
3932 }
3933
3934 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3935
3936 kfree(buf);
3937
3938 return ret;
3939 }
3940 #endif
3941
3942 static const struct file_operations supply_map_fops = {
3943 #ifdef CONFIG_DEBUG_FS
3944 .read = supply_map_read_file,
3945 .llseek = default_llseek,
3946 #endif
3947 };
3948
3949 static int __init regulator_init(void)
3950 {
3951 int ret;
3952
3953 ret = class_register(&regulator_class);
3954
3955 debugfs_root = debugfs_create_dir("regulator", NULL);
3956 if (!debugfs_root)
3957 pr_warn("regulator: Failed to create debugfs directory\n");
3958
3959 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3960 &supply_map_fops);
3961
3962 regulator_dummy_init();
3963
3964 return ret;
3965 }
3966
3967 /* init early to allow our consumers to complete system booting */
3968 core_initcall(regulator_init);
3969
3970 static int __init regulator_init_complete(void)
3971 {
3972 struct regulator_dev *rdev;
3973 struct regulator_ops *ops;
3974 struct regulation_constraints *c;
3975 int enabled, ret;
3976
3977 /*
3978 * Since DT doesn't provide an idiomatic mechanism for
3979 * enabling full constraints and since it's much more natural
3980 * with DT to provide them just assume that a DT enabled
3981 * system has full constraints.
3982 */
3983 if (of_have_populated_dt())
3984 has_full_constraints = true;
3985
3986 mutex_lock(&regulator_list_mutex);
3987
3988 /* If we have a full configuration then disable any regulators
3989 * which are not in use or always_on. This will become the
3990 * default behaviour in the future.
3991 */
3992 list_for_each_entry(rdev, &regulator_list, list) {
3993 ops = rdev->desc->ops;
3994 c = rdev->constraints;
3995
3996 if (!ops->disable || (c && c->always_on))
3997 continue;
3998
3999 mutex_lock(&rdev->mutex);
4000
4001 if (rdev->use_count)
4002 goto unlock;
4003
4004 /* If we can't read the status assume it's on. */
4005 if (ops->is_enabled)
4006 enabled = ops->is_enabled(rdev);
4007 else
4008 enabled = 1;
4009
4010 if (!enabled)
4011 goto unlock;
4012
4013 if (has_full_constraints) {
4014 /* We log since this may kill the system if it
4015 * goes wrong. */
4016 rdev_info(rdev, "disabling\n");
4017 ret = ops->disable(rdev);
4018 if (ret != 0) {
4019 rdev_err(rdev, "couldn't disable: %d\n", ret);
4020 }
4021 } else {
4022 /* The intention is that in future we will
4023 * assume that full constraints are provided
4024 * so warn even if we aren't going to do
4025 * anything here.
4026 */
4027 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4028 }
4029
4030 unlock:
4031 mutex_unlock(&rdev->mutex);
4032 }
4033
4034 mutex_unlock(&regulator_list_mutex);
4035
4036 return 0;
4037 }
4038 late_initcall(regulator_init_complete);