include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / oprofile / buffer_sync.c
1 /**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24 #include <linux/mm.h>
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
30 #include <linux/fs.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
34
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
39
40 static LIST_HEAD(dying_tasks);
41 static LIST_HEAD(dead_tasks);
42 static cpumask_var_t marked_cpus;
43 static DEFINE_SPINLOCK(task_mortuary);
44 static void process_task_mortuary(void);
45
46 /* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
52 */
53 static int
54 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
55 {
56 unsigned long flags;
57 struct task_struct *task = data;
58 spin_lock_irqsave(&task_mortuary, flags);
59 list_add(&task->tasks, &dying_tasks);
60 spin_unlock_irqrestore(&task_mortuary, flags);
61 return NOTIFY_OK;
62 }
63
64
65 /* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
67 */
68 static int
69 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
70 {
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
73 */
74 sync_buffer(raw_smp_processor_id());
75 return 0;
76 }
77
78
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
83 */
84 static int
85 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
86 {
87 unsigned long addr = (unsigned long)data;
88 struct mm_struct *mm = current->mm;
89 struct vm_area_struct *mpnt;
90
91 down_read(&mm->mmap_sem);
92
93 mpnt = find_vma(mm, addr);
94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 up_read(&mm->mmap_sem);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
98 */
99 sync_buffer(raw_smp_processor_id());
100 return 0;
101 }
102
103 up_read(&mm->mmap_sem);
104 return 0;
105 }
106
107
108 /* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
110 */
111 static int
112 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
113 {
114 #ifdef CONFIG_MODULES
115 if (val != MODULE_STATE_COMING)
116 return 0;
117
118 /* FIXME: should we process all CPU buffers ? */
119 mutex_lock(&buffer_mutex);
120 add_event_entry(ESCAPE_CODE);
121 add_event_entry(MODULE_LOADED_CODE);
122 mutex_unlock(&buffer_mutex);
123 #endif
124 return 0;
125 }
126
127
128 static struct notifier_block task_free_nb = {
129 .notifier_call = task_free_notify,
130 };
131
132 static struct notifier_block task_exit_nb = {
133 .notifier_call = task_exit_notify,
134 };
135
136 static struct notifier_block munmap_nb = {
137 .notifier_call = munmap_notify,
138 };
139
140 static struct notifier_block module_load_nb = {
141 .notifier_call = module_load_notify,
142 };
143
144
145 static void end_sync(void)
146 {
147 end_cpu_work();
148 /* make sure we don't leak task structs */
149 process_task_mortuary();
150 process_task_mortuary();
151 }
152
153
154 int sync_start(void)
155 {
156 int err;
157
158 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
159 return -ENOMEM;
160
161 start_cpu_work();
162
163 err = task_handoff_register(&task_free_nb);
164 if (err)
165 goto out1;
166 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
167 if (err)
168 goto out2;
169 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
170 if (err)
171 goto out3;
172 err = register_module_notifier(&module_load_nb);
173 if (err)
174 goto out4;
175
176 out:
177 return err;
178 out4:
179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
180 out3:
181 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
182 out2:
183 task_handoff_unregister(&task_free_nb);
184 out1:
185 end_sync();
186 free_cpumask_var(marked_cpus);
187 goto out;
188 }
189
190
191 void sync_stop(void)
192 {
193 unregister_module_notifier(&module_load_nb);
194 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
195 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
196 task_handoff_unregister(&task_free_nb);
197 end_sync();
198 free_cpumask_var(marked_cpus);
199 }
200
201
202 /* Optimisation. We can manage without taking the dcookie sem
203 * because we cannot reach this code without at least one
204 * dcookie user still being registered (namely, the reader
205 * of the event buffer). */
206 static inline unsigned long fast_get_dcookie(struct path *path)
207 {
208 unsigned long cookie;
209
210 if (path->dentry->d_flags & DCACHE_COOKIE)
211 return (unsigned long)path->dentry;
212 get_dcookie(path, &cookie);
213 return cookie;
214 }
215
216
217 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
218 * which corresponds loosely to "application name". This is
219 * not strictly necessary but allows oprofile to associate
220 * shared-library samples with particular applications
221 */
222 static unsigned long get_exec_dcookie(struct mm_struct *mm)
223 {
224 unsigned long cookie = NO_COOKIE;
225 struct vm_area_struct *vma;
226
227 if (!mm)
228 goto out;
229
230 for (vma = mm->mmap; vma; vma = vma->vm_next) {
231 if (!vma->vm_file)
232 continue;
233 if (!(vma->vm_flags & VM_EXECUTABLE))
234 continue;
235 cookie = fast_get_dcookie(&vma->vm_file->f_path);
236 break;
237 }
238
239 out:
240 return cookie;
241 }
242
243
244 /* Convert the EIP value of a sample into a persistent dentry/offset
245 * pair that can then be added to the global event buffer. We make
246 * sure to do this lookup before a mm->mmap modification happens so
247 * we don't lose track.
248 */
249 static unsigned long
250 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
251 {
252 unsigned long cookie = NO_COOKIE;
253 struct vm_area_struct *vma;
254
255 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
256
257 if (addr < vma->vm_start || addr >= vma->vm_end)
258 continue;
259
260 if (vma->vm_file) {
261 cookie = fast_get_dcookie(&vma->vm_file->f_path);
262 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
263 vma->vm_start;
264 } else {
265 /* must be an anonymous map */
266 *offset = addr;
267 }
268
269 break;
270 }
271
272 if (!vma)
273 cookie = INVALID_COOKIE;
274
275 return cookie;
276 }
277
278 static unsigned long last_cookie = INVALID_COOKIE;
279
280 static void add_cpu_switch(int i)
281 {
282 add_event_entry(ESCAPE_CODE);
283 add_event_entry(CPU_SWITCH_CODE);
284 add_event_entry(i);
285 last_cookie = INVALID_COOKIE;
286 }
287
288 static void add_kernel_ctx_switch(unsigned int in_kernel)
289 {
290 add_event_entry(ESCAPE_CODE);
291 if (in_kernel)
292 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
293 else
294 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
295 }
296
297 static void
298 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
299 {
300 add_event_entry(ESCAPE_CODE);
301 add_event_entry(CTX_SWITCH_CODE);
302 add_event_entry(task->pid);
303 add_event_entry(cookie);
304 /* Another code for daemon back-compat */
305 add_event_entry(ESCAPE_CODE);
306 add_event_entry(CTX_TGID_CODE);
307 add_event_entry(task->tgid);
308 }
309
310
311 static void add_cookie_switch(unsigned long cookie)
312 {
313 add_event_entry(ESCAPE_CODE);
314 add_event_entry(COOKIE_SWITCH_CODE);
315 add_event_entry(cookie);
316 }
317
318
319 static void add_trace_begin(void)
320 {
321 add_event_entry(ESCAPE_CODE);
322 add_event_entry(TRACE_BEGIN_CODE);
323 }
324
325 static void add_data(struct op_entry *entry, struct mm_struct *mm)
326 {
327 unsigned long code, pc, val;
328 unsigned long cookie;
329 off_t offset;
330
331 if (!op_cpu_buffer_get_data(entry, &code))
332 return;
333 if (!op_cpu_buffer_get_data(entry, &pc))
334 return;
335 if (!op_cpu_buffer_get_size(entry))
336 return;
337
338 if (mm) {
339 cookie = lookup_dcookie(mm, pc, &offset);
340
341 if (cookie == NO_COOKIE)
342 offset = pc;
343 if (cookie == INVALID_COOKIE) {
344 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
345 offset = pc;
346 }
347 if (cookie != last_cookie) {
348 add_cookie_switch(cookie);
349 last_cookie = cookie;
350 }
351 } else
352 offset = pc;
353
354 add_event_entry(ESCAPE_CODE);
355 add_event_entry(code);
356 add_event_entry(offset); /* Offset from Dcookie */
357
358 while (op_cpu_buffer_get_data(entry, &val))
359 add_event_entry(val);
360 }
361
362 static inline void add_sample_entry(unsigned long offset, unsigned long event)
363 {
364 add_event_entry(offset);
365 add_event_entry(event);
366 }
367
368
369 /*
370 * Add a sample to the global event buffer. If possible the
371 * sample is converted into a persistent dentry/offset pair
372 * for later lookup from userspace. Return 0 on failure.
373 */
374 static int
375 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
376 {
377 unsigned long cookie;
378 off_t offset;
379
380 if (in_kernel) {
381 add_sample_entry(s->eip, s->event);
382 return 1;
383 }
384
385 /* add userspace sample */
386
387 if (!mm) {
388 atomic_inc(&oprofile_stats.sample_lost_no_mm);
389 return 0;
390 }
391
392 cookie = lookup_dcookie(mm, s->eip, &offset);
393
394 if (cookie == INVALID_COOKIE) {
395 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
396 return 0;
397 }
398
399 if (cookie != last_cookie) {
400 add_cookie_switch(cookie);
401 last_cookie = cookie;
402 }
403
404 add_sample_entry(offset, s->event);
405
406 return 1;
407 }
408
409
410 static void release_mm(struct mm_struct *mm)
411 {
412 if (!mm)
413 return;
414 up_read(&mm->mmap_sem);
415 mmput(mm);
416 }
417
418
419 static struct mm_struct *take_tasks_mm(struct task_struct *task)
420 {
421 struct mm_struct *mm = get_task_mm(task);
422 if (mm)
423 down_read(&mm->mmap_sem);
424 return mm;
425 }
426
427
428 static inline int is_code(unsigned long val)
429 {
430 return val == ESCAPE_CODE;
431 }
432
433
434 /* Move tasks along towards death. Any tasks on dead_tasks
435 * will definitely have no remaining references in any
436 * CPU buffers at this point, because we use two lists,
437 * and to have reached the list, it must have gone through
438 * one full sync already.
439 */
440 static void process_task_mortuary(void)
441 {
442 unsigned long flags;
443 LIST_HEAD(local_dead_tasks);
444 struct task_struct *task;
445 struct task_struct *ttask;
446
447 spin_lock_irqsave(&task_mortuary, flags);
448
449 list_splice_init(&dead_tasks, &local_dead_tasks);
450 list_splice_init(&dying_tasks, &dead_tasks);
451
452 spin_unlock_irqrestore(&task_mortuary, flags);
453
454 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
455 list_del(&task->tasks);
456 free_task(task);
457 }
458 }
459
460
461 static void mark_done(int cpu)
462 {
463 int i;
464
465 cpumask_set_cpu(cpu, marked_cpus);
466
467 for_each_online_cpu(i) {
468 if (!cpumask_test_cpu(i, marked_cpus))
469 return;
470 }
471
472 /* All CPUs have been processed at least once,
473 * we can process the mortuary once
474 */
475 process_task_mortuary();
476
477 cpumask_clear(marked_cpus);
478 }
479
480
481 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
482 * traversal, the code switch to sb_sample_start at first kernel enter/exit
483 * switch so we need a fifth state and some special handling in sync_buffer()
484 */
485 typedef enum {
486 sb_bt_ignore = -2,
487 sb_buffer_start,
488 sb_bt_start,
489 sb_sample_start,
490 } sync_buffer_state;
491
492 /* Sync one of the CPU's buffers into the global event buffer.
493 * Here we need to go through each batch of samples punctuated
494 * by context switch notes, taking the task's mmap_sem and doing
495 * lookup in task->mm->mmap to convert EIP into dcookie/offset
496 * value.
497 */
498 void sync_buffer(int cpu)
499 {
500 struct mm_struct *mm = NULL;
501 struct mm_struct *oldmm;
502 unsigned long val;
503 struct task_struct *new;
504 unsigned long cookie = 0;
505 int in_kernel = 1;
506 sync_buffer_state state = sb_buffer_start;
507 unsigned int i;
508 unsigned long available;
509 unsigned long flags;
510 struct op_entry entry;
511 struct op_sample *sample;
512
513 mutex_lock(&buffer_mutex);
514
515 add_cpu_switch(cpu);
516
517 op_cpu_buffer_reset(cpu);
518 available = op_cpu_buffer_entries(cpu);
519
520 for (i = 0; i < available; ++i) {
521 sample = op_cpu_buffer_read_entry(&entry, cpu);
522 if (!sample)
523 break;
524
525 if (is_code(sample->eip)) {
526 flags = sample->event;
527 if (flags & TRACE_BEGIN) {
528 state = sb_bt_start;
529 add_trace_begin();
530 }
531 if (flags & KERNEL_CTX_SWITCH) {
532 /* kernel/userspace switch */
533 in_kernel = flags & IS_KERNEL;
534 if (state == sb_buffer_start)
535 state = sb_sample_start;
536 add_kernel_ctx_switch(flags & IS_KERNEL);
537 }
538 if (flags & USER_CTX_SWITCH
539 && op_cpu_buffer_get_data(&entry, &val)) {
540 /* userspace context switch */
541 new = (struct task_struct *)val;
542 oldmm = mm;
543 release_mm(oldmm);
544 mm = take_tasks_mm(new);
545 if (mm != oldmm)
546 cookie = get_exec_dcookie(mm);
547 add_user_ctx_switch(new, cookie);
548 }
549 if (op_cpu_buffer_get_size(&entry))
550 add_data(&entry, mm);
551 continue;
552 }
553
554 if (state < sb_bt_start)
555 /* ignore sample */
556 continue;
557
558 if (add_sample(mm, sample, in_kernel))
559 continue;
560
561 /* ignore backtraces if failed to add a sample */
562 if (state == sb_bt_start) {
563 state = sb_bt_ignore;
564 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
565 }
566 }
567 release_mm(mm);
568
569 mark_done(cpu);
570
571 mutex_unlock(&buffer_mutex);
572 }
573
574 /* The function can be used to add a buffer worth of data directly to
575 * the kernel buffer. The buffer is assumed to be a circular buffer.
576 * Take the entries from index start and end at index end, wrapping
577 * at max_entries.
578 */
579 void oprofile_put_buff(unsigned long *buf, unsigned int start,
580 unsigned int stop, unsigned int max)
581 {
582 int i;
583
584 i = start;
585
586 mutex_lock(&buffer_mutex);
587 while (i != stop) {
588 add_event_entry(buf[i++]);
589
590 if (i >= max)
591 i = 0;
592 }
593
594 mutex_unlock(&buffer_mutex);
595 }
596