md/bitmap: disable bitmap_resize for file-backed bitmaps.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->busn_res.end;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #define PCI_FIND_CAP_TTL 48
140
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 u8 pos, int cap, int *ttl)
143 {
144 u8 id;
145
146 while ((*ttl)--) {
147 pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 if (pos < 0x40)
149 break;
150 pos &= ~3;
151 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 &id);
153 if (id == 0xff)
154 break;
155 if (id == cap)
156 return pos;
157 pos += PCI_CAP_LIST_NEXT;
158 }
159 return 0;
160 }
161
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 u8 pos, int cap)
164 {
165 int ttl = PCI_FIND_CAP_TTL;
166
167 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 return __pci_find_next_cap(dev->bus, dev->devfn,
173 pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 unsigned int devfn, u8 hdr_type)
179 {
180 u16 status;
181
182 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 if (!(status & PCI_STATUS_CAP_LIST))
184 return 0;
185
186 switch (hdr_type) {
187 case PCI_HEADER_TYPE_NORMAL:
188 case PCI_HEADER_TYPE_BRIDGE:
189 return PCI_CAPABILITY_LIST;
190 case PCI_HEADER_TYPE_CARDBUS:
191 return PCI_CB_CAPABILITY_LIST;
192 default:
193 return 0;
194 }
195
196 return 0;
197 }
198
199 /**
200 * pci_find_capability - query for devices' capabilities
201 * @dev: PCI device to query
202 * @cap: capability code
203 *
204 * Tell if a device supports a given PCI capability.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it. Possible values for @cap:
208 *
209 * %PCI_CAP_ID_PM Power Management
210 * %PCI_CAP_ID_AGP Accelerated Graphics Port
211 * %PCI_CAP_ID_VPD Vital Product Data
212 * %PCI_CAP_ID_SLOTID Slot Identification
213 * %PCI_CAP_ID_MSI Message Signalled Interrupts
214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
215 * %PCI_CAP_ID_PCIX PCI-X
216 * %PCI_CAP_ID_EXP PCI Express
217 */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 int pos;
221
222 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 if (pos)
224 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_bus_find_capability - query for devices' capabilities
231 * @bus: the PCI bus to query
232 * @devfn: PCI device to query
233 * @cap: capability code
234 *
235 * Like pci_find_capability() but works for pci devices that do not have a
236 * pci_dev structure set up yet.
237 *
238 * Returns the address of the requested capability structure within the
239 * device's PCI configuration space or 0 in case the device does not
240 * support it.
241 */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 int pos;
245 u8 hdr_type;
246
247 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248
249 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 if (pos)
251 pos = __pci_find_next_cap(bus, devfn, pos, cap);
252
253 return pos;
254 }
255
256 /**
257 * pci_find_next_ext_capability - Find an extended capability
258 * @dev: PCI device to query
259 * @start: address at which to start looking (0 to start at beginning of list)
260 * @cap: capability code
261 *
262 * Returns the address of the next matching extended capability structure
263 * within the device's PCI configuration space or 0 if the device does
264 * not support it. Some capabilities can occur several times, e.g., the
265 * vendor-specific capability, and this provides a way to find them all.
266 */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 u32 header;
270 int ttl;
271 int pos = PCI_CFG_SPACE_SIZE;
272
273 /* minimum 8 bytes per capability */
274 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275
276 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 return 0;
278
279 if (start)
280 pos = start;
281
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 /*
286 * If we have no capabilities, this is indicated by cap ID,
287 * cap version and next pointer all being 0.
288 */
289 if (header == 0)
290 return 0;
291
292 while (ttl-- > 0) {
293 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 return pos;
295
296 pos = PCI_EXT_CAP_NEXT(header);
297 if (pos < PCI_CFG_SPACE_SIZE)
298 break;
299
300 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 break;
302 }
303
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307
308 /**
309 * pci_find_ext_capability - Find an extended capability
310 * @dev: PCI device to query
311 * @cap: capability code
312 *
313 * Returns the address of the requested extended capability structure
314 * within the device's PCI configuration space or 0 if the device does
315 * not support it. Possible values for @cap:
316 *
317 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
318 * %PCI_EXT_CAP_ID_VC Virtual Channel
319 * %PCI_EXT_CAP_ID_DSN Device Serial Number
320 * %PCI_EXT_CAP_ID_PWR Power Budgeting
321 */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 int rc, ttl = PCI_FIND_CAP_TTL;
331 u8 cap, mask;
332
333 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 mask = HT_3BIT_CAP_MASK;
335 else
336 mask = HT_5BIT_CAP_MASK;
337
338 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 PCI_CAP_ID_HT, &ttl);
340 while (pos) {
341 rc = pci_read_config_byte(dev, pos + 3, &cap);
342 if (rc != PCIBIOS_SUCCESSFUL)
343 return 0;
344
345 if ((cap & mask) == ht_cap)
346 return pos;
347
348 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 pos + PCI_CAP_LIST_NEXT,
350 PCI_CAP_ID_HT, &ttl);
351 }
352
353 return 0;
354 }
355 /**
356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357 * @dev: PCI device to query
358 * @pos: Position from which to continue searching
359 * @ht_cap: Hypertransport capability code
360 *
361 * To be used in conjunction with pci_find_ht_capability() to search for
362 * all capabilities matching @ht_cap. @pos should always be a value returned
363 * from pci_find_ht_capability().
364 *
365 * NB. To be 100% safe against broken PCI devices, the caller should take
366 * steps to avoid an infinite loop.
367 */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373
374 /**
375 * pci_find_ht_capability - query a device's Hypertransport capabilities
376 * @dev: PCI device to query
377 * @ht_cap: Hypertransport capability code
378 *
379 * Tell if a device supports a given Hypertransport capability.
380 * Returns an address within the device's PCI configuration space
381 * or 0 in case the device does not support the request capability.
382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383 * which has a Hypertransport capability matching @ht_cap.
384 */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 int pos;
388
389 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 if (pos)
391 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392
393 return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396
397 /**
398 * pci_find_parent_resource - return resource region of parent bus of given region
399 * @dev: PCI device structure contains resources to be searched
400 * @res: child resource record for which parent is sought
401 *
402 * For given resource region of given device, return the resource
403 * region of parent bus the given region is contained in or where
404 * it should be allocated from.
405 */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 const struct pci_bus *bus = dev->bus;
410 int i;
411 struct resource *best = NULL, *r;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && !(res->start >= r->start && res->end <= r->end))
417 continue; /* Not contained */
418 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 continue; /* Wrong type */
420 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 return r; /* Exact match */
422 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 if (r->flags & IORESOURCE_PREFETCH)
424 continue;
425 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 if (!best)
427 best = r;
428 }
429 return best;
430 }
431
432 /**
433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434 * @dev: PCI device to have its BARs restored
435 *
436 * Restore the BAR values for a given device, so as to make it
437 * accessible by its driver.
438 */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 int i;
443
444 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 pci_update_resource(dev, i);
446 }
447
448 static struct pci_platform_pm_ops *pci_platform_pm;
449
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 || !ops->sleep_wake)
454 return -EINVAL;
455 pci_platform_pm = ops;
456 return 0;
457 }
458
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465 pci_power_t t)
466 {
467 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 return pci_platform_pm ?
473 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475
476 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
477 {
478 return pci_platform_pm ?
479 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
480 }
481
482 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
483 {
484 return pci_platform_pm ?
485 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
486 }
487
488 /**
489 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
490 * given PCI device
491 * @dev: PCI device to handle.
492 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
493 *
494 * RETURN VALUE:
495 * -EINVAL if the requested state is invalid.
496 * -EIO if device does not support PCI PM or its PM capabilities register has a
497 * wrong version, or device doesn't support the requested state.
498 * 0 if device already is in the requested state.
499 * 0 if device's power state has been successfully changed.
500 */
501 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
502 {
503 u16 pmcsr;
504 bool need_restore = false;
505
506 /* Check if we're already there */
507 if (dev->current_state == state)
508 return 0;
509
510 if (!dev->pm_cap)
511 return -EIO;
512
513 if (state < PCI_D0 || state > PCI_D3hot)
514 return -EINVAL;
515
516 /* Validate current state:
517 * Can enter D0 from any state, but if we can only go deeper
518 * to sleep if we're already in a low power state
519 */
520 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
521 && dev->current_state > state) {
522 dev_err(&dev->dev, "invalid power transition "
523 "(from state %d to %d)\n", dev->current_state, state);
524 return -EINVAL;
525 }
526
527 /* check if this device supports the desired state */
528 if ((state == PCI_D1 && !dev->d1_support)
529 || (state == PCI_D2 && !dev->d2_support))
530 return -EIO;
531
532 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533
534 /* If we're (effectively) in D3, force entire word to 0.
535 * This doesn't affect PME_Status, disables PME_En, and
536 * sets PowerState to 0.
537 */
538 switch (dev->current_state) {
539 case PCI_D0:
540 case PCI_D1:
541 case PCI_D2:
542 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
543 pmcsr |= state;
544 break;
545 case PCI_D3hot:
546 case PCI_D3cold:
547 case PCI_UNKNOWN: /* Boot-up */
548 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
549 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
550 need_restore = true;
551 /* Fall-through: force to D0 */
552 default:
553 pmcsr = 0;
554 break;
555 }
556
557 /* enter specified state */
558 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
559
560 /* Mandatory power management transition delays */
561 /* see PCI PM 1.1 5.6.1 table 18 */
562 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
563 pci_dev_d3_sleep(dev);
564 else if (state == PCI_D2 || dev->current_state == PCI_D2)
565 udelay(PCI_PM_D2_DELAY);
566
567 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 if (dev->current_state != state && printk_ratelimit())
570 dev_info(&dev->dev, "Refused to change power state, "
571 "currently in D%d\n", dev->current_state);
572
573 /*
574 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 * from D3hot to D0 _may_ perform an internal reset, thereby
577 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 * For example, at least some versions of the 3c905B and the
579 * 3c556B exhibit this behaviour.
580 *
581 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 * devices in a D3hot state at boot. Consequently, we need to
583 * restore at least the BARs so that the device will be
584 * accessible to its driver.
585 */
586 if (need_restore)
587 pci_restore_bars(dev);
588
589 if (dev->bus->self)
590 pcie_aspm_pm_state_change(dev->bus->self);
591
592 return 0;
593 }
594
595 /**
596 * pci_update_current_state - Read PCI power state of given device from its
597 * PCI PM registers and cache it
598 * @dev: PCI device to handle.
599 * @state: State to cache in case the device doesn't have the PM capability
600 */
601 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
602 {
603 if (dev->pm_cap) {
604 u16 pmcsr;
605
606 /*
607 * Configuration space is not accessible for device in
608 * D3cold, so just keep or set D3cold for safety
609 */
610 if (dev->current_state == PCI_D3cold)
611 return;
612 if (state == PCI_D3cold) {
613 dev->current_state = PCI_D3cold;
614 return;
615 }
616 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
617 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
618 } else {
619 dev->current_state = state;
620 }
621 }
622
623 /**
624 * pci_power_up - Put the given device into D0 forcibly
625 * @dev: PCI device to power up
626 */
627 void pci_power_up(struct pci_dev *dev)
628 {
629 if (platform_pci_power_manageable(dev))
630 platform_pci_set_power_state(dev, PCI_D0);
631
632 pci_raw_set_power_state(dev, PCI_D0);
633 pci_update_current_state(dev, PCI_D0);
634 }
635
636 /**
637 * pci_platform_power_transition - Use platform to change device power state
638 * @dev: PCI device to handle.
639 * @state: State to put the device into.
640 */
641 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
642 {
643 int error;
644
645 if (platform_pci_power_manageable(dev)) {
646 error = platform_pci_set_power_state(dev, state);
647 if (!error)
648 pci_update_current_state(dev, state);
649 } else
650 error = -ENODEV;
651
652 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
653 dev->current_state = PCI_D0;
654
655 return error;
656 }
657
658 /**
659 * __pci_start_power_transition - Start power transition of a PCI device
660 * @dev: PCI device to handle.
661 * @state: State to put the device into.
662 */
663 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
664 {
665 if (state == PCI_D0) {
666 pci_platform_power_transition(dev, PCI_D0);
667 /*
668 * Mandatory power management transition delays, see
669 * PCI Express Base Specification Revision 2.0 Section
670 * 6.6.1: Conventional Reset. Do not delay for
671 * devices powered on/off by corresponding bridge,
672 * because have already delayed for the bridge.
673 */
674 if (dev->runtime_d3cold) {
675 msleep(dev->d3cold_delay);
676 /*
677 * When powering on a bridge from D3cold, the
678 * whole hierarchy may be powered on into
679 * D0uninitialized state, resume them to give
680 * them a chance to suspend again
681 */
682 pci_wakeup_bus(dev->subordinate);
683 }
684 }
685 }
686
687 /**
688 * __pci_dev_set_current_state - Set current state of a PCI device
689 * @dev: Device to handle
690 * @data: pointer to state to be set
691 */
692 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
693 {
694 pci_power_t state = *(pci_power_t *)data;
695
696 dev->current_state = state;
697 return 0;
698 }
699
700 /**
701 * __pci_bus_set_current_state - Walk given bus and set current state of devices
702 * @bus: Top bus of the subtree to walk.
703 * @state: state to be set
704 */
705 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
706 {
707 if (bus)
708 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
709 }
710
711 /**
712 * __pci_complete_power_transition - Complete power transition of a PCI device
713 * @dev: PCI device to handle.
714 * @state: State to put the device into.
715 *
716 * This function should not be called directly by device drivers.
717 */
718 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
719 {
720 int ret;
721
722 if (state <= PCI_D0)
723 return -EINVAL;
724 ret = pci_platform_power_transition(dev, state);
725 /* Power off the bridge may power off the whole hierarchy */
726 if (!ret && state == PCI_D3cold)
727 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
728 return ret;
729 }
730 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
731
732 /**
733 * pci_set_power_state - Set the power state of a PCI device
734 * @dev: PCI device to handle.
735 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
736 *
737 * Transition a device to a new power state, using the platform firmware and/or
738 * the device's PCI PM registers.
739 *
740 * RETURN VALUE:
741 * -EINVAL if the requested state is invalid.
742 * -EIO if device does not support PCI PM or its PM capabilities register has a
743 * wrong version, or device doesn't support the requested state.
744 * 0 if device already is in the requested state.
745 * 0 if device's power state has been successfully changed.
746 */
747 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
748 {
749 int error;
750
751 /* bound the state we're entering */
752 if (state > PCI_D3cold)
753 state = PCI_D3cold;
754 else if (state < PCI_D0)
755 state = PCI_D0;
756 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
757 /*
758 * If the device or the parent bridge do not support PCI PM,
759 * ignore the request if we're doing anything other than putting
760 * it into D0 (which would only happen on boot).
761 */
762 return 0;
763
764 /* Check if we're already there */
765 if (dev->current_state == state)
766 return 0;
767
768 __pci_start_power_transition(dev, state);
769
770 /* This device is quirked not to be put into D3, so
771 don't put it in D3 */
772 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
773 return 0;
774
775 /*
776 * To put device in D3cold, we put device into D3hot in native
777 * way, then put device into D3cold with platform ops
778 */
779 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
780 PCI_D3hot : state);
781
782 if (!__pci_complete_power_transition(dev, state))
783 error = 0;
784 /*
785 * When aspm_policy is "powersave" this call ensures
786 * that ASPM is configured.
787 */
788 if (!error && dev->bus->self)
789 pcie_aspm_powersave_config_link(dev->bus->self);
790
791 return error;
792 }
793
794 /**
795 * pci_choose_state - Choose the power state of a PCI device
796 * @dev: PCI device to be suspended
797 * @state: target sleep state for the whole system. This is the value
798 * that is passed to suspend() function.
799 *
800 * Returns PCI power state suitable for given device and given system
801 * message.
802 */
803
804 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
805 {
806 pci_power_t ret;
807
808 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
809 return PCI_D0;
810
811 ret = platform_pci_choose_state(dev);
812 if (ret != PCI_POWER_ERROR)
813 return ret;
814
815 switch (state.event) {
816 case PM_EVENT_ON:
817 return PCI_D0;
818 case PM_EVENT_FREEZE:
819 case PM_EVENT_PRETHAW:
820 /* REVISIT both freeze and pre-thaw "should" use D0 */
821 case PM_EVENT_SUSPEND:
822 case PM_EVENT_HIBERNATE:
823 return PCI_D3hot;
824 default:
825 dev_info(&dev->dev, "unrecognized suspend event %d\n",
826 state.event);
827 BUG();
828 }
829 return PCI_D0;
830 }
831
832 EXPORT_SYMBOL(pci_choose_state);
833
834 #define PCI_EXP_SAVE_REGS 7
835
836
837 static struct pci_cap_saved_state *pci_find_saved_cap(
838 struct pci_dev *pci_dev, char cap)
839 {
840 struct pci_cap_saved_state *tmp;
841
842 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
843 if (tmp->cap.cap_nr == cap)
844 return tmp;
845 }
846 return NULL;
847 }
848
849 static int pci_save_pcie_state(struct pci_dev *dev)
850 {
851 int i = 0;
852 struct pci_cap_saved_state *save_state;
853 u16 *cap;
854
855 if (!pci_is_pcie(dev))
856 return 0;
857
858 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
859 if (!save_state) {
860 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
861 return -ENOMEM;
862 }
863
864 cap = (u16 *)&save_state->cap.data[0];
865 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
866 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
867 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
868 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
869 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
870 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
871 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
872
873 return 0;
874 }
875
876 static void pci_restore_pcie_state(struct pci_dev *dev)
877 {
878 int i = 0;
879 struct pci_cap_saved_state *save_state;
880 u16 *cap;
881
882 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
883 if (!save_state)
884 return;
885
886 cap = (u16 *)&save_state->cap.data[0];
887 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
888 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
889 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
890 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
891 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
892 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
893 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
894 }
895
896
897 static int pci_save_pcix_state(struct pci_dev *dev)
898 {
899 int pos;
900 struct pci_cap_saved_state *save_state;
901
902 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
903 if (pos <= 0)
904 return 0;
905
906 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
907 if (!save_state) {
908 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
909 return -ENOMEM;
910 }
911
912 pci_read_config_word(dev, pos + PCI_X_CMD,
913 (u16 *)save_state->cap.data);
914
915 return 0;
916 }
917
918 static void pci_restore_pcix_state(struct pci_dev *dev)
919 {
920 int i = 0, pos;
921 struct pci_cap_saved_state *save_state;
922 u16 *cap;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
926 if (!save_state || pos <= 0)
927 return;
928 cap = (u16 *)&save_state->cap.data[0];
929
930 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
931 }
932
933
934 /**
935 * pci_save_state - save the PCI configuration space of a device before suspending
936 * @dev: - PCI device that we're dealing with
937 */
938 int
939 pci_save_state(struct pci_dev *dev)
940 {
941 int i;
942 /* XXX: 100% dword access ok here? */
943 for (i = 0; i < 16; i++)
944 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
945 dev->state_saved = true;
946 if ((i = pci_save_pcie_state(dev)) != 0)
947 return i;
948 if ((i = pci_save_pcix_state(dev)) != 0)
949 return i;
950 return 0;
951 }
952
953 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
954 u32 saved_val, int retry)
955 {
956 u32 val;
957
958 pci_read_config_dword(pdev, offset, &val);
959 if (val == saved_val)
960 return;
961
962 for (;;) {
963 dev_dbg(&pdev->dev, "restoring config space at offset "
964 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
965 pci_write_config_dword(pdev, offset, saved_val);
966 if (retry-- <= 0)
967 return;
968
969 pci_read_config_dword(pdev, offset, &val);
970 if (val == saved_val)
971 return;
972
973 mdelay(1);
974 }
975 }
976
977 static void pci_restore_config_space_range(struct pci_dev *pdev,
978 int start, int end, int retry)
979 {
980 int index;
981
982 for (index = end; index >= start; index--)
983 pci_restore_config_dword(pdev, 4 * index,
984 pdev->saved_config_space[index],
985 retry);
986 }
987
988 static void pci_restore_config_space(struct pci_dev *pdev)
989 {
990 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
991 pci_restore_config_space_range(pdev, 10, 15, 0);
992 /* Restore BARs before the command register. */
993 pci_restore_config_space_range(pdev, 4, 9, 10);
994 pci_restore_config_space_range(pdev, 0, 3, 0);
995 } else {
996 pci_restore_config_space_range(pdev, 0, 15, 0);
997 }
998 }
999
1000 /**
1001 * pci_restore_state - Restore the saved state of a PCI device
1002 * @dev: - PCI device that we're dealing with
1003 */
1004 void pci_restore_state(struct pci_dev *dev)
1005 {
1006 if (!dev->state_saved)
1007 return;
1008
1009 /* PCI Express register must be restored first */
1010 pci_restore_pcie_state(dev);
1011 pci_restore_ats_state(dev);
1012
1013 pci_restore_config_space(dev);
1014
1015 pci_restore_pcix_state(dev);
1016 pci_restore_msi_state(dev);
1017 pci_restore_iov_state(dev);
1018
1019 dev->state_saved = false;
1020 }
1021
1022 struct pci_saved_state {
1023 u32 config_space[16];
1024 struct pci_cap_saved_data cap[0];
1025 };
1026
1027 /**
1028 * pci_store_saved_state - Allocate and return an opaque struct containing
1029 * the device saved state.
1030 * @dev: PCI device that we're dealing with
1031 *
1032 * Rerturn NULL if no state or error.
1033 */
1034 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1035 {
1036 struct pci_saved_state *state;
1037 struct pci_cap_saved_state *tmp;
1038 struct pci_cap_saved_data *cap;
1039 size_t size;
1040
1041 if (!dev->state_saved)
1042 return NULL;
1043
1044 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1045
1046 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1047 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1048
1049 state = kzalloc(size, GFP_KERNEL);
1050 if (!state)
1051 return NULL;
1052
1053 memcpy(state->config_space, dev->saved_config_space,
1054 sizeof(state->config_space));
1055
1056 cap = state->cap;
1057 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1058 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059 memcpy(cap, &tmp->cap, len);
1060 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1061 }
1062 /* Empty cap_save terminates list */
1063
1064 return state;
1065 }
1066 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1067
1068 /**
1069 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070 * @dev: PCI device that we're dealing with
1071 * @state: Saved state returned from pci_store_saved_state()
1072 */
1073 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1074 {
1075 struct pci_cap_saved_data *cap;
1076
1077 dev->state_saved = false;
1078
1079 if (!state)
1080 return 0;
1081
1082 memcpy(dev->saved_config_space, state->config_space,
1083 sizeof(state->config_space));
1084
1085 cap = state->cap;
1086 while (cap->size) {
1087 struct pci_cap_saved_state *tmp;
1088
1089 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1090 if (!tmp || tmp->cap.size != cap->size)
1091 return -EINVAL;
1092
1093 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1094 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1095 sizeof(struct pci_cap_saved_data) + cap->size);
1096 }
1097
1098 dev->state_saved = true;
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1102
1103 /**
1104 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105 * and free the memory allocated for it.
1106 * @dev: PCI device that we're dealing with
1107 * @state: Pointer to saved state returned from pci_store_saved_state()
1108 */
1109 int pci_load_and_free_saved_state(struct pci_dev *dev,
1110 struct pci_saved_state **state)
1111 {
1112 int ret = pci_load_saved_state(dev, *state);
1113 kfree(*state);
1114 *state = NULL;
1115 return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1118
1119 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1120 {
1121 int err;
1122 u16 cmd;
1123 u8 pin;
1124
1125 err = pci_set_power_state(dev, PCI_D0);
1126 if (err < 0 && err != -EIO)
1127 return err;
1128 err = pcibios_enable_device(dev, bars);
1129 if (err < 0)
1130 return err;
1131 pci_fixup_device(pci_fixup_enable, dev);
1132
1133 if (dev->msi_enabled || dev->msix_enabled)
1134 return 0;
1135
1136 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1137 if (pin) {
1138 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1139 if (cmd & PCI_COMMAND_INTX_DISABLE)
1140 pci_write_config_word(dev, PCI_COMMAND,
1141 cmd & ~PCI_COMMAND_INTX_DISABLE);
1142 }
1143
1144 return 0;
1145 }
1146
1147 /**
1148 * pci_reenable_device - Resume abandoned device
1149 * @dev: PCI device to be resumed
1150 *
1151 * Note this function is a backend of pci_default_resume and is not supposed
1152 * to be called by normal code, write proper resume handler and use it instead.
1153 */
1154 int pci_reenable_device(struct pci_dev *dev)
1155 {
1156 if (pci_is_enabled(dev))
1157 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1158 return 0;
1159 }
1160
1161 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1162 {
1163 int err;
1164 int i, bars = 0;
1165
1166 /*
1167 * Power state could be unknown at this point, either due to a fresh
1168 * boot or a device removal call. So get the current power state
1169 * so that things like MSI message writing will behave as expected
1170 * (e.g. if the device really is in D0 at enable time).
1171 */
1172 if (dev->pm_cap) {
1173 u16 pmcsr;
1174 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1175 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1176 }
1177
1178 if (atomic_inc_return(&dev->enable_cnt) > 1)
1179 return 0; /* already enabled */
1180
1181 /* only skip sriov related */
1182 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1183 if (dev->resource[i].flags & flags)
1184 bars |= (1 << i);
1185 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1186 if (dev->resource[i].flags & flags)
1187 bars |= (1 << i);
1188
1189 err = do_pci_enable_device(dev, bars);
1190 if (err < 0)
1191 atomic_dec(&dev->enable_cnt);
1192 return err;
1193 }
1194
1195 /**
1196 * pci_enable_device_io - Initialize a device for use with IO space
1197 * @dev: PCI device to be initialized
1198 *
1199 * Initialize device before it's used by a driver. Ask low-level code
1200 * to enable I/O resources. Wake up the device if it was suspended.
1201 * Beware, this function can fail.
1202 */
1203 int pci_enable_device_io(struct pci_dev *dev)
1204 {
1205 return pci_enable_device_flags(dev, IORESOURCE_IO);
1206 }
1207
1208 /**
1209 * pci_enable_device_mem - Initialize a device for use with Memory space
1210 * @dev: PCI device to be initialized
1211 *
1212 * Initialize device before it's used by a driver. Ask low-level code
1213 * to enable Memory resources. Wake up the device if it was suspended.
1214 * Beware, this function can fail.
1215 */
1216 int pci_enable_device_mem(struct pci_dev *dev)
1217 {
1218 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1219 }
1220
1221 /**
1222 * pci_enable_device - Initialize device before it's used by a driver.
1223 * @dev: PCI device to be initialized
1224 *
1225 * Initialize device before it's used by a driver. Ask low-level code
1226 * to enable I/O and memory. Wake up the device if it was suspended.
1227 * Beware, this function can fail.
1228 *
1229 * Note we don't actually enable the device many times if we call
1230 * this function repeatedly (we just increment the count).
1231 */
1232 int pci_enable_device(struct pci_dev *dev)
1233 {
1234 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1235 }
1236
1237 /*
1238 * Managed PCI resources. This manages device on/off, intx/msi/msix
1239 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1240 * there's no need to track it separately. pci_devres is initialized
1241 * when a device is enabled using managed PCI device enable interface.
1242 */
1243 struct pci_devres {
1244 unsigned int enabled:1;
1245 unsigned int pinned:1;
1246 unsigned int orig_intx:1;
1247 unsigned int restore_intx:1;
1248 u32 region_mask;
1249 };
1250
1251 static void pcim_release(struct device *gendev, void *res)
1252 {
1253 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1254 struct pci_devres *this = res;
1255 int i;
1256
1257 if (dev->msi_enabled)
1258 pci_disable_msi(dev);
1259 if (dev->msix_enabled)
1260 pci_disable_msix(dev);
1261
1262 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1263 if (this->region_mask & (1 << i))
1264 pci_release_region(dev, i);
1265
1266 if (this->restore_intx)
1267 pci_intx(dev, this->orig_intx);
1268
1269 if (this->enabled && !this->pinned)
1270 pci_disable_device(dev);
1271 }
1272
1273 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1274 {
1275 struct pci_devres *dr, *new_dr;
1276
1277 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1278 if (dr)
1279 return dr;
1280
1281 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1282 if (!new_dr)
1283 return NULL;
1284 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1285 }
1286
1287 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1288 {
1289 if (pci_is_managed(pdev))
1290 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1291 return NULL;
1292 }
1293
1294 /**
1295 * pcim_enable_device - Managed pci_enable_device()
1296 * @pdev: PCI device to be initialized
1297 *
1298 * Managed pci_enable_device().
1299 */
1300 int pcim_enable_device(struct pci_dev *pdev)
1301 {
1302 struct pci_devres *dr;
1303 int rc;
1304
1305 dr = get_pci_dr(pdev);
1306 if (unlikely(!dr))
1307 return -ENOMEM;
1308 if (dr->enabled)
1309 return 0;
1310
1311 rc = pci_enable_device(pdev);
1312 if (!rc) {
1313 pdev->is_managed = 1;
1314 dr->enabled = 1;
1315 }
1316 return rc;
1317 }
1318
1319 /**
1320 * pcim_pin_device - Pin managed PCI device
1321 * @pdev: PCI device to pin
1322 *
1323 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1324 * driver detach. @pdev must have been enabled with
1325 * pcim_enable_device().
1326 */
1327 void pcim_pin_device(struct pci_dev *pdev)
1328 {
1329 struct pci_devres *dr;
1330
1331 dr = find_pci_dr(pdev);
1332 WARN_ON(!dr || !dr->enabled);
1333 if (dr)
1334 dr->pinned = 1;
1335 }
1336
1337 /*
1338 * pcibios_add_device - provide arch specific hooks when adding device dev
1339 * @dev: the PCI device being added
1340 *
1341 * Permits the platform to provide architecture specific functionality when
1342 * devices are added. This is the default implementation. Architecture
1343 * implementations can override this.
1344 */
1345 int __weak pcibios_add_device (struct pci_dev *dev)
1346 {
1347 return 0;
1348 }
1349
1350 /**
1351 * pcibios_disable_device - disable arch specific PCI resources for device dev
1352 * @dev: the PCI device to disable
1353 *
1354 * Disables architecture specific PCI resources for the device. This
1355 * is the default implementation. Architecture implementations can
1356 * override this.
1357 */
1358 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1359
1360 static void do_pci_disable_device(struct pci_dev *dev)
1361 {
1362 u16 pci_command;
1363
1364 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1365 if (pci_command & PCI_COMMAND_MASTER) {
1366 pci_command &= ~PCI_COMMAND_MASTER;
1367 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1368 }
1369
1370 pcibios_disable_device(dev);
1371 }
1372
1373 /**
1374 * pci_disable_enabled_device - Disable device without updating enable_cnt
1375 * @dev: PCI device to disable
1376 *
1377 * NOTE: This function is a backend of PCI power management routines and is
1378 * not supposed to be called drivers.
1379 */
1380 void pci_disable_enabled_device(struct pci_dev *dev)
1381 {
1382 if (pci_is_enabled(dev))
1383 do_pci_disable_device(dev);
1384 }
1385
1386 /**
1387 * pci_disable_device - Disable PCI device after use
1388 * @dev: PCI device to be disabled
1389 *
1390 * Signal to the system that the PCI device is not in use by the system
1391 * anymore. This only involves disabling PCI bus-mastering, if active.
1392 *
1393 * Note we don't actually disable the device until all callers of
1394 * pci_enable_device() have called pci_disable_device().
1395 */
1396 void
1397 pci_disable_device(struct pci_dev *dev)
1398 {
1399 struct pci_devres *dr;
1400
1401 dr = find_pci_dr(dev);
1402 if (dr)
1403 dr->enabled = 0;
1404
1405 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1406 "disabling already-disabled device");
1407
1408 if (atomic_dec_return(&dev->enable_cnt) != 0)
1409 return;
1410
1411 do_pci_disable_device(dev);
1412
1413 dev->is_busmaster = 0;
1414 }
1415
1416 /**
1417 * pcibios_set_pcie_reset_state - set reset state for device dev
1418 * @dev: the PCIe device reset
1419 * @state: Reset state to enter into
1420 *
1421 *
1422 * Sets the PCIe reset state for the device. This is the default
1423 * implementation. Architecture implementations can override this.
1424 */
1425 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1426 enum pcie_reset_state state)
1427 {
1428 return -EINVAL;
1429 }
1430
1431 /**
1432 * pci_set_pcie_reset_state - set reset state for device dev
1433 * @dev: the PCIe device reset
1434 * @state: Reset state to enter into
1435 *
1436 *
1437 * Sets the PCI reset state for the device.
1438 */
1439 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1440 {
1441 return pcibios_set_pcie_reset_state(dev, state);
1442 }
1443
1444 /**
1445 * pci_check_pme_status - Check if given device has generated PME.
1446 * @dev: Device to check.
1447 *
1448 * Check the PME status of the device and if set, clear it and clear PME enable
1449 * (if set). Return 'true' if PME status and PME enable were both set or
1450 * 'false' otherwise.
1451 */
1452 bool pci_check_pme_status(struct pci_dev *dev)
1453 {
1454 int pmcsr_pos;
1455 u16 pmcsr;
1456 bool ret = false;
1457
1458 if (!dev->pm_cap)
1459 return false;
1460
1461 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1462 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1463 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1464 return false;
1465
1466 /* Clear PME status. */
1467 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1468 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1469 /* Disable PME to avoid interrupt flood. */
1470 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1471 ret = true;
1472 }
1473
1474 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1475
1476 return ret;
1477 }
1478
1479 /**
1480 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1481 * @dev: Device to handle.
1482 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1483 *
1484 * Check if @dev has generated PME and queue a resume request for it in that
1485 * case.
1486 */
1487 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1488 {
1489 if (pme_poll_reset && dev->pme_poll)
1490 dev->pme_poll = false;
1491
1492 if (pci_check_pme_status(dev)) {
1493 pci_wakeup_event(dev);
1494 pm_request_resume(&dev->dev);
1495 }
1496 return 0;
1497 }
1498
1499 /**
1500 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1501 * @bus: Top bus of the subtree to walk.
1502 */
1503 void pci_pme_wakeup_bus(struct pci_bus *bus)
1504 {
1505 if (bus)
1506 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1507 }
1508
1509 /**
1510 * pci_wakeup - Wake up a PCI device
1511 * @pci_dev: Device to handle.
1512 * @ign: ignored parameter
1513 */
1514 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1515 {
1516 pci_wakeup_event(pci_dev);
1517 pm_request_resume(&pci_dev->dev);
1518 return 0;
1519 }
1520
1521 /**
1522 * pci_wakeup_bus - Walk given bus and wake up devices on it
1523 * @bus: Top bus of the subtree to walk.
1524 */
1525 void pci_wakeup_bus(struct pci_bus *bus)
1526 {
1527 if (bus)
1528 pci_walk_bus(bus, pci_wakeup, NULL);
1529 }
1530
1531 /**
1532 * pci_pme_capable - check the capability of PCI device to generate PME#
1533 * @dev: PCI device to handle.
1534 * @state: PCI state from which device will issue PME#.
1535 */
1536 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1537 {
1538 if (!dev->pm_cap)
1539 return false;
1540
1541 return !!(dev->pme_support & (1 << state));
1542 }
1543
1544 static void pci_pme_list_scan(struct work_struct *work)
1545 {
1546 struct pci_pme_device *pme_dev, *n;
1547
1548 mutex_lock(&pci_pme_list_mutex);
1549 if (!list_empty(&pci_pme_list)) {
1550 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1551 if (pme_dev->dev->pme_poll) {
1552 struct pci_dev *bridge;
1553
1554 bridge = pme_dev->dev->bus->self;
1555 /*
1556 * If bridge is in low power state, the
1557 * configuration space of subordinate devices
1558 * may be not accessible
1559 */
1560 if (bridge && bridge->current_state != PCI_D0)
1561 continue;
1562 pci_pme_wakeup(pme_dev->dev, NULL);
1563 } else {
1564 list_del(&pme_dev->list);
1565 kfree(pme_dev);
1566 }
1567 }
1568 if (!list_empty(&pci_pme_list))
1569 schedule_delayed_work(&pci_pme_work,
1570 msecs_to_jiffies(PME_TIMEOUT));
1571 }
1572 mutex_unlock(&pci_pme_list_mutex);
1573 }
1574
1575 /**
1576 * pci_pme_active - enable or disable PCI device's PME# function
1577 * @dev: PCI device to handle.
1578 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1579 *
1580 * The caller must verify that the device is capable of generating PME# before
1581 * calling this function with @enable equal to 'true'.
1582 */
1583 void pci_pme_active(struct pci_dev *dev, bool enable)
1584 {
1585 u16 pmcsr;
1586
1587 if (!dev->pme_support)
1588 return;
1589
1590 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1591 /* Clear PME_Status by writing 1 to it and enable PME# */
1592 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1593 if (!enable)
1594 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1595
1596 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1597
1598 /*
1599 * PCI (as opposed to PCIe) PME requires that the device have
1600 * its PME# line hooked up correctly. Not all hardware vendors
1601 * do this, so the PME never gets delivered and the device
1602 * remains asleep. The easiest way around this is to
1603 * periodically walk the list of suspended devices and check
1604 * whether any have their PME flag set. The assumption is that
1605 * we'll wake up often enough anyway that this won't be a huge
1606 * hit, and the power savings from the devices will still be a
1607 * win.
1608 *
1609 * Although PCIe uses in-band PME message instead of PME# line
1610 * to report PME, PME does not work for some PCIe devices in
1611 * reality. For example, there are devices that set their PME
1612 * status bits, but don't really bother to send a PME message;
1613 * there are PCI Express Root Ports that don't bother to
1614 * trigger interrupts when they receive PME messages from the
1615 * devices below. So PME poll is used for PCIe devices too.
1616 */
1617
1618 if (dev->pme_poll) {
1619 struct pci_pme_device *pme_dev;
1620 if (enable) {
1621 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1622 GFP_KERNEL);
1623 if (!pme_dev)
1624 goto out;
1625 pme_dev->dev = dev;
1626 mutex_lock(&pci_pme_list_mutex);
1627 list_add(&pme_dev->list, &pci_pme_list);
1628 if (list_is_singular(&pci_pme_list))
1629 schedule_delayed_work(&pci_pme_work,
1630 msecs_to_jiffies(PME_TIMEOUT));
1631 mutex_unlock(&pci_pme_list_mutex);
1632 } else {
1633 mutex_lock(&pci_pme_list_mutex);
1634 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1635 if (pme_dev->dev == dev) {
1636 list_del(&pme_dev->list);
1637 kfree(pme_dev);
1638 break;
1639 }
1640 }
1641 mutex_unlock(&pci_pme_list_mutex);
1642 }
1643 }
1644
1645 out:
1646 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1647 }
1648
1649 /**
1650 * __pci_enable_wake - enable PCI device as wakeup event source
1651 * @dev: PCI device affected
1652 * @state: PCI state from which device will issue wakeup events
1653 * @runtime: True if the events are to be generated at run time
1654 * @enable: True to enable event generation; false to disable
1655 *
1656 * This enables the device as a wakeup event source, or disables it.
1657 * When such events involves platform-specific hooks, those hooks are
1658 * called automatically by this routine.
1659 *
1660 * Devices with legacy power management (no standard PCI PM capabilities)
1661 * always require such platform hooks.
1662 *
1663 * RETURN VALUE:
1664 * 0 is returned on success
1665 * -EINVAL is returned if device is not supposed to wake up the system
1666 * Error code depending on the platform is returned if both the platform and
1667 * the native mechanism fail to enable the generation of wake-up events
1668 */
1669 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1670 bool runtime, bool enable)
1671 {
1672 int ret = 0;
1673
1674 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1675 return -EINVAL;
1676
1677 /* Don't do the same thing twice in a row for one device. */
1678 if (!!enable == !!dev->wakeup_prepared)
1679 return 0;
1680
1681 /*
1682 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1683 * Anderson we should be doing PME# wake enable followed by ACPI wake
1684 * enable. To disable wake-up we call the platform first, for symmetry.
1685 */
1686
1687 if (enable) {
1688 int error;
1689
1690 if (pci_pme_capable(dev, state))
1691 pci_pme_active(dev, true);
1692 else
1693 ret = 1;
1694 error = runtime ? platform_pci_run_wake(dev, true) :
1695 platform_pci_sleep_wake(dev, true);
1696 if (ret)
1697 ret = error;
1698 if (!ret)
1699 dev->wakeup_prepared = true;
1700 } else {
1701 if (runtime)
1702 platform_pci_run_wake(dev, false);
1703 else
1704 platform_pci_sleep_wake(dev, false);
1705 pci_pme_active(dev, false);
1706 dev->wakeup_prepared = false;
1707 }
1708
1709 return ret;
1710 }
1711 EXPORT_SYMBOL(__pci_enable_wake);
1712
1713 /**
1714 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1715 * @dev: PCI device to prepare
1716 * @enable: True to enable wake-up event generation; false to disable
1717 *
1718 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1719 * and this function allows them to set that up cleanly - pci_enable_wake()
1720 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1721 * ordering constraints.
1722 *
1723 * This function only returns error code if the device is not capable of
1724 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1725 * enable wake-up power for it.
1726 */
1727 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1728 {
1729 return pci_pme_capable(dev, PCI_D3cold) ?
1730 pci_enable_wake(dev, PCI_D3cold, enable) :
1731 pci_enable_wake(dev, PCI_D3hot, enable);
1732 }
1733
1734 /**
1735 * pci_target_state - find an appropriate low power state for a given PCI dev
1736 * @dev: PCI device
1737 *
1738 * Use underlying platform code to find a supported low power state for @dev.
1739 * If the platform can't manage @dev, return the deepest state from which it
1740 * can generate wake events, based on any available PME info.
1741 */
1742 pci_power_t pci_target_state(struct pci_dev *dev)
1743 {
1744 pci_power_t target_state = PCI_D3hot;
1745
1746 if (platform_pci_power_manageable(dev)) {
1747 /*
1748 * Call the platform to choose the target state of the device
1749 * and enable wake-up from this state if supported.
1750 */
1751 pci_power_t state = platform_pci_choose_state(dev);
1752
1753 switch (state) {
1754 case PCI_POWER_ERROR:
1755 case PCI_UNKNOWN:
1756 break;
1757 case PCI_D1:
1758 case PCI_D2:
1759 if (pci_no_d1d2(dev))
1760 break;
1761 default:
1762 target_state = state;
1763 }
1764 } else if (!dev->pm_cap) {
1765 target_state = PCI_D0;
1766 } else if (device_may_wakeup(&dev->dev)) {
1767 /*
1768 * Find the deepest state from which the device can generate
1769 * wake-up events, make it the target state and enable device
1770 * to generate PME#.
1771 */
1772 if (dev->pme_support) {
1773 while (target_state
1774 && !(dev->pme_support & (1 << target_state)))
1775 target_state--;
1776 }
1777 }
1778
1779 return target_state;
1780 }
1781
1782 /**
1783 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1784 * @dev: Device to handle.
1785 *
1786 * Choose the power state appropriate for the device depending on whether
1787 * it can wake up the system and/or is power manageable by the platform
1788 * (PCI_D3hot is the default) and put the device into that state.
1789 */
1790 int pci_prepare_to_sleep(struct pci_dev *dev)
1791 {
1792 pci_power_t target_state = pci_target_state(dev);
1793 int error;
1794
1795 if (target_state == PCI_POWER_ERROR)
1796 return -EIO;
1797
1798 /* D3cold during system suspend/hibernate is not supported */
1799 if (target_state > PCI_D3hot)
1800 target_state = PCI_D3hot;
1801
1802 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1803
1804 error = pci_set_power_state(dev, target_state);
1805
1806 if (error)
1807 pci_enable_wake(dev, target_state, false);
1808
1809 return error;
1810 }
1811
1812 /**
1813 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1814 * @dev: Device to handle.
1815 *
1816 * Disable device's system wake-up capability and put it into D0.
1817 */
1818 int pci_back_from_sleep(struct pci_dev *dev)
1819 {
1820 pci_enable_wake(dev, PCI_D0, false);
1821 return pci_set_power_state(dev, PCI_D0);
1822 }
1823
1824 /**
1825 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1826 * @dev: PCI device being suspended.
1827 *
1828 * Prepare @dev to generate wake-up events at run time and put it into a low
1829 * power state.
1830 */
1831 int pci_finish_runtime_suspend(struct pci_dev *dev)
1832 {
1833 pci_power_t target_state = pci_target_state(dev);
1834 int error;
1835
1836 if (target_state == PCI_POWER_ERROR)
1837 return -EIO;
1838
1839 dev->runtime_d3cold = target_state == PCI_D3cold;
1840
1841 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1842
1843 error = pci_set_power_state(dev, target_state);
1844
1845 if (error) {
1846 __pci_enable_wake(dev, target_state, true, false);
1847 dev->runtime_d3cold = false;
1848 }
1849
1850 return error;
1851 }
1852
1853 /**
1854 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1855 * @dev: Device to check.
1856 *
1857 * Return true if the device itself is cabable of generating wake-up events
1858 * (through the platform or using the native PCIe PME) or if the device supports
1859 * PME and one of its upstream bridges can generate wake-up events.
1860 */
1861 bool pci_dev_run_wake(struct pci_dev *dev)
1862 {
1863 struct pci_bus *bus = dev->bus;
1864
1865 if (device_run_wake(&dev->dev))
1866 return true;
1867
1868 if (!dev->pme_support)
1869 return false;
1870
1871 while (bus->parent) {
1872 struct pci_dev *bridge = bus->self;
1873
1874 if (device_run_wake(&bridge->dev))
1875 return true;
1876
1877 bus = bus->parent;
1878 }
1879
1880 /* We have reached the root bus. */
1881 if (bus->bridge)
1882 return device_run_wake(bus->bridge);
1883
1884 return false;
1885 }
1886 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1887
1888 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1889 {
1890 struct device *dev = &pdev->dev;
1891 struct device *parent = dev->parent;
1892
1893 if (parent)
1894 pm_runtime_get_sync(parent);
1895 pm_runtime_get_noresume(dev);
1896 /*
1897 * pdev->current_state is set to PCI_D3cold during suspending,
1898 * so wait until suspending completes
1899 */
1900 pm_runtime_barrier(dev);
1901 /*
1902 * Only need to resume devices in D3cold, because config
1903 * registers are still accessible for devices suspended but
1904 * not in D3cold.
1905 */
1906 if (pdev->current_state == PCI_D3cold)
1907 pm_runtime_resume(dev);
1908 }
1909
1910 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1911 {
1912 struct device *dev = &pdev->dev;
1913 struct device *parent = dev->parent;
1914
1915 pm_runtime_put(dev);
1916 if (parent)
1917 pm_runtime_put_sync(parent);
1918 }
1919
1920 /**
1921 * pci_pm_init - Initialize PM functions of given PCI device
1922 * @dev: PCI device to handle.
1923 */
1924 void pci_pm_init(struct pci_dev *dev)
1925 {
1926 int pm;
1927 u16 pmc;
1928
1929 pm_runtime_forbid(&dev->dev);
1930 pm_runtime_set_active(&dev->dev);
1931 pm_runtime_enable(&dev->dev);
1932 device_enable_async_suspend(&dev->dev);
1933 dev->wakeup_prepared = false;
1934
1935 dev->pm_cap = 0;
1936 dev->pme_support = 0;
1937
1938 /* find PCI PM capability in list */
1939 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1940 if (!pm)
1941 return;
1942 /* Check device's ability to generate PME# */
1943 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1944
1945 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1946 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1947 pmc & PCI_PM_CAP_VER_MASK);
1948 return;
1949 }
1950
1951 dev->pm_cap = pm;
1952 dev->d3_delay = PCI_PM_D3_WAIT;
1953 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1954 dev->d3cold_allowed = true;
1955
1956 dev->d1_support = false;
1957 dev->d2_support = false;
1958 if (!pci_no_d1d2(dev)) {
1959 if (pmc & PCI_PM_CAP_D1)
1960 dev->d1_support = true;
1961 if (pmc & PCI_PM_CAP_D2)
1962 dev->d2_support = true;
1963
1964 if (dev->d1_support || dev->d2_support)
1965 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1966 dev->d1_support ? " D1" : "",
1967 dev->d2_support ? " D2" : "");
1968 }
1969
1970 pmc &= PCI_PM_CAP_PME_MASK;
1971 if (pmc) {
1972 dev_printk(KERN_DEBUG, &dev->dev,
1973 "PME# supported from%s%s%s%s%s\n",
1974 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1975 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1976 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1977 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1978 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1979 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1980 dev->pme_poll = true;
1981 /*
1982 * Make device's PM flags reflect the wake-up capability, but
1983 * let the user space enable it to wake up the system as needed.
1984 */
1985 device_set_wakeup_capable(&dev->dev, true);
1986 /* Disable the PME# generation functionality */
1987 pci_pme_active(dev, false);
1988 }
1989 }
1990
1991 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1992 struct pci_cap_saved_state *new_cap)
1993 {
1994 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1995 }
1996
1997 /**
1998 * pci_add_save_buffer - allocate buffer for saving given capability registers
1999 * @dev: the PCI device
2000 * @cap: the capability to allocate the buffer for
2001 * @size: requested size of the buffer
2002 */
2003 static int pci_add_cap_save_buffer(
2004 struct pci_dev *dev, char cap, unsigned int size)
2005 {
2006 int pos;
2007 struct pci_cap_saved_state *save_state;
2008
2009 pos = pci_find_capability(dev, cap);
2010 if (pos <= 0)
2011 return 0;
2012
2013 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2014 if (!save_state)
2015 return -ENOMEM;
2016
2017 save_state->cap.cap_nr = cap;
2018 save_state->cap.size = size;
2019 pci_add_saved_cap(dev, save_state);
2020
2021 return 0;
2022 }
2023
2024 /**
2025 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2026 * @dev: the PCI device
2027 */
2028 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2029 {
2030 int error;
2031
2032 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2033 PCI_EXP_SAVE_REGS * sizeof(u16));
2034 if (error)
2035 dev_err(&dev->dev,
2036 "unable to preallocate PCI Express save buffer\n");
2037
2038 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2039 if (error)
2040 dev_err(&dev->dev,
2041 "unable to preallocate PCI-X save buffer\n");
2042 }
2043
2044 void pci_free_cap_save_buffers(struct pci_dev *dev)
2045 {
2046 struct pci_cap_saved_state *tmp;
2047 struct hlist_node *n;
2048
2049 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2050 kfree(tmp);
2051 }
2052
2053 /**
2054 * pci_configure_ari - enable or disable ARI forwarding
2055 * @dev: the PCI device
2056 *
2057 * If @dev and its upstream bridge both support ARI, enable ARI in the
2058 * bridge. Otherwise, disable ARI in the bridge.
2059 */
2060 void pci_configure_ari(struct pci_dev *dev)
2061 {
2062 u32 cap;
2063 struct pci_dev *bridge;
2064
2065 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2066 return;
2067
2068 bridge = dev->bus->self;
2069 if (!bridge)
2070 return;
2071
2072 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2073 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2074 return;
2075
2076 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2077 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2078 PCI_EXP_DEVCTL2_ARI);
2079 bridge->ari_enabled = 1;
2080 } else {
2081 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2082 PCI_EXP_DEVCTL2_ARI);
2083 bridge->ari_enabled = 0;
2084 }
2085 }
2086
2087 /**
2088 * pci_enable_ido - enable ID-based Ordering on a device
2089 * @dev: the PCI device
2090 * @type: which types of IDO to enable
2091 *
2092 * Enable ID-based ordering on @dev. @type can contain the bits
2093 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2094 * which types of transactions are allowed to be re-ordered.
2095 */
2096 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2097 {
2098 u16 ctrl = 0;
2099
2100 if (type & PCI_EXP_IDO_REQUEST)
2101 ctrl |= PCI_EXP_IDO_REQ_EN;
2102 if (type & PCI_EXP_IDO_COMPLETION)
2103 ctrl |= PCI_EXP_IDO_CMP_EN;
2104 if (ctrl)
2105 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2106 }
2107 EXPORT_SYMBOL(pci_enable_ido);
2108
2109 /**
2110 * pci_disable_ido - disable ID-based ordering on a device
2111 * @dev: the PCI device
2112 * @type: which types of IDO to disable
2113 */
2114 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2115 {
2116 u16 ctrl = 0;
2117
2118 if (type & PCI_EXP_IDO_REQUEST)
2119 ctrl |= PCI_EXP_IDO_REQ_EN;
2120 if (type & PCI_EXP_IDO_COMPLETION)
2121 ctrl |= PCI_EXP_IDO_CMP_EN;
2122 if (ctrl)
2123 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2124 }
2125 EXPORT_SYMBOL(pci_disable_ido);
2126
2127 /**
2128 * pci_enable_obff - enable optimized buffer flush/fill
2129 * @dev: PCI device
2130 * @type: type of signaling to use
2131 *
2132 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2133 * signaling if possible, falling back to message signaling only if
2134 * WAKE# isn't supported. @type should indicate whether the PCIe link
2135 * be brought out of L0s or L1 to send the message. It should be either
2136 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2137 *
2138 * If your device can benefit from receiving all messages, even at the
2139 * power cost of bringing the link back up from a low power state, use
2140 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2141 * preferred type).
2142 *
2143 * RETURNS:
2144 * Zero on success, appropriate error number on failure.
2145 */
2146 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2147 {
2148 u32 cap;
2149 u16 ctrl;
2150 int ret;
2151
2152 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2153 if (!(cap & PCI_EXP_OBFF_MASK))
2154 return -ENOTSUPP; /* no OBFF support at all */
2155
2156 /* Make sure the topology supports OBFF as well */
2157 if (dev->bus->self) {
2158 ret = pci_enable_obff(dev->bus->self, type);
2159 if (ret)
2160 return ret;
2161 }
2162
2163 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2164 if (cap & PCI_EXP_OBFF_WAKE)
2165 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2166 else {
2167 switch (type) {
2168 case PCI_EXP_OBFF_SIGNAL_L0:
2169 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2170 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2171 break;
2172 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2173 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2174 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2175 break;
2176 default:
2177 WARN(1, "bad OBFF signal type\n");
2178 return -ENOTSUPP;
2179 }
2180 }
2181 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2182
2183 return 0;
2184 }
2185 EXPORT_SYMBOL(pci_enable_obff);
2186
2187 /**
2188 * pci_disable_obff - disable optimized buffer flush/fill
2189 * @dev: PCI device
2190 *
2191 * Disable OBFF on @dev.
2192 */
2193 void pci_disable_obff(struct pci_dev *dev)
2194 {
2195 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2196 }
2197 EXPORT_SYMBOL(pci_disable_obff);
2198
2199 /**
2200 * pci_ltr_supported - check whether a device supports LTR
2201 * @dev: PCI device
2202 *
2203 * RETURNS:
2204 * True if @dev supports latency tolerance reporting, false otherwise.
2205 */
2206 static bool pci_ltr_supported(struct pci_dev *dev)
2207 {
2208 u32 cap;
2209
2210 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2211
2212 return cap & PCI_EXP_DEVCAP2_LTR;
2213 }
2214
2215 /**
2216 * pci_enable_ltr - enable latency tolerance reporting
2217 * @dev: PCI device
2218 *
2219 * Enable LTR on @dev if possible, which means enabling it first on
2220 * upstream ports.
2221 *
2222 * RETURNS:
2223 * Zero on success, errno on failure.
2224 */
2225 int pci_enable_ltr(struct pci_dev *dev)
2226 {
2227 int ret;
2228
2229 /* Only primary function can enable/disable LTR */
2230 if (PCI_FUNC(dev->devfn) != 0)
2231 return -EINVAL;
2232
2233 if (!pci_ltr_supported(dev))
2234 return -ENOTSUPP;
2235
2236 /* Enable upstream ports first */
2237 if (dev->bus->self) {
2238 ret = pci_enable_ltr(dev->bus->self);
2239 if (ret)
2240 return ret;
2241 }
2242
2243 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2244 }
2245 EXPORT_SYMBOL(pci_enable_ltr);
2246
2247 /**
2248 * pci_disable_ltr - disable latency tolerance reporting
2249 * @dev: PCI device
2250 */
2251 void pci_disable_ltr(struct pci_dev *dev)
2252 {
2253 /* Only primary function can enable/disable LTR */
2254 if (PCI_FUNC(dev->devfn) != 0)
2255 return;
2256
2257 if (!pci_ltr_supported(dev))
2258 return;
2259
2260 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2261 }
2262 EXPORT_SYMBOL(pci_disable_ltr);
2263
2264 static int __pci_ltr_scale(int *val)
2265 {
2266 int scale = 0;
2267
2268 while (*val > 1023) {
2269 *val = (*val + 31) / 32;
2270 scale++;
2271 }
2272 return scale;
2273 }
2274
2275 /**
2276 * pci_set_ltr - set LTR latency values
2277 * @dev: PCI device
2278 * @snoop_lat_ns: snoop latency in nanoseconds
2279 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2280 *
2281 * Figure out the scale and set the LTR values accordingly.
2282 */
2283 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2284 {
2285 int pos, ret, snoop_scale, nosnoop_scale;
2286 u16 val;
2287
2288 if (!pci_ltr_supported(dev))
2289 return -ENOTSUPP;
2290
2291 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2292 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2293
2294 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2295 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2296 return -EINVAL;
2297
2298 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2299 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2300 return -EINVAL;
2301
2302 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2303 if (!pos)
2304 return -ENOTSUPP;
2305
2306 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2307 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2308 if (ret != 4)
2309 return -EIO;
2310
2311 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2312 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2313 if (ret != 4)
2314 return -EIO;
2315
2316 return 0;
2317 }
2318 EXPORT_SYMBOL(pci_set_ltr);
2319
2320 static int pci_acs_enable;
2321
2322 /**
2323 * pci_request_acs - ask for ACS to be enabled if supported
2324 */
2325 void pci_request_acs(void)
2326 {
2327 pci_acs_enable = 1;
2328 }
2329
2330 /**
2331 * pci_enable_acs - enable ACS if hardware support it
2332 * @dev: the PCI device
2333 */
2334 void pci_enable_acs(struct pci_dev *dev)
2335 {
2336 int pos;
2337 u16 cap;
2338 u16 ctrl;
2339
2340 if (!pci_acs_enable)
2341 return;
2342
2343 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2344 if (!pos)
2345 return;
2346
2347 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2348 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2349
2350 /* Source Validation */
2351 ctrl |= (cap & PCI_ACS_SV);
2352
2353 /* P2P Request Redirect */
2354 ctrl |= (cap & PCI_ACS_RR);
2355
2356 /* P2P Completion Redirect */
2357 ctrl |= (cap & PCI_ACS_CR);
2358
2359 /* Upstream Forwarding */
2360 ctrl |= (cap & PCI_ACS_UF);
2361
2362 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2363 }
2364
2365 /**
2366 * pci_acs_enabled - test ACS against required flags for a given device
2367 * @pdev: device to test
2368 * @acs_flags: required PCI ACS flags
2369 *
2370 * Return true if the device supports the provided flags. Automatically
2371 * filters out flags that are not implemented on multifunction devices.
2372 */
2373 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2374 {
2375 int pos, ret;
2376 u16 ctrl;
2377
2378 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2379 if (ret >= 0)
2380 return ret > 0;
2381
2382 if (!pci_is_pcie(pdev))
2383 return false;
2384
2385 /* Filter out flags not applicable to multifunction */
2386 if (pdev->multifunction)
2387 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2388 PCI_ACS_EC | PCI_ACS_DT);
2389
2390 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2391 pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2392 pdev->multifunction) {
2393 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2394 if (!pos)
2395 return false;
2396
2397 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2398 if ((ctrl & acs_flags) != acs_flags)
2399 return false;
2400 }
2401
2402 return true;
2403 }
2404
2405 /**
2406 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2407 * @start: starting downstream device
2408 * @end: ending upstream device or NULL to search to the root bus
2409 * @acs_flags: required flags
2410 *
2411 * Walk up a device tree from start to end testing PCI ACS support. If
2412 * any step along the way does not support the required flags, return false.
2413 */
2414 bool pci_acs_path_enabled(struct pci_dev *start,
2415 struct pci_dev *end, u16 acs_flags)
2416 {
2417 struct pci_dev *pdev, *parent = start;
2418
2419 do {
2420 pdev = parent;
2421
2422 if (!pci_acs_enabled(pdev, acs_flags))
2423 return false;
2424
2425 if (pci_is_root_bus(pdev->bus))
2426 return (end == NULL);
2427
2428 parent = pdev->bus->self;
2429 } while (pdev != end);
2430
2431 return true;
2432 }
2433
2434 /**
2435 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2436 * @dev: the PCI device
2437 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2438 *
2439 * Perform INTx swizzling for a device behind one level of bridge. This is
2440 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2441 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2442 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2443 * the PCI Express Base Specification, Revision 2.1)
2444 */
2445 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2446 {
2447 int slot;
2448
2449 if (pci_ari_enabled(dev->bus))
2450 slot = 0;
2451 else
2452 slot = PCI_SLOT(dev->devfn);
2453
2454 return (((pin - 1) + slot) % 4) + 1;
2455 }
2456
2457 int
2458 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2459 {
2460 u8 pin;
2461
2462 pin = dev->pin;
2463 if (!pin)
2464 return -1;
2465
2466 while (!pci_is_root_bus(dev->bus)) {
2467 pin = pci_swizzle_interrupt_pin(dev, pin);
2468 dev = dev->bus->self;
2469 }
2470 *bridge = dev;
2471 return pin;
2472 }
2473
2474 /**
2475 * pci_common_swizzle - swizzle INTx all the way to root bridge
2476 * @dev: the PCI device
2477 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2478 *
2479 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2480 * bridges all the way up to a PCI root bus.
2481 */
2482 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2483 {
2484 u8 pin = *pinp;
2485
2486 while (!pci_is_root_bus(dev->bus)) {
2487 pin = pci_swizzle_interrupt_pin(dev, pin);
2488 dev = dev->bus->self;
2489 }
2490 *pinp = pin;
2491 return PCI_SLOT(dev->devfn);
2492 }
2493
2494 /**
2495 * pci_release_region - Release a PCI bar
2496 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2497 * @bar: BAR to release
2498 *
2499 * Releases the PCI I/O and memory resources previously reserved by a
2500 * successful call to pci_request_region. Call this function only
2501 * after all use of the PCI regions has ceased.
2502 */
2503 void pci_release_region(struct pci_dev *pdev, int bar)
2504 {
2505 struct pci_devres *dr;
2506
2507 if (pci_resource_len(pdev, bar) == 0)
2508 return;
2509 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2510 release_region(pci_resource_start(pdev, bar),
2511 pci_resource_len(pdev, bar));
2512 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2513 release_mem_region(pci_resource_start(pdev, bar),
2514 pci_resource_len(pdev, bar));
2515
2516 dr = find_pci_dr(pdev);
2517 if (dr)
2518 dr->region_mask &= ~(1 << bar);
2519 }
2520
2521 /**
2522 * __pci_request_region - Reserved PCI I/O and memory resource
2523 * @pdev: PCI device whose resources are to be reserved
2524 * @bar: BAR to be reserved
2525 * @res_name: Name to be associated with resource.
2526 * @exclusive: whether the region access is exclusive or not
2527 *
2528 * Mark the PCI region associated with PCI device @pdev BR @bar as
2529 * being reserved by owner @res_name. Do not access any
2530 * address inside the PCI regions unless this call returns
2531 * successfully.
2532 *
2533 * If @exclusive is set, then the region is marked so that userspace
2534 * is explicitly not allowed to map the resource via /dev/mem or
2535 * sysfs MMIO access.
2536 *
2537 * Returns 0 on success, or %EBUSY on error. A warning
2538 * message is also printed on failure.
2539 */
2540 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2541 int exclusive)
2542 {
2543 struct pci_devres *dr;
2544
2545 if (pci_resource_len(pdev, bar) == 0)
2546 return 0;
2547
2548 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2549 if (!request_region(pci_resource_start(pdev, bar),
2550 pci_resource_len(pdev, bar), res_name))
2551 goto err_out;
2552 }
2553 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2554 if (!__request_mem_region(pci_resource_start(pdev, bar),
2555 pci_resource_len(pdev, bar), res_name,
2556 exclusive))
2557 goto err_out;
2558 }
2559
2560 dr = find_pci_dr(pdev);
2561 if (dr)
2562 dr->region_mask |= 1 << bar;
2563
2564 return 0;
2565
2566 err_out:
2567 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2568 &pdev->resource[bar]);
2569 return -EBUSY;
2570 }
2571
2572 /**
2573 * pci_request_region - Reserve PCI I/O and memory resource
2574 * @pdev: PCI device whose resources are to be reserved
2575 * @bar: BAR to be reserved
2576 * @res_name: Name to be associated with resource
2577 *
2578 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2579 * being reserved by owner @res_name. Do not access any
2580 * address inside the PCI regions unless this call returns
2581 * successfully.
2582 *
2583 * Returns 0 on success, or %EBUSY on error. A warning
2584 * message is also printed on failure.
2585 */
2586 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2587 {
2588 return __pci_request_region(pdev, bar, res_name, 0);
2589 }
2590
2591 /**
2592 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2593 * @pdev: PCI device whose resources are to be reserved
2594 * @bar: BAR to be reserved
2595 * @res_name: Name to be associated with resource.
2596 *
2597 * Mark the PCI region associated with PCI device @pdev BR @bar as
2598 * being reserved by owner @res_name. Do not access any
2599 * address inside the PCI regions unless this call returns
2600 * successfully.
2601 *
2602 * Returns 0 on success, or %EBUSY on error. A warning
2603 * message is also printed on failure.
2604 *
2605 * The key difference that _exclusive makes it that userspace is
2606 * explicitly not allowed to map the resource via /dev/mem or
2607 * sysfs.
2608 */
2609 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2610 {
2611 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2612 }
2613 /**
2614 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2615 * @pdev: PCI device whose resources were previously reserved
2616 * @bars: Bitmask of BARs to be released
2617 *
2618 * Release selected PCI I/O and memory resources previously reserved.
2619 * Call this function only after all use of the PCI regions has ceased.
2620 */
2621 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2622 {
2623 int i;
2624
2625 for (i = 0; i < 6; i++)
2626 if (bars & (1 << i))
2627 pci_release_region(pdev, i);
2628 }
2629
2630 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2631 const char *res_name, int excl)
2632 {
2633 int i;
2634
2635 for (i = 0; i < 6; i++)
2636 if (bars & (1 << i))
2637 if (__pci_request_region(pdev, i, res_name, excl))
2638 goto err_out;
2639 return 0;
2640
2641 err_out:
2642 while(--i >= 0)
2643 if (bars & (1 << i))
2644 pci_release_region(pdev, i);
2645
2646 return -EBUSY;
2647 }
2648
2649
2650 /**
2651 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2652 * @pdev: PCI device whose resources are to be reserved
2653 * @bars: Bitmask of BARs to be requested
2654 * @res_name: Name to be associated with resource
2655 */
2656 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2657 const char *res_name)
2658 {
2659 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2660 }
2661
2662 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2663 int bars, const char *res_name)
2664 {
2665 return __pci_request_selected_regions(pdev, bars, res_name,
2666 IORESOURCE_EXCLUSIVE);
2667 }
2668
2669 /**
2670 * pci_release_regions - Release reserved PCI I/O and memory resources
2671 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2672 *
2673 * Releases all PCI I/O and memory resources previously reserved by a
2674 * successful call to pci_request_regions. Call this function only
2675 * after all use of the PCI regions has ceased.
2676 */
2677
2678 void pci_release_regions(struct pci_dev *pdev)
2679 {
2680 pci_release_selected_regions(pdev, (1 << 6) - 1);
2681 }
2682
2683 /**
2684 * pci_request_regions - Reserved PCI I/O and memory resources
2685 * @pdev: PCI device whose resources are to be reserved
2686 * @res_name: Name to be associated with resource.
2687 *
2688 * Mark all PCI regions associated with PCI device @pdev as
2689 * being reserved by owner @res_name. Do not access any
2690 * address inside the PCI regions unless this call returns
2691 * successfully.
2692 *
2693 * Returns 0 on success, or %EBUSY on error. A warning
2694 * message is also printed on failure.
2695 */
2696 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2697 {
2698 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2699 }
2700
2701 /**
2702 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2703 * @pdev: PCI device whose resources are to be reserved
2704 * @res_name: Name to be associated with resource.
2705 *
2706 * Mark all PCI regions associated with PCI device @pdev as
2707 * being reserved by owner @res_name. Do not access any
2708 * address inside the PCI regions unless this call returns
2709 * successfully.
2710 *
2711 * pci_request_regions_exclusive() will mark the region so that
2712 * /dev/mem and the sysfs MMIO access will not be allowed.
2713 *
2714 * Returns 0 on success, or %EBUSY on error. A warning
2715 * message is also printed on failure.
2716 */
2717 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2718 {
2719 return pci_request_selected_regions_exclusive(pdev,
2720 ((1 << 6) - 1), res_name);
2721 }
2722
2723 static void __pci_set_master(struct pci_dev *dev, bool enable)
2724 {
2725 u16 old_cmd, cmd;
2726
2727 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2728 if (enable)
2729 cmd = old_cmd | PCI_COMMAND_MASTER;
2730 else
2731 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2732 if (cmd != old_cmd) {
2733 dev_dbg(&dev->dev, "%s bus mastering\n",
2734 enable ? "enabling" : "disabling");
2735 pci_write_config_word(dev, PCI_COMMAND, cmd);
2736 }
2737 dev->is_busmaster = enable;
2738 }
2739
2740 /**
2741 * pcibios_setup - process "pci=" kernel boot arguments
2742 * @str: string used to pass in "pci=" kernel boot arguments
2743 *
2744 * Process kernel boot arguments. This is the default implementation.
2745 * Architecture specific implementations can override this as necessary.
2746 */
2747 char * __weak __init pcibios_setup(char *str)
2748 {
2749 return str;
2750 }
2751
2752 /**
2753 * pcibios_set_master - enable PCI bus-mastering for device dev
2754 * @dev: the PCI device to enable
2755 *
2756 * Enables PCI bus-mastering for the device. This is the default
2757 * implementation. Architecture specific implementations can override
2758 * this if necessary.
2759 */
2760 void __weak pcibios_set_master(struct pci_dev *dev)
2761 {
2762 u8 lat;
2763
2764 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2765 if (pci_is_pcie(dev))
2766 return;
2767
2768 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2769 if (lat < 16)
2770 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2771 else if (lat > pcibios_max_latency)
2772 lat = pcibios_max_latency;
2773 else
2774 return;
2775 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2776 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2777 }
2778
2779 /**
2780 * pci_set_master - enables bus-mastering for device dev
2781 * @dev: the PCI device to enable
2782 *
2783 * Enables bus-mastering on the device and calls pcibios_set_master()
2784 * to do the needed arch specific settings.
2785 */
2786 void pci_set_master(struct pci_dev *dev)
2787 {
2788 __pci_set_master(dev, true);
2789 pcibios_set_master(dev);
2790 }
2791
2792 /**
2793 * pci_clear_master - disables bus-mastering for device dev
2794 * @dev: the PCI device to disable
2795 */
2796 void pci_clear_master(struct pci_dev *dev)
2797 {
2798 __pci_set_master(dev, false);
2799 }
2800
2801 /**
2802 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2803 * @dev: the PCI device for which MWI is to be enabled
2804 *
2805 * Helper function for pci_set_mwi.
2806 * Originally copied from drivers/net/acenic.c.
2807 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2808 *
2809 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2810 */
2811 int pci_set_cacheline_size(struct pci_dev *dev)
2812 {
2813 u8 cacheline_size;
2814
2815 if (!pci_cache_line_size)
2816 return -EINVAL;
2817
2818 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2819 equal to or multiple of the right value. */
2820 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2821 if (cacheline_size >= pci_cache_line_size &&
2822 (cacheline_size % pci_cache_line_size) == 0)
2823 return 0;
2824
2825 /* Write the correct value. */
2826 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2827 /* Read it back. */
2828 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2829 if (cacheline_size == pci_cache_line_size)
2830 return 0;
2831
2832 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2833 "supported\n", pci_cache_line_size << 2);
2834
2835 return -EINVAL;
2836 }
2837 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2838
2839 #ifdef PCI_DISABLE_MWI
2840 int pci_set_mwi(struct pci_dev *dev)
2841 {
2842 return 0;
2843 }
2844
2845 int pci_try_set_mwi(struct pci_dev *dev)
2846 {
2847 return 0;
2848 }
2849
2850 void pci_clear_mwi(struct pci_dev *dev)
2851 {
2852 }
2853
2854 #else
2855
2856 /**
2857 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2858 * @dev: the PCI device for which MWI is enabled
2859 *
2860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2861 *
2862 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2863 */
2864 int
2865 pci_set_mwi(struct pci_dev *dev)
2866 {
2867 int rc;
2868 u16 cmd;
2869
2870 rc = pci_set_cacheline_size(dev);
2871 if (rc)
2872 return rc;
2873
2874 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2875 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2876 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2877 cmd |= PCI_COMMAND_INVALIDATE;
2878 pci_write_config_word(dev, PCI_COMMAND, cmd);
2879 }
2880
2881 return 0;
2882 }
2883
2884 /**
2885 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2886 * @dev: the PCI device for which MWI is enabled
2887 *
2888 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2889 * Callers are not required to check the return value.
2890 *
2891 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2892 */
2893 int pci_try_set_mwi(struct pci_dev *dev)
2894 {
2895 int rc = pci_set_mwi(dev);
2896 return rc;
2897 }
2898
2899 /**
2900 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2901 * @dev: the PCI device to disable
2902 *
2903 * Disables PCI Memory-Write-Invalidate transaction on the device
2904 */
2905 void
2906 pci_clear_mwi(struct pci_dev *dev)
2907 {
2908 u16 cmd;
2909
2910 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2911 if (cmd & PCI_COMMAND_INVALIDATE) {
2912 cmd &= ~PCI_COMMAND_INVALIDATE;
2913 pci_write_config_word(dev, PCI_COMMAND, cmd);
2914 }
2915 }
2916 #endif /* ! PCI_DISABLE_MWI */
2917
2918 /**
2919 * pci_intx - enables/disables PCI INTx for device dev
2920 * @pdev: the PCI device to operate on
2921 * @enable: boolean: whether to enable or disable PCI INTx
2922 *
2923 * Enables/disables PCI INTx for device dev
2924 */
2925 void
2926 pci_intx(struct pci_dev *pdev, int enable)
2927 {
2928 u16 pci_command, new;
2929
2930 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2931
2932 if (enable) {
2933 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2934 } else {
2935 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2936 }
2937
2938 if (new != pci_command) {
2939 struct pci_devres *dr;
2940
2941 pci_write_config_word(pdev, PCI_COMMAND, new);
2942
2943 dr = find_pci_dr(pdev);
2944 if (dr && !dr->restore_intx) {
2945 dr->restore_intx = 1;
2946 dr->orig_intx = !enable;
2947 }
2948 }
2949 }
2950
2951 /**
2952 * pci_intx_mask_supported - probe for INTx masking support
2953 * @dev: the PCI device to operate on
2954 *
2955 * Check if the device dev support INTx masking via the config space
2956 * command word.
2957 */
2958 bool pci_intx_mask_supported(struct pci_dev *dev)
2959 {
2960 bool mask_supported = false;
2961 u16 orig, new;
2962
2963 if (dev->broken_intx_masking)
2964 return false;
2965
2966 pci_cfg_access_lock(dev);
2967
2968 pci_read_config_word(dev, PCI_COMMAND, &orig);
2969 pci_write_config_word(dev, PCI_COMMAND,
2970 orig ^ PCI_COMMAND_INTX_DISABLE);
2971 pci_read_config_word(dev, PCI_COMMAND, &new);
2972
2973 /*
2974 * There's no way to protect against hardware bugs or detect them
2975 * reliably, but as long as we know what the value should be, let's
2976 * go ahead and check it.
2977 */
2978 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2979 dev_err(&dev->dev, "Command register changed from "
2980 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2981 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2982 mask_supported = true;
2983 pci_write_config_word(dev, PCI_COMMAND, orig);
2984 }
2985
2986 pci_cfg_access_unlock(dev);
2987 return mask_supported;
2988 }
2989 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2990
2991 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2992 {
2993 struct pci_bus *bus = dev->bus;
2994 bool mask_updated = true;
2995 u32 cmd_status_dword;
2996 u16 origcmd, newcmd;
2997 unsigned long flags;
2998 bool irq_pending;
2999
3000 /*
3001 * We do a single dword read to retrieve both command and status.
3002 * Document assumptions that make this possible.
3003 */
3004 BUILD_BUG_ON(PCI_COMMAND % 4);
3005 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3006
3007 raw_spin_lock_irqsave(&pci_lock, flags);
3008
3009 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3010
3011 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3012
3013 /*
3014 * Check interrupt status register to see whether our device
3015 * triggered the interrupt (when masking) or the next IRQ is
3016 * already pending (when unmasking).
3017 */
3018 if (mask != irq_pending) {
3019 mask_updated = false;
3020 goto done;
3021 }
3022
3023 origcmd = cmd_status_dword;
3024 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3025 if (mask)
3026 newcmd |= PCI_COMMAND_INTX_DISABLE;
3027 if (newcmd != origcmd)
3028 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3029
3030 done:
3031 raw_spin_unlock_irqrestore(&pci_lock, flags);
3032
3033 return mask_updated;
3034 }
3035
3036 /**
3037 * pci_check_and_mask_intx - mask INTx on pending interrupt
3038 * @dev: the PCI device to operate on
3039 *
3040 * Check if the device dev has its INTx line asserted, mask it and
3041 * return true in that case. False is returned if not interrupt was
3042 * pending.
3043 */
3044 bool pci_check_and_mask_intx(struct pci_dev *dev)
3045 {
3046 return pci_check_and_set_intx_mask(dev, true);
3047 }
3048 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3049
3050 /**
3051 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3052 * @dev: the PCI device to operate on
3053 *
3054 * Check if the device dev has its INTx line asserted, unmask it if not
3055 * and return true. False is returned and the mask remains active if
3056 * there was still an interrupt pending.
3057 */
3058 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3059 {
3060 return pci_check_and_set_intx_mask(dev, false);
3061 }
3062 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3063
3064 /**
3065 * pci_msi_off - disables any msi or msix capabilities
3066 * @dev: the PCI device to operate on
3067 *
3068 * If you want to use msi see pci_enable_msi and friends.
3069 * This is a lower level primitive that allows us to disable
3070 * msi operation at the device level.
3071 */
3072 void pci_msi_off(struct pci_dev *dev)
3073 {
3074 int pos;
3075 u16 control;
3076
3077 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3078 if (pos) {
3079 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3080 control &= ~PCI_MSI_FLAGS_ENABLE;
3081 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3082 }
3083 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3084 if (pos) {
3085 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3086 control &= ~PCI_MSIX_FLAGS_ENABLE;
3087 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3088 }
3089 }
3090 EXPORT_SYMBOL_GPL(pci_msi_off);
3091
3092 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3093 {
3094 return dma_set_max_seg_size(&dev->dev, size);
3095 }
3096 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3097
3098 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3099 {
3100 return dma_set_seg_boundary(&dev->dev, mask);
3101 }
3102 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3103
3104 static int pcie_flr(struct pci_dev *dev, int probe)
3105 {
3106 int i;
3107 u32 cap;
3108 u16 status;
3109
3110 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3111 if (!(cap & PCI_EXP_DEVCAP_FLR))
3112 return -ENOTTY;
3113
3114 if (probe)
3115 return 0;
3116
3117 /* Wait for Transaction Pending bit clean */
3118 for (i = 0; i < 4; i++) {
3119 if (i)
3120 msleep((1 << (i - 1)) * 100);
3121
3122 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3123 if (!(status & PCI_EXP_DEVSTA_TRPND))
3124 goto clear;
3125 }
3126
3127 dev_err(&dev->dev, "transaction is not cleared; "
3128 "proceeding with reset anyway\n");
3129
3130 clear:
3131 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3132
3133 msleep(100);
3134
3135 return 0;
3136 }
3137
3138 static int pci_af_flr(struct pci_dev *dev, int probe)
3139 {
3140 int i;
3141 int pos;
3142 u8 cap;
3143 u8 status;
3144
3145 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3146 if (!pos)
3147 return -ENOTTY;
3148
3149 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3150 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3151 return -ENOTTY;
3152
3153 if (probe)
3154 return 0;
3155
3156 /* Wait for Transaction Pending bit clean */
3157 for (i = 0; i < 4; i++) {
3158 if (i)
3159 msleep((1 << (i - 1)) * 100);
3160
3161 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3162 if (!(status & PCI_AF_STATUS_TP))
3163 goto clear;
3164 }
3165
3166 dev_err(&dev->dev, "transaction is not cleared; "
3167 "proceeding with reset anyway\n");
3168
3169 clear:
3170 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3171 msleep(100);
3172
3173 return 0;
3174 }
3175
3176 /**
3177 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3178 * @dev: Device to reset.
3179 * @probe: If set, only check if the device can be reset this way.
3180 *
3181 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3182 * unset, it will be reinitialized internally when going from PCI_D3hot to
3183 * PCI_D0. If that's the case and the device is not in a low-power state
3184 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3185 *
3186 * NOTE: This causes the caller to sleep for twice the device power transition
3187 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3188 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3189 * Moreover, only devices in D0 can be reset by this function.
3190 */
3191 static int pci_pm_reset(struct pci_dev *dev, int probe)
3192 {
3193 u16 csr;
3194
3195 if (!dev->pm_cap)
3196 return -ENOTTY;
3197
3198 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3199 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3200 return -ENOTTY;
3201
3202 if (probe)
3203 return 0;
3204
3205 if (dev->current_state != PCI_D0)
3206 return -EINVAL;
3207
3208 csr &= ~PCI_PM_CTRL_STATE_MASK;
3209 csr |= PCI_D3hot;
3210 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3211 pci_dev_d3_sleep(dev);
3212
3213 csr &= ~PCI_PM_CTRL_STATE_MASK;
3214 csr |= PCI_D0;
3215 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3216 pci_dev_d3_sleep(dev);
3217
3218 return 0;
3219 }
3220
3221 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3222 {
3223 u16 ctrl;
3224 struct pci_dev *pdev;
3225
3226 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3227 return -ENOTTY;
3228
3229 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3230 if (pdev != dev)
3231 return -ENOTTY;
3232
3233 if (probe)
3234 return 0;
3235
3236 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3237 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3238 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3239 msleep(100);
3240
3241 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3242 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3243 msleep(100);
3244
3245 return 0;
3246 }
3247
3248 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3249 {
3250 int rc;
3251
3252 might_sleep();
3253
3254 rc = pci_dev_specific_reset(dev, probe);
3255 if (rc != -ENOTTY)
3256 goto done;
3257
3258 rc = pcie_flr(dev, probe);
3259 if (rc != -ENOTTY)
3260 goto done;
3261
3262 rc = pci_af_flr(dev, probe);
3263 if (rc != -ENOTTY)
3264 goto done;
3265
3266 rc = pci_pm_reset(dev, probe);
3267 if (rc != -ENOTTY)
3268 goto done;
3269
3270 rc = pci_parent_bus_reset(dev, probe);
3271 done:
3272 return rc;
3273 }
3274
3275 static int pci_dev_reset(struct pci_dev *dev, int probe)
3276 {
3277 int rc;
3278
3279 if (!probe) {
3280 pci_cfg_access_lock(dev);
3281 /* block PM suspend, driver probe, etc. */
3282 device_lock(&dev->dev);
3283 }
3284
3285 rc = __pci_dev_reset(dev, probe);
3286
3287 if (!probe) {
3288 device_unlock(&dev->dev);
3289 pci_cfg_access_unlock(dev);
3290 }
3291 return rc;
3292 }
3293 /**
3294 * __pci_reset_function - reset a PCI device function
3295 * @dev: PCI device to reset
3296 *
3297 * Some devices allow an individual function to be reset without affecting
3298 * other functions in the same device. The PCI device must be responsive
3299 * to PCI config space in order to use this function.
3300 *
3301 * The device function is presumed to be unused when this function is called.
3302 * Resetting the device will make the contents of PCI configuration space
3303 * random, so any caller of this must be prepared to reinitialise the
3304 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3305 * etc.
3306 *
3307 * Returns 0 if the device function was successfully reset or negative if the
3308 * device doesn't support resetting a single function.
3309 */
3310 int __pci_reset_function(struct pci_dev *dev)
3311 {
3312 return pci_dev_reset(dev, 0);
3313 }
3314 EXPORT_SYMBOL_GPL(__pci_reset_function);
3315
3316 /**
3317 * __pci_reset_function_locked - reset a PCI device function while holding
3318 * the @dev mutex lock.
3319 * @dev: PCI device to reset
3320 *
3321 * Some devices allow an individual function to be reset without affecting
3322 * other functions in the same device. The PCI device must be responsive
3323 * to PCI config space in order to use this function.
3324 *
3325 * The device function is presumed to be unused and the caller is holding
3326 * the device mutex lock when this function is called.
3327 * Resetting the device will make the contents of PCI configuration space
3328 * random, so any caller of this must be prepared to reinitialise the
3329 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3330 * etc.
3331 *
3332 * Returns 0 if the device function was successfully reset or negative if the
3333 * device doesn't support resetting a single function.
3334 */
3335 int __pci_reset_function_locked(struct pci_dev *dev)
3336 {
3337 return __pci_dev_reset(dev, 0);
3338 }
3339 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3340
3341 /**
3342 * pci_probe_reset_function - check whether the device can be safely reset
3343 * @dev: PCI device to reset
3344 *
3345 * Some devices allow an individual function to be reset without affecting
3346 * other functions in the same device. The PCI device must be responsive
3347 * to PCI config space in order to use this function.
3348 *
3349 * Returns 0 if the device function can be reset or negative if the
3350 * device doesn't support resetting a single function.
3351 */
3352 int pci_probe_reset_function(struct pci_dev *dev)
3353 {
3354 return pci_dev_reset(dev, 1);
3355 }
3356
3357 /**
3358 * pci_reset_function - quiesce and reset a PCI device function
3359 * @dev: PCI device to reset
3360 *
3361 * Some devices allow an individual function to be reset without affecting
3362 * other functions in the same device. The PCI device must be responsive
3363 * to PCI config space in order to use this function.
3364 *
3365 * This function does not just reset the PCI portion of a device, but
3366 * clears all the state associated with the device. This function differs
3367 * from __pci_reset_function in that it saves and restores device state
3368 * over the reset.
3369 *
3370 * Returns 0 if the device function was successfully reset or negative if the
3371 * device doesn't support resetting a single function.
3372 */
3373 int pci_reset_function(struct pci_dev *dev)
3374 {
3375 int rc;
3376
3377 rc = pci_dev_reset(dev, 1);
3378 if (rc)
3379 return rc;
3380
3381 pci_save_state(dev);
3382
3383 /*
3384 * both INTx and MSI are disabled after the Interrupt Disable bit
3385 * is set and the Bus Master bit is cleared.
3386 */
3387 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3388
3389 rc = pci_dev_reset(dev, 0);
3390
3391 pci_restore_state(dev);
3392
3393 return rc;
3394 }
3395 EXPORT_SYMBOL_GPL(pci_reset_function);
3396
3397 /**
3398 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3399 * @dev: PCI device to query
3400 *
3401 * Returns mmrbc: maximum designed memory read count in bytes
3402 * or appropriate error value.
3403 */
3404 int pcix_get_max_mmrbc(struct pci_dev *dev)
3405 {
3406 int cap;
3407 u32 stat;
3408
3409 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3410 if (!cap)
3411 return -EINVAL;
3412
3413 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3414 return -EINVAL;
3415
3416 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3417 }
3418 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3419
3420 /**
3421 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3422 * @dev: PCI device to query
3423 *
3424 * Returns mmrbc: maximum memory read count in bytes
3425 * or appropriate error value.
3426 */
3427 int pcix_get_mmrbc(struct pci_dev *dev)
3428 {
3429 int cap;
3430 u16 cmd;
3431
3432 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3433 if (!cap)
3434 return -EINVAL;
3435
3436 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3437 return -EINVAL;
3438
3439 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3440 }
3441 EXPORT_SYMBOL(pcix_get_mmrbc);
3442
3443 /**
3444 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3445 * @dev: PCI device to query
3446 * @mmrbc: maximum memory read count in bytes
3447 * valid values are 512, 1024, 2048, 4096
3448 *
3449 * If possible sets maximum memory read byte count, some bridges have erratas
3450 * that prevent this.
3451 */
3452 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3453 {
3454 int cap;
3455 u32 stat, v, o;
3456 u16 cmd;
3457
3458 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3459 return -EINVAL;
3460
3461 v = ffs(mmrbc) - 10;
3462
3463 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3464 if (!cap)
3465 return -EINVAL;
3466
3467 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3468 return -EINVAL;
3469
3470 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3471 return -E2BIG;
3472
3473 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3474 return -EINVAL;
3475
3476 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3477 if (o != v) {
3478 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3479 return -EIO;
3480
3481 cmd &= ~PCI_X_CMD_MAX_READ;
3482 cmd |= v << 2;
3483 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3484 return -EIO;
3485 }
3486 return 0;
3487 }
3488 EXPORT_SYMBOL(pcix_set_mmrbc);
3489
3490 /**
3491 * pcie_get_readrq - get PCI Express read request size
3492 * @dev: PCI device to query
3493 *
3494 * Returns maximum memory read request in bytes
3495 * or appropriate error value.
3496 */
3497 int pcie_get_readrq(struct pci_dev *dev)
3498 {
3499 u16 ctl;
3500
3501 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3502
3503 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3504 }
3505 EXPORT_SYMBOL(pcie_get_readrq);
3506
3507 /**
3508 * pcie_set_readrq - set PCI Express maximum memory read request
3509 * @dev: PCI device to query
3510 * @rq: maximum memory read count in bytes
3511 * valid values are 128, 256, 512, 1024, 2048, 4096
3512 *
3513 * If possible sets maximum memory read request in bytes
3514 */
3515 int pcie_set_readrq(struct pci_dev *dev, int rq)
3516 {
3517 u16 v;
3518
3519 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3520 return -EINVAL;
3521
3522 /*
3523 * If using the "performance" PCIe config, we clamp the
3524 * read rq size to the max packet size to prevent the
3525 * host bridge generating requests larger than we can
3526 * cope with
3527 */
3528 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3529 int mps = pcie_get_mps(dev);
3530
3531 if (mps < 0)
3532 return mps;
3533 if (mps < rq)
3534 rq = mps;
3535 }
3536
3537 v = (ffs(rq) - 8) << 12;
3538
3539 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3540 PCI_EXP_DEVCTL_READRQ, v);
3541 }
3542 EXPORT_SYMBOL(pcie_set_readrq);
3543
3544 /**
3545 * pcie_get_mps - get PCI Express maximum payload size
3546 * @dev: PCI device to query
3547 *
3548 * Returns maximum payload size in bytes
3549 * or appropriate error value.
3550 */
3551 int pcie_get_mps(struct pci_dev *dev)
3552 {
3553 u16 ctl;
3554
3555 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3556
3557 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3558 }
3559
3560 /**
3561 * pcie_set_mps - set PCI Express maximum payload size
3562 * @dev: PCI device to query
3563 * @mps: maximum payload size in bytes
3564 * valid values are 128, 256, 512, 1024, 2048, 4096
3565 *
3566 * If possible sets maximum payload size
3567 */
3568 int pcie_set_mps(struct pci_dev *dev, int mps)
3569 {
3570 u16 v;
3571
3572 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3573 return -EINVAL;
3574
3575 v = ffs(mps) - 8;
3576 if (v > dev->pcie_mpss)
3577 return -EINVAL;
3578 v <<= 5;
3579
3580 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3581 PCI_EXP_DEVCTL_PAYLOAD, v);
3582 }
3583
3584 /**
3585 * pci_select_bars - Make BAR mask from the type of resource
3586 * @dev: the PCI device for which BAR mask is made
3587 * @flags: resource type mask to be selected
3588 *
3589 * This helper routine makes bar mask from the type of resource.
3590 */
3591 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3592 {
3593 int i, bars = 0;
3594 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3595 if (pci_resource_flags(dev, i) & flags)
3596 bars |= (1 << i);
3597 return bars;
3598 }
3599
3600 /**
3601 * pci_resource_bar - get position of the BAR associated with a resource
3602 * @dev: the PCI device
3603 * @resno: the resource number
3604 * @type: the BAR type to be filled in
3605 *
3606 * Returns BAR position in config space, or 0 if the BAR is invalid.
3607 */
3608 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3609 {
3610 int reg;
3611
3612 if (resno < PCI_ROM_RESOURCE) {
3613 *type = pci_bar_unknown;
3614 return PCI_BASE_ADDRESS_0 + 4 * resno;
3615 } else if (resno == PCI_ROM_RESOURCE) {
3616 *type = pci_bar_mem32;
3617 return dev->rom_base_reg;
3618 } else if (resno < PCI_BRIDGE_RESOURCES) {
3619 /* device specific resource */
3620 reg = pci_iov_resource_bar(dev, resno, type);
3621 if (reg)
3622 return reg;
3623 }
3624
3625 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3626 return 0;
3627 }
3628
3629 /* Some architectures require additional programming to enable VGA */
3630 static arch_set_vga_state_t arch_set_vga_state;
3631
3632 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3633 {
3634 arch_set_vga_state = func; /* NULL disables */
3635 }
3636
3637 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3638 unsigned int command_bits, u32 flags)
3639 {
3640 if (arch_set_vga_state)
3641 return arch_set_vga_state(dev, decode, command_bits,
3642 flags);
3643 return 0;
3644 }
3645
3646 /**
3647 * pci_set_vga_state - set VGA decode state on device and parents if requested
3648 * @dev: the PCI device
3649 * @decode: true = enable decoding, false = disable decoding
3650 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3651 * @flags: traverse ancestors and change bridges
3652 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3653 */
3654 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3655 unsigned int command_bits, u32 flags)
3656 {
3657 struct pci_bus *bus;
3658 struct pci_dev *bridge;
3659 u16 cmd;
3660 int rc;
3661
3662 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3663
3664 /* ARCH specific VGA enables */
3665 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3666 if (rc)
3667 return rc;
3668
3669 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3670 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3671 if (decode == true)
3672 cmd |= command_bits;
3673 else
3674 cmd &= ~command_bits;
3675 pci_write_config_word(dev, PCI_COMMAND, cmd);
3676 }
3677
3678 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3679 return 0;
3680
3681 bus = dev->bus;
3682 while (bus) {
3683 bridge = bus->self;
3684 if (bridge) {
3685 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3686 &cmd);
3687 if (decode == true)
3688 cmd |= PCI_BRIDGE_CTL_VGA;
3689 else
3690 cmd &= ~PCI_BRIDGE_CTL_VGA;
3691 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3692 cmd);
3693 }
3694 bus = bus->parent;
3695 }
3696 return 0;
3697 }
3698
3699 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3700 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3701 static DEFINE_SPINLOCK(resource_alignment_lock);
3702
3703 /**
3704 * pci_specified_resource_alignment - get resource alignment specified by user.
3705 * @dev: the PCI device to get
3706 *
3707 * RETURNS: Resource alignment if it is specified.
3708 * Zero if it is not specified.
3709 */
3710 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3711 {
3712 int seg, bus, slot, func, align_order, count;
3713 resource_size_t align = 0;
3714 char *p;
3715
3716 spin_lock(&resource_alignment_lock);
3717 p = resource_alignment_param;
3718 while (*p) {
3719 count = 0;
3720 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3721 p[count] == '@') {
3722 p += count + 1;
3723 } else {
3724 align_order = -1;
3725 }
3726 if (sscanf(p, "%x:%x:%x.%x%n",
3727 &seg, &bus, &slot, &func, &count) != 4) {
3728 seg = 0;
3729 if (sscanf(p, "%x:%x.%x%n",
3730 &bus, &slot, &func, &count) != 3) {
3731 /* Invalid format */
3732 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3733 p);
3734 break;
3735 }
3736 }
3737 p += count;
3738 if (seg == pci_domain_nr(dev->bus) &&
3739 bus == dev->bus->number &&
3740 slot == PCI_SLOT(dev->devfn) &&
3741 func == PCI_FUNC(dev->devfn)) {
3742 if (align_order == -1) {
3743 align = PAGE_SIZE;
3744 } else {
3745 align = 1 << align_order;
3746 }
3747 /* Found */
3748 break;
3749 }
3750 if (*p != ';' && *p != ',') {
3751 /* End of param or invalid format */
3752 break;
3753 }
3754 p++;
3755 }
3756 spin_unlock(&resource_alignment_lock);
3757 return align;
3758 }
3759
3760 /*
3761 * This function disables memory decoding and releases memory resources
3762 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3763 * It also rounds up size to specified alignment.
3764 * Later on, the kernel will assign page-aligned memory resource back
3765 * to the device.
3766 */
3767 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3768 {
3769 int i;
3770 struct resource *r;
3771 resource_size_t align, size;
3772 u16 command;
3773
3774 /* check if specified PCI is target device to reassign */
3775 align = pci_specified_resource_alignment(dev);
3776 if (!align)
3777 return;
3778
3779 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3780 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3781 dev_warn(&dev->dev,
3782 "Can't reassign resources to host bridge.\n");
3783 return;
3784 }
3785
3786 dev_info(&dev->dev,
3787 "Disabling memory decoding and releasing memory resources.\n");
3788 pci_read_config_word(dev, PCI_COMMAND, &command);
3789 command &= ~PCI_COMMAND_MEMORY;
3790 pci_write_config_word(dev, PCI_COMMAND, command);
3791
3792 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3793 r = &dev->resource[i];
3794 if (!(r->flags & IORESOURCE_MEM))
3795 continue;
3796 size = resource_size(r);
3797 if (size < align) {
3798 size = align;
3799 dev_info(&dev->dev,
3800 "Rounding up size of resource #%d to %#llx.\n",
3801 i, (unsigned long long)size);
3802 }
3803 r->end = size - 1;
3804 r->start = 0;
3805 }
3806 /* Need to disable bridge's resource window,
3807 * to enable the kernel to reassign new resource
3808 * window later on.
3809 */
3810 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3811 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3812 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3813 r = &dev->resource[i];
3814 if (!(r->flags & IORESOURCE_MEM))
3815 continue;
3816 r->end = resource_size(r) - 1;
3817 r->start = 0;
3818 }
3819 pci_disable_bridge_window(dev);
3820 }
3821 }
3822
3823 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3824 {
3825 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3826 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3827 spin_lock(&resource_alignment_lock);
3828 strncpy(resource_alignment_param, buf, count);
3829 resource_alignment_param[count] = '\0';
3830 spin_unlock(&resource_alignment_lock);
3831 return count;
3832 }
3833
3834 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3835 {
3836 size_t count;
3837 spin_lock(&resource_alignment_lock);
3838 count = snprintf(buf, size, "%s", resource_alignment_param);
3839 spin_unlock(&resource_alignment_lock);
3840 return count;
3841 }
3842
3843 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3844 {
3845 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3846 }
3847
3848 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3849 const char *buf, size_t count)
3850 {
3851 return pci_set_resource_alignment_param(buf, count);
3852 }
3853
3854 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3855 pci_resource_alignment_store);
3856
3857 static int __init pci_resource_alignment_sysfs_init(void)
3858 {
3859 return bus_create_file(&pci_bus_type,
3860 &bus_attr_resource_alignment);
3861 }
3862
3863 late_initcall(pci_resource_alignment_sysfs_init);
3864
3865 static void pci_no_domains(void)
3866 {
3867 #ifdef CONFIG_PCI_DOMAINS
3868 pci_domains_supported = 0;
3869 #endif
3870 }
3871
3872 /**
3873 * pci_ext_cfg_avail - can we access extended PCI config space?
3874 *
3875 * Returns 1 if we can access PCI extended config space (offsets
3876 * greater than 0xff). This is the default implementation. Architecture
3877 * implementations can override this.
3878 */
3879 int __weak pci_ext_cfg_avail(void)
3880 {
3881 return 1;
3882 }
3883
3884 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3885 {
3886 }
3887 EXPORT_SYMBOL(pci_fixup_cardbus);
3888
3889 static int __init pci_setup(char *str)
3890 {
3891 while (str) {
3892 char *k = strchr(str, ',');
3893 if (k)
3894 *k++ = 0;
3895 if (*str && (str = pcibios_setup(str)) && *str) {
3896 if (!strcmp(str, "nomsi")) {
3897 pci_no_msi();
3898 } else if (!strcmp(str, "noaer")) {
3899 pci_no_aer();
3900 } else if (!strncmp(str, "realloc=", 8)) {
3901 pci_realloc_get_opt(str + 8);
3902 } else if (!strncmp(str, "realloc", 7)) {
3903 pci_realloc_get_opt("on");
3904 } else if (!strcmp(str, "nodomains")) {
3905 pci_no_domains();
3906 } else if (!strncmp(str, "noari", 5)) {
3907 pcie_ari_disabled = true;
3908 } else if (!strncmp(str, "cbiosize=", 9)) {
3909 pci_cardbus_io_size = memparse(str + 9, &str);
3910 } else if (!strncmp(str, "cbmemsize=", 10)) {
3911 pci_cardbus_mem_size = memparse(str + 10, &str);
3912 } else if (!strncmp(str, "resource_alignment=", 19)) {
3913 pci_set_resource_alignment_param(str + 19,
3914 strlen(str + 19));
3915 } else if (!strncmp(str, "ecrc=", 5)) {
3916 pcie_ecrc_get_policy(str + 5);
3917 } else if (!strncmp(str, "hpiosize=", 9)) {
3918 pci_hotplug_io_size = memparse(str + 9, &str);
3919 } else if (!strncmp(str, "hpmemsize=", 10)) {
3920 pci_hotplug_mem_size = memparse(str + 10, &str);
3921 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3922 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3923 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3924 pcie_bus_config = PCIE_BUS_SAFE;
3925 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3926 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3927 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3928 pcie_bus_config = PCIE_BUS_PEER2PEER;
3929 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3930 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3931 } else {
3932 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3933 str);
3934 }
3935 }
3936 str = k;
3937 }
3938 return 0;
3939 }
3940 early_param("pci", pci_setup);
3941
3942 EXPORT_SYMBOL(pci_reenable_device);
3943 EXPORT_SYMBOL(pci_enable_device_io);
3944 EXPORT_SYMBOL(pci_enable_device_mem);
3945 EXPORT_SYMBOL(pci_enable_device);
3946 EXPORT_SYMBOL(pcim_enable_device);
3947 EXPORT_SYMBOL(pcim_pin_device);
3948 EXPORT_SYMBOL(pci_disable_device);
3949 EXPORT_SYMBOL(pci_find_capability);
3950 EXPORT_SYMBOL(pci_bus_find_capability);
3951 EXPORT_SYMBOL(pci_release_regions);
3952 EXPORT_SYMBOL(pci_request_regions);
3953 EXPORT_SYMBOL(pci_request_regions_exclusive);
3954 EXPORT_SYMBOL(pci_release_region);
3955 EXPORT_SYMBOL(pci_request_region);
3956 EXPORT_SYMBOL(pci_request_region_exclusive);
3957 EXPORT_SYMBOL(pci_release_selected_regions);
3958 EXPORT_SYMBOL(pci_request_selected_regions);
3959 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3960 EXPORT_SYMBOL(pci_set_master);
3961 EXPORT_SYMBOL(pci_clear_master);
3962 EXPORT_SYMBOL(pci_set_mwi);
3963 EXPORT_SYMBOL(pci_try_set_mwi);
3964 EXPORT_SYMBOL(pci_clear_mwi);
3965 EXPORT_SYMBOL_GPL(pci_intx);
3966 EXPORT_SYMBOL(pci_assign_resource);
3967 EXPORT_SYMBOL(pci_find_parent_resource);
3968 EXPORT_SYMBOL(pci_select_bars);
3969
3970 EXPORT_SYMBOL(pci_set_power_state);
3971 EXPORT_SYMBOL(pci_save_state);
3972 EXPORT_SYMBOL(pci_restore_state);
3973 EXPORT_SYMBOL(pci_pme_capable);
3974 EXPORT_SYMBOL(pci_pme_active);
3975 EXPORT_SYMBOL(pci_wake_from_d3);
3976 EXPORT_SYMBOL(pci_target_state);
3977 EXPORT_SYMBOL(pci_prepare_to_sleep);
3978 EXPORT_SYMBOL(pci_back_from_sleep);
3979 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);