import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / of / fdt.c
1 /*
2 * Functions for working with the Flattened Device Tree data format
3 *
4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5 * benh@kernel.crashing.org
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23
24 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
25 #ifdef CONFIG_PPC
26 #include <asm/machdep.h>
27 #endif /* CONFIG_PPC */
28
29 #include <asm/page.h>
30
31 char *of_fdt_get_string(struct boot_param_header *blob, u32 offset)
32 {
33 return ((char *)blob) +
34 be32_to_cpu(blob->off_dt_strings) + offset;
35 }
36
37 /**
38 * of_fdt_get_property - Given a node in the given flat blob, return
39 * the property ptr
40 */
41 void *of_fdt_get_property(struct boot_param_header *blob,
42 unsigned long node, const char *name,
43 unsigned long *size)
44 {
45 unsigned long p = node;
46
47 do {
48 u32 tag = be32_to_cpup((__be32 *)p);
49 u32 sz, noff;
50 const char *nstr;
51
52 p += 4;
53 if (tag == OF_DT_NOP)
54 continue;
55 if (tag != OF_DT_PROP)
56 return NULL;
57
58 sz = be32_to_cpup((__be32 *)p);
59 noff = be32_to_cpup((__be32 *)(p + 4));
60 p += 8;
61 if (be32_to_cpu(blob->version) < 0x10)
62 p = ALIGN(p, sz >= 8 ? 8 : 4);
63
64 nstr = of_fdt_get_string(blob, noff);
65 if (nstr == NULL) {
66 pr_warning("Can't find property index name !\n");
67 return NULL;
68 }
69 if (strcmp(name, nstr) == 0) {
70 if (size)
71 *size = sz;
72 return (void *)p;
73 }
74 p += sz;
75 p = ALIGN(p, 4);
76 } while (1);
77 }
78
79 /**
80 * of_fdt_is_compatible - Return true if given node from the given blob has
81 * compat in its compatible list
82 * @blob: A device tree blob
83 * @node: node to test
84 * @compat: compatible string to compare with compatible list.
85 *
86 * On match, returns a non-zero value with smaller values returned for more
87 * specific compatible values.
88 */
89 int of_fdt_is_compatible(struct boot_param_header *blob,
90 unsigned long node, const char *compat)
91 {
92 const char *cp;
93 unsigned long cplen, l, score = 0;
94
95 cp = of_fdt_get_property(blob, node, "compatible", &cplen);
96 if (cp == NULL)
97 return 0;
98 while (cplen > 0) {
99 score++;
100 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
101 return score;
102 l = strlen(cp) + 1;
103 cp += l;
104 cplen -= l;
105 }
106
107 return 0;
108 }
109
110 /**
111 * of_fdt_match - Return true if node matches a list of compatible values
112 */
113 int of_fdt_match(struct boot_param_header *blob, unsigned long node,
114 const char *const *compat)
115 {
116 unsigned int tmp, score = 0;
117
118 if (!compat)
119 return 0;
120
121 while (*compat) {
122 tmp = of_fdt_is_compatible(blob, node, *compat);
123 if (tmp && (score == 0 || (tmp < score)))
124 score = tmp;
125 compat++;
126 }
127
128 return score;
129 }
130
131 static void *unflatten_dt_alloc(unsigned long *mem, unsigned long size,
132 unsigned long align)
133 {
134 void *res;
135
136 *mem = ALIGN(*mem, align);
137 res = (void *)*mem;
138 *mem += size;
139
140 return res;
141 }
142
143 /**
144 * unflatten_dt_node - Alloc and populate a device_node from the flat tree
145 * @blob: The parent device tree blob
146 * @mem: Memory chunk to use for allocating device nodes and properties
147 * @p: pointer to node in flat tree
148 * @dad: Parent struct device_node
149 * @allnextpp: pointer to ->allnext from last allocated device_node
150 * @fpsize: Size of the node path up at the current depth.
151 */
152 static unsigned long unflatten_dt_node(struct boot_param_header *blob,
153 unsigned long mem,
154 unsigned long *p,
155 struct device_node *dad,
156 struct device_node ***allnextpp,
157 unsigned long fpsize)
158 {
159 struct device_node *np;
160 struct property *pp, **prev_pp = NULL;
161 char *pathp;
162 u32 tag;
163 unsigned int l, allocl;
164 int has_name = 0;
165 int new_format = 0;
166
167 tag = be32_to_cpup((__be32 *)(*p));
168 if (tag != OF_DT_BEGIN_NODE) {
169 pr_err("Weird tag at start of node: %x\n", tag);
170 return mem;
171 }
172 *p += 4;
173 pathp = (char *)*p;
174 l = allocl = strlen(pathp) + 1;
175 *p = ALIGN(*p + l, 4);
176
177 /* version 0x10 has a more compact unit name here instead of the full
178 * path. we accumulate the full path size using "fpsize", we'll rebuild
179 * it later. We detect this because the first character of the name is
180 * not '/'.
181 */
182 if ((*pathp) != '/') {
183 new_format = 1;
184 if (fpsize == 0) {
185 /* root node: special case. fpsize accounts for path
186 * plus terminating zero. root node only has '/', so
187 * fpsize should be 2, but we want to avoid the first
188 * level nodes to have two '/' so we use fpsize 1 here
189 */
190 fpsize = 1;
191 allocl = 2;
192 l = 1;
193 *pathp = '\0';
194 } else {
195 /* account for '/' and path size minus terminal 0
196 * already in 'l'
197 */
198 fpsize += l;
199 allocl = fpsize;
200 }
201 }
202
203 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
204 __alignof__(struct device_node));
205 if (allnextpp) {
206 char *fn;
207 memset(np, 0, sizeof(*np));
208 np->full_name = fn = ((char *)np) + sizeof(*np);
209 if (new_format) {
210 /* rebuild full path for new format */
211 if (dad && dad->parent) {
212 strcpy(fn, dad->full_name);
213 #ifdef DEBUG
214 if ((strlen(fn) + l + 1) != allocl) {
215 pr_debug("%s: p: %d, l: %d, a: %d\n",
216 pathp, (int)strlen(fn),
217 l, allocl);
218 }
219 #endif
220 fn += strlen(fn);
221 }
222 *(fn++) = '/';
223 }
224 memcpy(fn, pathp, l);
225
226 prev_pp = &np->properties;
227 **allnextpp = np;
228 *allnextpp = &np->allnext;
229 if (dad != NULL) {
230 np->parent = dad;
231 /* we temporarily use the next field as `last_child'*/
232 if (dad->next == NULL)
233 dad->child = np;
234 else
235 dad->next->sibling = np;
236 dad->next = np;
237 }
238 kref_init(&np->kref);
239 }
240 /* process properties */
241 while (1) {
242 u32 sz, noff;
243 char *pname;
244
245 tag = be32_to_cpup((__be32 *)(*p));
246 if (tag == OF_DT_NOP) {
247 *p += 4;
248 continue;
249 }
250 if (tag != OF_DT_PROP)
251 break;
252 *p += 4;
253 sz = be32_to_cpup((__be32 *)(*p));
254 noff = be32_to_cpup((__be32 *)((*p) + 4));
255 *p += 8;
256 if (be32_to_cpu(blob->version) < 0x10)
257 *p = ALIGN(*p, sz >= 8 ? 8 : 4);
258
259 pname = of_fdt_get_string(blob, noff);
260 if (pname == NULL) {
261 pr_info("Can't find property name in list !\n");
262 break;
263 }
264 if (strcmp(pname, "name") == 0)
265 has_name = 1;
266 l = strlen(pname) + 1;
267 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
268 __alignof__(struct property));
269 if (allnextpp) {
270 /* We accept flattened tree phandles either in
271 * ePAPR-style "phandle" properties, or the
272 * legacy "linux,phandle" properties. If both
273 * appear and have different values, things
274 * will get weird. Don't do that. */
275 if ((strcmp(pname, "phandle") == 0) ||
276 (strcmp(pname, "linux,phandle") == 0)) {
277 if (np->phandle == 0)
278 np->phandle = be32_to_cpup((__be32*)*p);
279 }
280 /* And we process the "ibm,phandle" property
281 * used in pSeries dynamic device tree
282 * stuff */
283 if (strcmp(pname, "ibm,phandle") == 0)
284 np->phandle = be32_to_cpup((__be32 *)*p);
285 pp->name = pname;
286 pp->length = sz;
287 pp->value = (void *)*p;
288 *prev_pp = pp;
289 prev_pp = &pp->next;
290 }
291 *p = ALIGN((*p) + sz, 4);
292 }
293 /* with version 0x10 we may not have the name property, recreate
294 * it here from the unit name if absent
295 */
296 if (!has_name) {
297 char *p1 = pathp, *ps = pathp, *pa = NULL;
298 int sz;
299
300 while (*p1) {
301 if ((*p1) == '@')
302 pa = p1;
303 if ((*p1) == '/')
304 ps = p1 + 1;
305 p1++;
306 }
307 if (pa < ps)
308 pa = p1;
309 sz = (pa - ps) + 1;
310 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
311 __alignof__(struct property));
312 if (allnextpp) {
313 pp->name = "name";
314 pp->length = sz;
315 pp->value = pp + 1;
316 *prev_pp = pp;
317 prev_pp = &pp->next;
318 memcpy(pp->value, ps, sz - 1);
319 ((char *)pp->value)[sz - 1] = 0;
320 pr_debug("fixed up name for %s -> %s\n", pathp,
321 (char *)pp->value);
322 }
323 }
324 if (allnextpp) {
325 *prev_pp = NULL;
326 np->name = of_get_property(np, "name", NULL);
327 np->type = of_get_property(np, "device_type", NULL);
328
329 if (!np->name)
330 np->name = "<NULL>";
331 if (!np->type)
332 np->type = "<NULL>";
333 }
334 while (tag == OF_DT_BEGIN_NODE || tag == OF_DT_NOP) {
335 if (tag == OF_DT_NOP)
336 *p += 4;
337 else
338 mem = unflatten_dt_node(blob, mem, p, np, allnextpp,
339 fpsize);
340 tag = be32_to_cpup((__be32 *)(*p));
341 }
342 if (tag != OF_DT_END_NODE) {
343 pr_err("Weird tag at end of node: %x\n", tag);
344 return mem;
345 }
346 *p += 4;
347 return mem;
348 }
349
350 /**
351 * __unflatten_device_tree - create tree of device_nodes from flat blob
352 *
353 * unflattens a device-tree, creating the
354 * tree of struct device_node. It also fills the "name" and "type"
355 * pointers of the nodes so the normal device-tree walking functions
356 * can be used.
357 * @blob: The blob to expand
358 * @mynodes: The device_node tree created by the call
359 * @dt_alloc: An allocator that provides a virtual address to memory
360 * for the resulting tree
361 */
362 static void __unflatten_device_tree(struct boot_param_header *blob,
363 struct device_node **mynodes,
364 void * (*dt_alloc)(u64 size, u64 align))
365 {
366 unsigned long start, mem, size;
367 struct device_node **allnextp = mynodes;
368
369 pr_debug(" -> unflatten_device_tree()\n");
370
371 if (!blob) {
372 pr_debug("No device tree pointer\n");
373 return;
374 }
375
376 pr_debug("Unflattening device tree:\n");
377 pr_debug("magic: %08x\n", be32_to_cpu(blob->magic));
378 pr_debug("size: %08x\n", be32_to_cpu(blob->totalsize));
379 pr_debug("version: %08x\n", be32_to_cpu(blob->version));
380
381 if (be32_to_cpu(blob->magic) != OF_DT_HEADER) {
382 pr_err("Invalid device tree blob header\n");
383 return;
384 }
385
386 /* First pass, scan for size */
387 start = ((unsigned long)blob) +
388 be32_to_cpu(blob->off_dt_struct);
389 size = unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
390 size = (size | 3) + 1;
391
392 pr_debug(" size is %lx, allocating...\n", size);
393
394 /* Allocate memory for the expanded device tree */
395 mem = (unsigned long)
396 dt_alloc(size + 4, __alignof__(struct device_node));
397
398 memset((void *)mem, 0, size);
399
400 ((__be32 *)mem)[size / 4] = cpu_to_be32(0xdeadbeef);
401
402 pr_debug(" unflattening %lx...\n", mem);
403
404 /* Second pass, do actual unflattening */
405 start = ((unsigned long)blob) +
406 be32_to_cpu(blob->off_dt_struct);
407 unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
408 if (be32_to_cpup((__be32 *)start) != OF_DT_END)
409 pr_warning("Weird tag at end of tree: %08x\n", *((u32 *)start));
410 if (be32_to_cpu(((__be32 *)mem)[size / 4]) != 0xdeadbeef)
411 pr_warning("End of tree marker overwritten: %08x\n",
412 be32_to_cpu(((__be32 *)mem)[size / 4]));
413 *allnextp = NULL;
414
415 pr_debug(" <- unflatten_device_tree()\n");
416 }
417
418 static void *kernel_tree_alloc(u64 size, u64 align)
419 {
420 return kzalloc(size, GFP_KERNEL);
421 }
422
423 /**
424 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
425 *
426 * unflattens the device-tree passed by the firmware, creating the
427 * tree of struct device_node. It also fills the "name" and "type"
428 * pointers of the nodes so the normal device-tree walking functions
429 * can be used.
430 */
431 void of_fdt_unflatten_tree(unsigned long *blob,
432 struct device_node **mynodes)
433 {
434 struct boot_param_header *device_tree =
435 (struct boot_param_header *)blob;
436 __unflatten_device_tree(device_tree, mynodes, &kernel_tree_alloc);
437 }
438 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
439
440 /* Everything below here references initial_boot_params directly. */
441 int __initdata dt_root_addr_cells;
442 int __initdata dt_root_size_cells;
443
444 struct boot_param_header *initial_boot_params;
445
446 #ifdef CONFIG_OF_EARLY_FLATTREE
447
448 /**
449 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
450 */
451 static int __init __reserved_mem_reserve_reg(unsigned long node,
452 const char *uname)
453 {
454 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
455 phys_addr_t base, size;
456 unsigned long len;
457 __be32 *prop;
458 int nomap, first = 1;
459
460 prop = of_get_flat_dt_prop(node, "reg", &len);
461 if (!prop)
462 return -ENOENT;
463
464 if (len && len % t_len != 0) {
465 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
466 uname);
467 return -EINVAL;
468 }
469
470 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
471
472 while (len >= t_len) {
473 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
474 size = dt_mem_next_cell(dt_root_size_cells, &prop);
475
476 if (base && size &&
477 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
478 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
479 uname, &base, (unsigned long)size / SZ_1M);
480 else
481 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
482 uname, &base, (unsigned long)size / SZ_1M);
483
484 len -= t_len;
485 if (first) {
486 fdt_reserved_mem_save_node(node, uname, base, size);
487 first = 0;
488 }
489 }
490 return 0;
491 }
492
493 /**
494 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
495 * in /reserved-memory matches the values supported by the current implementation,
496 * also check if ranges property has been provided
497 */
498 static int __reserved_mem_check_root(unsigned long node)
499 {
500 __be32 *prop;
501
502 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
503 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
504 return -EINVAL;
505
506 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
507 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
508 return -EINVAL;
509
510 prop = of_get_flat_dt_prop(node, "ranges", NULL);
511 if (!prop)
512 return -EINVAL;
513 return 0;
514 }
515
516 /**
517 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
518 */
519 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
520 int depth, void *data)
521 {
522 static int found;
523 const char *status;
524 int err;
525
526 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
527 if (__reserved_mem_check_root(node) != 0) {
528 pr_err("Reserved memory: unsupported node format, ignoring\n");
529 /* break scan */
530 return 1;
531 }
532 found = 1;
533 /* scan next node */
534 return 0;
535 } else if (!found) {
536 /* scan next node */
537 return 0;
538 } else if (found && depth < 2) {
539 /* scanning of /reserved-memory has been finished */
540 return 1;
541 }
542
543 status = of_get_flat_dt_prop(node, "status", NULL);
544 if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
545 return 0;
546
547 err = __reserved_mem_reserve_reg(node, uname);
548 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
549 fdt_reserved_mem_save_node(node, uname, 0, 0);
550
551 /* scan next node */
552 return 0;
553 }
554
555 /**
556 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
557 *
558 * This function grabs memory from early allocator for device exclusive use
559 * defined in device tree structures. It should be called by arch specific code
560 * once the early allocator (i.e. memblock) has been fully activated.
561 */
562 void __init early_init_fdt_scan_reserved_mem(void)
563 {
564 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
565 fdt_init_reserved_mem();
566 }
567
568 /**
569 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
570 * @it: callback function
571 * @data: context data pointer
572 *
573 * This function is used to scan the flattened device-tree, it is
574 * used to extract the memory information at boot before we can
575 * unflatten the tree
576 */
577 int __init of_scan_flat_dt(int (*it)(unsigned long node,
578 const char *uname, int depth,
579 void *data),
580 void *data)
581 {
582 unsigned long p = ((unsigned long)initial_boot_params) +
583 be32_to_cpu(initial_boot_params->off_dt_struct);
584 int rc = 0;
585 int depth = -1;
586
587 do {
588 u32 tag = be32_to_cpup((__be32 *)p);
589 const char *pathp;
590
591 p += 4;
592 if (tag == OF_DT_END_NODE) {
593 depth--;
594 continue;
595 }
596 if (tag == OF_DT_NOP)
597 continue;
598 if (tag == OF_DT_END)
599 break;
600 if (tag == OF_DT_PROP) {
601 u32 sz = be32_to_cpup((__be32 *)p);
602 p += 8;
603 if (be32_to_cpu(initial_boot_params->version) < 0x10)
604 p = ALIGN(p, sz >= 8 ? 8 : 4);
605 p += sz;
606 p = ALIGN(p, 4);
607 continue;
608 }
609 if (tag != OF_DT_BEGIN_NODE) {
610 pr_err("Invalid tag %x in flat device tree!\n", tag);
611 return -EINVAL;
612 }
613 depth++;
614 pathp = (char *)p;
615 p = ALIGN(p + strlen(pathp) + 1, 4);
616 if (*pathp == '/')
617 pathp = kbasename(pathp);
618 rc = it(p, pathp, depth, data);
619 if (rc != 0)
620 break;
621 } while (1);
622
623 return rc;
624 }
625
626 /**
627 * of_get_flat_dt_root - find the root node in the flat blob
628 */
629 unsigned long __init of_get_flat_dt_root(void)
630 {
631 unsigned long p = ((unsigned long)initial_boot_params) +
632 be32_to_cpu(initial_boot_params->off_dt_struct);
633
634 while (be32_to_cpup((__be32 *)p) == OF_DT_NOP)
635 p += 4;
636 BUG_ON(be32_to_cpup((__be32 *)p) != OF_DT_BEGIN_NODE);
637 p += 4;
638 return ALIGN(p + strlen((char *)p) + 1, 4);
639 }
640
641 /**
642 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
643 *
644 * This function can be used within scan_flattened_dt callback to get
645 * access to properties
646 */
647 void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
648 unsigned long *size)
649 {
650 return of_fdt_get_property(initial_boot_params, node, name, size);
651 }
652
653 /**
654 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
655 * @node: node to test
656 * @compat: compatible string to compare with compatible list.
657 */
658 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
659 {
660 return of_fdt_is_compatible(initial_boot_params, node, compat);
661 }
662
663 /**
664 * of_flat_dt_match - Return true if node matches a list of compatible values
665 */
666 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
667 {
668 return of_fdt_match(initial_boot_params, node, compat);
669 }
670
671 struct fdt_scan_status {
672 const char *name;
673 int namelen;
674 int depth;
675 int found;
676 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
677 void *data;
678 };
679
680 /**
681 * fdt_scan_node_by_path - iterator for of_scan_flat_dt_by_path function
682 */
683 static int __init fdt_scan_node_by_path(unsigned long node, const char *uname,
684 int depth, void *data)
685 {
686 struct fdt_scan_status *st = data;
687
688 /*
689 * if scan at the requested fdt node has been completed,
690 * return -ENXIO to abort further scanning
691 */
692 if (depth <= st->depth)
693 return -ENXIO;
694
695 /* requested fdt node has been found, so call iterator function */
696 if (st->found)
697 return st->iterator(node, uname, depth, st->data);
698
699 /* check if scanning automata is entering next level of fdt nodes */
700 if (depth == st->depth + 1 &&
701 strncmp(st->name, uname, st->namelen) == 0 &&
702 uname[st->namelen] == 0) {
703 st->depth += 1;
704 if (st->name[st->namelen] == 0) {
705 st->found = 1;
706 } else {
707 const char *next = st->name + st->namelen + 1;
708 st->name = next;
709 st->namelen = strcspn(next, "/");
710 }
711 return 0;
712 }
713
714 /* scan next fdt node */
715 return 0;
716 }
717
718 /**
719 * of_scan_flat_dt_by_path - scan flattened tree blob and call callback on each
720 * child of the given path.
721 * @path: path to start searching for children
722 * @it: callback function
723 * @data: context data pointer
724 *
725 * This function is used to scan the flattened device-tree starting from the
726 * node given by path. It is used to extract information (like reserved
727 * memory), which is required on ealy boot before we can unflatten the tree.
728 */
729 int __init of_scan_flat_dt_by_path(const char *path,
730 int (*it)(unsigned long node, const char *name, int depth, void *data),
731 void *data)
732 {
733 struct fdt_scan_status st = {path, 0, -1, 0, it, data};
734 int ret = 0;
735
736 if (initial_boot_params)
737 ret = of_scan_flat_dt(fdt_scan_node_by_path, &st);
738
739 if (!st.found)
740 return -ENOENT;
741 else if (ret == -ENXIO) /* scan has been completed */
742 return 0;
743 else
744 return ret;
745 }
746
747 #ifdef CONFIG_BLK_DEV_INITRD
748 /**
749 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
750 * @node: reference to node containing initrd location ('chosen')
751 */
752 void __init early_init_dt_check_for_initrd(unsigned long node)
753 {
754 unsigned long start, end, len;
755 __be32 *prop;
756
757 pr_debug("Looking for initrd properties... ");
758
759 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
760 if (!prop)
761 return;
762 start = of_read_ulong(prop, len/4);
763
764 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
765 if (!prop)
766 return;
767 end = of_read_ulong(prop, len/4);
768
769 early_init_dt_setup_initrd_arch(start, end);
770 pr_debug("initrd_start=0x%lx initrd_end=0x%lx\n", start, end);
771 }
772 #else
773 inline void early_init_dt_check_for_initrd(unsigned long node)
774 {
775 }
776 #endif /* CONFIG_BLK_DEV_INITRD */
777
778 /**
779 * early_init_dt_scan_root - fetch the top level address and size cells
780 */
781 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
782 int depth, void *data)
783 {
784 __be32 *prop;
785
786 if (depth != 0)
787 return 0;
788
789 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
790 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
791
792 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
793 if (prop)
794 dt_root_size_cells = be32_to_cpup(prop);
795 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
796
797 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
798 if (prop)
799 dt_root_addr_cells = be32_to_cpup(prop);
800 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
801
802 /* break now */
803 return 1;
804 }
805
806 u64 __init dt_mem_next_cell(int s, __be32 **cellp)
807 {
808 __be32 *p = *cellp;
809
810 *cellp = p + s;
811 return of_read_number(p, s);
812 }
813
814 /**
815 * early_init_dt_scan_memory - Look for an parse memory nodes
816 */
817 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
818 int depth, void *data)
819 {
820 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
821 __be32 *reg, *endp;
822 unsigned long l;
823
824 /* We are scanning "memory" nodes only */
825 if (type == NULL) {
826 /*
827 * The longtrail doesn't have a device_type on the
828 * /memory node, so look for the node called /memory@0.
829 */
830 if (depth != 1 || strcmp(uname, "memory@0") != 0)
831 return 0;
832 } else if (strcmp(type, "memory") != 0)
833 return 0;
834
835 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
836 if (reg == NULL)
837 reg = of_get_flat_dt_prop(node, "reg", &l);
838 if (reg == NULL)
839 return 0;
840
841 endp = reg + (l / sizeof(__be32));
842
843 pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
844 uname, l, reg[0], reg[1], reg[2], reg[3]);
845
846 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
847 u64 base, size;
848
849 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
850 size = dt_mem_next_cell(dt_root_size_cells, &reg);
851
852 if (size == 0)
853 continue;
854 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
855 (unsigned long long)size);
856
857 early_init_dt_add_memory_arch(base, size);
858 }
859
860 return 0;
861 }
862
863 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
864 phys_addr_t size, bool nomap)
865 {
866 if (memblock_is_region_reserved(base, size))
867 return -EBUSY;
868 if (nomap)
869 return memblock_remove(base, size);
870 return memblock_reserve(base, size);
871 }
872
873 /*
874 * Convert configs to something easy to use in C code
875 */
876 #if defined(CONFIG_CMDLINE_FORCE)
877 static const int overwrite_incoming_cmdline = 1;
878 static const int read_dt_cmdline;
879 static const int concat_cmdline;
880 #elif defined(CONFIG_CMDLINE_EXTEND)
881 static const int overwrite_incoming_cmdline;
882 static const int read_dt_cmdline = 1;
883 static const int concat_cmdline = 1;
884 #else /* CMDLINE_FROM_BOOTLOADER */
885 static const int overwrite_incoming_cmdline;
886 static const int read_dt_cmdline = 1;
887 static const int concat_cmdline;
888 #endif
889
890 #ifdef CONFIG_CMDLINE
891 static const char *config_cmdline = CONFIG_CMDLINE;
892 #else
893 static const char *config_cmdline = "";
894 #endif
895
896 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
897 int depth, void *data)
898 {
899 unsigned long l = 0;
900 char *p = NULL;
901 char *cmdline = data;
902
903 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
904
905 if (depth != 1 || !cmdline ||
906 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
907 return 0;
908
909 early_init_dt_check_for_initrd(node);
910
911 /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */
912 if (overwrite_incoming_cmdline || !cmdline[0])
913 strlcpy(cmdline, config_cmdline, COMMAND_LINE_SIZE);
914
915 /* Retrieve command line unless forcing */
916 if (read_dt_cmdline)
917 p = of_get_flat_dt_prop(node, "bootargs", &l);
918
919 if (p != NULL && l > 0) {
920 if (concat_cmdline) {
921 int cmdline_len;
922 int copy_len;
923 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
924 cmdline_len = strlen(cmdline);
925 copy_len = COMMAND_LINE_SIZE - cmdline_len - 1;
926 copy_len = min((int)l, copy_len);
927 strncpy(cmdline + cmdline_len, p, copy_len);
928 cmdline[cmdline_len + copy_len] = '\0';
929 } else {
930 strlcpy(cmdline, p, min((int)l, COMMAND_LINE_SIZE));
931 }
932 }
933
934 pr_debug("Command line is: %s\n", (char*)data);
935
936 /* break now */
937 return 1;
938 }
939
940 #ifdef CONFIG_HAVE_MEMBLOCK
941 /*
942 * called from unflatten_device_tree() to bootstrap devicetree itself
943 * Architectures can override this definition if memblock isn't used
944 */
945 void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
946 {
947 return __va(memblock_alloc(size, align));
948 }
949 #else
950 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
951 phys_addr_t size, bool nomap)
952 {
953 pr_err("Reserved memory not supported, ignoring range 0x%llx - 0x%llx%s\n",
954 base, size, nomap ? " (nomap)" : "");
955 return -ENOSYS;
956 }
957 #endif
958
959 /**
960 * unflatten_device_tree - create tree of device_nodes from flat blob
961 *
962 * unflattens the device-tree passed by the firmware, creating the
963 * tree of struct device_node. It also fills the "name" and "type"
964 * pointers of the nodes so the normal device-tree walking functions
965 * can be used.
966 */
967 void __init unflatten_device_tree(void)
968 {
969 __unflatten_device_tree(initial_boot_params, &of_allnodes,
970 early_init_dt_alloc_memory_arch);
971
972 /* Get pointer to "/chosen" and "/aliasas" nodes for use everywhere */
973 of_alias_scan(early_init_dt_alloc_memory_arch);
974 }
975
976 #endif /* CONFIG_OF_EARLY_FLATTREE */