Merge tag 'drivers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26
27 #include "of_private.h"
28
29 LIST_HEAD(aliases_lookup);
30
31 struct device_node *of_allnodes;
32 EXPORT_SYMBOL(of_allnodes);
33 struct device_node *of_chosen;
34 struct device_node *of_aliases;
35
36 DEFINE_MUTEX(of_aliases_mutex);
37
38 /* use when traversing tree through the allnext, child, sibling,
39 * or parent members of struct device_node.
40 */
41 DEFINE_RAW_SPINLOCK(devtree_lock);
42
43 int of_n_addr_cells(struct device_node *np)
44 {
45 const __be32 *ip;
46
47 do {
48 if (np->parent)
49 np = np->parent;
50 ip = of_get_property(np, "#address-cells", NULL);
51 if (ip)
52 return be32_to_cpup(ip);
53 } while (np->parent);
54 /* No #address-cells property for the root node */
55 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
56 }
57 EXPORT_SYMBOL(of_n_addr_cells);
58
59 int of_n_size_cells(struct device_node *np)
60 {
61 const __be32 *ip;
62
63 do {
64 if (np->parent)
65 np = np->parent;
66 ip = of_get_property(np, "#size-cells", NULL);
67 if (ip)
68 return be32_to_cpup(ip);
69 } while (np->parent);
70 /* No #size-cells property for the root node */
71 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_size_cells);
74
75 #if defined(CONFIG_OF_DYNAMIC)
76 /**
77 * of_node_get - Increment refcount of a node
78 * @node: Node to inc refcount, NULL is supported to
79 * simplify writing of callers
80 *
81 * Returns node.
82 */
83 struct device_node *of_node_get(struct device_node *node)
84 {
85 if (node)
86 kref_get(&node->kref);
87 return node;
88 }
89 EXPORT_SYMBOL(of_node_get);
90
91 static inline struct device_node *kref_to_device_node(struct kref *kref)
92 {
93 return container_of(kref, struct device_node, kref);
94 }
95
96 /**
97 * of_node_release - release a dynamically allocated node
98 * @kref: kref element of the node to be released
99 *
100 * In of_node_put() this function is passed to kref_put()
101 * as the destructor.
102 */
103 static void of_node_release(struct kref *kref)
104 {
105 struct device_node *node = kref_to_device_node(kref);
106 struct property *prop = node->properties;
107
108 /* We should never be releasing nodes that haven't been detached. */
109 if (!of_node_check_flag(node, OF_DETACHED)) {
110 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
111 dump_stack();
112 kref_init(&node->kref);
113 return;
114 }
115
116 if (!of_node_check_flag(node, OF_DYNAMIC))
117 return;
118
119 while (prop) {
120 struct property *next = prop->next;
121 kfree(prop->name);
122 kfree(prop->value);
123 kfree(prop);
124 prop = next;
125
126 if (!prop) {
127 prop = node->deadprops;
128 node->deadprops = NULL;
129 }
130 }
131 kfree(node->full_name);
132 kfree(node->data);
133 kfree(node);
134 }
135
136 /**
137 * of_node_put - Decrement refcount of a node
138 * @node: Node to dec refcount, NULL is supported to
139 * simplify writing of callers
140 *
141 */
142 void of_node_put(struct device_node *node)
143 {
144 if (node)
145 kref_put(&node->kref, of_node_release);
146 }
147 EXPORT_SYMBOL(of_node_put);
148 #endif /* CONFIG_OF_DYNAMIC */
149
150 static struct property *__of_find_property(const struct device_node *np,
151 const char *name, int *lenp)
152 {
153 struct property *pp;
154
155 if (!np)
156 return NULL;
157
158 for (pp = np->properties; pp; pp = pp->next) {
159 if (of_prop_cmp(pp->name, name) == 0) {
160 if (lenp)
161 *lenp = pp->length;
162 break;
163 }
164 }
165
166 return pp;
167 }
168
169 struct property *of_find_property(const struct device_node *np,
170 const char *name,
171 int *lenp)
172 {
173 struct property *pp;
174 unsigned long flags;
175
176 raw_spin_lock_irqsave(&devtree_lock, flags);
177 pp = __of_find_property(np, name, lenp);
178 raw_spin_unlock_irqrestore(&devtree_lock, flags);
179
180 return pp;
181 }
182 EXPORT_SYMBOL(of_find_property);
183
184 /**
185 * of_find_all_nodes - Get next node in global list
186 * @prev: Previous node or NULL to start iteration
187 * of_node_put() will be called on it
188 *
189 * Returns a node pointer with refcount incremented, use
190 * of_node_put() on it when done.
191 */
192 struct device_node *of_find_all_nodes(struct device_node *prev)
193 {
194 struct device_node *np;
195
196 raw_spin_lock(&devtree_lock);
197 np = prev ? prev->allnext : of_allnodes;
198 for (; np != NULL; np = np->allnext)
199 if (of_node_get(np))
200 break;
201 of_node_put(prev);
202 raw_spin_unlock(&devtree_lock);
203 return np;
204 }
205 EXPORT_SYMBOL(of_find_all_nodes);
206
207 /*
208 * Find a property with a given name for a given node
209 * and return the value.
210 */
211 static const void *__of_get_property(const struct device_node *np,
212 const char *name, int *lenp)
213 {
214 struct property *pp = __of_find_property(np, name, lenp);
215
216 return pp ? pp->value : NULL;
217 }
218
219 /*
220 * Find a property with a given name for a given node
221 * and return the value.
222 */
223 const void *of_get_property(const struct device_node *np, const char *name,
224 int *lenp)
225 {
226 struct property *pp = of_find_property(np, name, lenp);
227
228 return pp ? pp->value : NULL;
229 }
230 EXPORT_SYMBOL(of_get_property);
231
232 /** Checks if the given "compat" string matches one of the strings in
233 * the device's "compatible" property
234 */
235 static int __of_device_is_compatible(const struct device_node *device,
236 const char *compat)
237 {
238 const char* cp;
239 int cplen, l;
240
241 cp = __of_get_property(device, "compatible", &cplen);
242 if (cp == NULL)
243 return 0;
244 while (cplen > 0) {
245 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
246 return 1;
247 l = strlen(cp) + 1;
248 cp += l;
249 cplen -= l;
250 }
251
252 return 0;
253 }
254
255 /** Checks if the given "compat" string matches one of the strings in
256 * the device's "compatible" property
257 */
258 int of_device_is_compatible(const struct device_node *device,
259 const char *compat)
260 {
261 unsigned long flags;
262 int res;
263
264 raw_spin_lock_irqsave(&devtree_lock, flags);
265 res = __of_device_is_compatible(device, compat);
266 raw_spin_unlock_irqrestore(&devtree_lock, flags);
267 return res;
268 }
269 EXPORT_SYMBOL(of_device_is_compatible);
270
271 /**
272 * of_machine_is_compatible - Test root of device tree for a given compatible value
273 * @compat: compatible string to look for in root node's compatible property.
274 *
275 * Returns true if the root node has the given value in its
276 * compatible property.
277 */
278 int of_machine_is_compatible(const char *compat)
279 {
280 struct device_node *root;
281 int rc = 0;
282
283 root = of_find_node_by_path("/");
284 if (root) {
285 rc = of_device_is_compatible(root, compat);
286 of_node_put(root);
287 }
288 return rc;
289 }
290 EXPORT_SYMBOL(of_machine_is_compatible);
291
292 /**
293 * __of_device_is_available - check if a device is available for use
294 *
295 * @device: Node to check for availability, with locks already held
296 *
297 * Returns 1 if the status property is absent or set to "okay" or "ok",
298 * 0 otherwise
299 */
300 static int __of_device_is_available(const struct device_node *device)
301 {
302 const char *status;
303 int statlen;
304
305 status = __of_get_property(device, "status", &statlen);
306 if (status == NULL)
307 return 1;
308
309 if (statlen > 0) {
310 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
311 return 1;
312 }
313
314 return 0;
315 }
316
317 /**
318 * of_device_is_available - check if a device is available for use
319 *
320 * @device: Node to check for availability
321 *
322 * Returns 1 if the status property is absent or set to "okay" or "ok",
323 * 0 otherwise
324 */
325 int of_device_is_available(const struct device_node *device)
326 {
327 unsigned long flags;
328 int res;
329
330 raw_spin_lock_irqsave(&devtree_lock, flags);
331 res = __of_device_is_available(device);
332 raw_spin_unlock_irqrestore(&devtree_lock, flags);
333 return res;
334
335 }
336 EXPORT_SYMBOL(of_device_is_available);
337
338 /**
339 * of_get_parent - Get a node's parent if any
340 * @node: Node to get parent
341 *
342 * Returns a node pointer with refcount incremented, use
343 * of_node_put() on it when done.
344 */
345 struct device_node *of_get_parent(const struct device_node *node)
346 {
347 struct device_node *np;
348 unsigned long flags;
349
350 if (!node)
351 return NULL;
352
353 raw_spin_lock_irqsave(&devtree_lock, flags);
354 np = of_node_get(node->parent);
355 raw_spin_unlock_irqrestore(&devtree_lock, flags);
356 return np;
357 }
358 EXPORT_SYMBOL(of_get_parent);
359
360 /**
361 * of_get_next_parent - Iterate to a node's parent
362 * @node: Node to get parent of
363 *
364 * This is like of_get_parent() except that it drops the
365 * refcount on the passed node, making it suitable for iterating
366 * through a node's parents.
367 *
368 * Returns a node pointer with refcount incremented, use
369 * of_node_put() on it when done.
370 */
371 struct device_node *of_get_next_parent(struct device_node *node)
372 {
373 struct device_node *parent;
374 unsigned long flags;
375
376 if (!node)
377 return NULL;
378
379 raw_spin_lock_irqsave(&devtree_lock, flags);
380 parent = of_node_get(node->parent);
381 of_node_put(node);
382 raw_spin_unlock_irqrestore(&devtree_lock, flags);
383 return parent;
384 }
385 EXPORT_SYMBOL(of_get_next_parent);
386
387 /**
388 * of_get_next_child - Iterate a node childs
389 * @node: parent node
390 * @prev: previous child of the parent node, or NULL to get first
391 *
392 * Returns a node pointer with refcount incremented, use
393 * of_node_put() on it when done.
394 */
395 struct device_node *of_get_next_child(const struct device_node *node,
396 struct device_node *prev)
397 {
398 struct device_node *next;
399 unsigned long flags;
400
401 raw_spin_lock_irqsave(&devtree_lock, flags);
402 next = prev ? prev->sibling : node->child;
403 for (; next; next = next->sibling)
404 if (of_node_get(next))
405 break;
406 of_node_put(prev);
407 raw_spin_unlock_irqrestore(&devtree_lock, flags);
408 return next;
409 }
410 EXPORT_SYMBOL(of_get_next_child);
411
412 /**
413 * of_get_next_available_child - Find the next available child node
414 * @node: parent node
415 * @prev: previous child of the parent node, or NULL to get first
416 *
417 * This function is like of_get_next_child(), except that it
418 * automatically skips any disabled nodes (i.e. status = "disabled").
419 */
420 struct device_node *of_get_next_available_child(const struct device_node *node,
421 struct device_node *prev)
422 {
423 struct device_node *next;
424
425 raw_spin_lock(&devtree_lock);
426 next = prev ? prev->sibling : node->child;
427 for (; next; next = next->sibling) {
428 if (!__of_device_is_available(next))
429 continue;
430 if (of_node_get(next))
431 break;
432 }
433 of_node_put(prev);
434 raw_spin_unlock(&devtree_lock);
435 return next;
436 }
437 EXPORT_SYMBOL(of_get_next_available_child);
438
439 /**
440 * of_get_child_by_name - Find the child node by name for a given parent
441 * @node: parent node
442 * @name: child name to look for.
443 *
444 * This function looks for child node for given matching name
445 *
446 * Returns a node pointer if found, with refcount incremented, use
447 * of_node_put() on it when done.
448 * Returns NULL if node is not found.
449 */
450 struct device_node *of_get_child_by_name(const struct device_node *node,
451 const char *name)
452 {
453 struct device_node *child;
454
455 for_each_child_of_node(node, child)
456 if (child->name && (of_node_cmp(child->name, name) == 0))
457 break;
458 return child;
459 }
460 EXPORT_SYMBOL(of_get_child_by_name);
461
462 /**
463 * of_find_node_by_path - Find a node matching a full OF path
464 * @path: The full path to match
465 *
466 * Returns a node pointer with refcount incremented, use
467 * of_node_put() on it when done.
468 */
469 struct device_node *of_find_node_by_path(const char *path)
470 {
471 struct device_node *np = of_allnodes;
472 unsigned long flags;
473
474 raw_spin_lock_irqsave(&devtree_lock, flags);
475 for (; np; np = np->allnext) {
476 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
477 && of_node_get(np))
478 break;
479 }
480 raw_spin_unlock_irqrestore(&devtree_lock, flags);
481 return np;
482 }
483 EXPORT_SYMBOL(of_find_node_by_path);
484
485 /**
486 * of_find_node_by_name - Find a node by its "name" property
487 * @from: The node to start searching from or NULL, the node
488 * you pass will not be searched, only the next one
489 * will; typically, you pass what the previous call
490 * returned. of_node_put() will be called on it
491 * @name: The name string to match against
492 *
493 * Returns a node pointer with refcount incremented, use
494 * of_node_put() on it when done.
495 */
496 struct device_node *of_find_node_by_name(struct device_node *from,
497 const char *name)
498 {
499 struct device_node *np;
500 unsigned long flags;
501
502 raw_spin_lock_irqsave(&devtree_lock, flags);
503 np = from ? from->allnext : of_allnodes;
504 for (; np; np = np->allnext)
505 if (np->name && (of_node_cmp(np->name, name) == 0)
506 && of_node_get(np))
507 break;
508 of_node_put(from);
509 raw_spin_unlock_irqrestore(&devtree_lock, flags);
510 return np;
511 }
512 EXPORT_SYMBOL(of_find_node_by_name);
513
514 /**
515 * of_find_node_by_type - Find a node by its "device_type" property
516 * @from: The node to start searching from, or NULL to start searching
517 * the entire device tree. The node you pass will not be
518 * searched, only the next one will; typically, you pass
519 * what the previous call returned. of_node_put() will be
520 * called on from for you.
521 * @type: The type string to match against
522 *
523 * Returns a node pointer with refcount incremented, use
524 * of_node_put() on it when done.
525 */
526 struct device_node *of_find_node_by_type(struct device_node *from,
527 const char *type)
528 {
529 struct device_node *np;
530 unsigned long flags;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 np = from ? from->allnext : of_allnodes;
534 for (; np; np = np->allnext)
535 if (np->type && (of_node_cmp(np->type, type) == 0)
536 && of_node_get(np))
537 break;
538 of_node_put(from);
539 raw_spin_unlock_irqrestore(&devtree_lock, flags);
540 return np;
541 }
542 EXPORT_SYMBOL(of_find_node_by_type);
543
544 /**
545 * of_find_compatible_node - Find a node based on type and one of the
546 * tokens in its "compatible" property
547 * @from: The node to start searching from or NULL, the node
548 * you pass will not be searched, only the next one
549 * will; typically, you pass what the previous call
550 * returned. of_node_put() will be called on it
551 * @type: The type string to match "device_type" or NULL to ignore
552 * @compatible: The string to match to one of the tokens in the device
553 * "compatible" list.
554 *
555 * Returns a node pointer with refcount incremented, use
556 * of_node_put() on it when done.
557 */
558 struct device_node *of_find_compatible_node(struct device_node *from,
559 const char *type, const char *compatible)
560 {
561 struct device_node *np;
562 unsigned long flags;
563
564 raw_spin_lock_irqsave(&devtree_lock, flags);
565 np = from ? from->allnext : of_allnodes;
566 for (; np; np = np->allnext) {
567 if (type
568 && !(np->type && (of_node_cmp(np->type, type) == 0)))
569 continue;
570 if (__of_device_is_compatible(np, compatible) &&
571 of_node_get(np))
572 break;
573 }
574 of_node_put(from);
575 raw_spin_unlock_irqrestore(&devtree_lock, flags);
576 return np;
577 }
578 EXPORT_SYMBOL(of_find_compatible_node);
579
580 /**
581 * of_find_node_with_property - Find a node which has a property with
582 * the given name.
583 * @from: The node to start searching from or NULL, the node
584 * you pass will not be searched, only the next one
585 * will; typically, you pass what the previous call
586 * returned. of_node_put() will be called on it
587 * @prop_name: The name of the property to look for.
588 *
589 * Returns a node pointer with refcount incremented, use
590 * of_node_put() on it when done.
591 */
592 struct device_node *of_find_node_with_property(struct device_node *from,
593 const char *prop_name)
594 {
595 struct device_node *np;
596 struct property *pp;
597 unsigned long flags;
598
599 raw_spin_lock_irqsave(&devtree_lock, flags);
600 np = from ? from->allnext : of_allnodes;
601 for (; np; np = np->allnext) {
602 for (pp = np->properties; pp; pp = pp->next) {
603 if (of_prop_cmp(pp->name, prop_name) == 0) {
604 of_node_get(np);
605 goto out;
606 }
607 }
608 }
609 out:
610 of_node_put(from);
611 raw_spin_unlock_irqrestore(&devtree_lock, flags);
612 return np;
613 }
614 EXPORT_SYMBOL(of_find_node_with_property);
615
616 static
617 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
618 const struct device_node *node)
619 {
620 if (!matches)
621 return NULL;
622
623 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
624 int match = 1;
625 if (matches->name[0])
626 match &= node->name
627 && !strcmp(matches->name, node->name);
628 if (matches->type[0])
629 match &= node->type
630 && !strcmp(matches->type, node->type);
631 if (matches->compatible[0])
632 match &= __of_device_is_compatible(node,
633 matches->compatible);
634 if (match)
635 return matches;
636 matches++;
637 }
638 return NULL;
639 }
640
641 /**
642 * of_match_node - Tell if an device_node has a matching of_match structure
643 * @matches: array of of device match structures to search in
644 * @node: the of device structure to match against
645 *
646 * Low level utility function used by device matching.
647 */
648 const struct of_device_id *of_match_node(const struct of_device_id *matches,
649 const struct device_node *node)
650 {
651 const struct of_device_id *match;
652 unsigned long flags;
653
654 raw_spin_lock_irqsave(&devtree_lock, flags);
655 match = __of_match_node(matches, node);
656 raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 return match;
658 }
659 EXPORT_SYMBOL(of_match_node);
660
661 /**
662 * of_find_matching_node_and_match - Find a node based on an of_device_id
663 * match table.
664 * @from: The node to start searching from or NULL, the node
665 * you pass will not be searched, only the next one
666 * will; typically, you pass what the previous call
667 * returned. of_node_put() will be called on it
668 * @matches: array of of device match structures to search in
669 * @match Updated to point at the matches entry which matched
670 *
671 * Returns a node pointer with refcount incremented, use
672 * of_node_put() on it when done.
673 */
674 struct device_node *of_find_matching_node_and_match(struct device_node *from,
675 const struct of_device_id *matches,
676 const struct of_device_id **match)
677 {
678 struct device_node *np;
679 const struct of_device_id *m;
680 unsigned long flags;
681
682 if (match)
683 *match = NULL;
684
685 raw_spin_lock_irqsave(&devtree_lock, flags);
686 np = from ? from->allnext : of_allnodes;
687 for (; np; np = np->allnext) {
688 m = __of_match_node(matches, np);
689 if (m && of_node_get(np)) {
690 if (match)
691 *match = m;
692 break;
693 }
694 }
695 of_node_put(from);
696 raw_spin_unlock_irqrestore(&devtree_lock, flags);
697 return np;
698 }
699 EXPORT_SYMBOL(of_find_matching_node_and_match);
700
701 /**
702 * of_modalias_node - Lookup appropriate modalias for a device node
703 * @node: pointer to a device tree node
704 * @modalias: Pointer to buffer that modalias value will be copied into
705 * @len: Length of modalias value
706 *
707 * Based on the value of the compatible property, this routine will attempt
708 * to choose an appropriate modalias value for a particular device tree node.
709 * It does this by stripping the manufacturer prefix (as delimited by a ',')
710 * from the first entry in the compatible list property.
711 *
712 * This routine returns 0 on success, <0 on failure.
713 */
714 int of_modalias_node(struct device_node *node, char *modalias, int len)
715 {
716 const char *compatible, *p;
717 int cplen;
718
719 compatible = of_get_property(node, "compatible", &cplen);
720 if (!compatible || strlen(compatible) > cplen)
721 return -ENODEV;
722 p = strchr(compatible, ',');
723 strlcpy(modalias, p ? p + 1 : compatible, len);
724 return 0;
725 }
726 EXPORT_SYMBOL_GPL(of_modalias_node);
727
728 /**
729 * of_find_node_by_phandle - Find a node given a phandle
730 * @handle: phandle of the node to find
731 *
732 * Returns a node pointer with refcount incremented, use
733 * of_node_put() on it when done.
734 */
735 struct device_node *of_find_node_by_phandle(phandle handle)
736 {
737 struct device_node *np;
738
739 raw_spin_lock(&devtree_lock);
740 for (np = of_allnodes; np; np = np->allnext)
741 if (np->phandle == handle)
742 break;
743 of_node_get(np);
744 raw_spin_unlock(&devtree_lock);
745 return np;
746 }
747 EXPORT_SYMBOL(of_find_node_by_phandle);
748
749 /**
750 * of_find_property_value_of_size
751 *
752 * @np: device node from which the property value is to be read.
753 * @propname: name of the property to be searched.
754 * @len: requested length of property value
755 *
756 * Search for a property in a device node and valid the requested size.
757 * Returns the property value on success, -EINVAL if the property does not
758 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
759 * property data isn't large enough.
760 *
761 */
762 static void *of_find_property_value_of_size(const struct device_node *np,
763 const char *propname, u32 len)
764 {
765 struct property *prop = of_find_property(np, propname, NULL);
766
767 if (!prop)
768 return ERR_PTR(-EINVAL);
769 if (!prop->value)
770 return ERR_PTR(-ENODATA);
771 if (len > prop->length)
772 return ERR_PTR(-EOVERFLOW);
773
774 return prop->value;
775 }
776
777 /**
778 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
779 *
780 * @np: device node from which the property value is to be read.
781 * @propname: name of the property to be searched.
782 * @index: index of the u32 in the list of values
783 * @out_value: pointer to return value, modified only if no error.
784 *
785 * Search for a property in a device node and read nth 32-bit value from
786 * it. Returns 0 on success, -EINVAL if the property does not exist,
787 * -ENODATA if property does not have a value, and -EOVERFLOW if the
788 * property data isn't large enough.
789 *
790 * The out_value is modified only if a valid u32 value can be decoded.
791 */
792 int of_property_read_u32_index(const struct device_node *np,
793 const char *propname,
794 u32 index, u32 *out_value)
795 {
796 const u32 *val = of_find_property_value_of_size(np, propname,
797 ((index + 1) * sizeof(*out_value)));
798
799 if (IS_ERR(val))
800 return PTR_ERR(val);
801
802 *out_value = be32_to_cpup(((__be32 *)val) + index);
803 return 0;
804 }
805 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
806
807 /**
808 * of_property_read_u8_array - Find and read an array of u8 from a property.
809 *
810 * @np: device node from which the property value is to be read.
811 * @propname: name of the property to be searched.
812 * @out_value: pointer to return value, modified only if return value is 0.
813 * @sz: number of array elements to read
814 *
815 * Search for a property in a device node and read 8-bit value(s) from
816 * it. Returns 0 on success, -EINVAL if the property does not exist,
817 * -ENODATA if property does not have a value, and -EOVERFLOW if the
818 * property data isn't large enough.
819 *
820 * dts entry of array should be like:
821 * property = /bits/ 8 <0x50 0x60 0x70>;
822 *
823 * The out_value is modified only if a valid u8 value can be decoded.
824 */
825 int of_property_read_u8_array(const struct device_node *np,
826 const char *propname, u8 *out_values, size_t sz)
827 {
828 const u8 *val = of_find_property_value_of_size(np, propname,
829 (sz * sizeof(*out_values)));
830
831 if (IS_ERR(val))
832 return PTR_ERR(val);
833
834 while (sz--)
835 *out_values++ = *val++;
836 return 0;
837 }
838 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
839
840 /**
841 * of_property_read_u16_array - Find and read an array of u16 from a property.
842 *
843 * @np: device node from which the property value is to be read.
844 * @propname: name of the property to be searched.
845 * @out_value: pointer to return value, modified only if return value is 0.
846 * @sz: number of array elements to read
847 *
848 * Search for a property in a device node and read 16-bit value(s) from
849 * it. Returns 0 on success, -EINVAL if the property does not exist,
850 * -ENODATA if property does not have a value, and -EOVERFLOW if the
851 * property data isn't large enough.
852 *
853 * dts entry of array should be like:
854 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
855 *
856 * The out_value is modified only if a valid u16 value can be decoded.
857 */
858 int of_property_read_u16_array(const struct device_node *np,
859 const char *propname, u16 *out_values, size_t sz)
860 {
861 const __be16 *val = of_find_property_value_of_size(np, propname,
862 (sz * sizeof(*out_values)));
863
864 if (IS_ERR(val))
865 return PTR_ERR(val);
866
867 while (sz--)
868 *out_values++ = be16_to_cpup(val++);
869 return 0;
870 }
871 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
872
873 /**
874 * of_property_read_u32_array - Find and read an array of 32 bit integers
875 * from a property.
876 *
877 * @np: device node from which the property value is to be read.
878 * @propname: name of the property to be searched.
879 * @out_value: pointer to return value, modified only if return value is 0.
880 * @sz: number of array elements to read
881 *
882 * Search for a property in a device node and read 32-bit value(s) from
883 * it. Returns 0 on success, -EINVAL if the property does not exist,
884 * -ENODATA if property does not have a value, and -EOVERFLOW if the
885 * property data isn't large enough.
886 *
887 * The out_value is modified only if a valid u32 value can be decoded.
888 */
889 int of_property_read_u32_array(const struct device_node *np,
890 const char *propname, u32 *out_values,
891 size_t sz)
892 {
893 const __be32 *val = of_find_property_value_of_size(np, propname,
894 (sz * sizeof(*out_values)));
895
896 if (IS_ERR(val))
897 return PTR_ERR(val);
898
899 while (sz--)
900 *out_values++ = be32_to_cpup(val++);
901 return 0;
902 }
903 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
904
905 /**
906 * of_property_read_u64 - Find and read a 64 bit integer from a property
907 * @np: device node from which the property value is to be read.
908 * @propname: name of the property to be searched.
909 * @out_value: pointer to return value, modified only if return value is 0.
910 *
911 * Search for a property in a device node and read a 64-bit value from
912 * it. Returns 0 on success, -EINVAL if the property does not exist,
913 * -ENODATA if property does not have a value, and -EOVERFLOW if the
914 * property data isn't large enough.
915 *
916 * The out_value is modified only if a valid u64 value can be decoded.
917 */
918 int of_property_read_u64(const struct device_node *np, const char *propname,
919 u64 *out_value)
920 {
921 const __be32 *val = of_find_property_value_of_size(np, propname,
922 sizeof(*out_value));
923
924 if (IS_ERR(val))
925 return PTR_ERR(val);
926
927 *out_value = of_read_number(val, 2);
928 return 0;
929 }
930 EXPORT_SYMBOL_GPL(of_property_read_u64);
931
932 /**
933 * of_property_read_string - Find and read a string from a property
934 * @np: device node from which the property value is to be read.
935 * @propname: name of the property to be searched.
936 * @out_string: pointer to null terminated return string, modified only if
937 * return value is 0.
938 *
939 * Search for a property in a device tree node and retrieve a null
940 * terminated string value (pointer to data, not a copy). Returns 0 on
941 * success, -EINVAL if the property does not exist, -ENODATA if property
942 * does not have a value, and -EILSEQ if the string is not null-terminated
943 * within the length of the property data.
944 *
945 * The out_string pointer is modified only if a valid string can be decoded.
946 */
947 int of_property_read_string(struct device_node *np, const char *propname,
948 const char **out_string)
949 {
950 struct property *prop = of_find_property(np, propname, NULL);
951 if (!prop)
952 return -EINVAL;
953 if (!prop->value)
954 return -ENODATA;
955 if (strnlen(prop->value, prop->length) >= prop->length)
956 return -EILSEQ;
957 *out_string = prop->value;
958 return 0;
959 }
960 EXPORT_SYMBOL_GPL(of_property_read_string);
961
962 /**
963 * of_property_read_string_index - Find and read a string from a multiple
964 * strings property.
965 * @np: device node from which the property value is to be read.
966 * @propname: name of the property to be searched.
967 * @index: index of the string in the list of strings
968 * @out_string: pointer to null terminated return string, modified only if
969 * return value is 0.
970 *
971 * Search for a property in a device tree node and retrieve a null
972 * terminated string value (pointer to data, not a copy) in the list of strings
973 * contained in that property.
974 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
975 * property does not have a value, and -EILSEQ if the string is not
976 * null-terminated within the length of the property data.
977 *
978 * The out_string pointer is modified only if a valid string can be decoded.
979 */
980 int of_property_read_string_index(struct device_node *np, const char *propname,
981 int index, const char **output)
982 {
983 struct property *prop = of_find_property(np, propname, NULL);
984 int i = 0;
985 size_t l = 0, total = 0;
986 const char *p;
987
988 if (!prop)
989 return -EINVAL;
990 if (!prop->value)
991 return -ENODATA;
992 if (strnlen(prop->value, prop->length) >= prop->length)
993 return -EILSEQ;
994
995 p = prop->value;
996
997 for (i = 0; total < prop->length; total += l, p += l) {
998 l = strlen(p) + 1;
999 if (i++ == index) {
1000 *output = p;
1001 return 0;
1002 }
1003 }
1004 return -ENODATA;
1005 }
1006 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1007
1008 /**
1009 * of_property_match_string() - Find string in a list and return index
1010 * @np: pointer to node containing string list property
1011 * @propname: string list property name
1012 * @string: pointer to string to search for in string list
1013 *
1014 * This function searches a string list property and returns the index
1015 * of a specific string value.
1016 */
1017 int of_property_match_string(struct device_node *np, const char *propname,
1018 const char *string)
1019 {
1020 struct property *prop = of_find_property(np, propname, NULL);
1021 size_t l;
1022 int i;
1023 const char *p, *end;
1024
1025 if (!prop)
1026 return -EINVAL;
1027 if (!prop->value)
1028 return -ENODATA;
1029
1030 p = prop->value;
1031 end = p + prop->length;
1032
1033 for (i = 0; p < end; i++, p += l) {
1034 l = strlen(p) + 1;
1035 if (p + l > end)
1036 return -EILSEQ;
1037 pr_debug("comparing %s with %s\n", string, p);
1038 if (strcmp(string, p) == 0)
1039 return i; /* Found it; return index */
1040 }
1041 return -ENODATA;
1042 }
1043 EXPORT_SYMBOL_GPL(of_property_match_string);
1044
1045 /**
1046 * of_property_count_strings - Find and return the number of strings from a
1047 * multiple strings property.
1048 * @np: device node from which the property value is to be read.
1049 * @propname: name of the property to be searched.
1050 *
1051 * Search for a property in a device tree node and retrieve the number of null
1052 * terminated string contain in it. Returns the number of strings on
1053 * success, -EINVAL if the property does not exist, -ENODATA if property
1054 * does not have a value, and -EILSEQ if the string is not null-terminated
1055 * within the length of the property data.
1056 */
1057 int of_property_count_strings(struct device_node *np, const char *propname)
1058 {
1059 struct property *prop = of_find_property(np, propname, NULL);
1060 int i = 0;
1061 size_t l = 0, total = 0;
1062 const char *p;
1063
1064 if (!prop)
1065 return -EINVAL;
1066 if (!prop->value)
1067 return -ENODATA;
1068 if (strnlen(prop->value, prop->length) >= prop->length)
1069 return -EILSEQ;
1070
1071 p = prop->value;
1072
1073 for (i = 0; total < prop->length; total += l, p += l, i++)
1074 l = strlen(p) + 1;
1075
1076 return i;
1077 }
1078 EXPORT_SYMBOL_GPL(of_property_count_strings);
1079
1080 /**
1081 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1082 * @np: Pointer to device node holding phandle property
1083 * @phandle_name: Name of property holding a phandle value
1084 * @index: For properties holding a table of phandles, this is the index into
1085 * the table
1086 *
1087 * Returns the device_node pointer with refcount incremented. Use
1088 * of_node_put() on it when done.
1089 */
1090 struct device_node *of_parse_phandle(const struct device_node *np,
1091 const char *phandle_name, int index)
1092 {
1093 const __be32 *phandle;
1094 int size;
1095
1096 phandle = of_get_property(np, phandle_name, &size);
1097 if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
1098 return NULL;
1099
1100 return of_find_node_by_phandle(be32_to_cpup(phandle + index));
1101 }
1102 EXPORT_SYMBOL(of_parse_phandle);
1103
1104 /**
1105 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1106 * @np: pointer to a device tree node containing a list
1107 * @list_name: property name that contains a list
1108 * @cells_name: property name that specifies phandles' arguments count
1109 * @index: index of a phandle to parse out
1110 * @out_args: optional pointer to output arguments structure (will be filled)
1111 *
1112 * This function is useful to parse lists of phandles and their arguments.
1113 * Returns 0 on success and fills out_args, on error returns appropriate
1114 * errno value.
1115 *
1116 * Caller is responsible to call of_node_put() on the returned out_args->node
1117 * pointer.
1118 *
1119 * Example:
1120 *
1121 * phandle1: node1 {
1122 * #list-cells = <2>;
1123 * }
1124 *
1125 * phandle2: node2 {
1126 * #list-cells = <1>;
1127 * }
1128 *
1129 * node3 {
1130 * list = <&phandle1 1 2 &phandle2 3>;
1131 * }
1132 *
1133 * To get a device_node of the `node2' node you may call this:
1134 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1135 */
1136 static int __of_parse_phandle_with_args(const struct device_node *np,
1137 const char *list_name,
1138 const char *cells_name, int index,
1139 struct of_phandle_args *out_args)
1140 {
1141 const __be32 *list, *list_end;
1142 int rc = 0, size, cur_index = 0;
1143 uint32_t count = 0;
1144 struct device_node *node = NULL;
1145 phandle phandle;
1146
1147 /* Retrieve the phandle list property */
1148 list = of_get_property(np, list_name, &size);
1149 if (!list)
1150 return -ENOENT;
1151 list_end = list + size / sizeof(*list);
1152
1153 /* Loop over the phandles until all the requested entry is found */
1154 while (list < list_end) {
1155 rc = -EINVAL;
1156 count = 0;
1157
1158 /*
1159 * If phandle is 0, then it is an empty entry with no
1160 * arguments. Skip forward to the next entry.
1161 */
1162 phandle = be32_to_cpup(list++);
1163 if (phandle) {
1164 /*
1165 * Find the provider node and parse the #*-cells
1166 * property to determine the argument length
1167 */
1168 node = of_find_node_by_phandle(phandle);
1169 if (!node) {
1170 pr_err("%s: could not find phandle\n",
1171 np->full_name);
1172 goto err;
1173 }
1174 if (of_property_read_u32(node, cells_name, &count)) {
1175 pr_err("%s: could not get %s for %s\n",
1176 np->full_name, cells_name,
1177 node->full_name);
1178 goto err;
1179 }
1180
1181 /*
1182 * Make sure that the arguments actually fit in the
1183 * remaining property data length
1184 */
1185 if (list + count > list_end) {
1186 pr_err("%s: arguments longer than property\n",
1187 np->full_name);
1188 goto err;
1189 }
1190 }
1191
1192 /*
1193 * All of the error cases above bail out of the loop, so at
1194 * this point, the parsing is successful. If the requested
1195 * index matches, then fill the out_args structure and return,
1196 * or return -ENOENT for an empty entry.
1197 */
1198 rc = -ENOENT;
1199 if (cur_index == index) {
1200 if (!phandle)
1201 goto err;
1202
1203 if (out_args) {
1204 int i;
1205 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1206 count = MAX_PHANDLE_ARGS;
1207 out_args->np = node;
1208 out_args->args_count = count;
1209 for (i = 0; i < count; i++)
1210 out_args->args[i] = be32_to_cpup(list++);
1211 }
1212
1213 /* Found it! return success */
1214 if (node)
1215 of_node_put(node);
1216 return 0;
1217 }
1218
1219 of_node_put(node);
1220 node = NULL;
1221 list += count;
1222 cur_index++;
1223 }
1224
1225 /*
1226 * Unlock node before returning result; will be one of:
1227 * -ENOENT : index is for empty phandle
1228 * -EINVAL : parsing error on data
1229 * [1..n] : Number of phandle (count mode; when index = -1)
1230 */
1231 rc = index < 0 ? cur_index : -ENOENT;
1232 err:
1233 if (node)
1234 of_node_put(node);
1235 return rc;
1236 }
1237
1238 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1239 const char *cells_name, int index,
1240 struct of_phandle_args *out_args)
1241 {
1242 if (index < 0)
1243 return -EINVAL;
1244 return __of_parse_phandle_with_args(np, list_name, cells_name, index, out_args);
1245 }
1246 EXPORT_SYMBOL(of_parse_phandle_with_args);
1247
1248 /**
1249 * of_count_phandle_with_args() - Find the number of phandles references in a property
1250 * @np: pointer to a device tree node containing a list
1251 * @list_name: property name that contains a list
1252 * @cells_name: property name that specifies phandles' arguments count
1253 *
1254 * Returns the number of phandle + argument tuples within a property. It
1255 * is a typical pattern to encode a list of phandle and variable
1256 * arguments into a single property. The number of arguments is encoded
1257 * by a property in the phandle-target node. For example, a gpios
1258 * property would contain a list of GPIO specifies consisting of a
1259 * phandle and 1 or more arguments. The number of arguments are
1260 * determined by the #gpio-cells property in the node pointed to by the
1261 * phandle.
1262 */
1263 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1264 const char *cells_name)
1265 {
1266 return __of_parse_phandle_with_args(np, list_name, cells_name, -1, NULL);
1267 }
1268 EXPORT_SYMBOL(of_count_phandle_with_args);
1269
1270 #if defined(CONFIG_OF_DYNAMIC)
1271 static int of_property_notify(int action, struct device_node *np,
1272 struct property *prop)
1273 {
1274 struct of_prop_reconfig pr;
1275
1276 pr.dn = np;
1277 pr.prop = prop;
1278 return of_reconfig_notify(action, &pr);
1279 }
1280 #else
1281 static int of_property_notify(int action, struct device_node *np,
1282 struct property *prop)
1283 {
1284 return 0;
1285 }
1286 #endif
1287
1288 /**
1289 * of_add_property - Add a property to a node
1290 */
1291 int of_add_property(struct device_node *np, struct property *prop)
1292 {
1293 struct property **next;
1294 unsigned long flags;
1295 int rc;
1296
1297 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1298 if (rc)
1299 return rc;
1300
1301 prop->next = NULL;
1302 raw_spin_lock_irqsave(&devtree_lock, flags);
1303 next = &np->properties;
1304 while (*next) {
1305 if (strcmp(prop->name, (*next)->name) == 0) {
1306 /* duplicate ! don't insert it */
1307 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1308 return -1;
1309 }
1310 next = &(*next)->next;
1311 }
1312 *next = prop;
1313 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1314
1315 #ifdef CONFIG_PROC_DEVICETREE
1316 /* try to add to proc as well if it was initialized */
1317 if (np->pde)
1318 proc_device_tree_add_prop(np->pde, prop);
1319 #endif /* CONFIG_PROC_DEVICETREE */
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * of_remove_property - Remove a property from a node.
1326 *
1327 * Note that we don't actually remove it, since we have given out
1328 * who-knows-how-many pointers to the data using get-property.
1329 * Instead we just move the property to the "dead properties"
1330 * list, so it won't be found any more.
1331 */
1332 int of_remove_property(struct device_node *np, struct property *prop)
1333 {
1334 struct property **next;
1335 unsigned long flags;
1336 int found = 0;
1337 int rc;
1338
1339 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1340 if (rc)
1341 return rc;
1342
1343 raw_spin_lock_irqsave(&devtree_lock, flags);
1344 next = &np->properties;
1345 while (*next) {
1346 if (*next == prop) {
1347 /* found the node */
1348 *next = prop->next;
1349 prop->next = np->deadprops;
1350 np->deadprops = prop;
1351 found = 1;
1352 break;
1353 }
1354 next = &(*next)->next;
1355 }
1356 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1357
1358 if (!found)
1359 return -ENODEV;
1360
1361 #ifdef CONFIG_PROC_DEVICETREE
1362 /* try to remove the proc node as well */
1363 if (np->pde)
1364 proc_device_tree_remove_prop(np->pde, prop);
1365 #endif /* CONFIG_PROC_DEVICETREE */
1366
1367 return 0;
1368 }
1369
1370 /*
1371 * of_update_property - Update a property in a node, if the property does
1372 * not exist, add it.
1373 *
1374 * Note that we don't actually remove it, since we have given out
1375 * who-knows-how-many pointers to the data using get-property.
1376 * Instead we just move the property to the "dead properties" list,
1377 * and add the new property to the property list
1378 */
1379 int of_update_property(struct device_node *np, struct property *newprop)
1380 {
1381 struct property **next, *oldprop;
1382 unsigned long flags;
1383 int rc, found = 0;
1384
1385 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1386 if (rc)
1387 return rc;
1388
1389 if (!newprop->name)
1390 return -EINVAL;
1391
1392 oldprop = of_find_property(np, newprop->name, NULL);
1393 if (!oldprop)
1394 return of_add_property(np, newprop);
1395
1396 raw_spin_lock_irqsave(&devtree_lock, flags);
1397 next = &np->properties;
1398 while (*next) {
1399 if (*next == oldprop) {
1400 /* found the node */
1401 newprop->next = oldprop->next;
1402 *next = newprop;
1403 oldprop->next = np->deadprops;
1404 np->deadprops = oldprop;
1405 found = 1;
1406 break;
1407 }
1408 next = &(*next)->next;
1409 }
1410 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1411
1412 if (!found)
1413 return -ENODEV;
1414
1415 #ifdef CONFIG_PROC_DEVICETREE
1416 /* try to add to proc as well if it was initialized */
1417 if (np->pde)
1418 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1419 #endif /* CONFIG_PROC_DEVICETREE */
1420
1421 return 0;
1422 }
1423
1424 #if defined(CONFIG_OF_DYNAMIC)
1425 /*
1426 * Support for dynamic device trees.
1427 *
1428 * On some platforms, the device tree can be manipulated at runtime.
1429 * The routines in this section support adding, removing and changing
1430 * device tree nodes.
1431 */
1432
1433 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1434
1435 int of_reconfig_notifier_register(struct notifier_block *nb)
1436 {
1437 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1438 }
1439 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1440
1441 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1442 {
1443 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1444 }
1445 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1446
1447 int of_reconfig_notify(unsigned long action, void *p)
1448 {
1449 int rc;
1450
1451 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1452 return notifier_to_errno(rc);
1453 }
1454
1455 #ifdef CONFIG_PROC_DEVICETREE
1456 static void of_add_proc_dt_entry(struct device_node *dn)
1457 {
1458 struct proc_dir_entry *ent;
1459
1460 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1461 if (ent)
1462 proc_device_tree_add_node(dn, ent);
1463 }
1464 #else
1465 static void of_add_proc_dt_entry(struct device_node *dn)
1466 {
1467 return;
1468 }
1469 #endif
1470
1471 /**
1472 * of_attach_node - Plug a device node into the tree and global list.
1473 */
1474 int of_attach_node(struct device_node *np)
1475 {
1476 unsigned long flags;
1477 int rc;
1478
1479 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1480 if (rc)
1481 return rc;
1482
1483 raw_spin_lock_irqsave(&devtree_lock, flags);
1484 np->sibling = np->parent->child;
1485 np->allnext = of_allnodes;
1486 np->parent->child = np;
1487 of_allnodes = np;
1488 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1489
1490 of_add_proc_dt_entry(np);
1491 return 0;
1492 }
1493
1494 #ifdef CONFIG_PROC_DEVICETREE
1495 static void of_remove_proc_dt_entry(struct device_node *dn)
1496 {
1497 proc_remove(dn->pde);
1498 }
1499 #else
1500 static void of_remove_proc_dt_entry(struct device_node *dn)
1501 {
1502 return;
1503 }
1504 #endif
1505
1506 /**
1507 * of_detach_node - "Unplug" a node from the device tree.
1508 *
1509 * The caller must hold a reference to the node. The memory associated with
1510 * the node is not freed until its refcount goes to zero.
1511 */
1512 int of_detach_node(struct device_node *np)
1513 {
1514 struct device_node *parent;
1515 unsigned long flags;
1516 int rc = 0;
1517
1518 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1519 if (rc)
1520 return rc;
1521
1522 raw_spin_lock_irqsave(&devtree_lock, flags);
1523
1524 if (of_node_check_flag(np, OF_DETACHED)) {
1525 /* someone already detached it */
1526 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1527 return rc;
1528 }
1529
1530 parent = np->parent;
1531 if (!parent) {
1532 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1533 return rc;
1534 }
1535
1536 if (of_allnodes == np)
1537 of_allnodes = np->allnext;
1538 else {
1539 struct device_node *prev;
1540 for (prev = of_allnodes;
1541 prev->allnext != np;
1542 prev = prev->allnext)
1543 ;
1544 prev->allnext = np->allnext;
1545 }
1546
1547 if (parent->child == np)
1548 parent->child = np->sibling;
1549 else {
1550 struct device_node *prevsib;
1551 for (prevsib = np->parent->child;
1552 prevsib->sibling != np;
1553 prevsib = prevsib->sibling)
1554 ;
1555 prevsib->sibling = np->sibling;
1556 }
1557
1558 of_node_set_flag(np, OF_DETACHED);
1559 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1560
1561 of_remove_proc_dt_entry(np);
1562 return rc;
1563 }
1564 #endif /* defined(CONFIG_OF_DYNAMIC) */
1565
1566 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1567 int id, const char *stem, int stem_len)
1568 {
1569 ap->np = np;
1570 ap->id = id;
1571 strncpy(ap->stem, stem, stem_len);
1572 ap->stem[stem_len] = 0;
1573 list_add_tail(&ap->link, &aliases_lookup);
1574 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1575 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1576 }
1577
1578 /**
1579 * of_alias_scan - Scan all properties of 'aliases' node
1580 *
1581 * The function scans all the properties of 'aliases' node and populate
1582 * the the global lookup table with the properties. It returns the
1583 * number of alias_prop found, or error code in error case.
1584 *
1585 * @dt_alloc: An allocator that provides a virtual address to memory
1586 * for the resulting tree
1587 */
1588 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1589 {
1590 struct property *pp;
1591
1592 of_chosen = of_find_node_by_path("/chosen");
1593 if (of_chosen == NULL)
1594 of_chosen = of_find_node_by_path("/chosen@0");
1595 of_aliases = of_find_node_by_path("/aliases");
1596 if (!of_aliases)
1597 return;
1598
1599 for_each_property_of_node(of_aliases, pp) {
1600 const char *start = pp->name;
1601 const char *end = start + strlen(start);
1602 struct device_node *np;
1603 struct alias_prop *ap;
1604 int id, len;
1605
1606 /* Skip those we do not want to proceed */
1607 if (!strcmp(pp->name, "name") ||
1608 !strcmp(pp->name, "phandle") ||
1609 !strcmp(pp->name, "linux,phandle"))
1610 continue;
1611
1612 np = of_find_node_by_path(pp->value);
1613 if (!np)
1614 continue;
1615
1616 /* walk the alias backwards to extract the id and work out
1617 * the 'stem' string */
1618 while (isdigit(*(end-1)) && end > start)
1619 end--;
1620 len = end - start;
1621
1622 if (kstrtoint(end, 10, &id) < 0)
1623 continue;
1624
1625 /* Allocate an alias_prop with enough space for the stem */
1626 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1627 if (!ap)
1628 continue;
1629 ap->alias = start;
1630 of_alias_add(ap, np, id, start, len);
1631 }
1632 }
1633
1634 /**
1635 * of_alias_get_id - Get alias id for the given device_node
1636 * @np: Pointer to the given device_node
1637 * @stem: Alias stem of the given device_node
1638 *
1639 * The function travels the lookup table to get alias id for the given
1640 * device_node and alias stem. It returns the alias id if find it.
1641 */
1642 int of_alias_get_id(struct device_node *np, const char *stem)
1643 {
1644 struct alias_prop *app;
1645 int id = -ENODEV;
1646
1647 mutex_lock(&of_aliases_mutex);
1648 list_for_each_entry(app, &aliases_lookup, link) {
1649 if (strcmp(app->stem, stem) != 0)
1650 continue;
1651
1652 if (np == app->np) {
1653 id = app->id;
1654 break;
1655 }
1656 }
1657 mutex_unlock(&of_aliases_mutex);
1658
1659 return id;
1660 }
1661 EXPORT_SYMBOL_GPL(of_alias_get_id);
1662
1663 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1664 u32 *pu)
1665 {
1666 const void *curv = cur;
1667
1668 if (!prop)
1669 return NULL;
1670
1671 if (!cur) {
1672 curv = prop->value;
1673 goto out_val;
1674 }
1675
1676 curv += sizeof(*cur);
1677 if (curv >= prop->value + prop->length)
1678 return NULL;
1679
1680 out_val:
1681 *pu = be32_to_cpup(curv);
1682 return curv;
1683 }
1684 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1685
1686 const char *of_prop_next_string(struct property *prop, const char *cur)
1687 {
1688 const void *curv = cur;
1689
1690 if (!prop)
1691 return NULL;
1692
1693 if (!cur)
1694 return prop->value;
1695
1696 curv += strlen(cur) + 1;
1697 if (curv >= prop->value + prop->length)
1698 return NULL;
1699
1700 return curv;
1701 }
1702 EXPORT_SYMBOL_GPL(of_prop_next_string);