Merge tag 'v3.10.104' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / power / sbs-battery.c
1 /*
2 * Gas Gauge driver for SBS Compliant Batteries
3 *
4 * Copyright (c) 2010, NVIDIA Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/err.h>
25 #include <linux/power_supply.h>
26 #include <linux/i2c.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/gpio.h>
30 #include <linux/of.h>
31
32 #include <linux/power/sbs-battery.h>
33
34 enum {
35 REG_MANUFACTURER_DATA,
36 REG_TEMPERATURE,
37 REG_VOLTAGE,
38 REG_CURRENT,
39 REG_CAPACITY,
40 REG_TIME_TO_EMPTY,
41 REG_TIME_TO_FULL,
42 REG_STATUS,
43 REG_CYCLE_COUNT,
44 REG_SERIAL_NUMBER,
45 REG_REMAINING_CAPACITY,
46 REG_REMAINING_CAPACITY_CHARGE,
47 REG_FULL_CHARGE_CAPACITY,
48 REG_FULL_CHARGE_CAPACITY_CHARGE,
49 REG_DESIGN_CAPACITY,
50 REG_DESIGN_CAPACITY_CHARGE,
51 REG_DESIGN_VOLTAGE,
52 };
53
54 /* Battery Mode defines */
55 #define BATTERY_MODE_OFFSET 0x03
56 #define BATTERY_MODE_MASK 0x8000
57 enum sbs_battery_mode {
58 BATTERY_MODE_AMPS,
59 BATTERY_MODE_WATTS
60 };
61
62 /* manufacturer access defines */
63 #define MANUFACTURER_ACCESS_STATUS 0x0006
64 #define MANUFACTURER_ACCESS_SLEEP 0x0011
65
66 /* battery status value bits */
67 #define BATTERY_DISCHARGING 0x40
68 #define BATTERY_FULL_CHARGED 0x20
69 #define BATTERY_FULL_DISCHARGED 0x10
70
71 #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
72 .psp = _psp, \
73 .addr = _addr, \
74 .min_value = _min_value, \
75 .max_value = _max_value, \
76 }
77
78 static const struct chip_data {
79 enum power_supply_property psp;
80 u8 addr;
81 int min_value;
82 int max_value;
83 } sbs_data[] = {
84 [REG_MANUFACTURER_DATA] =
85 SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
86 [REG_TEMPERATURE] =
87 SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
88 [REG_VOLTAGE] =
89 SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
90 [REG_CURRENT] =
91 SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
92 [REG_CAPACITY] =
93 SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100),
94 [REG_REMAINING_CAPACITY] =
95 SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
96 [REG_REMAINING_CAPACITY_CHARGE] =
97 SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
98 [REG_FULL_CHARGE_CAPACITY] =
99 SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
100 [REG_FULL_CHARGE_CAPACITY_CHARGE] =
101 SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
102 [REG_TIME_TO_EMPTY] =
103 SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
104 [REG_TIME_TO_FULL] =
105 SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
106 [REG_STATUS] =
107 SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
108 [REG_CYCLE_COUNT] =
109 SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
110 [REG_DESIGN_CAPACITY] =
111 SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
112 [REG_DESIGN_CAPACITY_CHARGE] =
113 SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
114 [REG_DESIGN_VOLTAGE] =
115 SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
116 [REG_SERIAL_NUMBER] =
117 SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
118 };
119
120 static enum power_supply_property sbs_properties[] = {
121 POWER_SUPPLY_PROP_STATUS,
122 POWER_SUPPLY_PROP_HEALTH,
123 POWER_SUPPLY_PROP_PRESENT,
124 POWER_SUPPLY_PROP_TECHNOLOGY,
125 POWER_SUPPLY_PROP_CYCLE_COUNT,
126 POWER_SUPPLY_PROP_VOLTAGE_NOW,
127 POWER_SUPPLY_PROP_CURRENT_NOW,
128 POWER_SUPPLY_PROP_CAPACITY,
129 POWER_SUPPLY_PROP_TEMP,
130 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
131 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
132 POWER_SUPPLY_PROP_SERIAL_NUMBER,
133 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
134 POWER_SUPPLY_PROP_ENERGY_NOW,
135 POWER_SUPPLY_PROP_ENERGY_FULL,
136 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
137 POWER_SUPPLY_PROP_CHARGE_NOW,
138 POWER_SUPPLY_PROP_CHARGE_FULL,
139 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
140 };
141
142 struct sbs_info {
143 struct i2c_client *client;
144 struct power_supply power_supply;
145 struct sbs_platform_data *pdata;
146 bool is_present;
147 bool gpio_detect;
148 bool enable_detection;
149 int irq;
150 int last_state;
151 int poll_time;
152 struct delayed_work work;
153 int ignore_changes;
154 };
155
156 static int sbs_read_word_data(struct i2c_client *client, u8 address)
157 {
158 struct sbs_info *chip = i2c_get_clientdata(client);
159 s32 ret = 0;
160 int retries = 1;
161
162 if (chip->pdata)
163 retries = max(chip->pdata->i2c_retry_count + 1, 1);
164
165 while (retries > 0) {
166 ret = i2c_smbus_read_word_data(client, address);
167 if (ret >= 0)
168 break;
169 retries--;
170 }
171
172 if (ret < 0) {
173 dev_dbg(&client->dev,
174 "%s: i2c read at address 0x%x failed\n",
175 __func__, address);
176 return ret;
177 }
178
179 return le16_to_cpu(ret);
180 }
181
182 static int sbs_write_word_data(struct i2c_client *client, u8 address,
183 u16 value)
184 {
185 struct sbs_info *chip = i2c_get_clientdata(client);
186 s32 ret = 0;
187 int retries = 1;
188
189 if (chip->pdata)
190 retries = max(chip->pdata->i2c_retry_count + 1, 1);
191
192 while (retries > 0) {
193 ret = i2c_smbus_write_word_data(client, address,
194 le16_to_cpu(value));
195 if (ret >= 0)
196 break;
197 retries--;
198 }
199
200 if (ret < 0) {
201 dev_dbg(&client->dev,
202 "%s: i2c write to address 0x%x failed\n",
203 __func__, address);
204 return ret;
205 }
206
207 return 0;
208 }
209
210 static int sbs_get_battery_presence_and_health(
211 struct i2c_client *client, enum power_supply_property psp,
212 union power_supply_propval *val)
213 {
214 s32 ret;
215 struct sbs_info *chip = i2c_get_clientdata(client);
216
217 if (psp == POWER_SUPPLY_PROP_PRESENT &&
218 chip->gpio_detect) {
219 ret = gpio_get_value(chip->pdata->battery_detect);
220 if (ret == chip->pdata->battery_detect_present)
221 val->intval = 1;
222 else
223 val->intval = 0;
224 chip->is_present = val->intval;
225 return ret;
226 }
227
228 /* Write to ManufacturerAccess with
229 * ManufacturerAccess command and then
230 * read the status */
231 ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
232 MANUFACTURER_ACCESS_STATUS);
233 if (ret < 0) {
234 if (psp == POWER_SUPPLY_PROP_PRESENT)
235 val->intval = 0; /* battery removed */
236 return ret;
237 }
238
239 ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
240 if (ret < 0)
241 return ret;
242
243 if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
244 ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
245 val->intval = 0;
246 return 0;
247 }
248
249 /* Mask the upper nibble of 2nd byte and
250 * lower byte of response then
251 * shift the result by 8 to get status*/
252 ret &= 0x0F00;
253 ret >>= 8;
254 if (psp == POWER_SUPPLY_PROP_PRESENT) {
255 if (ret == 0x0F)
256 /* battery removed */
257 val->intval = 0;
258 else
259 val->intval = 1;
260 } else if (psp == POWER_SUPPLY_PROP_HEALTH) {
261 if (ret == 0x09)
262 val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
263 else if (ret == 0x0B)
264 val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
265 else if (ret == 0x0C)
266 val->intval = POWER_SUPPLY_HEALTH_DEAD;
267 else
268 val->intval = POWER_SUPPLY_HEALTH_GOOD;
269 }
270
271 return 0;
272 }
273
274 static int sbs_get_battery_property(struct i2c_client *client,
275 int reg_offset, enum power_supply_property psp,
276 union power_supply_propval *val)
277 {
278 struct sbs_info *chip = i2c_get_clientdata(client);
279 s32 ret;
280
281 ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
282 if (ret < 0)
283 return ret;
284
285 /* returned values are 16 bit */
286 if (sbs_data[reg_offset].min_value < 0)
287 ret = (s16)ret;
288
289 if (ret >= sbs_data[reg_offset].min_value &&
290 ret <= sbs_data[reg_offset].max_value) {
291 val->intval = ret;
292 if (psp != POWER_SUPPLY_PROP_STATUS)
293 return 0;
294
295 if (ret & BATTERY_FULL_CHARGED)
296 val->intval = POWER_SUPPLY_STATUS_FULL;
297 else if (ret & BATTERY_FULL_DISCHARGED)
298 val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
299 else if (ret & BATTERY_DISCHARGING)
300 val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
301 else
302 val->intval = POWER_SUPPLY_STATUS_CHARGING;
303
304 if (chip->poll_time == 0)
305 chip->last_state = val->intval;
306 else if (chip->last_state != val->intval) {
307 cancel_delayed_work_sync(&chip->work);
308 power_supply_changed(&chip->power_supply);
309 chip->poll_time = 0;
310 }
311 } else {
312 if (psp == POWER_SUPPLY_PROP_STATUS)
313 val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
314 else
315 val->intval = 0;
316 }
317
318 return 0;
319 }
320
321 static void sbs_unit_adjustment(struct i2c_client *client,
322 enum power_supply_property psp, union power_supply_propval *val)
323 {
324 #define BASE_UNIT_CONVERSION 1000
325 #define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION)
326 #define TIME_UNIT_CONVERSION 60
327 #define TEMP_KELVIN_TO_CELSIUS 2731
328 switch (psp) {
329 case POWER_SUPPLY_PROP_ENERGY_NOW:
330 case POWER_SUPPLY_PROP_ENERGY_FULL:
331 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
332 /* sbs provides energy in units of 10mWh.
333 * Convert to µWh
334 */
335 val->intval *= BATTERY_MODE_CAP_MULT_WATT;
336 break;
337
338 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
339 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
340 case POWER_SUPPLY_PROP_CURRENT_NOW:
341 case POWER_SUPPLY_PROP_CHARGE_NOW:
342 case POWER_SUPPLY_PROP_CHARGE_FULL:
343 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
344 val->intval *= BASE_UNIT_CONVERSION;
345 break;
346
347 case POWER_SUPPLY_PROP_TEMP:
348 /* sbs provides battery temperature in 0.1K
349 * so convert it to 0.1°C
350 */
351 val->intval -= TEMP_KELVIN_TO_CELSIUS;
352 break;
353
354 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
355 case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
356 /* sbs provides time to empty and time to full in minutes.
357 * Convert to seconds
358 */
359 val->intval *= TIME_UNIT_CONVERSION;
360 break;
361
362 default:
363 dev_dbg(&client->dev,
364 "%s: no need for unit conversion %d\n", __func__, psp);
365 }
366 }
367
368 static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client,
369 enum sbs_battery_mode mode)
370 {
371 int ret, original_val;
372
373 original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
374 if (original_val < 0)
375 return original_val;
376
377 if ((original_val & BATTERY_MODE_MASK) == mode)
378 return mode;
379
380 if (mode == BATTERY_MODE_AMPS)
381 ret = original_val & ~BATTERY_MODE_MASK;
382 else
383 ret = original_val | BATTERY_MODE_MASK;
384
385 ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
386 if (ret < 0)
387 return ret;
388
389 return original_val & BATTERY_MODE_MASK;
390 }
391
392 static int sbs_get_battery_capacity(struct i2c_client *client,
393 int reg_offset, enum power_supply_property psp,
394 union power_supply_propval *val)
395 {
396 s32 ret;
397 enum sbs_battery_mode mode = BATTERY_MODE_WATTS;
398
399 if (power_supply_is_amp_property(psp))
400 mode = BATTERY_MODE_AMPS;
401
402 mode = sbs_set_battery_mode(client, mode);
403 if (mode < 0)
404 return mode;
405
406 ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
407 if (ret < 0)
408 return ret;
409
410 if (psp == POWER_SUPPLY_PROP_CAPACITY) {
411 /* sbs spec says that this can be >100 %
412 * even if max value is 100 % */
413 val->intval = min(ret, 100);
414 } else
415 val->intval = ret;
416
417 ret = sbs_set_battery_mode(client, mode);
418 if (ret < 0)
419 return ret;
420
421 return 0;
422 }
423
424 static char sbs_serial[5];
425 static int sbs_get_battery_serial_number(struct i2c_client *client,
426 union power_supply_propval *val)
427 {
428 int ret;
429
430 ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
431 if (ret < 0)
432 return ret;
433
434 ret = sprintf(sbs_serial, "%04x", ret);
435 val->strval = sbs_serial;
436
437 return 0;
438 }
439
440 static int sbs_get_property_index(struct i2c_client *client,
441 enum power_supply_property psp)
442 {
443 int count;
444 for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
445 if (psp == sbs_data[count].psp)
446 return count;
447
448 dev_warn(&client->dev,
449 "%s: Invalid Property - %d\n", __func__, psp);
450
451 return -EINVAL;
452 }
453
454 static int sbs_get_property(struct power_supply *psy,
455 enum power_supply_property psp,
456 union power_supply_propval *val)
457 {
458 int ret = 0;
459 struct sbs_info *chip = container_of(psy,
460 struct sbs_info, power_supply);
461 struct i2c_client *client = chip->client;
462
463 switch (psp) {
464 case POWER_SUPPLY_PROP_PRESENT:
465 case POWER_SUPPLY_PROP_HEALTH:
466 ret = sbs_get_battery_presence_and_health(client, psp, val);
467 if (psp == POWER_SUPPLY_PROP_PRESENT)
468 return 0;
469 break;
470
471 case POWER_SUPPLY_PROP_TECHNOLOGY:
472 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
473 goto done; /* don't trigger power_supply_changed()! */
474
475 case POWER_SUPPLY_PROP_ENERGY_NOW:
476 case POWER_SUPPLY_PROP_ENERGY_FULL:
477 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
478 case POWER_SUPPLY_PROP_CHARGE_NOW:
479 case POWER_SUPPLY_PROP_CHARGE_FULL:
480 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
481 case POWER_SUPPLY_PROP_CAPACITY:
482 ret = sbs_get_property_index(client, psp);
483 if (ret < 0)
484 break;
485
486 ret = sbs_get_battery_capacity(client, ret, psp, val);
487 break;
488
489 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
490 ret = sbs_get_battery_serial_number(client, val);
491 break;
492
493 case POWER_SUPPLY_PROP_STATUS:
494 case POWER_SUPPLY_PROP_CYCLE_COUNT:
495 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
496 case POWER_SUPPLY_PROP_CURRENT_NOW:
497 case POWER_SUPPLY_PROP_TEMP:
498 case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
499 case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
500 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
501 ret = sbs_get_property_index(client, psp);
502 if (ret < 0)
503 break;
504
505 ret = sbs_get_battery_property(client, ret, psp, val);
506 break;
507
508 default:
509 dev_err(&client->dev,
510 "%s: INVALID property\n", __func__);
511 return -EINVAL;
512 }
513
514 if (!chip->enable_detection)
515 goto done;
516
517 if (!chip->gpio_detect &&
518 chip->is_present != (ret >= 0)) {
519 chip->is_present = (ret >= 0);
520 power_supply_changed(&chip->power_supply);
521 }
522
523 done:
524 if (!ret) {
525 /* Convert units to match requirements for power supply class */
526 sbs_unit_adjustment(client, psp, val);
527 }
528
529 dev_dbg(&client->dev,
530 "%s: property = %d, value = %x\n", __func__, psp, val->intval);
531
532 if (ret && chip->is_present)
533 return ret;
534
535 /* battery not present, so return NODATA for properties */
536 if (ret)
537 return -ENODATA;
538
539 return 0;
540 }
541
542 static irqreturn_t sbs_irq(int irq, void *devid)
543 {
544 struct power_supply *battery = devid;
545
546 power_supply_changed(battery);
547
548 return IRQ_HANDLED;
549 }
550
551 static void sbs_external_power_changed(struct power_supply *psy)
552 {
553 struct sbs_info *chip;
554
555 chip = container_of(psy, struct sbs_info, power_supply);
556
557 if (chip->ignore_changes > 0) {
558 chip->ignore_changes--;
559 return;
560 }
561
562 /* cancel outstanding work */
563 cancel_delayed_work_sync(&chip->work);
564
565 schedule_delayed_work(&chip->work, HZ);
566 chip->poll_time = chip->pdata->poll_retry_count;
567 }
568
569 static void sbs_delayed_work(struct work_struct *work)
570 {
571 struct sbs_info *chip;
572 s32 ret;
573
574 chip = container_of(work, struct sbs_info, work.work);
575
576 ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
577 /* if the read failed, give up on this work */
578 if (ret < 0) {
579 chip->poll_time = 0;
580 return;
581 }
582
583 if (ret & BATTERY_FULL_CHARGED)
584 ret = POWER_SUPPLY_STATUS_FULL;
585 else if (ret & BATTERY_FULL_DISCHARGED)
586 ret = POWER_SUPPLY_STATUS_NOT_CHARGING;
587 else if (ret & BATTERY_DISCHARGING)
588 ret = POWER_SUPPLY_STATUS_DISCHARGING;
589 else
590 ret = POWER_SUPPLY_STATUS_CHARGING;
591
592 if (chip->last_state != ret) {
593 chip->poll_time = 0;
594 power_supply_changed(&chip->power_supply);
595 return;
596 }
597 if (chip->poll_time > 0) {
598 schedule_delayed_work(&chip->work, HZ);
599 chip->poll_time--;
600 return;
601 }
602 }
603
604 #if defined(CONFIG_OF)
605
606 #include <linux/of_device.h>
607 #include <linux/of_gpio.h>
608
609 static const struct of_device_id sbs_dt_ids[] = {
610 { .compatible = "sbs,sbs-battery" },
611 { .compatible = "ti,bq20z75" },
612 { }
613 };
614 MODULE_DEVICE_TABLE(of, sbs_dt_ids);
615
616 static struct sbs_platform_data *sbs_of_populate_pdata(
617 struct i2c_client *client)
618 {
619 struct device_node *of_node = client->dev.of_node;
620 struct sbs_platform_data *pdata = client->dev.platform_data;
621 enum of_gpio_flags gpio_flags;
622 int rc;
623 u32 prop;
624
625 /* verify this driver matches this device */
626 if (!of_node)
627 return NULL;
628
629 /* if platform data is set, honor it */
630 if (pdata)
631 return pdata;
632
633 /* first make sure at least one property is set, otherwise
634 * it won't change behavior from running without pdata.
635 */
636 if (!of_get_property(of_node, "sbs,i2c-retry-count", NULL) &&
637 !of_get_property(of_node, "sbs,poll-retry-count", NULL) &&
638 !of_get_property(of_node, "sbs,battery-detect-gpios", NULL))
639 goto of_out;
640
641 pdata = devm_kzalloc(&client->dev, sizeof(struct sbs_platform_data),
642 GFP_KERNEL);
643 if (!pdata)
644 goto of_out;
645
646 rc = of_property_read_u32(of_node, "sbs,i2c-retry-count", &prop);
647 if (!rc)
648 pdata->i2c_retry_count = prop;
649
650 rc = of_property_read_u32(of_node, "sbs,poll-retry-count", &prop);
651 if (!rc)
652 pdata->poll_retry_count = prop;
653
654 if (!of_get_property(of_node, "sbs,battery-detect-gpios", NULL)) {
655 pdata->battery_detect = -1;
656 goto of_out;
657 }
658
659 pdata->battery_detect = of_get_named_gpio_flags(of_node,
660 "sbs,battery-detect-gpios", 0, &gpio_flags);
661
662 if (gpio_flags & OF_GPIO_ACTIVE_LOW)
663 pdata->battery_detect_present = 0;
664 else
665 pdata->battery_detect_present = 1;
666
667 of_out:
668 return pdata;
669 }
670 #else
671 static struct sbs_platform_data *sbs_of_populate_pdata(
672 struct i2c_client *client)
673 {
674 return client->dev.platform_data;
675 }
676 #endif
677
678 static int sbs_probe(struct i2c_client *client,
679 const struct i2c_device_id *id)
680 {
681 struct sbs_info *chip;
682 struct sbs_platform_data *pdata = client->dev.platform_data;
683 int rc;
684 int irq;
685 char *name;
686
687 name = kasprintf(GFP_KERNEL, "sbs-%s", dev_name(&client->dev));
688 if (!name) {
689 dev_err(&client->dev, "Failed to allocate device name\n");
690 return -ENOMEM;
691 }
692
693 chip = kzalloc(sizeof(struct sbs_info), GFP_KERNEL);
694 if (!chip) {
695 rc = -ENOMEM;
696 goto exit_free_name;
697 }
698
699 chip->client = client;
700 chip->enable_detection = false;
701 chip->gpio_detect = false;
702 chip->power_supply.name = name;
703 chip->power_supply.type = POWER_SUPPLY_TYPE_BATTERY;
704 chip->power_supply.properties = sbs_properties;
705 chip->power_supply.num_properties = ARRAY_SIZE(sbs_properties);
706 chip->power_supply.get_property = sbs_get_property;
707 /* ignore first notification of external change, it is generated
708 * from the power_supply_register call back
709 */
710 chip->ignore_changes = 1;
711 chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
712 chip->power_supply.external_power_changed = sbs_external_power_changed;
713
714 pdata = sbs_of_populate_pdata(client);
715
716 if (pdata) {
717 chip->gpio_detect = gpio_is_valid(pdata->battery_detect);
718 chip->pdata = pdata;
719 }
720
721 i2c_set_clientdata(client, chip);
722
723 if (!chip->gpio_detect)
724 goto skip_gpio;
725
726 rc = gpio_request(pdata->battery_detect, dev_name(&client->dev));
727 if (rc) {
728 dev_warn(&client->dev, "Failed to request gpio: %d\n", rc);
729 chip->gpio_detect = false;
730 goto skip_gpio;
731 }
732
733 rc = gpio_direction_input(pdata->battery_detect);
734 if (rc) {
735 dev_warn(&client->dev, "Failed to get gpio as input: %d\n", rc);
736 gpio_free(pdata->battery_detect);
737 chip->gpio_detect = false;
738 goto skip_gpio;
739 }
740
741 irq = gpio_to_irq(pdata->battery_detect);
742 if (irq <= 0) {
743 dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
744 gpio_free(pdata->battery_detect);
745 chip->gpio_detect = false;
746 goto skip_gpio;
747 }
748
749 rc = request_irq(irq, sbs_irq,
750 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
751 dev_name(&client->dev), &chip->power_supply);
752 if (rc) {
753 dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
754 gpio_free(pdata->battery_detect);
755 chip->gpio_detect = false;
756 goto skip_gpio;
757 }
758
759 chip->irq = irq;
760
761 skip_gpio:
762 /*
763 * Before we register, we need to make sure we can actually talk
764 * to the battery.
765 */
766 rc = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
767 if (rc < 0) {
768 dev_err(&client->dev, "%s: Failed to get device status\n",
769 __func__);
770 goto exit_psupply;
771 }
772
773 rc = power_supply_register(&client->dev, &chip->power_supply);
774 if (rc) {
775 dev_err(&client->dev,
776 "%s: Failed to register power supply\n", __func__);
777 goto exit_psupply;
778 }
779
780 dev_info(&client->dev,
781 "%s: battery gas gauge device registered\n", client->name);
782
783 INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
784
785 chip->enable_detection = true;
786
787 return 0;
788
789 exit_psupply:
790 if (chip->irq)
791 free_irq(chip->irq, &chip->power_supply);
792 if (chip->gpio_detect)
793 gpio_free(pdata->battery_detect);
794
795 kfree(chip);
796
797 exit_free_name:
798 kfree(name);
799
800 return rc;
801 }
802
803 static int sbs_remove(struct i2c_client *client)
804 {
805 struct sbs_info *chip = i2c_get_clientdata(client);
806
807 if (chip->irq)
808 free_irq(chip->irq, &chip->power_supply);
809 if (chip->gpio_detect)
810 gpio_free(chip->pdata->battery_detect);
811
812 power_supply_unregister(&chip->power_supply);
813
814 cancel_delayed_work_sync(&chip->work);
815
816 kfree(chip->power_supply.name);
817 kfree(chip);
818 chip = NULL;
819
820 return 0;
821 }
822
823 #if defined CONFIG_PM_SLEEP
824
825 static int sbs_suspend(struct device *dev)
826 {
827 struct i2c_client *client = to_i2c_client(dev);
828 struct sbs_info *chip = i2c_get_clientdata(client);
829 s32 ret;
830
831 if (chip->poll_time > 0)
832 cancel_delayed_work_sync(&chip->work);
833
834 /* write to manufacturer access with sleep command */
835 ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
836 MANUFACTURER_ACCESS_SLEEP);
837 if (chip->is_present && ret < 0)
838 return ret;
839
840 return 0;
841 }
842
843 static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL);
844 #define SBS_PM_OPS (&sbs_pm_ops)
845
846 #else
847 #define SBS_PM_OPS NULL
848 #endif
849
850 static const struct i2c_device_id sbs_id[] = {
851 { "bq20z75", 0 },
852 { "sbs-battery", 1 },
853 {}
854 };
855 MODULE_DEVICE_TABLE(i2c, sbs_id);
856
857 static struct i2c_driver sbs_battery_driver = {
858 .probe = sbs_probe,
859 .remove = sbs_remove,
860 .id_table = sbs_id,
861 .driver = {
862 .name = "sbs-battery",
863 .of_match_table = of_match_ptr(sbs_dt_ids),
864 .pm = SBS_PM_OPS,
865 },
866 };
867 module_i2c_driver(sbs_battery_driver);
868
869 MODULE_DESCRIPTION("SBS battery monitor driver");
870 MODULE_LICENSE("GPL");