Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26
27 #include "of_private.h"
28
29 LIST_HEAD(aliases_lookup);
30
31 struct device_node *of_allnodes;
32 EXPORT_SYMBOL(of_allnodes);
33 struct device_node *of_chosen;
34 struct device_node *of_aliases;
35
36 DEFINE_MUTEX(of_aliases_mutex);
37
38 /* use when traversing tree through the allnext, child, sibling,
39 * or parent members of struct device_node.
40 */
41 DEFINE_RAW_SPINLOCK(devtree_lock);
42
43 int of_n_addr_cells(struct device_node *np)
44 {
45 const __be32 *ip;
46
47 do {
48 if (np->parent)
49 np = np->parent;
50 ip = of_get_property(np, "#address-cells", NULL);
51 if (ip)
52 return be32_to_cpup(ip);
53 } while (np->parent);
54 /* No #address-cells property for the root node */
55 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
56 }
57 EXPORT_SYMBOL(of_n_addr_cells);
58
59 int of_n_size_cells(struct device_node *np)
60 {
61 const __be32 *ip;
62
63 do {
64 if (np->parent)
65 np = np->parent;
66 ip = of_get_property(np, "#size-cells", NULL);
67 if (ip)
68 return be32_to_cpup(ip);
69 } while (np->parent);
70 /* No #size-cells property for the root node */
71 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_size_cells);
74
75 #if defined(CONFIG_OF_DYNAMIC)
76 /**
77 * of_node_get - Increment refcount of a node
78 * @node: Node to inc refcount, NULL is supported to
79 * simplify writing of callers
80 *
81 * Returns node.
82 */
83 struct device_node *of_node_get(struct device_node *node)
84 {
85 if (node)
86 kref_get(&node->kref);
87 return node;
88 }
89 EXPORT_SYMBOL(of_node_get);
90
91 static inline struct device_node *kref_to_device_node(struct kref *kref)
92 {
93 return container_of(kref, struct device_node, kref);
94 }
95
96 /**
97 * of_node_release - release a dynamically allocated node
98 * @kref: kref element of the node to be released
99 *
100 * In of_node_put() this function is passed to kref_put()
101 * as the destructor.
102 */
103 static void of_node_release(struct kref *kref)
104 {
105 struct device_node *node = kref_to_device_node(kref);
106 struct property *prop = node->properties;
107
108 /* We should never be releasing nodes that haven't been detached. */
109 if (!of_node_check_flag(node, OF_DETACHED)) {
110 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
111 dump_stack();
112 kref_init(&node->kref);
113 return;
114 }
115
116 if (!of_node_check_flag(node, OF_DYNAMIC))
117 return;
118
119 while (prop) {
120 struct property *next = prop->next;
121 kfree(prop->name);
122 kfree(prop->value);
123 kfree(prop);
124 prop = next;
125
126 if (!prop) {
127 prop = node->deadprops;
128 node->deadprops = NULL;
129 }
130 }
131 kfree(node->full_name);
132 kfree(node->data);
133 kfree(node);
134 }
135
136 /**
137 * of_node_put - Decrement refcount of a node
138 * @node: Node to dec refcount, NULL is supported to
139 * simplify writing of callers
140 *
141 */
142 void of_node_put(struct device_node *node)
143 {
144 if (node)
145 kref_put(&node->kref, of_node_release);
146 }
147 EXPORT_SYMBOL(of_node_put);
148 #endif /* CONFIG_OF_DYNAMIC */
149
150 static struct property *__of_find_property(const struct device_node *np,
151 const char *name, int *lenp)
152 {
153 struct property *pp;
154
155 if (!np)
156 return NULL;
157
158 for (pp = np->properties; pp; pp = pp->next) {
159 if (of_prop_cmp(pp->name, name) == 0) {
160 if (lenp)
161 *lenp = pp->length;
162 break;
163 }
164 }
165
166 return pp;
167 }
168
169 struct property *of_find_property(const struct device_node *np,
170 const char *name,
171 int *lenp)
172 {
173 struct property *pp;
174 unsigned long flags;
175
176 raw_spin_lock_irqsave(&devtree_lock, flags);
177 pp = __of_find_property(np, name, lenp);
178 raw_spin_unlock_irqrestore(&devtree_lock, flags);
179
180 return pp;
181 }
182 EXPORT_SYMBOL(of_find_property);
183
184 /**
185 * of_find_all_nodes - Get next node in global list
186 * @prev: Previous node or NULL to start iteration
187 * of_node_put() will be called on it
188 *
189 * Returns a node pointer with refcount incremented, use
190 * of_node_put() on it when done.
191 */
192 struct device_node *of_find_all_nodes(struct device_node *prev)
193 {
194 struct device_node *np;
195
196 raw_spin_lock(&devtree_lock);
197 np = prev ? prev->allnext : of_allnodes;
198 for (; np != NULL; np = np->allnext)
199 if (of_node_get(np))
200 break;
201 of_node_put(prev);
202 raw_spin_unlock(&devtree_lock);
203 return np;
204 }
205 EXPORT_SYMBOL(of_find_all_nodes);
206
207 /*
208 * Find a property with a given name for a given node
209 * and return the value.
210 */
211 static const void *__of_get_property(const struct device_node *np,
212 const char *name, int *lenp)
213 {
214 struct property *pp = __of_find_property(np, name, lenp);
215
216 return pp ? pp->value : NULL;
217 }
218
219 /*
220 * Find a property with a given name for a given node
221 * and return the value.
222 */
223 const void *of_get_property(const struct device_node *np, const char *name,
224 int *lenp)
225 {
226 struct property *pp = of_find_property(np, name, lenp);
227
228 return pp ? pp->value : NULL;
229 }
230 EXPORT_SYMBOL(of_get_property);
231
232 /** Checks if the given "compat" string matches one of the strings in
233 * the device's "compatible" property
234 */
235 static int __of_device_is_compatible(const struct device_node *device,
236 const char *compat)
237 {
238 const char* cp;
239 int cplen, l;
240
241 cp = __of_get_property(device, "compatible", &cplen);
242 if (cp == NULL)
243 return 0;
244 while (cplen > 0) {
245 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
246 return 1;
247 l = strlen(cp) + 1;
248 cp += l;
249 cplen -= l;
250 }
251
252 return 0;
253 }
254
255 /** Checks if the given "compat" string matches one of the strings in
256 * the device's "compatible" property
257 */
258 int of_device_is_compatible(const struct device_node *device,
259 const char *compat)
260 {
261 unsigned long flags;
262 int res;
263
264 raw_spin_lock_irqsave(&devtree_lock, flags);
265 res = __of_device_is_compatible(device, compat);
266 raw_spin_unlock_irqrestore(&devtree_lock, flags);
267 return res;
268 }
269 EXPORT_SYMBOL(of_device_is_compatible);
270
271 /**
272 * of_machine_is_compatible - Test root of device tree for a given compatible value
273 * @compat: compatible string to look for in root node's compatible property.
274 *
275 * Returns true if the root node has the given value in its
276 * compatible property.
277 */
278 int of_machine_is_compatible(const char *compat)
279 {
280 struct device_node *root;
281 int rc = 0;
282
283 root = of_find_node_by_path("/");
284 if (root) {
285 rc = of_device_is_compatible(root, compat);
286 of_node_put(root);
287 }
288 return rc;
289 }
290 EXPORT_SYMBOL(of_machine_is_compatible);
291
292 /**
293 * __of_device_is_available - check if a device is available for use
294 *
295 * @device: Node to check for availability, with locks already held
296 *
297 * Returns 1 if the status property is absent or set to "okay" or "ok",
298 * 0 otherwise
299 */
300 static int __of_device_is_available(const struct device_node *device)
301 {
302 const char *status;
303 int statlen;
304
305 status = __of_get_property(device, "status", &statlen);
306 if (status == NULL)
307 return 1;
308
309 if (statlen > 0) {
310 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
311 return 1;
312 }
313
314 return 0;
315 }
316
317 /**
318 * of_device_is_available - check if a device is available for use
319 *
320 * @device: Node to check for availability
321 *
322 * Returns 1 if the status property is absent or set to "okay" or "ok",
323 * 0 otherwise
324 */
325 int of_device_is_available(const struct device_node *device)
326 {
327 unsigned long flags;
328 int res;
329
330 raw_spin_lock_irqsave(&devtree_lock, flags);
331 res = __of_device_is_available(device);
332 raw_spin_unlock_irqrestore(&devtree_lock, flags);
333 return res;
334
335 }
336 EXPORT_SYMBOL(of_device_is_available);
337
338 /**
339 * of_get_parent - Get a node's parent if any
340 * @node: Node to get parent
341 *
342 * Returns a node pointer with refcount incremented, use
343 * of_node_put() on it when done.
344 */
345 struct device_node *of_get_parent(const struct device_node *node)
346 {
347 struct device_node *np;
348 unsigned long flags;
349
350 if (!node)
351 return NULL;
352
353 raw_spin_lock_irqsave(&devtree_lock, flags);
354 np = of_node_get(node->parent);
355 raw_spin_unlock_irqrestore(&devtree_lock, flags);
356 return np;
357 }
358 EXPORT_SYMBOL(of_get_parent);
359
360 /**
361 * of_get_next_parent - Iterate to a node's parent
362 * @node: Node to get parent of
363 *
364 * This is like of_get_parent() except that it drops the
365 * refcount on the passed node, making it suitable for iterating
366 * through a node's parents.
367 *
368 * Returns a node pointer with refcount incremented, use
369 * of_node_put() on it when done.
370 */
371 struct device_node *of_get_next_parent(struct device_node *node)
372 {
373 struct device_node *parent;
374 unsigned long flags;
375
376 if (!node)
377 return NULL;
378
379 raw_spin_lock_irqsave(&devtree_lock, flags);
380 parent = of_node_get(node->parent);
381 of_node_put(node);
382 raw_spin_unlock_irqrestore(&devtree_lock, flags);
383 return parent;
384 }
385 EXPORT_SYMBOL(of_get_next_parent);
386
387 /**
388 * of_get_next_child - Iterate a node childs
389 * @node: parent node
390 * @prev: previous child of the parent node, or NULL to get first
391 *
392 * Returns a node pointer with refcount incremented, use
393 * of_node_put() on it when done.
394 */
395 struct device_node *of_get_next_child(const struct device_node *node,
396 struct device_node *prev)
397 {
398 struct device_node *next;
399 unsigned long flags;
400
401 raw_spin_lock_irqsave(&devtree_lock, flags);
402 next = prev ? prev->sibling : node->child;
403 for (; next; next = next->sibling)
404 if (of_node_get(next))
405 break;
406 of_node_put(prev);
407 raw_spin_unlock_irqrestore(&devtree_lock, flags);
408 return next;
409 }
410 EXPORT_SYMBOL(of_get_next_child);
411
412 /**
413 * of_get_next_available_child - Find the next available child node
414 * @node: parent node
415 * @prev: previous child of the parent node, or NULL to get first
416 *
417 * This function is like of_get_next_child(), except that it
418 * automatically skips any disabled nodes (i.e. status = "disabled").
419 */
420 struct device_node *of_get_next_available_child(const struct device_node *node,
421 struct device_node *prev)
422 {
423 struct device_node *next;
424
425 raw_spin_lock(&devtree_lock);
426 next = prev ? prev->sibling : node->child;
427 for (; next; next = next->sibling) {
428 if (!__of_device_is_available(next))
429 continue;
430 if (of_node_get(next))
431 break;
432 }
433 of_node_put(prev);
434 raw_spin_unlock(&devtree_lock);
435 return next;
436 }
437 EXPORT_SYMBOL(of_get_next_available_child);
438
439 /**
440 * of_get_child_by_name - Find the child node by name for a given parent
441 * @node: parent node
442 * @name: child name to look for.
443 *
444 * This function looks for child node for given matching name
445 *
446 * Returns a node pointer if found, with refcount incremented, use
447 * of_node_put() on it when done.
448 * Returns NULL if node is not found.
449 */
450 struct device_node *of_get_child_by_name(const struct device_node *node,
451 const char *name)
452 {
453 struct device_node *child;
454
455 for_each_child_of_node(node, child)
456 if (child->name && (of_node_cmp(child->name, name) == 0))
457 break;
458 return child;
459 }
460 EXPORT_SYMBOL(of_get_child_by_name);
461
462 /**
463 * of_find_node_by_path - Find a node matching a full OF path
464 * @path: The full path to match
465 *
466 * Returns a node pointer with refcount incremented, use
467 * of_node_put() on it when done.
468 */
469 struct device_node *of_find_node_by_path(const char *path)
470 {
471 struct device_node *np = of_allnodes;
472 unsigned long flags;
473
474 raw_spin_lock_irqsave(&devtree_lock, flags);
475 for (; np; np = np->allnext) {
476 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
477 && of_node_get(np))
478 break;
479 }
480 raw_spin_unlock_irqrestore(&devtree_lock, flags);
481 return np;
482 }
483 EXPORT_SYMBOL(of_find_node_by_path);
484
485 /**
486 * of_find_node_by_name - Find a node by its "name" property
487 * @from: The node to start searching from or NULL, the node
488 * you pass will not be searched, only the next one
489 * will; typically, you pass what the previous call
490 * returned. of_node_put() will be called on it
491 * @name: The name string to match against
492 *
493 * Returns a node pointer with refcount incremented, use
494 * of_node_put() on it when done.
495 */
496 struct device_node *of_find_node_by_name(struct device_node *from,
497 const char *name)
498 {
499 struct device_node *np;
500 unsigned long flags;
501
502 raw_spin_lock_irqsave(&devtree_lock, flags);
503 np = from ? from->allnext : of_allnodes;
504 for (; np; np = np->allnext)
505 if (np->name && (of_node_cmp(np->name, name) == 0)
506 && of_node_get(np))
507 break;
508 of_node_put(from);
509 raw_spin_unlock_irqrestore(&devtree_lock, flags);
510 return np;
511 }
512 EXPORT_SYMBOL(of_find_node_by_name);
513
514 /**
515 * of_find_node_by_type - Find a node by its "device_type" property
516 * @from: The node to start searching from, or NULL to start searching
517 * the entire device tree. The node you pass will not be
518 * searched, only the next one will; typically, you pass
519 * what the previous call returned. of_node_put() will be
520 * called on from for you.
521 * @type: The type string to match against
522 *
523 * Returns a node pointer with refcount incremented, use
524 * of_node_put() on it when done.
525 */
526 struct device_node *of_find_node_by_type(struct device_node *from,
527 const char *type)
528 {
529 struct device_node *np;
530 unsigned long flags;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 np = from ? from->allnext : of_allnodes;
534 for (; np; np = np->allnext)
535 if (np->type && (of_node_cmp(np->type, type) == 0)
536 && of_node_get(np))
537 break;
538 of_node_put(from);
539 raw_spin_unlock_irqrestore(&devtree_lock, flags);
540 return np;
541 }
542 EXPORT_SYMBOL(of_find_node_by_type);
543
544 /**
545 * of_find_compatible_node - Find a node based on type and one of the
546 * tokens in its "compatible" property
547 * @from: The node to start searching from or NULL, the node
548 * you pass will not be searched, only the next one
549 * will; typically, you pass what the previous call
550 * returned. of_node_put() will be called on it
551 * @type: The type string to match "device_type" or NULL to ignore
552 * @compatible: The string to match to one of the tokens in the device
553 * "compatible" list.
554 *
555 * Returns a node pointer with refcount incremented, use
556 * of_node_put() on it when done.
557 */
558 struct device_node *of_find_compatible_node(struct device_node *from,
559 const char *type, const char *compatible)
560 {
561 struct device_node *np;
562 unsigned long flags;
563
564 raw_spin_lock_irqsave(&devtree_lock, flags);
565 np = from ? from->allnext : of_allnodes;
566 for (; np; np = np->allnext) {
567 if (type
568 && !(np->type && (of_node_cmp(np->type, type) == 0)))
569 continue;
570 if (__of_device_is_compatible(np, compatible) &&
571 of_node_get(np))
572 break;
573 }
574 of_node_put(from);
575 raw_spin_unlock_irqrestore(&devtree_lock, flags);
576 return np;
577 }
578 EXPORT_SYMBOL(of_find_compatible_node);
579
580 /**
581 * of_find_node_with_property - Find a node which has a property with
582 * the given name.
583 * @from: The node to start searching from or NULL, the node
584 * you pass will not be searched, only the next one
585 * will; typically, you pass what the previous call
586 * returned. of_node_put() will be called on it
587 * @prop_name: The name of the property to look for.
588 *
589 * Returns a node pointer with refcount incremented, use
590 * of_node_put() on it when done.
591 */
592 struct device_node *of_find_node_with_property(struct device_node *from,
593 const char *prop_name)
594 {
595 struct device_node *np;
596 struct property *pp;
597 unsigned long flags;
598
599 raw_spin_lock_irqsave(&devtree_lock, flags);
600 np = from ? from->allnext : of_allnodes;
601 for (; np; np = np->allnext) {
602 for (pp = np->properties; pp; pp = pp->next) {
603 if (of_prop_cmp(pp->name, prop_name) == 0) {
604 of_node_get(np);
605 goto out;
606 }
607 }
608 }
609 out:
610 of_node_put(from);
611 raw_spin_unlock_irqrestore(&devtree_lock, flags);
612 return np;
613 }
614 EXPORT_SYMBOL(of_find_node_with_property);
615
616 static
617 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
618 const struct device_node *node)
619 {
620 if (!matches)
621 return NULL;
622
623 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
624 int match = 1;
625 if (matches->name[0])
626 match &= node->name
627 && !strcmp(matches->name, node->name);
628 if (matches->type[0])
629 match &= node->type
630 && !strcmp(matches->type, node->type);
631 if (matches->compatible[0])
632 match &= __of_device_is_compatible(node,
633 matches->compatible);
634 if (match)
635 return matches;
636 matches++;
637 }
638 return NULL;
639 }
640
641 /**
642 * of_match_node - Tell if an device_node has a matching of_match structure
643 * @matches: array of of device match structures to search in
644 * @node: the of device structure to match against
645 *
646 * Low level utility function used by device matching.
647 */
648 const struct of_device_id *of_match_node(const struct of_device_id *matches,
649 const struct device_node *node)
650 {
651 const struct of_device_id *match;
652 unsigned long flags;
653
654 raw_spin_lock_irqsave(&devtree_lock, flags);
655 match = __of_match_node(matches, node);
656 raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 return match;
658 }
659 EXPORT_SYMBOL(of_match_node);
660
661 /**
662 * of_find_matching_node_and_match - Find a node based on an of_device_id
663 * match table.
664 * @from: The node to start searching from or NULL, the node
665 * you pass will not be searched, only the next one
666 * will; typically, you pass what the previous call
667 * returned. of_node_put() will be called on it
668 * @matches: array of of device match structures to search in
669 * @match Updated to point at the matches entry which matched
670 *
671 * Returns a node pointer with refcount incremented, use
672 * of_node_put() on it when done.
673 */
674 struct device_node *of_find_matching_node_and_match(struct device_node *from,
675 const struct of_device_id *matches,
676 const struct of_device_id **match)
677 {
678 struct device_node *np;
679 const struct of_device_id *m;
680 unsigned long flags;
681
682 if (match)
683 *match = NULL;
684
685 raw_spin_lock_irqsave(&devtree_lock, flags);
686 np = from ? from->allnext : of_allnodes;
687 for (; np; np = np->allnext) {
688 m = __of_match_node(matches, np);
689 if (m && of_node_get(np)) {
690 if (match)
691 *match = m;
692 break;
693 }
694 }
695 of_node_put(from);
696 raw_spin_unlock_irqrestore(&devtree_lock, flags);
697 return np;
698 }
699 EXPORT_SYMBOL(of_find_matching_node_and_match);
700
701 /**
702 * of_modalias_node - Lookup appropriate modalias for a device node
703 * @node: pointer to a device tree node
704 * @modalias: Pointer to buffer that modalias value will be copied into
705 * @len: Length of modalias value
706 *
707 * Based on the value of the compatible property, this routine will attempt
708 * to choose an appropriate modalias value for a particular device tree node.
709 * It does this by stripping the manufacturer prefix (as delimited by a ',')
710 * from the first entry in the compatible list property.
711 *
712 * This routine returns 0 on success, <0 on failure.
713 */
714 int of_modalias_node(struct device_node *node, char *modalias, int len)
715 {
716 const char *compatible, *p;
717 int cplen;
718
719 compatible = of_get_property(node, "compatible", &cplen);
720 if (!compatible || strlen(compatible) > cplen)
721 return -ENODEV;
722 p = strchr(compatible, ',');
723 strlcpy(modalias, p ? p + 1 : compatible, len);
724 return 0;
725 }
726 EXPORT_SYMBOL_GPL(of_modalias_node);
727
728 /**
729 * of_find_node_by_phandle - Find a node given a phandle
730 * @handle: phandle of the node to find
731 *
732 * Returns a node pointer with refcount incremented, use
733 * of_node_put() on it when done.
734 */
735 struct device_node *of_find_node_by_phandle(phandle handle)
736 {
737 struct device_node *np;
738
739 raw_spin_lock(&devtree_lock);
740 for (np = of_allnodes; np; np = np->allnext)
741 if (np->phandle == handle)
742 break;
743 of_node_get(np);
744 raw_spin_unlock(&devtree_lock);
745 return np;
746 }
747 EXPORT_SYMBOL(of_find_node_by_phandle);
748
749 /**
750 * of_property_read_u8_array - Find and read an array of u8 from a property.
751 *
752 * @np: device node from which the property value is to be read.
753 * @propname: name of the property to be searched.
754 * @out_value: pointer to return value, modified only if return value is 0.
755 * @sz: number of array elements to read
756 *
757 * Search for a property in a device node and read 8-bit value(s) from
758 * it. Returns 0 on success, -EINVAL if the property does not exist,
759 * -ENODATA if property does not have a value, and -EOVERFLOW if the
760 * property data isn't large enough.
761 *
762 * dts entry of array should be like:
763 * property = /bits/ 8 <0x50 0x60 0x70>;
764 *
765 * The out_value is modified only if a valid u8 value can be decoded.
766 */
767 int of_property_read_u8_array(const struct device_node *np,
768 const char *propname, u8 *out_values, size_t sz)
769 {
770 struct property *prop = of_find_property(np, propname, NULL);
771 const u8 *val;
772
773 if (!prop)
774 return -EINVAL;
775 if (!prop->value)
776 return -ENODATA;
777 if ((sz * sizeof(*out_values)) > prop->length)
778 return -EOVERFLOW;
779
780 val = prop->value;
781 while (sz--)
782 *out_values++ = *val++;
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
786
787 /**
788 * of_property_read_u16_array - Find and read an array of u16 from a property.
789 *
790 * @np: device node from which the property value is to be read.
791 * @propname: name of the property to be searched.
792 * @out_value: pointer to return value, modified only if return value is 0.
793 * @sz: number of array elements to read
794 *
795 * Search for a property in a device node and read 16-bit value(s) from
796 * it. Returns 0 on success, -EINVAL if the property does not exist,
797 * -ENODATA if property does not have a value, and -EOVERFLOW if the
798 * property data isn't large enough.
799 *
800 * dts entry of array should be like:
801 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
802 *
803 * The out_value is modified only if a valid u16 value can be decoded.
804 */
805 int of_property_read_u16_array(const struct device_node *np,
806 const char *propname, u16 *out_values, size_t sz)
807 {
808 struct property *prop = of_find_property(np, propname, NULL);
809 const __be16 *val;
810
811 if (!prop)
812 return -EINVAL;
813 if (!prop->value)
814 return -ENODATA;
815 if ((sz * sizeof(*out_values)) > prop->length)
816 return -EOVERFLOW;
817
818 val = prop->value;
819 while (sz--)
820 *out_values++ = be16_to_cpup(val++);
821 return 0;
822 }
823 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
824
825 /**
826 * of_property_read_u32_array - Find and read an array of 32 bit integers
827 * from a property.
828 *
829 * @np: device node from which the property value is to be read.
830 * @propname: name of the property to be searched.
831 * @out_value: pointer to return value, modified only if return value is 0.
832 * @sz: number of array elements to read
833 *
834 * Search for a property in a device node and read 32-bit value(s) from
835 * it. Returns 0 on success, -EINVAL if the property does not exist,
836 * -ENODATA if property does not have a value, and -EOVERFLOW if the
837 * property data isn't large enough.
838 *
839 * The out_value is modified only if a valid u32 value can be decoded.
840 */
841 int of_property_read_u32_array(const struct device_node *np,
842 const char *propname, u32 *out_values,
843 size_t sz)
844 {
845 struct property *prop = of_find_property(np, propname, NULL);
846 const __be32 *val;
847
848 if (!prop)
849 return -EINVAL;
850 if (!prop->value)
851 return -ENODATA;
852 if ((sz * sizeof(*out_values)) > prop->length)
853 return -EOVERFLOW;
854
855 val = prop->value;
856 while (sz--)
857 *out_values++ = be32_to_cpup(val++);
858 return 0;
859 }
860 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
861
862 /**
863 * of_property_read_u64 - Find and read a 64 bit integer from a property
864 * @np: device node from which the property value is to be read.
865 * @propname: name of the property to be searched.
866 * @out_value: pointer to return value, modified only if return value is 0.
867 *
868 * Search for a property in a device node and read a 64-bit value from
869 * it. Returns 0 on success, -EINVAL if the property does not exist,
870 * -ENODATA if property does not have a value, and -EOVERFLOW if the
871 * property data isn't large enough.
872 *
873 * The out_value is modified only if a valid u64 value can be decoded.
874 */
875 int of_property_read_u64(const struct device_node *np, const char *propname,
876 u64 *out_value)
877 {
878 struct property *prop = of_find_property(np, propname, NULL);
879
880 if (!prop)
881 return -EINVAL;
882 if (!prop->value)
883 return -ENODATA;
884 if (sizeof(*out_value) > prop->length)
885 return -EOVERFLOW;
886 *out_value = of_read_number(prop->value, 2);
887 return 0;
888 }
889 EXPORT_SYMBOL_GPL(of_property_read_u64);
890
891 /**
892 * of_property_read_string - Find and read a string from a property
893 * @np: device node from which the property value is to be read.
894 * @propname: name of the property to be searched.
895 * @out_string: pointer to null terminated return string, modified only if
896 * return value is 0.
897 *
898 * Search for a property in a device tree node and retrieve a null
899 * terminated string value (pointer to data, not a copy). Returns 0 on
900 * success, -EINVAL if the property does not exist, -ENODATA if property
901 * does not have a value, and -EILSEQ if the string is not null-terminated
902 * within the length of the property data.
903 *
904 * The out_string pointer is modified only if a valid string can be decoded.
905 */
906 int of_property_read_string(struct device_node *np, const char *propname,
907 const char **out_string)
908 {
909 struct property *prop = of_find_property(np, propname, NULL);
910 if (!prop)
911 return -EINVAL;
912 if (!prop->value)
913 return -ENODATA;
914 if (strnlen(prop->value, prop->length) >= prop->length)
915 return -EILSEQ;
916 *out_string = prop->value;
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(of_property_read_string);
920
921 /**
922 * of_property_read_string_index - Find and read a string from a multiple
923 * strings property.
924 * @np: device node from which the property value is to be read.
925 * @propname: name of the property to be searched.
926 * @index: index of the string in the list of strings
927 * @out_string: pointer to null terminated return string, modified only if
928 * return value is 0.
929 *
930 * Search for a property in a device tree node and retrieve a null
931 * terminated string value (pointer to data, not a copy) in the list of strings
932 * contained in that property.
933 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
934 * property does not have a value, and -EILSEQ if the string is not
935 * null-terminated within the length of the property data.
936 *
937 * The out_string pointer is modified only if a valid string can be decoded.
938 */
939 int of_property_read_string_index(struct device_node *np, const char *propname,
940 int index, const char **output)
941 {
942 struct property *prop = of_find_property(np, propname, NULL);
943 int i = 0;
944 size_t l = 0, total = 0;
945 const char *p;
946
947 if (!prop)
948 return -EINVAL;
949 if (!prop->value)
950 return -ENODATA;
951 if (strnlen(prop->value, prop->length) >= prop->length)
952 return -EILSEQ;
953
954 p = prop->value;
955
956 for (i = 0; total < prop->length; total += l, p += l) {
957 l = strlen(p) + 1;
958 if (i++ == index) {
959 *output = p;
960 return 0;
961 }
962 }
963 return -ENODATA;
964 }
965 EXPORT_SYMBOL_GPL(of_property_read_string_index);
966
967 /**
968 * of_property_match_string() - Find string in a list and return index
969 * @np: pointer to node containing string list property
970 * @propname: string list property name
971 * @string: pointer to string to search for in string list
972 *
973 * This function searches a string list property and returns the index
974 * of a specific string value.
975 */
976 int of_property_match_string(struct device_node *np, const char *propname,
977 const char *string)
978 {
979 struct property *prop = of_find_property(np, propname, NULL);
980 size_t l;
981 int i;
982 const char *p, *end;
983
984 if (!prop)
985 return -EINVAL;
986 if (!prop->value)
987 return -ENODATA;
988
989 p = prop->value;
990 end = p + prop->length;
991
992 for (i = 0; p < end; i++, p += l) {
993 l = strlen(p) + 1;
994 if (p + l > end)
995 return -EILSEQ;
996 pr_debug("comparing %s with %s\n", string, p);
997 if (strcmp(string, p) == 0)
998 return i; /* Found it; return index */
999 }
1000 return -ENODATA;
1001 }
1002 EXPORT_SYMBOL_GPL(of_property_match_string);
1003
1004 /**
1005 * of_property_count_strings - Find and return the number of strings from a
1006 * multiple strings property.
1007 * @np: device node from which the property value is to be read.
1008 * @propname: name of the property to be searched.
1009 *
1010 * Search for a property in a device tree node and retrieve the number of null
1011 * terminated string contain in it. Returns the number of strings on
1012 * success, -EINVAL if the property does not exist, -ENODATA if property
1013 * does not have a value, and -EILSEQ if the string is not null-terminated
1014 * within the length of the property data.
1015 */
1016 int of_property_count_strings(struct device_node *np, const char *propname)
1017 {
1018 struct property *prop = of_find_property(np, propname, NULL);
1019 int i = 0;
1020 size_t l = 0, total = 0;
1021 const char *p;
1022
1023 if (!prop)
1024 return -EINVAL;
1025 if (!prop->value)
1026 return -ENODATA;
1027 if (strnlen(prop->value, prop->length) >= prop->length)
1028 return -EILSEQ;
1029
1030 p = prop->value;
1031
1032 for (i = 0; total < prop->length; total += l, p += l, i++)
1033 l = strlen(p) + 1;
1034
1035 return i;
1036 }
1037 EXPORT_SYMBOL_GPL(of_property_count_strings);
1038
1039 /**
1040 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1041 * @np: Pointer to device node holding phandle property
1042 * @phandle_name: Name of property holding a phandle value
1043 * @index: For properties holding a table of phandles, this is the index into
1044 * the table
1045 *
1046 * Returns the device_node pointer with refcount incremented. Use
1047 * of_node_put() on it when done.
1048 */
1049 struct device_node *of_parse_phandle(const struct device_node *np,
1050 const char *phandle_name, int index)
1051 {
1052 const __be32 *phandle;
1053 int size;
1054
1055 phandle = of_get_property(np, phandle_name, &size);
1056 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
1057 return NULL;
1058
1059 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
1060 }
1061 EXPORT_SYMBOL(of_parse_phandle);
1062
1063 /**
1064 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1065 * @np: pointer to a device tree node containing a list
1066 * @list_name: property name that contains a list
1067 * @cells_name: property name that specifies phandles' arguments count
1068 * @index: index of a phandle to parse out
1069 * @out_args: optional pointer to output arguments structure (will be filled)
1070 *
1071 * This function is useful to parse lists of phandles and their arguments.
1072 * Returns 0 on success and fills out_args, on error returns appropriate
1073 * errno value.
1074 *
1075 * Caller is responsible to call of_node_put() on the returned out_args->node
1076 * pointer.
1077 *
1078 * Example:
1079 *
1080 * phandle1: node1 {
1081 * #list-cells = <2>;
1082 * }
1083 *
1084 * phandle2: node2 {
1085 * #list-cells = <1>;
1086 * }
1087 *
1088 * node3 {
1089 * list = <&phandle1 1 2 &phandle2 3>;
1090 * }
1091 *
1092 * To get a device_node of the `node2' node you may call this:
1093 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1094 */
1095 static int __of_parse_phandle_with_args(const struct device_node *np,
1096 const char *list_name,
1097 const char *cells_name, int index,
1098 struct of_phandle_args *out_args)
1099 {
1100 const __be32 *list, *list_end;
1101 int rc = 0, size, cur_index = 0;
1102 uint32_t count = 0;
1103 struct device_node *node = NULL;
1104 phandle phandle;
1105
1106 /* Retrieve the phandle list property */
1107 list = of_get_property(np, list_name, &size);
1108 if (!list)
1109 return -ENOENT;
1110 list_end = list + size / sizeof(*list);
1111
1112 /* Loop over the phandles until all the requested entry is found */
1113 while (list < list_end) {
1114 rc = -EINVAL;
1115 count = 0;
1116
1117 /*
1118 * If phandle is 0, then it is an empty entry with no
1119 * arguments. Skip forward to the next entry.
1120 */
1121 phandle = be32_to_cpup(list++);
1122 if (phandle) {
1123 /*
1124 * Find the provider node and parse the #*-cells
1125 * property to determine the argument length
1126 */
1127 node = of_find_node_by_phandle(phandle);
1128 if (!node) {
1129 pr_err("%s: could not find phandle\n",
1130 np->full_name);
1131 goto err;
1132 }
1133 if (of_property_read_u32(node, cells_name, &count)) {
1134 pr_err("%s: could not get %s for %s\n",
1135 np->full_name, cells_name,
1136 node->full_name);
1137 goto err;
1138 }
1139
1140 /*
1141 * Make sure that the arguments actually fit in the
1142 * remaining property data length
1143 */
1144 if (list + count > list_end) {
1145 pr_err("%s: arguments longer than property\n",
1146 np->full_name);
1147 goto err;
1148 }
1149 }
1150
1151 /*
1152 * All of the error cases above bail out of the loop, so at
1153 * this point, the parsing is successful. If the requested
1154 * index matches, then fill the out_args structure and return,
1155 * or return -ENOENT for an empty entry.
1156 */
1157 rc = -ENOENT;
1158 if (cur_index == index) {
1159 if (!phandle)
1160 goto err;
1161
1162 if (out_args) {
1163 int i;
1164 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1165 count = MAX_PHANDLE_ARGS;
1166 out_args->np = node;
1167 out_args->args_count = count;
1168 for (i = 0; i < count; i++)
1169 out_args->args[i] = be32_to_cpup(list++);
1170 }
1171
1172 /* Found it! return success */
1173 if (node)
1174 of_node_put(node);
1175 return 0;
1176 }
1177
1178 of_node_put(node);
1179 node = NULL;
1180 list += count;
1181 cur_index++;
1182 }
1183
1184 /*
1185 * Unlock node before returning result; will be one of:
1186 * -ENOENT : index is for empty phandle
1187 * -EINVAL : parsing error on data
1188 * [1..n] : Number of phandle (count mode; when index = -1)
1189 */
1190 rc = index < 0 ? cur_index : -ENOENT;
1191 err:
1192 if (node)
1193 of_node_put(node);
1194 return rc;
1195 }
1196
1197 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1198 const char *cells_name, int index,
1199 struct of_phandle_args *out_args)
1200 {
1201 if (index < 0)
1202 return -EINVAL;
1203 return __of_parse_phandle_with_args(np, list_name, cells_name, index, out_args);
1204 }
1205 EXPORT_SYMBOL(of_parse_phandle_with_args);
1206
1207 /**
1208 * of_count_phandle_with_args() - Find the number of phandles references in a property
1209 * @np: pointer to a device tree node containing a list
1210 * @list_name: property name that contains a list
1211 * @cells_name: property name that specifies phandles' arguments count
1212 *
1213 * Returns the number of phandle + argument tuples within a property. It
1214 * is a typical pattern to encode a list of phandle and variable
1215 * arguments into a single property. The number of arguments is encoded
1216 * by a property in the phandle-target node. For example, a gpios
1217 * property would contain a list of GPIO specifies consisting of a
1218 * phandle and 1 or more arguments. The number of arguments are
1219 * determined by the #gpio-cells property in the node pointed to by the
1220 * phandle.
1221 */
1222 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1223 const char *cells_name)
1224 {
1225 return __of_parse_phandle_with_args(np, list_name, cells_name, -1, NULL);
1226 }
1227 EXPORT_SYMBOL(of_count_phandle_with_args);
1228
1229 #if defined(CONFIG_OF_DYNAMIC)
1230 static int of_property_notify(int action, struct device_node *np,
1231 struct property *prop)
1232 {
1233 struct of_prop_reconfig pr;
1234
1235 pr.dn = np;
1236 pr.prop = prop;
1237 return of_reconfig_notify(action, &pr);
1238 }
1239 #else
1240 static int of_property_notify(int action, struct device_node *np,
1241 struct property *prop)
1242 {
1243 return 0;
1244 }
1245 #endif
1246
1247 /**
1248 * of_add_property - Add a property to a node
1249 */
1250 int of_add_property(struct device_node *np, struct property *prop)
1251 {
1252 struct property **next;
1253 unsigned long flags;
1254 int rc;
1255
1256 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1257 if (rc)
1258 return rc;
1259
1260 prop->next = NULL;
1261 raw_spin_lock_irqsave(&devtree_lock, flags);
1262 next = &np->properties;
1263 while (*next) {
1264 if (strcmp(prop->name, (*next)->name) == 0) {
1265 /* duplicate ! don't insert it */
1266 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1267 return -1;
1268 }
1269 next = &(*next)->next;
1270 }
1271 *next = prop;
1272 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1273
1274 #ifdef CONFIG_PROC_DEVICETREE
1275 /* try to add to proc as well if it was initialized */
1276 if (np->pde)
1277 proc_device_tree_add_prop(np->pde, prop);
1278 #endif /* CONFIG_PROC_DEVICETREE */
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * of_remove_property - Remove a property from a node.
1285 *
1286 * Note that we don't actually remove it, since we have given out
1287 * who-knows-how-many pointers to the data using get-property.
1288 * Instead we just move the property to the "dead properties"
1289 * list, so it won't be found any more.
1290 */
1291 int of_remove_property(struct device_node *np, struct property *prop)
1292 {
1293 struct property **next;
1294 unsigned long flags;
1295 int found = 0;
1296 int rc;
1297
1298 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1299 if (rc)
1300 return rc;
1301
1302 raw_spin_lock_irqsave(&devtree_lock, flags);
1303 next = &np->properties;
1304 while (*next) {
1305 if (*next == prop) {
1306 /* found the node */
1307 *next = prop->next;
1308 prop->next = np->deadprops;
1309 np->deadprops = prop;
1310 found = 1;
1311 break;
1312 }
1313 next = &(*next)->next;
1314 }
1315 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1316
1317 if (!found)
1318 return -ENODEV;
1319
1320 #ifdef CONFIG_PROC_DEVICETREE
1321 /* try to remove the proc node as well */
1322 if (np->pde)
1323 proc_device_tree_remove_prop(np->pde, prop);
1324 #endif /* CONFIG_PROC_DEVICETREE */
1325
1326 return 0;
1327 }
1328
1329 /*
1330 * of_update_property - Update a property in a node, if the property does
1331 * not exist, add it.
1332 *
1333 * Note that we don't actually remove it, since we have given out
1334 * who-knows-how-many pointers to the data using get-property.
1335 * Instead we just move the property to the "dead properties" list,
1336 * and add the new property to the property list
1337 */
1338 int of_update_property(struct device_node *np, struct property *newprop)
1339 {
1340 struct property **next, *oldprop;
1341 unsigned long flags;
1342 int rc, found = 0;
1343
1344 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1345 if (rc)
1346 return rc;
1347
1348 if (!newprop->name)
1349 return -EINVAL;
1350
1351 oldprop = of_find_property(np, newprop->name, NULL);
1352 if (!oldprop)
1353 return of_add_property(np, newprop);
1354
1355 raw_spin_lock_irqsave(&devtree_lock, flags);
1356 next = &np->properties;
1357 while (*next) {
1358 if (*next == oldprop) {
1359 /* found the node */
1360 newprop->next = oldprop->next;
1361 *next = newprop;
1362 oldprop->next = np->deadprops;
1363 np->deadprops = oldprop;
1364 found = 1;
1365 break;
1366 }
1367 next = &(*next)->next;
1368 }
1369 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1370
1371 if (!found)
1372 return -ENODEV;
1373
1374 #ifdef CONFIG_PROC_DEVICETREE
1375 /* try to add to proc as well if it was initialized */
1376 if (np->pde)
1377 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1378 #endif /* CONFIG_PROC_DEVICETREE */
1379
1380 return 0;
1381 }
1382
1383 #if defined(CONFIG_OF_DYNAMIC)
1384 /*
1385 * Support for dynamic device trees.
1386 *
1387 * On some platforms, the device tree can be manipulated at runtime.
1388 * The routines in this section support adding, removing and changing
1389 * device tree nodes.
1390 */
1391
1392 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1393
1394 int of_reconfig_notifier_register(struct notifier_block *nb)
1395 {
1396 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1397 }
1398 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1399
1400 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1401 {
1402 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1403 }
1404 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1405
1406 int of_reconfig_notify(unsigned long action, void *p)
1407 {
1408 int rc;
1409
1410 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1411 return notifier_to_errno(rc);
1412 }
1413
1414 #ifdef CONFIG_PROC_DEVICETREE
1415 static void of_add_proc_dt_entry(struct device_node *dn)
1416 {
1417 struct proc_dir_entry *ent;
1418
1419 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1420 if (ent)
1421 proc_device_tree_add_node(dn, ent);
1422 }
1423 #else
1424 static void of_add_proc_dt_entry(struct device_node *dn)
1425 {
1426 return;
1427 }
1428 #endif
1429
1430 /**
1431 * of_attach_node - Plug a device node into the tree and global list.
1432 */
1433 int of_attach_node(struct device_node *np)
1434 {
1435 unsigned long flags;
1436 int rc;
1437
1438 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1439 if (rc)
1440 return rc;
1441
1442 raw_spin_lock_irqsave(&devtree_lock, flags);
1443 np->sibling = np->parent->child;
1444 np->allnext = of_allnodes;
1445 np->parent->child = np;
1446 of_allnodes = np;
1447 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1448
1449 of_add_proc_dt_entry(np);
1450 return 0;
1451 }
1452
1453 #ifdef CONFIG_PROC_DEVICETREE
1454 static void of_remove_proc_dt_entry(struct device_node *dn)
1455 {
1456 struct device_node *parent = dn->parent;
1457 struct property *prop = dn->properties;
1458
1459 while (prop) {
1460 remove_proc_entry(prop->name, dn->pde);
1461 prop = prop->next;
1462 }
1463
1464 if (dn->pde)
1465 remove_proc_entry(dn->pde->name, parent->pde);
1466 }
1467 #else
1468 static void of_remove_proc_dt_entry(struct device_node *dn)
1469 {
1470 return;
1471 }
1472 #endif
1473
1474 /**
1475 * of_detach_node - "Unplug" a node from the device tree.
1476 *
1477 * The caller must hold a reference to the node. The memory associated with
1478 * the node is not freed until its refcount goes to zero.
1479 */
1480 int of_detach_node(struct device_node *np)
1481 {
1482 struct device_node *parent;
1483 unsigned long flags;
1484 int rc = 0;
1485
1486 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1487 if (rc)
1488 return rc;
1489
1490 raw_spin_lock_irqsave(&devtree_lock, flags);
1491
1492 if (of_node_check_flag(np, OF_DETACHED)) {
1493 /* someone already detached it */
1494 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1495 return rc;
1496 }
1497
1498 parent = np->parent;
1499 if (!parent) {
1500 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1501 return rc;
1502 }
1503
1504 if (of_allnodes == np)
1505 of_allnodes = np->allnext;
1506 else {
1507 struct device_node *prev;
1508 for (prev = of_allnodes;
1509 prev->allnext != np;
1510 prev = prev->allnext)
1511 ;
1512 prev->allnext = np->allnext;
1513 }
1514
1515 if (parent->child == np)
1516 parent->child = np->sibling;
1517 else {
1518 struct device_node *prevsib;
1519 for (prevsib = np->parent->child;
1520 prevsib->sibling != np;
1521 prevsib = prevsib->sibling)
1522 ;
1523 prevsib->sibling = np->sibling;
1524 }
1525
1526 of_node_set_flag(np, OF_DETACHED);
1527 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1528
1529 of_remove_proc_dt_entry(np);
1530 return rc;
1531 }
1532 #endif /* defined(CONFIG_OF_DYNAMIC) */
1533
1534 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1535 int id, const char *stem, int stem_len)
1536 {
1537 ap->np = np;
1538 ap->id = id;
1539 strncpy(ap->stem, stem, stem_len);
1540 ap->stem[stem_len] = 0;
1541 list_add_tail(&ap->link, &aliases_lookup);
1542 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1543 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1544 }
1545
1546 /**
1547 * of_alias_scan - Scan all properties of 'aliases' node
1548 *
1549 * The function scans all the properties of 'aliases' node and populate
1550 * the the global lookup table with the properties. It returns the
1551 * number of alias_prop found, or error code in error case.
1552 *
1553 * @dt_alloc: An allocator that provides a virtual address to memory
1554 * for the resulting tree
1555 */
1556 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1557 {
1558 struct property *pp;
1559
1560 of_chosen = of_find_node_by_path("/chosen");
1561 if (of_chosen == NULL)
1562 of_chosen = of_find_node_by_path("/chosen@0");
1563 of_aliases = of_find_node_by_path("/aliases");
1564 if (!of_aliases)
1565 return;
1566
1567 for_each_property_of_node(of_aliases, pp) {
1568 const char *start = pp->name;
1569 const char *end = start + strlen(start);
1570 struct device_node *np;
1571 struct alias_prop *ap;
1572 int id, len;
1573
1574 /* Skip those we do not want to proceed */
1575 if (!strcmp(pp->name, "name") ||
1576 !strcmp(pp->name, "phandle") ||
1577 !strcmp(pp->name, "linux,phandle"))
1578 continue;
1579
1580 np = of_find_node_by_path(pp->value);
1581 if (!np)
1582 continue;
1583
1584 /* walk the alias backwards to extract the id and work out
1585 * the 'stem' string */
1586 while (isdigit(*(end-1)) && end > start)
1587 end--;
1588 len = end - start;
1589
1590 if (kstrtoint(end, 10, &id) < 0)
1591 continue;
1592
1593 /* Allocate an alias_prop with enough space for the stem */
1594 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1595 if (!ap)
1596 continue;
1597 ap->alias = start;
1598 of_alias_add(ap, np, id, start, len);
1599 }
1600 }
1601
1602 /**
1603 * of_alias_get_id - Get alias id for the given device_node
1604 * @np: Pointer to the given device_node
1605 * @stem: Alias stem of the given device_node
1606 *
1607 * The function travels the lookup table to get alias id for the given
1608 * device_node and alias stem. It returns the alias id if find it.
1609 */
1610 int of_alias_get_id(struct device_node *np, const char *stem)
1611 {
1612 struct alias_prop *app;
1613 int id = -ENODEV;
1614
1615 mutex_lock(&of_aliases_mutex);
1616 list_for_each_entry(app, &aliases_lookup, link) {
1617 if (strcmp(app->stem, stem) != 0)
1618 continue;
1619
1620 if (np == app->np) {
1621 id = app->id;
1622 break;
1623 }
1624 }
1625 mutex_unlock(&of_aliases_mutex);
1626
1627 return id;
1628 }
1629 EXPORT_SYMBOL_GPL(of_alias_get_id);
1630
1631 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1632 u32 *pu)
1633 {
1634 const void *curv = cur;
1635
1636 if (!prop)
1637 return NULL;
1638
1639 if (!cur) {
1640 curv = prop->value;
1641 goto out_val;
1642 }
1643
1644 curv += sizeof(*cur);
1645 if (curv >= prop->value + prop->length)
1646 return NULL;
1647
1648 out_val:
1649 *pu = be32_to_cpup(curv);
1650 return curv;
1651 }
1652 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1653
1654 const char *of_prop_next_string(struct property *prop, const char *cur)
1655 {
1656 const void *curv = cur;
1657
1658 if (!prop)
1659 return NULL;
1660
1661 if (!cur)
1662 return prop->value;
1663
1664 curv += strlen(cur) + 1;
1665 if (curv >= prop->value + prop->length)
1666 return NULL;
1667
1668 return curv;
1669 }
1670 EXPORT_SYMBOL_GPL(of_prop_next_string);