Merge remote-tracking branch 'asoc/fix/dapm' into asoc-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26
27 #include "of_private.h"
28
29 LIST_HEAD(aliases_lookup);
30
31 struct device_node *of_allnodes;
32 EXPORT_SYMBOL(of_allnodes);
33 struct device_node *of_chosen;
34 struct device_node *of_aliases;
35
36 DEFINE_MUTEX(of_aliases_mutex);
37
38 /* use when traversing tree through the allnext, child, sibling,
39 * or parent members of struct device_node.
40 */
41 DEFINE_RAW_SPINLOCK(devtree_lock);
42
43 int of_n_addr_cells(struct device_node *np)
44 {
45 const __be32 *ip;
46
47 do {
48 if (np->parent)
49 np = np->parent;
50 ip = of_get_property(np, "#address-cells", NULL);
51 if (ip)
52 return be32_to_cpup(ip);
53 } while (np->parent);
54 /* No #address-cells property for the root node */
55 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
56 }
57 EXPORT_SYMBOL(of_n_addr_cells);
58
59 int of_n_size_cells(struct device_node *np)
60 {
61 const __be32 *ip;
62
63 do {
64 if (np->parent)
65 np = np->parent;
66 ip = of_get_property(np, "#size-cells", NULL);
67 if (ip)
68 return be32_to_cpup(ip);
69 } while (np->parent);
70 /* No #size-cells property for the root node */
71 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_size_cells);
74
75 #if defined(CONFIG_OF_DYNAMIC)
76 /**
77 * of_node_get - Increment refcount of a node
78 * @node: Node to inc refcount, NULL is supported to
79 * simplify writing of callers
80 *
81 * Returns node.
82 */
83 struct device_node *of_node_get(struct device_node *node)
84 {
85 if (node)
86 kref_get(&node->kref);
87 return node;
88 }
89 EXPORT_SYMBOL(of_node_get);
90
91 static inline struct device_node *kref_to_device_node(struct kref *kref)
92 {
93 return container_of(kref, struct device_node, kref);
94 }
95
96 /**
97 * of_node_release - release a dynamically allocated node
98 * @kref: kref element of the node to be released
99 *
100 * In of_node_put() this function is passed to kref_put()
101 * as the destructor.
102 */
103 static void of_node_release(struct kref *kref)
104 {
105 struct device_node *node = kref_to_device_node(kref);
106 struct property *prop = node->properties;
107
108 /* We should never be releasing nodes that haven't been detached. */
109 if (!of_node_check_flag(node, OF_DETACHED)) {
110 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
111 dump_stack();
112 kref_init(&node->kref);
113 return;
114 }
115
116 if (!of_node_check_flag(node, OF_DYNAMIC))
117 return;
118
119 while (prop) {
120 struct property *next = prop->next;
121 kfree(prop->name);
122 kfree(prop->value);
123 kfree(prop);
124 prop = next;
125
126 if (!prop) {
127 prop = node->deadprops;
128 node->deadprops = NULL;
129 }
130 }
131 kfree(node->full_name);
132 kfree(node->data);
133 kfree(node);
134 }
135
136 /**
137 * of_node_put - Decrement refcount of a node
138 * @node: Node to dec refcount, NULL is supported to
139 * simplify writing of callers
140 *
141 */
142 void of_node_put(struct device_node *node)
143 {
144 if (node)
145 kref_put(&node->kref, of_node_release);
146 }
147 EXPORT_SYMBOL(of_node_put);
148 #endif /* CONFIG_OF_DYNAMIC */
149
150 static struct property *__of_find_property(const struct device_node *np,
151 const char *name, int *lenp)
152 {
153 struct property *pp;
154
155 if (!np)
156 return NULL;
157
158 for (pp = np->properties; pp; pp = pp->next) {
159 if (of_prop_cmp(pp->name, name) == 0) {
160 if (lenp)
161 *lenp = pp->length;
162 break;
163 }
164 }
165
166 return pp;
167 }
168
169 struct property *of_find_property(const struct device_node *np,
170 const char *name,
171 int *lenp)
172 {
173 struct property *pp;
174 unsigned long flags;
175
176 raw_spin_lock_irqsave(&devtree_lock, flags);
177 pp = __of_find_property(np, name, lenp);
178 raw_spin_unlock_irqrestore(&devtree_lock, flags);
179
180 return pp;
181 }
182 EXPORT_SYMBOL(of_find_property);
183
184 /**
185 * of_find_all_nodes - Get next node in global list
186 * @prev: Previous node or NULL to start iteration
187 * of_node_put() will be called on it
188 *
189 * Returns a node pointer with refcount incremented, use
190 * of_node_put() on it when done.
191 */
192 struct device_node *of_find_all_nodes(struct device_node *prev)
193 {
194 struct device_node *np;
195
196 raw_spin_lock(&devtree_lock);
197 np = prev ? prev->allnext : of_allnodes;
198 for (; np != NULL; np = np->allnext)
199 if (of_node_get(np))
200 break;
201 of_node_put(prev);
202 raw_spin_unlock(&devtree_lock);
203 return np;
204 }
205 EXPORT_SYMBOL(of_find_all_nodes);
206
207 /*
208 * Find a property with a given name for a given node
209 * and return the value.
210 */
211 static const void *__of_get_property(const struct device_node *np,
212 const char *name, int *lenp)
213 {
214 struct property *pp = __of_find_property(np, name, lenp);
215
216 return pp ? pp->value : NULL;
217 }
218
219 /*
220 * Find a property with a given name for a given node
221 * and return the value.
222 */
223 const void *of_get_property(const struct device_node *np, const char *name,
224 int *lenp)
225 {
226 struct property *pp = of_find_property(np, name, lenp);
227
228 return pp ? pp->value : NULL;
229 }
230 EXPORT_SYMBOL(of_get_property);
231
232 /** Checks if the given "compat" string matches one of the strings in
233 * the device's "compatible" property
234 */
235 static int __of_device_is_compatible(const struct device_node *device,
236 const char *compat)
237 {
238 const char* cp;
239 int cplen, l;
240
241 cp = __of_get_property(device, "compatible", &cplen);
242 if (cp == NULL)
243 return 0;
244 while (cplen > 0) {
245 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
246 return 1;
247 l = strlen(cp) + 1;
248 cp += l;
249 cplen -= l;
250 }
251
252 return 0;
253 }
254
255 /** Checks if the given "compat" string matches one of the strings in
256 * the device's "compatible" property
257 */
258 int of_device_is_compatible(const struct device_node *device,
259 const char *compat)
260 {
261 unsigned long flags;
262 int res;
263
264 raw_spin_lock_irqsave(&devtree_lock, flags);
265 res = __of_device_is_compatible(device, compat);
266 raw_spin_unlock_irqrestore(&devtree_lock, flags);
267 return res;
268 }
269 EXPORT_SYMBOL(of_device_is_compatible);
270
271 /**
272 * of_machine_is_compatible - Test root of device tree for a given compatible value
273 * @compat: compatible string to look for in root node's compatible property.
274 *
275 * Returns true if the root node has the given value in its
276 * compatible property.
277 */
278 int of_machine_is_compatible(const char *compat)
279 {
280 struct device_node *root;
281 int rc = 0;
282
283 root = of_find_node_by_path("/");
284 if (root) {
285 rc = of_device_is_compatible(root, compat);
286 of_node_put(root);
287 }
288 return rc;
289 }
290 EXPORT_SYMBOL(of_machine_is_compatible);
291
292 /**
293 * __of_device_is_available - check if a device is available for use
294 *
295 * @device: Node to check for availability, with locks already held
296 *
297 * Returns 1 if the status property is absent or set to "okay" or "ok",
298 * 0 otherwise
299 */
300 static int __of_device_is_available(const struct device_node *device)
301 {
302 const char *status;
303 int statlen;
304
305 status = __of_get_property(device, "status", &statlen);
306 if (status == NULL)
307 return 1;
308
309 if (statlen > 0) {
310 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
311 return 1;
312 }
313
314 return 0;
315 }
316
317 /**
318 * of_device_is_available - check if a device is available for use
319 *
320 * @device: Node to check for availability
321 *
322 * Returns 1 if the status property is absent or set to "okay" or "ok",
323 * 0 otherwise
324 */
325 int of_device_is_available(const struct device_node *device)
326 {
327 unsigned long flags;
328 int res;
329
330 raw_spin_lock_irqsave(&devtree_lock, flags);
331 res = __of_device_is_available(device);
332 raw_spin_unlock_irqrestore(&devtree_lock, flags);
333 return res;
334
335 }
336 EXPORT_SYMBOL(of_device_is_available);
337
338 /**
339 * of_get_parent - Get a node's parent if any
340 * @node: Node to get parent
341 *
342 * Returns a node pointer with refcount incremented, use
343 * of_node_put() on it when done.
344 */
345 struct device_node *of_get_parent(const struct device_node *node)
346 {
347 struct device_node *np;
348 unsigned long flags;
349
350 if (!node)
351 return NULL;
352
353 raw_spin_lock_irqsave(&devtree_lock, flags);
354 np = of_node_get(node->parent);
355 raw_spin_unlock_irqrestore(&devtree_lock, flags);
356 return np;
357 }
358 EXPORT_SYMBOL(of_get_parent);
359
360 /**
361 * of_get_next_parent - Iterate to a node's parent
362 * @node: Node to get parent of
363 *
364 * This is like of_get_parent() except that it drops the
365 * refcount on the passed node, making it suitable for iterating
366 * through a node's parents.
367 *
368 * Returns a node pointer with refcount incremented, use
369 * of_node_put() on it when done.
370 */
371 struct device_node *of_get_next_parent(struct device_node *node)
372 {
373 struct device_node *parent;
374 unsigned long flags;
375
376 if (!node)
377 return NULL;
378
379 raw_spin_lock_irqsave(&devtree_lock, flags);
380 parent = of_node_get(node->parent);
381 of_node_put(node);
382 raw_spin_unlock_irqrestore(&devtree_lock, flags);
383 return parent;
384 }
385
386 /**
387 * of_get_next_child - Iterate a node childs
388 * @node: parent node
389 * @prev: previous child of the parent node, or NULL to get first
390 *
391 * Returns a node pointer with refcount incremented, use
392 * of_node_put() on it when done.
393 */
394 struct device_node *of_get_next_child(const struct device_node *node,
395 struct device_node *prev)
396 {
397 struct device_node *next;
398 unsigned long flags;
399
400 raw_spin_lock_irqsave(&devtree_lock, flags);
401 next = prev ? prev->sibling : node->child;
402 for (; next; next = next->sibling)
403 if (of_node_get(next))
404 break;
405 of_node_put(prev);
406 raw_spin_unlock_irqrestore(&devtree_lock, flags);
407 return next;
408 }
409 EXPORT_SYMBOL(of_get_next_child);
410
411 /**
412 * of_get_next_available_child - Find the next available child node
413 * @node: parent node
414 * @prev: previous child of the parent node, or NULL to get first
415 *
416 * This function is like of_get_next_child(), except that it
417 * automatically skips any disabled nodes (i.e. status = "disabled").
418 */
419 struct device_node *of_get_next_available_child(const struct device_node *node,
420 struct device_node *prev)
421 {
422 struct device_node *next;
423
424 raw_spin_lock(&devtree_lock);
425 next = prev ? prev->sibling : node->child;
426 for (; next; next = next->sibling) {
427 if (!__of_device_is_available(next))
428 continue;
429 if (of_node_get(next))
430 break;
431 }
432 of_node_put(prev);
433 raw_spin_unlock(&devtree_lock);
434 return next;
435 }
436 EXPORT_SYMBOL(of_get_next_available_child);
437
438 /**
439 * of_get_child_by_name - Find the child node by name for a given parent
440 * @node: parent node
441 * @name: child name to look for.
442 *
443 * This function looks for child node for given matching name
444 *
445 * Returns a node pointer if found, with refcount incremented, use
446 * of_node_put() on it when done.
447 * Returns NULL if node is not found.
448 */
449 struct device_node *of_get_child_by_name(const struct device_node *node,
450 const char *name)
451 {
452 struct device_node *child;
453
454 for_each_child_of_node(node, child)
455 if (child->name && (of_node_cmp(child->name, name) == 0))
456 break;
457 return child;
458 }
459 EXPORT_SYMBOL(of_get_child_by_name);
460
461 /**
462 * of_find_node_by_path - Find a node matching a full OF path
463 * @path: The full path to match
464 *
465 * Returns a node pointer with refcount incremented, use
466 * of_node_put() on it when done.
467 */
468 struct device_node *of_find_node_by_path(const char *path)
469 {
470 struct device_node *np = of_allnodes;
471 unsigned long flags;
472
473 raw_spin_lock_irqsave(&devtree_lock, flags);
474 for (; np; np = np->allnext) {
475 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
476 && of_node_get(np))
477 break;
478 }
479 raw_spin_unlock_irqrestore(&devtree_lock, flags);
480 return np;
481 }
482 EXPORT_SYMBOL(of_find_node_by_path);
483
484 /**
485 * of_find_node_by_name - Find a node by its "name" property
486 * @from: The node to start searching from or NULL, the node
487 * you pass will not be searched, only the next one
488 * will; typically, you pass what the previous call
489 * returned. of_node_put() will be called on it
490 * @name: The name string to match against
491 *
492 * Returns a node pointer with refcount incremented, use
493 * of_node_put() on it when done.
494 */
495 struct device_node *of_find_node_by_name(struct device_node *from,
496 const char *name)
497 {
498 struct device_node *np;
499 unsigned long flags;
500
501 raw_spin_lock_irqsave(&devtree_lock, flags);
502 np = from ? from->allnext : of_allnodes;
503 for (; np; np = np->allnext)
504 if (np->name && (of_node_cmp(np->name, name) == 0)
505 && of_node_get(np))
506 break;
507 of_node_put(from);
508 raw_spin_unlock_irqrestore(&devtree_lock, flags);
509 return np;
510 }
511 EXPORT_SYMBOL(of_find_node_by_name);
512
513 /**
514 * of_find_node_by_type - Find a node by its "device_type" property
515 * @from: The node to start searching from, or NULL to start searching
516 * the entire device tree. The node you pass will not be
517 * searched, only the next one will; typically, you pass
518 * what the previous call returned. of_node_put() will be
519 * called on from for you.
520 * @type: The type string to match against
521 *
522 * Returns a node pointer with refcount incremented, use
523 * of_node_put() on it when done.
524 */
525 struct device_node *of_find_node_by_type(struct device_node *from,
526 const char *type)
527 {
528 struct device_node *np;
529 unsigned long flags;
530
531 raw_spin_lock_irqsave(&devtree_lock, flags);
532 np = from ? from->allnext : of_allnodes;
533 for (; np; np = np->allnext)
534 if (np->type && (of_node_cmp(np->type, type) == 0)
535 && of_node_get(np))
536 break;
537 of_node_put(from);
538 raw_spin_unlock_irqrestore(&devtree_lock, flags);
539 return np;
540 }
541 EXPORT_SYMBOL(of_find_node_by_type);
542
543 /**
544 * of_find_compatible_node - Find a node based on type and one of the
545 * tokens in its "compatible" property
546 * @from: The node to start searching from or NULL, the node
547 * you pass will not be searched, only the next one
548 * will; typically, you pass what the previous call
549 * returned. of_node_put() will be called on it
550 * @type: The type string to match "device_type" or NULL to ignore
551 * @compatible: The string to match to one of the tokens in the device
552 * "compatible" list.
553 *
554 * Returns a node pointer with refcount incremented, use
555 * of_node_put() on it when done.
556 */
557 struct device_node *of_find_compatible_node(struct device_node *from,
558 const char *type, const char *compatible)
559 {
560 struct device_node *np;
561 unsigned long flags;
562
563 raw_spin_lock_irqsave(&devtree_lock, flags);
564 np = from ? from->allnext : of_allnodes;
565 for (; np; np = np->allnext) {
566 if (type
567 && !(np->type && (of_node_cmp(np->type, type) == 0)))
568 continue;
569 if (__of_device_is_compatible(np, compatible) &&
570 of_node_get(np))
571 break;
572 }
573 of_node_put(from);
574 raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 return np;
576 }
577 EXPORT_SYMBOL(of_find_compatible_node);
578
579 /**
580 * of_find_node_with_property - Find a node which has a property with
581 * the given name.
582 * @from: The node to start searching from or NULL, the node
583 * you pass will not be searched, only the next one
584 * will; typically, you pass what the previous call
585 * returned. of_node_put() will be called on it
586 * @prop_name: The name of the property to look for.
587 *
588 * Returns a node pointer with refcount incremented, use
589 * of_node_put() on it when done.
590 */
591 struct device_node *of_find_node_with_property(struct device_node *from,
592 const char *prop_name)
593 {
594 struct device_node *np;
595 struct property *pp;
596 unsigned long flags;
597
598 raw_spin_lock_irqsave(&devtree_lock, flags);
599 np = from ? from->allnext : of_allnodes;
600 for (; np; np = np->allnext) {
601 for (pp = np->properties; pp; pp = pp->next) {
602 if (of_prop_cmp(pp->name, prop_name) == 0) {
603 of_node_get(np);
604 goto out;
605 }
606 }
607 }
608 out:
609 of_node_put(from);
610 raw_spin_unlock_irqrestore(&devtree_lock, flags);
611 return np;
612 }
613 EXPORT_SYMBOL(of_find_node_with_property);
614
615 static
616 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
617 const struct device_node *node)
618 {
619 if (!matches)
620 return NULL;
621
622 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
623 int match = 1;
624 if (matches->name[0])
625 match &= node->name
626 && !strcmp(matches->name, node->name);
627 if (matches->type[0])
628 match &= node->type
629 && !strcmp(matches->type, node->type);
630 if (matches->compatible[0])
631 match &= __of_device_is_compatible(node,
632 matches->compatible);
633 if (match)
634 return matches;
635 matches++;
636 }
637 return NULL;
638 }
639
640 /**
641 * of_match_node - Tell if an device_node has a matching of_match structure
642 * @matches: array of of device match structures to search in
643 * @node: the of device structure to match against
644 *
645 * Low level utility function used by device matching.
646 */
647 const struct of_device_id *of_match_node(const struct of_device_id *matches,
648 const struct device_node *node)
649 {
650 const struct of_device_id *match;
651 unsigned long flags;
652
653 raw_spin_lock_irqsave(&devtree_lock, flags);
654 match = __of_match_node(matches, node);
655 raw_spin_unlock_irqrestore(&devtree_lock, flags);
656 return match;
657 }
658 EXPORT_SYMBOL(of_match_node);
659
660 /**
661 * of_find_matching_node_and_match - Find a node based on an of_device_id
662 * match table.
663 * @from: The node to start searching from or NULL, the node
664 * you pass will not be searched, only the next one
665 * will; typically, you pass what the previous call
666 * returned. of_node_put() will be called on it
667 * @matches: array of of device match structures to search in
668 * @match Updated to point at the matches entry which matched
669 *
670 * Returns a node pointer with refcount incremented, use
671 * of_node_put() on it when done.
672 */
673 struct device_node *of_find_matching_node_and_match(struct device_node *from,
674 const struct of_device_id *matches,
675 const struct of_device_id **match)
676 {
677 struct device_node *np;
678 const struct of_device_id *m;
679 unsigned long flags;
680
681 if (match)
682 *match = NULL;
683
684 raw_spin_lock_irqsave(&devtree_lock, flags);
685 np = from ? from->allnext : of_allnodes;
686 for (; np; np = np->allnext) {
687 m = __of_match_node(matches, np);
688 if (m && of_node_get(np)) {
689 if (match)
690 *match = m;
691 break;
692 }
693 }
694 of_node_put(from);
695 raw_spin_unlock_irqrestore(&devtree_lock, flags);
696 return np;
697 }
698 EXPORT_SYMBOL(of_find_matching_node_and_match);
699
700 /**
701 * of_modalias_node - Lookup appropriate modalias for a device node
702 * @node: pointer to a device tree node
703 * @modalias: Pointer to buffer that modalias value will be copied into
704 * @len: Length of modalias value
705 *
706 * Based on the value of the compatible property, this routine will attempt
707 * to choose an appropriate modalias value for a particular device tree node.
708 * It does this by stripping the manufacturer prefix (as delimited by a ',')
709 * from the first entry in the compatible list property.
710 *
711 * This routine returns 0 on success, <0 on failure.
712 */
713 int of_modalias_node(struct device_node *node, char *modalias, int len)
714 {
715 const char *compatible, *p;
716 int cplen;
717
718 compatible = of_get_property(node, "compatible", &cplen);
719 if (!compatible || strlen(compatible) > cplen)
720 return -ENODEV;
721 p = strchr(compatible, ',');
722 strlcpy(modalias, p ? p + 1 : compatible, len);
723 return 0;
724 }
725 EXPORT_SYMBOL_GPL(of_modalias_node);
726
727 /**
728 * of_find_node_by_phandle - Find a node given a phandle
729 * @handle: phandle of the node to find
730 *
731 * Returns a node pointer with refcount incremented, use
732 * of_node_put() on it when done.
733 */
734 struct device_node *of_find_node_by_phandle(phandle handle)
735 {
736 struct device_node *np;
737
738 raw_spin_lock(&devtree_lock);
739 for (np = of_allnodes; np; np = np->allnext)
740 if (np->phandle == handle)
741 break;
742 of_node_get(np);
743 raw_spin_unlock(&devtree_lock);
744 return np;
745 }
746 EXPORT_SYMBOL(of_find_node_by_phandle);
747
748 /**
749 * of_property_read_u8_array - Find and read an array of u8 from a property.
750 *
751 * @np: device node from which the property value is to be read.
752 * @propname: name of the property to be searched.
753 * @out_value: pointer to return value, modified only if return value is 0.
754 * @sz: number of array elements to read
755 *
756 * Search for a property in a device node and read 8-bit value(s) from
757 * it. Returns 0 on success, -EINVAL if the property does not exist,
758 * -ENODATA if property does not have a value, and -EOVERFLOW if the
759 * property data isn't large enough.
760 *
761 * dts entry of array should be like:
762 * property = /bits/ 8 <0x50 0x60 0x70>;
763 *
764 * The out_value is modified only if a valid u8 value can be decoded.
765 */
766 int of_property_read_u8_array(const struct device_node *np,
767 const char *propname, u8 *out_values, size_t sz)
768 {
769 struct property *prop = of_find_property(np, propname, NULL);
770 const u8 *val;
771
772 if (!prop)
773 return -EINVAL;
774 if (!prop->value)
775 return -ENODATA;
776 if ((sz * sizeof(*out_values)) > prop->length)
777 return -EOVERFLOW;
778
779 val = prop->value;
780 while (sz--)
781 *out_values++ = *val++;
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
785
786 /**
787 * of_property_read_u16_array - Find and read an array of u16 from a property.
788 *
789 * @np: device node from which the property value is to be read.
790 * @propname: name of the property to be searched.
791 * @out_value: pointer to return value, modified only if return value is 0.
792 * @sz: number of array elements to read
793 *
794 * Search for a property in a device node and read 16-bit value(s) from
795 * it. Returns 0 on success, -EINVAL if the property does not exist,
796 * -ENODATA if property does not have a value, and -EOVERFLOW if the
797 * property data isn't large enough.
798 *
799 * dts entry of array should be like:
800 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
801 *
802 * The out_value is modified only if a valid u16 value can be decoded.
803 */
804 int of_property_read_u16_array(const struct device_node *np,
805 const char *propname, u16 *out_values, size_t sz)
806 {
807 struct property *prop = of_find_property(np, propname, NULL);
808 const __be16 *val;
809
810 if (!prop)
811 return -EINVAL;
812 if (!prop->value)
813 return -ENODATA;
814 if ((sz * sizeof(*out_values)) > prop->length)
815 return -EOVERFLOW;
816
817 val = prop->value;
818 while (sz--)
819 *out_values++ = be16_to_cpup(val++);
820 return 0;
821 }
822 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
823
824 /**
825 * of_property_read_u32_array - Find and read an array of 32 bit integers
826 * from a property.
827 *
828 * @np: device node from which the property value is to be read.
829 * @propname: name of the property to be searched.
830 * @out_value: pointer to return value, modified only if return value is 0.
831 * @sz: number of array elements to read
832 *
833 * Search for a property in a device node and read 32-bit value(s) from
834 * it. Returns 0 on success, -EINVAL if the property does not exist,
835 * -ENODATA if property does not have a value, and -EOVERFLOW if the
836 * property data isn't large enough.
837 *
838 * The out_value is modified only if a valid u32 value can be decoded.
839 */
840 int of_property_read_u32_array(const struct device_node *np,
841 const char *propname, u32 *out_values,
842 size_t sz)
843 {
844 struct property *prop = of_find_property(np, propname, NULL);
845 const __be32 *val;
846
847 if (!prop)
848 return -EINVAL;
849 if (!prop->value)
850 return -ENODATA;
851 if ((sz * sizeof(*out_values)) > prop->length)
852 return -EOVERFLOW;
853
854 val = prop->value;
855 while (sz--)
856 *out_values++ = be32_to_cpup(val++);
857 return 0;
858 }
859 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
860
861 /**
862 * of_property_read_u64 - Find and read a 64 bit integer from a property
863 * @np: device node from which the property value is to be read.
864 * @propname: name of the property to be searched.
865 * @out_value: pointer to return value, modified only if return value is 0.
866 *
867 * Search for a property in a device node and read a 64-bit value from
868 * it. Returns 0 on success, -EINVAL if the property does not exist,
869 * -ENODATA if property does not have a value, and -EOVERFLOW if the
870 * property data isn't large enough.
871 *
872 * The out_value is modified only if a valid u64 value can be decoded.
873 */
874 int of_property_read_u64(const struct device_node *np, const char *propname,
875 u64 *out_value)
876 {
877 struct property *prop = of_find_property(np, propname, NULL);
878
879 if (!prop)
880 return -EINVAL;
881 if (!prop->value)
882 return -ENODATA;
883 if (sizeof(*out_value) > prop->length)
884 return -EOVERFLOW;
885 *out_value = of_read_number(prop->value, 2);
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(of_property_read_u64);
889
890 /**
891 * of_property_read_string - Find and read a string from a property
892 * @np: device node from which the property value is to be read.
893 * @propname: name of the property to be searched.
894 * @out_string: pointer to null terminated return string, modified only if
895 * return value is 0.
896 *
897 * Search for a property in a device tree node and retrieve a null
898 * terminated string value (pointer to data, not a copy). Returns 0 on
899 * success, -EINVAL if the property does not exist, -ENODATA if property
900 * does not have a value, and -EILSEQ if the string is not null-terminated
901 * within the length of the property data.
902 *
903 * The out_string pointer is modified only if a valid string can be decoded.
904 */
905 int of_property_read_string(struct device_node *np, const char *propname,
906 const char **out_string)
907 {
908 struct property *prop = of_find_property(np, propname, NULL);
909 if (!prop)
910 return -EINVAL;
911 if (!prop->value)
912 return -ENODATA;
913 if (strnlen(prop->value, prop->length) >= prop->length)
914 return -EILSEQ;
915 *out_string = prop->value;
916 return 0;
917 }
918 EXPORT_SYMBOL_GPL(of_property_read_string);
919
920 /**
921 * of_property_read_string_index - Find and read a string from a multiple
922 * strings property.
923 * @np: device node from which the property value is to be read.
924 * @propname: name of the property to be searched.
925 * @index: index of the string in the list of strings
926 * @out_string: pointer to null terminated return string, modified only if
927 * return value is 0.
928 *
929 * Search for a property in a device tree node and retrieve a null
930 * terminated string value (pointer to data, not a copy) in the list of strings
931 * contained in that property.
932 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
933 * property does not have a value, and -EILSEQ if the string is not
934 * null-terminated within the length of the property data.
935 *
936 * The out_string pointer is modified only if a valid string can be decoded.
937 */
938 int of_property_read_string_index(struct device_node *np, const char *propname,
939 int index, const char **output)
940 {
941 struct property *prop = of_find_property(np, propname, NULL);
942 int i = 0;
943 size_t l = 0, total = 0;
944 const char *p;
945
946 if (!prop)
947 return -EINVAL;
948 if (!prop->value)
949 return -ENODATA;
950 if (strnlen(prop->value, prop->length) >= prop->length)
951 return -EILSEQ;
952
953 p = prop->value;
954
955 for (i = 0; total < prop->length; total += l, p += l) {
956 l = strlen(p) + 1;
957 if (i++ == index) {
958 *output = p;
959 return 0;
960 }
961 }
962 return -ENODATA;
963 }
964 EXPORT_SYMBOL_GPL(of_property_read_string_index);
965
966 /**
967 * of_property_match_string() - Find string in a list and return index
968 * @np: pointer to node containing string list property
969 * @propname: string list property name
970 * @string: pointer to string to search for in string list
971 *
972 * This function searches a string list property and returns the index
973 * of a specific string value.
974 */
975 int of_property_match_string(struct device_node *np, const char *propname,
976 const char *string)
977 {
978 struct property *prop = of_find_property(np, propname, NULL);
979 size_t l;
980 int i;
981 const char *p, *end;
982
983 if (!prop)
984 return -EINVAL;
985 if (!prop->value)
986 return -ENODATA;
987
988 p = prop->value;
989 end = p + prop->length;
990
991 for (i = 0; p < end; i++, p += l) {
992 l = strlen(p) + 1;
993 if (p + l > end)
994 return -EILSEQ;
995 pr_debug("comparing %s with %s\n", string, p);
996 if (strcmp(string, p) == 0)
997 return i; /* Found it; return index */
998 }
999 return -ENODATA;
1000 }
1001 EXPORT_SYMBOL_GPL(of_property_match_string);
1002
1003 /**
1004 * of_property_count_strings - Find and return the number of strings from a
1005 * multiple strings property.
1006 * @np: device node from which the property value is to be read.
1007 * @propname: name of the property to be searched.
1008 *
1009 * Search for a property in a device tree node and retrieve the number of null
1010 * terminated string contain in it. Returns the number of strings on
1011 * success, -EINVAL if the property does not exist, -ENODATA if property
1012 * does not have a value, and -EILSEQ if the string is not null-terminated
1013 * within the length of the property data.
1014 */
1015 int of_property_count_strings(struct device_node *np, const char *propname)
1016 {
1017 struct property *prop = of_find_property(np, propname, NULL);
1018 int i = 0;
1019 size_t l = 0, total = 0;
1020 const char *p;
1021
1022 if (!prop)
1023 return -EINVAL;
1024 if (!prop->value)
1025 return -ENODATA;
1026 if (strnlen(prop->value, prop->length) >= prop->length)
1027 return -EILSEQ;
1028
1029 p = prop->value;
1030
1031 for (i = 0; total < prop->length; total += l, p += l, i++)
1032 l = strlen(p) + 1;
1033
1034 return i;
1035 }
1036 EXPORT_SYMBOL_GPL(of_property_count_strings);
1037
1038 /**
1039 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1040 * @np: Pointer to device node holding phandle property
1041 * @phandle_name: Name of property holding a phandle value
1042 * @index: For properties holding a table of phandles, this is the index into
1043 * the table
1044 *
1045 * Returns the device_node pointer with refcount incremented. Use
1046 * of_node_put() on it when done.
1047 */
1048 struct device_node *of_parse_phandle(const struct device_node *np,
1049 const char *phandle_name, int index)
1050 {
1051 const __be32 *phandle;
1052 int size;
1053
1054 phandle = of_get_property(np, phandle_name, &size);
1055 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
1056 return NULL;
1057
1058 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
1059 }
1060 EXPORT_SYMBOL(of_parse_phandle);
1061
1062 /**
1063 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1064 * @np: pointer to a device tree node containing a list
1065 * @list_name: property name that contains a list
1066 * @cells_name: property name that specifies phandles' arguments count
1067 * @index: index of a phandle to parse out
1068 * @out_args: optional pointer to output arguments structure (will be filled)
1069 *
1070 * This function is useful to parse lists of phandles and their arguments.
1071 * Returns 0 on success and fills out_args, on error returns appropriate
1072 * errno value.
1073 *
1074 * Caller is responsible to call of_node_put() on the returned out_args->node
1075 * pointer.
1076 *
1077 * Example:
1078 *
1079 * phandle1: node1 {
1080 * #list-cells = <2>;
1081 * }
1082 *
1083 * phandle2: node2 {
1084 * #list-cells = <1>;
1085 * }
1086 *
1087 * node3 {
1088 * list = <&phandle1 1 2 &phandle2 3>;
1089 * }
1090 *
1091 * To get a device_node of the `node2' node you may call this:
1092 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1093 */
1094 static int __of_parse_phandle_with_args(const struct device_node *np,
1095 const char *list_name,
1096 const char *cells_name, int index,
1097 struct of_phandle_args *out_args)
1098 {
1099 const __be32 *list, *list_end;
1100 int rc = 0, size, cur_index = 0;
1101 uint32_t count = 0;
1102 struct device_node *node = NULL;
1103 phandle phandle;
1104
1105 /* Retrieve the phandle list property */
1106 list = of_get_property(np, list_name, &size);
1107 if (!list)
1108 return -ENOENT;
1109 list_end = list + size / sizeof(*list);
1110
1111 /* Loop over the phandles until all the requested entry is found */
1112 while (list < list_end) {
1113 rc = -EINVAL;
1114 count = 0;
1115
1116 /*
1117 * If phandle is 0, then it is an empty entry with no
1118 * arguments. Skip forward to the next entry.
1119 */
1120 phandle = be32_to_cpup(list++);
1121 if (phandle) {
1122 /*
1123 * Find the provider node and parse the #*-cells
1124 * property to determine the argument length
1125 */
1126 node = of_find_node_by_phandle(phandle);
1127 if (!node) {
1128 pr_err("%s: could not find phandle\n",
1129 np->full_name);
1130 goto err;
1131 }
1132 if (of_property_read_u32(node, cells_name, &count)) {
1133 pr_err("%s: could not get %s for %s\n",
1134 np->full_name, cells_name,
1135 node->full_name);
1136 goto err;
1137 }
1138
1139 /*
1140 * Make sure that the arguments actually fit in the
1141 * remaining property data length
1142 */
1143 if (list + count > list_end) {
1144 pr_err("%s: arguments longer than property\n",
1145 np->full_name);
1146 goto err;
1147 }
1148 }
1149
1150 /*
1151 * All of the error cases above bail out of the loop, so at
1152 * this point, the parsing is successful. If the requested
1153 * index matches, then fill the out_args structure and return,
1154 * or return -ENOENT for an empty entry.
1155 */
1156 rc = -ENOENT;
1157 if (cur_index == index) {
1158 if (!phandle)
1159 goto err;
1160
1161 if (out_args) {
1162 int i;
1163 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1164 count = MAX_PHANDLE_ARGS;
1165 out_args->np = node;
1166 out_args->args_count = count;
1167 for (i = 0; i < count; i++)
1168 out_args->args[i] = be32_to_cpup(list++);
1169 }
1170
1171 /* Found it! return success */
1172 if (node)
1173 of_node_put(node);
1174 return 0;
1175 }
1176
1177 of_node_put(node);
1178 node = NULL;
1179 list += count;
1180 cur_index++;
1181 }
1182
1183 /*
1184 * Unlock node before returning result; will be one of:
1185 * -ENOENT : index is for empty phandle
1186 * -EINVAL : parsing error on data
1187 * [1..n] : Number of phandle (count mode; when index = -1)
1188 */
1189 rc = index < 0 ? cur_index : -ENOENT;
1190 err:
1191 if (node)
1192 of_node_put(node);
1193 return rc;
1194 }
1195
1196 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1197 const char *cells_name, int index,
1198 struct of_phandle_args *out_args)
1199 {
1200 if (index < 0)
1201 return -EINVAL;
1202 return __of_parse_phandle_with_args(np, list_name, cells_name, index, out_args);
1203 }
1204 EXPORT_SYMBOL(of_parse_phandle_with_args);
1205
1206 /**
1207 * of_count_phandle_with_args() - Find the number of phandles references in a property
1208 * @np: pointer to a device tree node containing a list
1209 * @list_name: property name that contains a list
1210 * @cells_name: property name that specifies phandles' arguments count
1211 *
1212 * Returns the number of phandle + argument tuples within a property. It
1213 * is a typical pattern to encode a list of phandle and variable
1214 * arguments into a single property. The number of arguments is encoded
1215 * by a property in the phandle-target node. For example, a gpios
1216 * property would contain a list of GPIO specifies consisting of a
1217 * phandle and 1 or more arguments. The number of arguments are
1218 * determined by the #gpio-cells property in the node pointed to by the
1219 * phandle.
1220 */
1221 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1222 const char *cells_name)
1223 {
1224 return __of_parse_phandle_with_args(np, list_name, cells_name, -1, NULL);
1225 }
1226 EXPORT_SYMBOL(of_count_phandle_with_args);
1227
1228 #if defined(CONFIG_OF_DYNAMIC)
1229 static int of_property_notify(int action, struct device_node *np,
1230 struct property *prop)
1231 {
1232 struct of_prop_reconfig pr;
1233
1234 pr.dn = np;
1235 pr.prop = prop;
1236 return of_reconfig_notify(action, &pr);
1237 }
1238 #else
1239 static int of_property_notify(int action, struct device_node *np,
1240 struct property *prop)
1241 {
1242 return 0;
1243 }
1244 #endif
1245
1246 /**
1247 * of_add_property - Add a property to a node
1248 */
1249 int of_add_property(struct device_node *np, struct property *prop)
1250 {
1251 struct property **next;
1252 unsigned long flags;
1253 int rc;
1254
1255 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1256 if (rc)
1257 return rc;
1258
1259 prop->next = NULL;
1260 raw_spin_lock_irqsave(&devtree_lock, flags);
1261 next = &np->properties;
1262 while (*next) {
1263 if (strcmp(prop->name, (*next)->name) == 0) {
1264 /* duplicate ! don't insert it */
1265 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1266 return -1;
1267 }
1268 next = &(*next)->next;
1269 }
1270 *next = prop;
1271 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272
1273 #ifdef CONFIG_PROC_DEVICETREE
1274 /* try to add to proc as well if it was initialized */
1275 if (np->pde)
1276 proc_device_tree_add_prop(np->pde, prop);
1277 #endif /* CONFIG_PROC_DEVICETREE */
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * of_remove_property - Remove a property from a node.
1284 *
1285 * Note that we don't actually remove it, since we have given out
1286 * who-knows-how-many pointers to the data using get-property.
1287 * Instead we just move the property to the "dead properties"
1288 * list, so it won't be found any more.
1289 */
1290 int of_remove_property(struct device_node *np, struct property *prop)
1291 {
1292 struct property **next;
1293 unsigned long flags;
1294 int found = 0;
1295 int rc;
1296
1297 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1298 if (rc)
1299 return rc;
1300
1301 raw_spin_lock_irqsave(&devtree_lock, flags);
1302 next = &np->properties;
1303 while (*next) {
1304 if (*next == prop) {
1305 /* found the node */
1306 *next = prop->next;
1307 prop->next = np->deadprops;
1308 np->deadprops = prop;
1309 found = 1;
1310 break;
1311 }
1312 next = &(*next)->next;
1313 }
1314 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1315
1316 if (!found)
1317 return -ENODEV;
1318
1319 #ifdef CONFIG_PROC_DEVICETREE
1320 /* try to remove the proc node as well */
1321 if (np->pde)
1322 proc_device_tree_remove_prop(np->pde, prop);
1323 #endif /* CONFIG_PROC_DEVICETREE */
1324
1325 return 0;
1326 }
1327
1328 /*
1329 * of_update_property - Update a property in a node, if the property does
1330 * not exist, add it.
1331 *
1332 * Note that we don't actually remove it, since we have given out
1333 * who-knows-how-many pointers to the data using get-property.
1334 * Instead we just move the property to the "dead properties" list,
1335 * and add the new property to the property list
1336 */
1337 int of_update_property(struct device_node *np, struct property *newprop)
1338 {
1339 struct property **next, *oldprop;
1340 unsigned long flags;
1341 int rc, found = 0;
1342
1343 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1344 if (rc)
1345 return rc;
1346
1347 if (!newprop->name)
1348 return -EINVAL;
1349
1350 oldprop = of_find_property(np, newprop->name, NULL);
1351 if (!oldprop)
1352 return of_add_property(np, newprop);
1353
1354 raw_spin_lock_irqsave(&devtree_lock, flags);
1355 next = &np->properties;
1356 while (*next) {
1357 if (*next == oldprop) {
1358 /* found the node */
1359 newprop->next = oldprop->next;
1360 *next = newprop;
1361 oldprop->next = np->deadprops;
1362 np->deadprops = oldprop;
1363 found = 1;
1364 break;
1365 }
1366 next = &(*next)->next;
1367 }
1368 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1369
1370 if (!found)
1371 return -ENODEV;
1372
1373 #ifdef CONFIG_PROC_DEVICETREE
1374 /* try to add to proc as well if it was initialized */
1375 if (np->pde)
1376 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1377 #endif /* CONFIG_PROC_DEVICETREE */
1378
1379 return 0;
1380 }
1381
1382 #if defined(CONFIG_OF_DYNAMIC)
1383 /*
1384 * Support for dynamic device trees.
1385 *
1386 * On some platforms, the device tree can be manipulated at runtime.
1387 * The routines in this section support adding, removing and changing
1388 * device tree nodes.
1389 */
1390
1391 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1392
1393 int of_reconfig_notifier_register(struct notifier_block *nb)
1394 {
1395 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1396 }
1397 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1398
1399 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1400 {
1401 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1402 }
1403 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1404
1405 int of_reconfig_notify(unsigned long action, void *p)
1406 {
1407 int rc;
1408
1409 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1410 return notifier_to_errno(rc);
1411 }
1412
1413 #ifdef CONFIG_PROC_DEVICETREE
1414 static void of_add_proc_dt_entry(struct device_node *dn)
1415 {
1416 struct proc_dir_entry *ent;
1417
1418 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1419 if (ent)
1420 proc_device_tree_add_node(dn, ent);
1421 }
1422 #else
1423 static void of_add_proc_dt_entry(struct device_node *dn)
1424 {
1425 return;
1426 }
1427 #endif
1428
1429 /**
1430 * of_attach_node - Plug a device node into the tree and global list.
1431 */
1432 int of_attach_node(struct device_node *np)
1433 {
1434 unsigned long flags;
1435 int rc;
1436
1437 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1438 if (rc)
1439 return rc;
1440
1441 raw_spin_lock_irqsave(&devtree_lock, flags);
1442 np->sibling = np->parent->child;
1443 np->allnext = of_allnodes;
1444 np->parent->child = np;
1445 of_allnodes = np;
1446 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1447
1448 of_add_proc_dt_entry(np);
1449 return 0;
1450 }
1451
1452 #ifdef CONFIG_PROC_DEVICETREE
1453 static void of_remove_proc_dt_entry(struct device_node *dn)
1454 {
1455 struct device_node *parent = dn->parent;
1456 struct property *prop = dn->properties;
1457
1458 while (prop) {
1459 remove_proc_entry(prop->name, dn->pde);
1460 prop = prop->next;
1461 }
1462
1463 if (dn->pde)
1464 remove_proc_entry(dn->pde->name, parent->pde);
1465 }
1466 #else
1467 static void of_remove_proc_dt_entry(struct device_node *dn)
1468 {
1469 return;
1470 }
1471 #endif
1472
1473 /**
1474 * of_detach_node - "Unplug" a node from the device tree.
1475 *
1476 * The caller must hold a reference to the node. The memory associated with
1477 * the node is not freed until its refcount goes to zero.
1478 */
1479 int of_detach_node(struct device_node *np)
1480 {
1481 struct device_node *parent;
1482 unsigned long flags;
1483 int rc = 0;
1484
1485 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1486 if (rc)
1487 return rc;
1488
1489 raw_spin_lock_irqsave(&devtree_lock, flags);
1490
1491 if (of_node_check_flag(np, OF_DETACHED)) {
1492 /* someone already detached it */
1493 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1494 return rc;
1495 }
1496
1497 parent = np->parent;
1498 if (!parent) {
1499 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1500 return rc;
1501 }
1502
1503 if (of_allnodes == np)
1504 of_allnodes = np->allnext;
1505 else {
1506 struct device_node *prev;
1507 for (prev = of_allnodes;
1508 prev->allnext != np;
1509 prev = prev->allnext)
1510 ;
1511 prev->allnext = np->allnext;
1512 }
1513
1514 if (parent->child == np)
1515 parent->child = np->sibling;
1516 else {
1517 struct device_node *prevsib;
1518 for (prevsib = np->parent->child;
1519 prevsib->sibling != np;
1520 prevsib = prevsib->sibling)
1521 ;
1522 prevsib->sibling = np->sibling;
1523 }
1524
1525 of_node_set_flag(np, OF_DETACHED);
1526 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1527
1528 of_remove_proc_dt_entry(np);
1529 return rc;
1530 }
1531 #endif /* defined(CONFIG_OF_DYNAMIC) */
1532
1533 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1534 int id, const char *stem, int stem_len)
1535 {
1536 ap->np = np;
1537 ap->id = id;
1538 strncpy(ap->stem, stem, stem_len);
1539 ap->stem[stem_len] = 0;
1540 list_add_tail(&ap->link, &aliases_lookup);
1541 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1542 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1543 }
1544
1545 /**
1546 * of_alias_scan - Scan all properties of 'aliases' node
1547 *
1548 * The function scans all the properties of 'aliases' node and populate
1549 * the the global lookup table with the properties. It returns the
1550 * number of alias_prop found, or error code in error case.
1551 *
1552 * @dt_alloc: An allocator that provides a virtual address to memory
1553 * for the resulting tree
1554 */
1555 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1556 {
1557 struct property *pp;
1558
1559 of_chosen = of_find_node_by_path("/chosen");
1560 if (of_chosen == NULL)
1561 of_chosen = of_find_node_by_path("/chosen@0");
1562 of_aliases = of_find_node_by_path("/aliases");
1563 if (!of_aliases)
1564 return;
1565
1566 for_each_property_of_node(of_aliases, pp) {
1567 const char *start = pp->name;
1568 const char *end = start + strlen(start);
1569 struct device_node *np;
1570 struct alias_prop *ap;
1571 int id, len;
1572
1573 /* Skip those we do not want to proceed */
1574 if (!strcmp(pp->name, "name") ||
1575 !strcmp(pp->name, "phandle") ||
1576 !strcmp(pp->name, "linux,phandle"))
1577 continue;
1578
1579 np = of_find_node_by_path(pp->value);
1580 if (!np)
1581 continue;
1582
1583 /* walk the alias backwards to extract the id and work out
1584 * the 'stem' string */
1585 while (isdigit(*(end-1)) && end > start)
1586 end--;
1587 len = end - start;
1588
1589 if (kstrtoint(end, 10, &id) < 0)
1590 continue;
1591
1592 /* Allocate an alias_prop with enough space for the stem */
1593 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1594 if (!ap)
1595 continue;
1596 ap->alias = start;
1597 of_alias_add(ap, np, id, start, len);
1598 }
1599 }
1600
1601 /**
1602 * of_alias_get_id - Get alias id for the given device_node
1603 * @np: Pointer to the given device_node
1604 * @stem: Alias stem of the given device_node
1605 *
1606 * The function travels the lookup table to get alias id for the given
1607 * device_node and alias stem. It returns the alias id if find it.
1608 */
1609 int of_alias_get_id(struct device_node *np, const char *stem)
1610 {
1611 struct alias_prop *app;
1612 int id = -ENODEV;
1613
1614 mutex_lock(&of_aliases_mutex);
1615 list_for_each_entry(app, &aliases_lookup, link) {
1616 if (strcmp(app->stem, stem) != 0)
1617 continue;
1618
1619 if (np == app->np) {
1620 id = app->id;
1621 break;
1622 }
1623 }
1624 mutex_unlock(&of_aliases_mutex);
1625
1626 return id;
1627 }
1628 EXPORT_SYMBOL_GPL(of_alias_get_id);
1629
1630 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1631 u32 *pu)
1632 {
1633 const void *curv = cur;
1634
1635 if (!prop)
1636 return NULL;
1637
1638 if (!cur) {
1639 curv = prop->value;
1640 goto out_val;
1641 }
1642
1643 curv += sizeof(*cur);
1644 if (curv >= prop->value + prop->length)
1645 return NULL;
1646
1647 out_val:
1648 *pu = be32_to_cpup(curv);
1649 return curv;
1650 }
1651 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1652
1653 const char *of_prop_next_string(struct property *prop, const char *cur)
1654 {
1655 const void *curv = cur;
1656
1657 if (!prop)
1658 return NULL;
1659
1660 if (!cur)
1661 return prop->value;
1662
1663 curv += strlen(cur) + 1;
1664 if (curv >= prop->value + prop->length)
1665 return NULL;
1666
1667 return curv;
1668 }
1669 EXPORT_SYMBOL_GPL(of_prop_next_string);