Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pinctrl / core.c
1 /*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70 void pinctrl_provide_dummies(void)
71 {
72 pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 struct pinctrl_dev *pctldev = NULL;
104 bool found = false;
105
106 if (!devname)
107 return NULL;
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 found = true;
113 break;
114 }
115 }
116
117 return found ? pctldev : NULL;
118 }
119
120 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
121 {
122 struct pinctrl_dev *pctldev;
123
124 mutex_lock(&pinctrldev_list_mutex);
125
126 list_for_each_entry(pctldev, &pinctrldev_list, node)
127 if (pctldev->dev->of_node == np) {
128 mutex_unlock(&pinctrldev_list_mutex);
129 return pctldev;
130 }
131
132 mutex_unlock(&pinctrldev_list_mutex);
133
134 return NULL;
135 }
136
137 /**
138 * pin_get_from_name() - look up a pin number from a name
139 * @pctldev: the pin control device to lookup the pin on
140 * @name: the name of the pin to look up
141 */
142 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
143 {
144 unsigned i, pin;
145
146 /* The pin number can be retrived from the pin controller descriptor */
147 for (i = 0; i < pctldev->desc->npins; i++) {
148 struct pin_desc *desc;
149
150 pin = pctldev->desc->pins[i].number;
151 desc = pin_desc_get(pctldev, pin);
152 /* Pin space may be sparse */
153 if (desc == NULL)
154 continue;
155 if (desc->name && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name_from_id() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @name: the name of the pin to look up
166 */
167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (desc == NULL) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180
181 /**
182 * pin_is_valid() - check if pin exists on controller
183 * @pctldev: the pin control device to check the pin on
184 * @pin: pin to check, use the local pin controller index number
185 *
186 * This tells us whether a certain pin exist on a certain pin controller or
187 * not. Pin lists may be sparse, so some pins may not exist.
188 */
189 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
190 {
191 struct pin_desc *pindesc;
192
193 if (pin < 0)
194 return false;
195
196 mutex_lock(&pctldev->mutex);
197 pindesc = pin_desc_get(pctldev, pin);
198 mutex_unlock(&pctldev->mutex);
199
200 return pindesc != NULL;
201 }
202 EXPORT_SYMBOL_GPL(pin_is_valid);
203
204 /* Deletes a range of pin descriptors */
205 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
206 const struct pinctrl_pin_desc *pins,
207 unsigned num_pins)
208 {
209 int i;
210
211 for (i = 0; i < num_pins; i++) {
212 struct pin_desc *pindesc;
213
214 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
215 pins[i].number);
216 if (pindesc != NULL) {
217 radix_tree_delete(&pctldev->pin_desc_tree,
218 pins[i].number);
219 if (pindesc->dynamic_name)
220 kfree(pindesc->name);
221 }
222 kfree(pindesc);
223 }
224 }
225
226 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
227 unsigned number, const char *name)
228 {
229 struct pin_desc *pindesc;
230
231 pindesc = pin_desc_get(pctldev, number);
232 if (pindesc != NULL) {
233 pr_err("pin %d already registered on %s\n", number,
234 pctldev->desc->name);
235 return -EINVAL;
236 }
237
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (pindesc == NULL) {
240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 return -ENOMEM;
242 }
243
244 /* Set owner */
245 pindesc->pctldev = pctldev;
246
247 /* Copy basic pin info */
248 if (name) {
249 pindesc->name = name;
250 } else {
251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 if (pindesc->name == NULL) {
253 kfree(pindesc);
254 return -ENOMEM;
255 }
256 pindesc->dynamic_name = true;
257 }
258
259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 number, pindesc->name, pctldev->desc->name);
262 return 0;
263 }
264
265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 struct pinctrl_pin_desc const *pins,
267 unsigned num_descs)
268 {
269 unsigned i;
270 int ret = 0;
271
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev,
274 pins[i].number, pins[i].name);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280 }
281
282 /**
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
286 *
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
289 */
290 static struct pinctrl_gpio_range *
291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292 {
293 struct pinctrl_gpio_range *range = NULL;
294
295 mutex_lock(&pctldev->mutex);
296 /* Loop over the ranges */
297 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 /* Check if we're in the valid range */
299 if (gpio >= range->base &&
300 gpio < range->base + range->npins) {
301 mutex_unlock(&pctldev->mutex);
302 return range;
303 }
304 }
305 mutex_unlock(&pctldev->mutex);
306 return NULL;
307 }
308
309 /**
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
313 *
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
321 */
322 #ifdef CONFIG_GPIOLIB
323 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324 {
325 struct pinctrl_dev *pctldev;
326 struct pinctrl_gpio_range *range = NULL;
327 struct gpio_chip *chip = gpio_to_chip(gpio);
328
329 /* Loop over the pin controllers */
330 list_for_each_entry(pctldev, &pinctrldev_list, node) {
331 /* Loop over the ranges */
332 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
333 /* Check if any gpio range overlapped with gpio chip */
334 if (range->base + range->npins - 1 < chip->base ||
335 range->base > chip->base + chip->ngpio - 1)
336 continue;
337 return true;
338 }
339 }
340 return false;
341 }
342 #else
343 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
344 #endif
345
346 /**
347 * pinctrl_get_device_gpio_range() - find device for GPIO range
348 * @gpio: the pin to locate the pin controller for
349 * @outdev: the pin control device if found
350 * @outrange: the GPIO range if found
351 *
352 * Find the pin controller handling a certain GPIO pin from the pinspace of
353 * the GPIO subsystem, return the device and the matching GPIO range. Returns
354 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
355 * may still have not been registered.
356 */
357 static int pinctrl_get_device_gpio_range(unsigned gpio,
358 struct pinctrl_dev **outdev,
359 struct pinctrl_gpio_range **outrange)
360 {
361 struct pinctrl_dev *pctldev = NULL;
362
363 /* Loop over the pin controllers */
364 list_for_each_entry(pctldev, &pinctrldev_list, node) {
365 struct pinctrl_gpio_range *range;
366
367 range = pinctrl_match_gpio_range(pctldev, gpio);
368 if (range != NULL) {
369 *outdev = pctldev;
370 *outrange = range;
371 return 0;
372 }
373 }
374
375 return -EPROBE_DEFER;
376 }
377
378 /**
379 * pinctrl_add_gpio_range() - register a GPIO range for a controller
380 * @pctldev: pin controller device to add the range to
381 * @range: the GPIO range to add
382 *
383 * This adds a range of GPIOs to be handled by a certain pin controller. Call
384 * this to register handled ranges after registering your pin controller.
385 */
386 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
387 struct pinctrl_gpio_range *range)
388 {
389 mutex_lock(&pctldev->mutex);
390 list_add_tail(&range->node, &pctldev->gpio_ranges);
391 mutex_unlock(&pctldev->mutex);
392 }
393 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
394
395 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
396 struct pinctrl_gpio_range *ranges,
397 unsigned nranges)
398 {
399 int i;
400
401 for (i = 0; i < nranges; i++)
402 pinctrl_add_gpio_range(pctldev, &ranges[i]);
403 }
404 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
405
406 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
407 struct pinctrl_gpio_range *range)
408 {
409 struct pinctrl_dev *pctldev;
410
411 mutex_lock(&pinctrldev_list_mutex);
412
413 pctldev = get_pinctrl_dev_from_devname(devname);
414
415 /*
416 * If we can't find this device, let's assume that is because
417 * it has not probed yet, so the driver trying to register this
418 * range need to defer probing.
419 */
420 if (!pctldev) {
421 mutex_unlock(&pinctrldev_list_mutex);
422 return ERR_PTR(-EPROBE_DEFER);
423 }
424 pinctrl_add_gpio_range(pctldev, range);
425
426 mutex_unlock(&pinctrldev_list_mutex);
427
428 return pctldev;
429 }
430 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
431
432 /**
433 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
434 * @pctldev: the pin controller device to look in
435 * @pin: a controller-local number to find the range for
436 */
437 struct pinctrl_gpio_range *
438 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
439 unsigned int pin)
440 {
441 struct pinctrl_gpio_range *range = NULL;
442
443 mutex_lock(&pctldev->mutex);
444 /* Loop over the ranges */
445 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
446 /* Check if we're in the valid range */
447 if (pin >= range->pin_base &&
448 pin < range->pin_base + range->npins) {
449 mutex_unlock(&pctldev->mutex);
450 return range;
451 }
452 }
453 mutex_unlock(&pctldev->mutex);
454
455 return NULL;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
458
459 /**
460 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
461 * @pctldev: pin controller device to remove the range from
462 * @range: the GPIO range to remove
463 */
464 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
465 struct pinctrl_gpio_range *range)
466 {
467 mutex_lock(&pctldev->mutex);
468 list_del(&range->node);
469 mutex_unlock(&pctldev->mutex);
470 }
471 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
472
473 /**
474 * pinctrl_get_group_selector() - returns the group selector for a group
475 * @pctldev: the pin controller handling the group
476 * @pin_group: the pin group to look up
477 */
478 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
479 const char *pin_group)
480 {
481 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
482 unsigned ngroups = pctlops->get_groups_count(pctldev);
483 unsigned group_selector = 0;
484
485 while (group_selector < ngroups) {
486 const char *gname = pctlops->get_group_name(pctldev,
487 group_selector);
488 if (!strcmp(gname, pin_group)) {
489 dev_dbg(pctldev->dev,
490 "found group selector %u for %s\n",
491 group_selector,
492 pin_group);
493 return group_selector;
494 }
495
496 group_selector++;
497 }
498
499 dev_err(pctldev->dev, "does not have pin group %s\n",
500 pin_group);
501
502 return -EINVAL;
503 }
504
505 /**
506 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
507 * @gpio: the GPIO pin number from the GPIO subsystem number space
508 *
509 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
510 * as part of their gpio_request() semantics, platforms and individual drivers
511 * shall *NOT* request GPIO pins to be muxed in.
512 */
513 int pinctrl_request_gpio(unsigned gpio)
514 {
515 struct pinctrl_dev *pctldev;
516 struct pinctrl_gpio_range *range;
517 int ret;
518 int pin;
519
520 mutex_lock(&pinctrldev_list_mutex);
521
522 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
523 if (ret) {
524 if (pinctrl_ready_for_gpio_range(gpio))
525 ret = 0;
526 mutex_unlock(&pinctrldev_list_mutex);
527 return ret;
528 }
529
530 /* Convert to the pin controllers number space */
531 pin = gpio - range->base + range->pin_base;
532
533 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
534
535 mutex_unlock(&pinctrldev_list_mutex);
536 return ret;
537 }
538 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
539
540 /**
541 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
542 * @gpio: the GPIO pin number from the GPIO subsystem number space
543 *
544 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
545 * as part of their gpio_free() semantics, platforms and individual drivers
546 * shall *NOT* request GPIO pins to be muxed out.
547 */
548 void pinctrl_free_gpio(unsigned gpio)
549 {
550 struct pinctrl_dev *pctldev;
551 struct pinctrl_gpio_range *range;
552 int ret;
553 int pin;
554
555 mutex_lock(&pinctrldev_list_mutex);
556
557 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
558 if (ret) {
559 mutex_unlock(&pinctrldev_list_mutex);
560 return;
561 }
562 mutex_lock(&pctldev->mutex);
563
564 /* Convert to the pin controllers number space */
565 pin = gpio - range->base + range->pin_base;
566
567 pinmux_free_gpio(pctldev, pin, range);
568
569 mutex_unlock(&pctldev->mutex);
570 mutex_unlock(&pinctrldev_list_mutex);
571 }
572 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
573
574 static int pinctrl_gpio_direction(unsigned gpio, bool input)
575 {
576 struct pinctrl_dev *pctldev;
577 struct pinctrl_gpio_range *range;
578 int ret;
579 int pin;
580
581 mutex_lock(&pinctrldev_list_mutex);
582
583 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
584 if (ret) {
585 mutex_unlock(&pinctrldev_list_mutex);
586 return ret;
587 }
588
589 mutex_lock(&pctldev->mutex);
590
591 /* Convert to the pin controllers number space */
592 pin = gpio - range->base + range->pin_base;
593 ret = pinmux_gpio_direction(pctldev, range, pin, input);
594
595 mutex_unlock(&pctldev->mutex);
596 mutex_unlock(&pinctrldev_list_mutex);
597
598 return ret;
599 }
600
601 /**
602 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
603 * @gpio: the GPIO pin number from the GPIO subsystem number space
604 *
605 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
606 * as part of their gpio_direction_input() semantics, platforms and individual
607 * drivers shall *NOT* touch pin control GPIO calls.
608 */
609 int pinctrl_gpio_direction_input(unsigned gpio)
610 {
611 return pinctrl_gpio_direction(gpio, true);
612 }
613 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
614
615 /**
616 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
617 * @gpio: the GPIO pin number from the GPIO subsystem number space
618 *
619 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
620 * as part of their gpio_direction_output() semantics, platforms and individual
621 * drivers shall *NOT* touch pin control GPIO calls.
622 */
623 int pinctrl_gpio_direction_output(unsigned gpio)
624 {
625 return pinctrl_gpio_direction(gpio, false);
626 }
627 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
628
629 static struct pinctrl_state *find_state(struct pinctrl *p,
630 const char *name)
631 {
632 struct pinctrl_state *state;
633
634 list_for_each_entry(state, &p->states, node)
635 if (!strcmp(state->name, name))
636 return state;
637
638 return NULL;
639 }
640
641 static struct pinctrl_state *create_state(struct pinctrl *p,
642 const char *name)
643 {
644 struct pinctrl_state *state;
645
646 state = kzalloc(sizeof(*state), GFP_KERNEL);
647 if (state == NULL) {
648 dev_err(p->dev,
649 "failed to alloc struct pinctrl_state\n");
650 return ERR_PTR(-ENOMEM);
651 }
652
653 state->name = name;
654 INIT_LIST_HEAD(&state->settings);
655
656 list_add_tail(&state->node, &p->states);
657
658 return state;
659 }
660
661 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
662 {
663 struct pinctrl_state *state;
664 struct pinctrl_setting *setting;
665 int ret;
666
667 state = find_state(p, map->name);
668 if (!state)
669 state = create_state(p, map->name);
670 if (IS_ERR(state))
671 return PTR_ERR(state);
672
673 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
674 return 0;
675
676 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
677 if (setting == NULL) {
678 dev_err(p->dev,
679 "failed to alloc struct pinctrl_setting\n");
680 return -ENOMEM;
681 }
682
683 setting->type = map->type;
684
685 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
686 if (setting->pctldev == NULL) {
687 kfree(setting);
688 /* Do not defer probing of hogs (circular loop) */
689 if (!strcmp(map->ctrl_dev_name, map->dev_name))
690 return -ENODEV;
691 /*
692 * OK let us guess that the driver is not there yet, and
693 * let's defer obtaining this pinctrl handle to later...
694 */
695 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
696 map->ctrl_dev_name);
697 return -EPROBE_DEFER;
698 }
699
700 setting->dev_name = map->dev_name;
701
702 switch (map->type) {
703 case PIN_MAP_TYPE_MUX_GROUP:
704 ret = pinmux_map_to_setting(map, setting);
705 break;
706 case PIN_MAP_TYPE_CONFIGS_PIN:
707 case PIN_MAP_TYPE_CONFIGS_GROUP:
708 ret = pinconf_map_to_setting(map, setting);
709 break;
710 default:
711 ret = -EINVAL;
712 break;
713 }
714 if (ret < 0) {
715 kfree(setting);
716 return ret;
717 }
718
719 list_add_tail(&setting->node, &state->settings);
720
721 return 0;
722 }
723
724 static struct pinctrl *find_pinctrl(struct device *dev)
725 {
726 struct pinctrl *p;
727
728 mutex_lock(&pinctrl_list_mutex);
729 list_for_each_entry(p, &pinctrl_list, node)
730 if (p->dev == dev) {
731 mutex_unlock(&pinctrl_list_mutex);
732 return p;
733 }
734
735 mutex_unlock(&pinctrl_list_mutex);
736 return NULL;
737 }
738
739 static void pinctrl_free(struct pinctrl *p, bool inlist);
740
741 static struct pinctrl *create_pinctrl(struct device *dev)
742 {
743 struct pinctrl *p;
744 const char *devname;
745 struct pinctrl_maps *maps_node;
746 int i;
747 struct pinctrl_map const *map;
748 int ret;
749
750 /*
751 * create the state cookie holder struct pinctrl for each
752 * mapping, this is what consumers will get when requesting
753 * a pin control handle with pinctrl_get()
754 */
755 p = kzalloc(sizeof(*p), GFP_KERNEL);
756 if (p == NULL) {
757 dev_err(dev, "failed to alloc struct pinctrl\n");
758 return ERR_PTR(-ENOMEM);
759 }
760 p->dev = dev;
761 INIT_LIST_HEAD(&p->states);
762 INIT_LIST_HEAD(&p->dt_maps);
763
764 ret = pinctrl_dt_to_map(p);
765 if (ret < 0) {
766 kfree(p);
767 return ERR_PTR(ret);
768 }
769
770 devname = dev_name(dev);
771
772 mutex_lock(&pinctrl_maps_mutex);
773 /* Iterate over the pin control maps to locate the right ones */
774 for_each_maps(maps_node, i, map) {
775 /* Map must be for this device */
776 if (strcmp(map->dev_name, devname))
777 continue;
778
779 ret = add_setting(p, map);
780 /*
781 * At this point the adding of a setting may:
782 *
783 * - Defer, if the pinctrl device is not yet available
784 * - Fail, if the pinctrl device is not yet available,
785 * AND the setting is a hog. We cannot defer that, since
786 * the hog will kick in immediately after the device
787 * is registered.
788 *
789 * If the error returned was not -EPROBE_DEFER then we
790 * accumulate the errors to see if we end up with
791 * an -EPROBE_DEFER later, as that is the worst case.
792 */
793 if (ret == -EPROBE_DEFER) {
794 pinctrl_free(p, false);
795 mutex_unlock(&pinctrl_maps_mutex);
796 return ERR_PTR(ret);
797 }
798 }
799 mutex_unlock(&pinctrl_maps_mutex);
800
801 if (ret < 0) {
802 /* If some other error than deferral occured, return here */
803 pinctrl_free(p, false);
804 return ERR_PTR(ret);
805 }
806
807 kref_init(&p->users);
808
809 /* Add the pinctrl handle to the global list */
810 list_add_tail(&p->node, &pinctrl_list);
811
812 return p;
813 }
814
815 /**
816 * pinctrl_get() - retrieves the pinctrl handle for a device
817 * @dev: the device to obtain the handle for
818 */
819 struct pinctrl *pinctrl_get(struct device *dev)
820 {
821 struct pinctrl *p;
822
823 if (WARN_ON(!dev))
824 return ERR_PTR(-EINVAL);
825
826 /*
827 * See if somebody else (such as the device core) has already
828 * obtained a handle to the pinctrl for this device. In that case,
829 * return another pointer to it.
830 */
831 p = find_pinctrl(dev);
832 if (p != NULL) {
833 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
834 kref_get(&p->users);
835 return p;
836 }
837
838 return create_pinctrl(dev);
839 }
840 EXPORT_SYMBOL_GPL(pinctrl_get);
841
842 static void pinctrl_free_setting(bool disable_setting,
843 struct pinctrl_setting *setting)
844 {
845 switch (setting->type) {
846 case PIN_MAP_TYPE_MUX_GROUP:
847 if (disable_setting)
848 pinmux_disable_setting(setting);
849 pinmux_free_setting(setting);
850 break;
851 case PIN_MAP_TYPE_CONFIGS_PIN:
852 case PIN_MAP_TYPE_CONFIGS_GROUP:
853 pinconf_free_setting(setting);
854 break;
855 default:
856 break;
857 }
858 }
859
860 static void pinctrl_free(struct pinctrl *p, bool inlist)
861 {
862 struct pinctrl_state *state, *n1;
863 struct pinctrl_setting *setting, *n2;
864
865 mutex_lock(&pinctrl_list_mutex);
866 list_for_each_entry_safe(state, n1, &p->states, node) {
867 list_for_each_entry_safe(setting, n2, &state->settings, node) {
868 pinctrl_free_setting(state == p->state, setting);
869 list_del(&setting->node);
870 kfree(setting);
871 }
872 list_del(&state->node);
873 kfree(state);
874 }
875
876 pinctrl_dt_free_maps(p);
877
878 if (inlist)
879 list_del(&p->node);
880 kfree(p);
881 mutex_unlock(&pinctrl_list_mutex);
882 }
883
884 /**
885 * pinctrl_release() - release the pinctrl handle
886 * @kref: the kref in the pinctrl being released
887 */
888 static void pinctrl_release(struct kref *kref)
889 {
890 struct pinctrl *p = container_of(kref, struct pinctrl, users);
891
892 pinctrl_free(p, true);
893 }
894
895 /**
896 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
897 * @p: the pinctrl handle to release
898 */
899 void pinctrl_put(struct pinctrl *p)
900 {
901 kref_put(&p->users, pinctrl_release);
902 }
903 EXPORT_SYMBOL_GPL(pinctrl_put);
904
905 /**
906 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
907 * @p: the pinctrl handle to retrieve the state from
908 * @name: the state name to retrieve
909 */
910 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
911 const char *name)
912 {
913 struct pinctrl_state *state;
914
915 state = find_state(p, name);
916 if (!state) {
917 if (pinctrl_dummy_state) {
918 /* create dummy state */
919 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
920 name);
921 state = create_state(p, name);
922 } else
923 state = ERR_PTR(-ENODEV);
924 }
925
926 return state;
927 }
928 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
929
930 /**
931 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
932 * @p: the pinctrl handle for the device that requests configuration
933 * @state: the state handle to select/activate/program
934 */
935 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
936 {
937 struct pinctrl_setting *setting, *setting2;
938 struct pinctrl_state *old_state = p->state;
939 int ret;
940
941 if (p->state == state)
942 return 0;
943
944 if (p->state) {
945 /*
946 * The set of groups with a mux configuration in the old state
947 * may not be identical to the set of groups with a mux setting
948 * in the new state. While this might be unusual, it's entirely
949 * possible for the "user"-supplied mapping table to be written
950 * that way. For each group that was configured in the old state
951 * but not in the new state, this code puts that group into a
952 * safe/disabled state.
953 */
954 list_for_each_entry(setting, &p->state->settings, node) {
955 bool found = false;
956 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
957 continue;
958 list_for_each_entry(setting2, &state->settings, node) {
959 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
960 continue;
961 if (setting2->data.mux.group ==
962 setting->data.mux.group) {
963 found = true;
964 break;
965 }
966 }
967 if (!found)
968 pinmux_disable_setting(setting);
969 }
970 }
971
972 p->state = NULL;
973
974 /* Apply all the settings for the new state */
975 list_for_each_entry(setting, &state->settings, node) {
976 switch (setting->type) {
977 case PIN_MAP_TYPE_MUX_GROUP:
978 ret = pinmux_enable_setting(setting);
979 break;
980 case PIN_MAP_TYPE_CONFIGS_PIN:
981 case PIN_MAP_TYPE_CONFIGS_GROUP:
982 ret = pinconf_apply_setting(setting);
983 break;
984 default:
985 ret = -EINVAL;
986 break;
987 }
988
989 if (ret < 0) {
990 goto unapply_new_state;
991 }
992 }
993
994 p->state = state;
995
996 return 0;
997
998 unapply_new_state:
999 dev_err(p->dev, "Error applying setting, reverse things back\n");
1000
1001 list_for_each_entry(setting2, &state->settings, node) {
1002 if (&setting2->node == &setting->node)
1003 break;
1004 /*
1005 * All we can do here is pinmux_disable_setting.
1006 * That means that some pins are muxed differently now
1007 * than they were before applying the setting (We can't
1008 * "unmux a pin"!), but it's not a big deal since the pins
1009 * are free to be muxed by another apply_setting.
1010 */
1011 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1012 pinmux_disable_setting(setting2);
1013 }
1014
1015 /* There's no infinite recursive loop here because p->state is NULL */
1016 if (old_state)
1017 pinctrl_select_state(p, old_state);
1018
1019 return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1022
1023 static void devm_pinctrl_release(struct device *dev, void *res)
1024 {
1025 pinctrl_put(*(struct pinctrl **)res);
1026 }
1027
1028 /**
1029 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1030 * @dev: the device to obtain the handle for
1031 *
1032 * If there is a need to explicitly destroy the returned struct pinctrl,
1033 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1034 */
1035 struct pinctrl *devm_pinctrl_get(struct device *dev)
1036 {
1037 struct pinctrl **ptr, *p;
1038
1039 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1040 if (!ptr)
1041 return ERR_PTR(-ENOMEM);
1042
1043 p = pinctrl_get(dev);
1044 if (!IS_ERR(p)) {
1045 *ptr = p;
1046 devres_add(dev, ptr);
1047 } else {
1048 devres_free(ptr);
1049 }
1050
1051 return p;
1052 }
1053 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1054
1055 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1056 {
1057 struct pinctrl **p = res;
1058
1059 return *p == data;
1060 }
1061
1062 /**
1063 * devm_pinctrl_put() - Resource managed pinctrl_put()
1064 * @p: the pinctrl handle to release
1065 *
1066 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1067 * this function will not need to be called and the resource management
1068 * code will ensure that the resource is freed.
1069 */
1070 void devm_pinctrl_put(struct pinctrl *p)
1071 {
1072 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1073 devm_pinctrl_match, p));
1074 }
1075 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1076
1077 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1078 bool dup, bool locked)
1079 {
1080 int i, ret;
1081 struct pinctrl_maps *maps_node;
1082
1083 pr_debug("add %d pinmux maps\n", num_maps);
1084
1085 /* First sanity check the new mapping */
1086 for (i = 0; i < num_maps; i++) {
1087 if (!maps[i].dev_name) {
1088 pr_err("failed to register map %s (%d): no device given\n",
1089 maps[i].name, i);
1090 return -EINVAL;
1091 }
1092
1093 if (!maps[i].name) {
1094 pr_err("failed to register map %d: no map name given\n",
1095 i);
1096 return -EINVAL;
1097 }
1098
1099 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1100 !maps[i].ctrl_dev_name) {
1101 pr_err("failed to register map %s (%d): no pin control device given\n",
1102 maps[i].name, i);
1103 return -EINVAL;
1104 }
1105
1106 switch (maps[i].type) {
1107 case PIN_MAP_TYPE_DUMMY_STATE:
1108 break;
1109 case PIN_MAP_TYPE_MUX_GROUP:
1110 ret = pinmux_validate_map(&maps[i], i);
1111 if (ret < 0)
1112 return ret;
1113 break;
1114 case PIN_MAP_TYPE_CONFIGS_PIN:
1115 case PIN_MAP_TYPE_CONFIGS_GROUP:
1116 ret = pinconf_validate_map(&maps[i], i);
1117 if (ret < 0)
1118 return ret;
1119 break;
1120 default:
1121 pr_err("failed to register map %s (%d): invalid type given\n",
1122 maps[i].name, i);
1123 return -EINVAL;
1124 }
1125 }
1126
1127 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1128 if (!maps_node) {
1129 pr_err("failed to alloc struct pinctrl_maps\n");
1130 return -ENOMEM;
1131 }
1132
1133 maps_node->num_maps = num_maps;
1134 if (dup) {
1135 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1136 GFP_KERNEL);
1137 if (!maps_node->maps) {
1138 pr_err("failed to duplicate mapping table\n");
1139 kfree(maps_node);
1140 return -ENOMEM;
1141 }
1142 } else {
1143 maps_node->maps = maps;
1144 }
1145
1146 if (!locked)
1147 mutex_lock(&pinctrl_maps_mutex);
1148 list_add_tail(&maps_node->node, &pinctrl_maps);
1149 if (!locked)
1150 mutex_unlock(&pinctrl_maps_mutex);
1151
1152 return 0;
1153 }
1154
1155 /**
1156 * pinctrl_register_mappings() - register a set of pin controller mappings
1157 * @maps: the pincontrol mappings table to register. This should probably be
1158 * marked with __initdata so it can be discarded after boot. This
1159 * function will perform a shallow copy for the mapping entries.
1160 * @num_maps: the number of maps in the mapping table
1161 */
1162 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1163 unsigned num_maps)
1164 {
1165 return pinctrl_register_map(maps, num_maps, true, false);
1166 }
1167
1168 void pinctrl_unregister_map(struct pinctrl_map const *map)
1169 {
1170 struct pinctrl_maps *maps_node;
1171
1172 mutex_lock(&pinctrl_maps_mutex);
1173 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1174 if (maps_node->maps == map) {
1175 list_del(&maps_node->node);
1176 mutex_unlock(&pinctrl_maps_mutex);
1177 return;
1178 }
1179 }
1180 mutex_unlock(&pinctrl_maps_mutex);
1181 }
1182
1183 /**
1184 * pinctrl_force_sleep() - turn a given controller device into sleep state
1185 * @pctldev: pin controller device
1186 */
1187 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1188 {
1189 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1190 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1191 return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1194
1195 /**
1196 * pinctrl_force_default() - turn a given controller device into default state
1197 * @pctldev: pin controller device
1198 */
1199 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1200 {
1201 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1202 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1203 return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1206
1207 #ifdef CONFIG_DEBUG_FS
1208
1209 static int pinctrl_pins_show(struct seq_file *s, void *what)
1210 {
1211 struct pinctrl_dev *pctldev = s->private;
1212 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1213 unsigned i, pin;
1214
1215 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1216
1217 mutex_lock(&pctldev->mutex);
1218
1219 /* The pin number can be retrived from the pin controller descriptor */
1220 for (i = 0; i < pctldev->desc->npins; i++) {
1221 struct pin_desc *desc;
1222
1223 pin = pctldev->desc->pins[i].number;
1224 desc = pin_desc_get(pctldev, pin);
1225 /* Pin space may be sparse */
1226 if (desc == NULL)
1227 continue;
1228
1229 seq_printf(s, "pin %d (%s) ", pin,
1230 desc->name ? desc->name : "unnamed");
1231
1232 /* Driver-specific info per pin */
1233 if (ops->pin_dbg_show)
1234 ops->pin_dbg_show(pctldev, s, pin);
1235
1236 seq_puts(s, "\n");
1237 }
1238
1239 mutex_unlock(&pctldev->mutex);
1240
1241 return 0;
1242 }
1243
1244 static int pinctrl_groups_show(struct seq_file *s, void *what)
1245 {
1246 struct pinctrl_dev *pctldev = s->private;
1247 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1248 unsigned ngroups, selector = 0;
1249
1250 mutex_lock(&pctldev->mutex);
1251
1252 ngroups = ops->get_groups_count(pctldev);
1253
1254 seq_puts(s, "registered pin groups:\n");
1255 while (selector < ngroups) {
1256 const unsigned *pins;
1257 unsigned num_pins;
1258 const char *gname = ops->get_group_name(pctldev, selector);
1259 const char *pname;
1260 int ret;
1261 int i;
1262
1263 ret = ops->get_group_pins(pctldev, selector,
1264 &pins, &num_pins);
1265 if (ret)
1266 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1267 gname);
1268 else {
1269 seq_printf(s, "group: %s\n", gname);
1270 for (i = 0; i < num_pins; i++) {
1271 pname = pin_get_name(pctldev, pins[i]);
1272 if (WARN_ON(!pname)) {
1273 mutex_unlock(&pctldev->mutex);
1274 return -EINVAL;
1275 }
1276 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1277 }
1278 seq_puts(s, "\n");
1279 }
1280 selector++;
1281 }
1282
1283 mutex_unlock(&pctldev->mutex);
1284
1285 return 0;
1286 }
1287
1288 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1289 {
1290 struct pinctrl_dev *pctldev = s->private;
1291 struct pinctrl_gpio_range *range = NULL;
1292
1293 seq_puts(s, "GPIO ranges handled:\n");
1294
1295 mutex_lock(&pctldev->mutex);
1296
1297 /* Loop over the ranges */
1298 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1299 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1300 range->id, range->name,
1301 range->base, (range->base + range->npins - 1),
1302 range->pin_base,
1303 (range->pin_base + range->npins - 1));
1304 }
1305
1306 mutex_unlock(&pctldev->mutex);
1307
1308 return 0;
1309 }
1310
1311 static int pinctrl_devices_show(struct seq_file *s, void *what)
1312 {
1313 struct pinctrl_dev *pctldev;
1314
1315 seq_puts(s, "name [pinmux] [pinconf]\n");
1316
1317 mutex_lock(&pinctrldev_list_mutex);
1318
1319 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1320 seq_printf(s, "%s ", pctldev->desc->name);
1321 if (pctldev->desc->pmxops)
1322 seq_puts(s, "yes ");
1323 else
1324 seq_puts(s, "no ");
1325 if (pctldev->desc->confops)
1326 seq_puts(s, "yes");
1327 else
1328 seq_puts(s, "no");
1329 seq_puts(s, "\n");
1330 }
1331
1332 mutex_unlock(&pinctrldev_list_mutex);
1333
1334 return 0;
1335 }
1336
1337 static inline const char *map_type(enum pinctrl_map_type type)
1338 {
1339 static const char * const names[] = {
1340 "INVALID",
1341 "DUMMY_STATE",
1342 "MUX_GROUP",
1343 "CONFIGS_PIN",
1344 "CONFIGS_GROUP",
1345 };
1346
1347 if (type >= ARRAY_SIZE(names))
1348 return "UNKNOWN";
1349
1350 return names[type];
1351 }
1352
1353 static int pinctrl_maps_show(struct seq_file *s, void *what)
1354 {
1355 struct pinctrl_maps *maps_node;
1356 int i;
1357 struct pinctrl_map const *map;
1358
1359 seq_puts(s, "Pinctrl maps:\n");
1360
1361 mutex_lock(&pinctrl_maps_mutex);
1362 for_each_maps(maps_node, i, map) {
1363 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1364 map->dev_name, map->name, map_type(map->type),
1365 map->type);
1366
1367 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1368 seq_printf(s, "controlling device %s\n",
1369 map->ctrl_dev_name);
1370
1371 switch (map->type) {
1372 case PIN_MAP_TYPE_MUX_GROUP:
1373 pinmux_show_map(s, map);
1374 break;
1375 case PIN_MAP_TYPE_CONFIGS_PIN:
1376 case PIN_MAP_TYPE_CONFIGS_GROUP:
1377 pinconf_show_map(s, map);
1378 break;
1379 default:
1380 break;
1381 }
1382
1383 seq_printf(s, "\n");
1384 }
1385 mutex_unlock(&pinctrl_maps_mutex);
1386
1387 return 0;
1388 }
1389
1390 static int pinctrl_show(struct seq_file *s, void *what)
1391 {
1392 struct pinctrl *p;
1393 struct pinctrl_state *state;
1394 struct pinctrl_setting *setting;
1395
1396 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1397
1398 mutex_lock(&pinctrl_list_mutex);
1399
1400 list_for_each_entry(p, &pinctrl_list, node) {
1401 seq_printf(s, "device: %s current state: %s\n",
1402 dev_name(p->dev),
1403 p->state ? p->state->name : "none");
1404
1405 list_for_each_entry(state, &p->states, node) {
1406 seq_printf(s, " state: %s\n", state->name);
1407
1408 list_for_each_entry(setting, &state->settings, node) {
1409 struct pinctrl_dev *pctldev = setting->pctldev;
1410
1411 seq_printf(s, " type: %s controller %s ",
1412 map_type(setting->type),
1413 pinctrl_dev_get_name(pctldev));
1414
1415 switch (setting->type) {
1416 case PIN_MAP_TYPE_MUX_GROUP:
1417 pinmux_show_setting(s, setting);
1418 break;
1419 case PIN_MAP_TYPE_CONFIGS_PIN:
1420 case PIN_MAP_TYPE_CONFIGS_GROUP:
1421 pinconf_show_setting(s, setting);
1422 break;
1423 default:
1424 break;
1425 }
1426 }
1427 }
1428 }
1429
1430 mutex_unlock(&pinctrl_list_mutex);
1431
1432 return 0;
1433 }
1434
1435 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1436 {
1437 return single_open(file, pinctrl_pins_show, inode->i_private);
1438 }
1439
1440 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1441 {
1442 return single_open(file, pinctrl_groups_show, inode->i_private);
1443 }
1444
1445 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1446 {
1447 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1448 }
1449
1450 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1451 {
1452 return single_open(file, pinctrl_devices_show, NULL);
1453 }
1454
1455 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1456 {
1457 return single_open(file, pinctrl_maps_show, NULL);
1458 }
1459
1460 static int pinctrl_open(struct inode *inode, struct file *file)
1461 {
1462 return single_open(file, pinctrl_show, NULL);
1463 }
1464
1465 static const struct file_operations pinctrl_pins_ops = {
1466 .open = pinctrl_pins_open,
1467 .read = seq_read,
1468 .llseek = seq_lseek,
1469 .release = single_release,
1470 };
1471
1472 static const struct file_operations pinctrl_groups_ops = {
1473 .open = pinctrl_groups_open,
1474 .read = seq_read,
1475 .llseek = seq_lseek,
1476 .release = single_release,
1477 };
1478
1479 static const struct file_operations pinctrl_gpioranges_ops = {
1480 .open = pinctrl_gpioranges_open,
1481 .read = seq_read,
1482 .llseek = seq_lseek,
1483 .release = single_release,
1484 };
1485
1486 static const struct file_operations pinctrl_devices_ops = {
1487 .open = pinctrl_devices_open,
1488 .read = seq_read,
1489 .llseek = seq_lseek,
1490 .release = single_release,
1491 };
1492
1493 static const struct file_operations pinctrl_maps_ops = {
1494 .open = pinctrl_maps_open,
1495 .read = seq_read,
1496 .llseek = seq_lseek,
1497 .release = single_release,
1498 };
1499
1500 static const struct file_operations pinctrl_ops = {
1501 .open = pinctrl_open,
1502 .read = seq_read,
1503 .llseek = seq_lseek,
1504 .release = single_release,
1505 };
1506
1507 static struct dentry *debugfs_root;
1508
1509 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1510 {
1511 struct dentry *device_root;
1512
1513 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1514 debugfs_root);
1515 pctldev->device_root = device_root;
1516
1517 if (IS_ERR(device_root) || !device_root) {
1518 pr_warn("failed to create debugfs directory for %s\n",
1519 dev_name(pctldev->dev));
1520 return;
1521 }
1522 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1523 device_root, pctldev, &pinctrl_pins_ops);
1524 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1525 device_root, pctldev, &pinctrl_groups_ops);
1526 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1527 device_root, pctldev, &pinctrl_gpioranges_ops);
1528 pinmux_init_device_debugfs(device_root, pctldev);
1529 pinconf_init_device_debugfs(device_root, pctldev);
1530 }
1531
1532 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1533 {
1534 debugfs_remove_recursive(pctldev->device_root);
1535 }
1536
1537 static void pinctrl_init_debugfs(void)
1538 {
1539 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1540 if (IS_ERR(debugfs_root) || !debugfs_root) {
1541 pr_warn("failed to create debugfs directory\n");
1542 debugfs_root = NULL;
1543 return;
1544 }
1545
1546 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1547 debugfs_root, NULL, &pinctrl_devices_ops);
1548 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1549 debugfs_root, NULL, &pinctrl_maps_ops);
1550 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1551 debugfs_root, NULL, &pinctrl_ops);
1552 }
1553
1554 #else /* CONFIG_DEBUG_FS */
1555
1556 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1557 {
1558 }
1559
1560 static void pinctrl_init_debugfs(void)
1561 {
1562 }
1563
1564 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1565 {
1566 }
1567
1568 #endif
1569
1570 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1571 {
1572 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1573
1574 if (!ops ||
1575 !ops->get_groups_count ||
1576 !ops->get_group_name ||
1577 !ops->get_group_pins)
1578 return -EINVAL;
1579
1580 if (ops->dt_node_to_map && !ops->dt_free_map)
1581 return -EINVAL;
1582
1583 return 0;
1584 }
1585
1586 /**
1587 * pinctrl_register() - register a pin controller device
1588 * @pctldesc: descriptor for this pin controller
1589 * @dev: parent device for this pin controller
1590 * @driver_data: private pin controller data for this pin controller
1591 */
1592 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1593 struct device *dev, void *driver_data)
1594 {
1595 struct pinctrl_dev *pctldev;
1596 int ret;
1597
1598 if (!pctldesc)
1599 return NULL;
1600 if (!pctldesc->name)
1601 return NULL;
1602
1603 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1604 if (pctldev == NULL) {
1605 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1606 return NULL;
1607 }
1608
1609 /* Initialize pin control device struct */
1610 pctldev->owner = pctldesc->owner;
1611 pctldev->desc = pctldesc;
1612 pctldev->driver_data = driver_data;
1613 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1614 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1615 pctldev->dev = dev;
1616 mutex_init(&pctldev->mutex);
1617
1618 /* check core ops for sanity */
1619 if (pinctrl_check_ops(pctldev)) {
1620 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1621 goto out_err;
1622 }
1623
1624 /* If we're implementing pinmuxing, check the ops for sanity */
1625 if (pctldesc->pmxops) {
1626 if (pinmux_check_ops(pctldev))
1627 goto out_err;
1628 }
1629
1630 /* If we're implementing pinconfig, check the ops for sanity */
1631 if (pctldesc->confops) {
1632 if (pinconf_check_ops(pctldev))
1633 goto out_err;
1634 }
1635
1636 /* Register all the pins */
1637 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1638 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1639 if (ret) {
1640 dev_err(dev, "error during pin registration\n");
1641 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1642 pctldesc->npins);
1643 goto out_err;
1644 }
1645
1646 mutex_lock(&pinctrldev_list_mutex);
1647 list_add_tail(&pctldev->node, &pinctrldev_list);
1648 mutex_unlock(&pinctrldev_list_mutex);
1649
1650 pctldev->p = pinctrl_get(pctldev->dev);
1651
1652 if (!IS_ERR(pctldev->p)) {
1653 pctldev->hog_default =
1654 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1655 if (IS_ERR(pctldev->hog_default)) {
1656 dev_dbg(dev, "failed to lookup the default state\n");
1657 } else {
1658 if (pinctrl_select_state(pctldev->p,
1659 pctldev->hog_default))
1660 dev_err(dev,
1661 "failed to select default state\n");
1662 }
1663
1664 pctldev->hog_sleep =
1665 pinctrl_lookup_state(pctldev->p,
1666 PINCTRL_STATE_SLEEP);
1667 if (IS_ERR(pctldev->hog_sleep))
1668 dev_dbg(dev, "failed to lookup the sleep state\n");
1669 }
1670
1671 pinctrl_init_device_debugfs(pctldev);
1672
1673 return pctldev;
1674
1675 out_err:
1676 mutex_destroy(&pctldev->mutex);
1677 kfree(pctldev);
1678 return NULL;
1679 }
1680 EXPORT_SYMBOL_GPL(pinctrl_register);
1681
1682 /**
1683 * pinctrl_unregister() - unregister pinmux
1684 * @pctldev: pin controller to unregister
1685 *
1686 * Called by pinmux drivers to unregister a pinmux.
1687 */
1688 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1689 {
1690 struct pinctrl_gpio_range *range, *n;
1691 if (pctldev == NULL)
1692 return;
1693
1694 mutex_lock(&pinctrldev_list_mutex);
1695 mutex_lock(&pctldev->mutex);
1696
1697 pinctrl_remove_device_debugfs(pctldev);
1698
1699 if (!IS_ERR(pctldev->p))
1700 pinctrl_put(pctldev->p);
1701
1702 /* TODO: check that no pinmuxes are still active? */
1703 list_del(&pctldev->node);
1704 /* Destroy descriptor tree */
1705 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1706 pctldev->desc->npins);
1707 /* remove gpio ranges map */
1708 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1709 list_del(&range->node);
1710
1711 mutex_unlock(&pctldev->mutex);
1712 mutex_destroy(&pctldev->mutex);
1713 kfree(pctldev);
1714 mutex_unlock(&pinctrldev_list_mutex);
1715 }
1716 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1717
1718 static int __init pinctrl_init(void)
1719 {
1720 pr_info("initialized pinctrl subsystem\n");
1721 pinctrl_init_debugfs();
1722 return 0;
1723 }
1724
1725 /* init early since many drivers really need to initialized pinmux early */
1726 core_initcall(pinctrl_init);