[RT2x00]: add driver for Ralink wireless hardware
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 /*
28 * Set enviroment defines for rt2x00.h
29 */
30 #define DRV_NAME "rt61pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt61pci.h"
43
44 /*
45 * Register access.
46 * BBP and RF register require indirect register access,
47 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
48 * These indirect registers work with busy bits,
49 * and we will try maximal REGISTER_BUSY_COUNT times to access
50 * the register while taking a REGISTER_BUSY_DELAY us delay
51 * between each attampt. When the busy bit is still set at that time,
52 * the access attempt is considered to have failed,
53 * and we will print an error.
54 */
55 static u32 rt61pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
56 {
57 u32 reg;
58 unsigned int i;
59
60 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
61 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
62 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
63 break;
64 udelay(REGISTER_BUSY_DELAY);
65 }
66
67 return reg;
68 }
69
70 static void rt61pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
71 const unsigned int word, const u8 value)
72 {
73 u32 reg;
74
75 /*
76 * Wait until the BBP becomes ready.
77 */
78 reg = rt61pci_bbp_check(rt2x00dev);
79 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
80 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
81 return;
82 }
83
84 /*
85 * Write the data into the BBP.
86 */
87 reg = 0;
88 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
89 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
90 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
91 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
92
93 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
94 }
95
96 static void rt61pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
97 const unsigned int word, u8 *value)
98 {
99 u32 reg;
100
101 /*
102 * Wait until the BBP becomes ready.
103 */
104 reg = rt61pci_bbp_check(rt2x00dev);
105 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
106 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
107 return;
108 }
109
110 /*
111 * Write the request into the BBP.
112 */
113 reg = 0;
114 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
115 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
116 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
117
118 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
119
120 /*
121 * Wait until the BBP becomes ready.
122 */
123 reg = rt61pci_bbp_check(rt2x00dev);
124 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
125 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
126 *value = 0xff;
127 return;
128 }
129
130 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
131 }
132
133 static void rt61pci_rf_write(const struct rt2x00_dev *rt2x00dev,
134 const unsigned int word, const u32 value)
135 {
136 u32 reg;
137 unsigned int i;
138
139 if (!word)
140 return;
141
142 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
143 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
144 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
145 goto rf_write;
146 udelay(REGISTER_BUSY_DELAY);
147 }
148
149 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
150 return;
151
152 rf_write:
153 reg = 0;
154 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
155 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
156 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
157 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
158
159 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
160 rt2x00_rf_write(rt2x00dev, word, value);
161 }
162
163 static void rt61pci_mcu_request(const struct rt2x00_dev *rt2x00dev,
164 const u8 command, const u8 token,
165 const u8 arg0, const u8 arg1)
166 {
167 u32 reg;
168
169 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
170
171 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
172 ERROR(rt2x00dev, "mcu request error. "
173 "Request 0x%02x failed for token 0x%02x.\n",
174 command, token);
175 return;
176 }
177
178 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
179 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
180 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
181 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
182 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
183
184 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
185 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
186 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
187 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
188 }
189
190 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
191 {
192 struct rt2x00_dev *rt2x00dev = eeprom->data;
193 u32 reg;
194
195 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
196
197 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
198 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
199 eeprom->reg_data_clock =
200 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
201 eeprom->reg_chip_select =
202 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
203 }
204
205 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
206 {
207 struct rt2x00_dev *rt2x00dev = eeprom->data;
208 u32 reg = 0;
209
210 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
211 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
212 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
213 !!eeprom->reg_data_clock);
214 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
215 !!eeprom->reg_chip_select);
216
217 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
218 }
219
220 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
221 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
222
223 static void rt61pci_read_csr(const struct rt2x00_dev *rt2x00dev,
224 const unsigned int word, u32 *data)
225 {
226 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
227 }
228
229 static void rt61pci_write_csr(const struct rt2x00_dev *rt2x00dev,
230 const unsigned int word, u32 data)
231 {
232 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
233 }
234
235 static const struct rt2x00debug rt61pci_rt2x00debug = {
236 .owner = THIS_MODULE,
237 .csr = {
238 .read = rt61pci_read_csr,
239 .write = rt61pci_write_csr,
240 .word_size = sizeof(u32),
241 .word_count = CSR_REG_SIZE / sizeof(u32),
242 },
243 .eeprom = {
244 .read = rt2x00_eeprom_read,
245 .write = rt2x00_eeprom_write,
246 .word_size = sizeof(u16),
247 .word_count = EEPROM_SIZE / sizeof(u16),
248 },
249 .bbp = {
250 .read = rt61pci_bbp_read,
251 .write = rt61pci_bbp_write,
252 .word_size = sizeof(u8),
253 .word_count = BBP_SIZE / sizeof(u8),
254 },
255 .rf = {
256 .read = rt2x00_rf_read,
257 .write = rt61pci_rf_write,
258 .word_size = sizeof(u32),
259 .word_count = RF_SIZE / sizeof(u32),
260 },
261 };
262 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
263
264 #ifdef CONFIG_RT61PCI_RFKILL
265 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
266 {
267 u32 reg;
268
269 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
270 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);;
271 }
272 #endif /* CONFIG_RT2400PCI_RFKILL */
273
274 /*
275 * Configuration handlers.
276 */
277 static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
278 {
279 __le32 reg[2];
280 u32 tmp;
281
282 memset(&reg, 0, sizeof(reg));
283 memcpy(&reg, addr, ETH_ALEN);
284
285 tmp = le32_to_cpu(reg[1]);
286 rt2x00_set_field32(&tmp, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
287 reg[1] = cpu_to_le32(tmp);
288
289 /*
290 * The MAC address is passed to us as an array of bytes,
291 * that array is little endian, so no need for byte ordering.
292 */
293 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, &reg, sizeof(reg));
294 }
295
296 static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
297 {
298 __le32 reg[2];
299 u32 tmp;
300
301 memset(&reg, 0, sizeof(reg));
302 memcpy(&reg, bssid, ETH_ALEN);
303
304 tmp = le32_to_cpu(reg[1]);
305 rt2x00_set_field32(&tmp, MAC_CSR5_BSS_ID_MASK, 3);
306 reg[1] = cpu_to_le32(tmp);
307
308 /*
309 * The BSSID is passed to us as an array of bytes,
310 * that array is little endian, so no need for byte ordering.
311 */
312 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, &reg, sizeof(reg));
313 }
314
315 static void rt61pci_config_packet_filter(struct rt2x00_dev *rt2x00dev,
316 const unsigned int filter)
317 {
318 int promisc = !!(filter & IFF_PROMISC);
319 int multicast = !!(filter & IFF_MULTICAST);
320 int broadcast = !!(filter & IFF_BROADCAST);
321 u32 reg;
322
323 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
324 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, !promisc);
325 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST, !multicast);
326 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BORADCAST, !broadcast);
327 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
328 }
329
330 static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
331 {
332 u32 reg;
333
334 /*
335 * Clear current synchronisation setup.
336 * For the Beacon base registers we only need to clear
337 * the first byte since that byte contains the VALID and OWNER
338 * bits which (when set to 0) will invalidate the entire beacon.
339 */
340 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
341 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
342 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
343 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
344 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
345
346 /*
347 * Apply hardware packet filter.
348 */
349 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
350
351 if (!is_monitor_present(&rt2x00dev->interface) &&
352 (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
353 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS, 1);
354 else
355 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS, 0);
356
357 /*
358 * If there is a non-monitor interface present
359 * the packet should be strict (even if a monitor interface is present!).
360 * When there is only 1 interface present which is in monitor mode
361 * we should start accepting _all_ frames.
362 */
363 if (is_interface_present(&rt2x00dev->interface)) {
364 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC, 1);
365 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL, 1);
366 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL, 1);
367 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
368 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS, 1);
369 } else if (is_monitor_present(&rt2x00dev->interface)) {
370 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC, 0);
371 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL, 0);
372 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL, 0);
373 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 0);
374 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS, 0);
375 }
376
377 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
378
379 /*
380 * Enable synchronisation.
381 */
382 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
383 if (is_interface_present(&rt2x00dev->interface)) {
384 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
385 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
386 }
387
388 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
389 if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
390 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 2);
391 else if (type == IEEE80211_IF_TYPE_STA)
392 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 1);
393 else if (is_monitor_present(&rt2x00dev->interface) &&
394 !is_interface_present(&rt2x00dev->interface))
395 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
396
397 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
398 }
399
400 static void rt61pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
401 {
402 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
403 u32 reg;
404 u32 value;
405 u32 preamble;
406
407 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
408 preamble = SHORT_PREAMBLE;
409 else
410 preamble = PREAMBLE;
411
412 /*
413 * Extract the allowed ratemask from the device specific rate value,
414 * We need to set TXRX_CSR5 to the basic rate mask so we need to mask
415 * off the non-basic rates.
416 */
417 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
418
419 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, reg);
420
421 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
422 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
423 SHORT_DIFS : DIFS) +
424 PLCP + preamble + get_duration(ACK_SIZE, 10);
425 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, value);
426 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
427
428 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
429 if (preamble == SHORT_PREAMBLE)
430 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE, 1);
431 else
432 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE, 0);
433 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
434 }
435
436 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
437 const int phymode)
438 {
439 struct ieee80211_hw_mode *mode;
440 struct ieee80211_rate *rate;
441
442 if (phymode == MODE_IEEE80211A)
443 rt2x00dev->curr_hwmode = HWMODE_A;
444 else if (phymode == MODE_IEEE80211B)
445 rt2x00dev->curr_hwmode = HWMODE_B;
446 else
447 rt2x00dev->curr_hwmode = HWMODE_G;
448
449 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
450 rate = &mode->rates[mode->num_rates - 1];
451
452 rt61pci_config_rate(rt2x00dev, rate->val2);
453 }
454
455 static void rt61pci_config_lock_channel(struct rt2x00_dev *rt2x00dev,
456 struct rf_channel *rf,
457 const int txpower)
458 {
459 u8 r3;
460 u8 r94;
461 u8 smart;
462
463 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
464 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
465
466 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
467 rt2x00_rf(&rt2x00dev->chip, RF2527));
468
469 rt61pci_bbp_read(rt2x00dev, 3, &r3);
470 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
471 rt61pci_bbp_write(rt2x00dev, 3, r3);
472
473 r94 = 6;
474 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
475 r94 += txpower - MAX_TXPOWER;
476 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
477 r94 += txpower;
478 rt61pci_bbp_write(rt2x00dev, 94, r94);
479
480 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
481 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
482 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
483 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
484
485 udelay(200);
486
487 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
488 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
489 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
490 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
491
492 udelay(200);
493
494 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
495 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
496 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
497 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
498
499 msleep(1);
500 }
501
502 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
503 const int index, const int channel,
504 const int txpower)
505 {
506 struct rf_channel rf;
507
508 /*
509 * Fill rf_reg structure.
510 */
511 memcpy(&rf, &rt2x00dev->spec.channels[index], sizeof(rf));
512
513 rt61pci_config_lock_channel(rt2x00dev, &rf, txpower);
514 }
515
516 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
517 const int txpower)
518 {
519 struct rf_channel rf;
520
521 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
522 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
523 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
524 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
525
526 rt61pci_config_lock_channel(rt2x00dev, &rf, txpower);
527 }
528
529 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
530 const int antenna_tx,
531 const int antenna_rx)
532 {
533 u8 r3;
534 u8 r4;
535 u8 r77;
536
537 rt61pci_bbp_read(rt2x00dev, 3, &r3);
538 rt61pci_bbp_read(rt2x00dev, 4, &r4);
539 rt61pci_bbp_read(rt2x00dev, 77, &r77);
540
541 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
542 !rt2x00_rf(&rt2x00dev->chip, RF5225));
543
544 switch (antenna_rx) {
545 case ANTENNA_SW_DIVERSITY:
546 case ANTENNA_HW_DIVERSITY:
547 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
548 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
549 !!(rt2x00dev->curr_hwmode != HWMODE_A));
550 break;
551 case ANTENNA_A:
552 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
553 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
554
555 if (rt2x00dev->curr_hwmode == HWMODE_A)
556 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
557 else
558 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
559 break;
560 case ANTENNA_B:
561 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
562 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
563
564 if (rt2x00dev->curr_hwmode == HWMODE_A)
565 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
566 else
567 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
568 break;
569 }
570
571 rt61pci_bbp_write(rt2x00dev, 77, r77);
572 rt61pci_bbp_write(rt2x00dev, 3, r3);
573 rt61pci_bbp_write(rt2x00dev, 4, r4);
574 }
575
576 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
577 const int antenna_tx,
578 const int antenna_rx)
579 {
580 u8 r3;
581 u8 r4;
582 u8 r77;
583
584 rt61pci_bbp_read(rt2x00dev, 3, &r3);
585 rt61pci_bbp_read(rt2x00dev, 4, &r4);
586 rt61pci_bbp_read(rt2x00dev, 77, &r77);
587
588 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
589 !rt2x00_rf(&rt2x00dev->chip, RF2527));
590 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
591 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
592
593 switch (antenna_rx) {
594 case ANTENNA_SW_DIVERSITY:
595 case ANTENNA_HW_DIVERSITY:
596 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
597 break;
598 case ANTENNA_A:
599 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
600 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
601 break;
602 case ANTENNA_B:
603 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
604 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
605 break;
606 }
607
608 rt61pci_bbp_write(rt2x00dev, 77, r77);
609 rt61pci_bbp_write(rt2x00dev, 3, r3);
610 rt61pci_bbp_write(rt2x00dev, 4, r4);
611 }
612
613 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
614 const int p1, const int p2)
615 {
616 u32 reg;
617
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
619
620 if (p1 != 0xff) {
621 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, !!p1);
622 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
623 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
624 }
625 if (p2 != 0xff) {
626 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
627 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
628 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
629 }
630 }
631
632 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
633 const int antenna_tx,
634 const int antenna_rx)
635 {
636 u16 eeprom;
637 u8 r3;
638 u8 r4;
639 u8 r77;
640
641 rt61pci_bbp_read(rt2x00dev, 3, &r3);
642 rt61pci_bbp_read(rt2x00dev, 4, &r4);
643 rt61pci_bbp_read(rt2x00dev, 77, &r77);
644 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
645
646 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
647
648 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
649 rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
651 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 1);
652 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
653 } else if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) {
654 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED) >= 2) {
655 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
656 rt61pci_bbp_write(rt2x00dev, 77, r77);
657 }
658 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
659 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
660 } else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
661 rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664
665 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
666 case 0:
667 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
668 break;
669 case 1:
670 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
671 break;
672 case 2:
673 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
674 break;
675 case 3:
676 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
677 break;
678 }
679 } else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
680 !rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
681 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
682 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
683
684 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
685 case 0:
686 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
687 rt61pci_bbp_write(rt2x00dev, 77, r77);
688 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
689 break;
690 case 1:
691 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
692 rt61pci_bbp_write(rt2x00dev, 77, r77);
693 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
694 break;
695 case 2:
696 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
697 rt61pci_bbp_write(rt2x00dev, 77, r77);
698 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
699 break;
700 case 3:
701 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
702 rt61pci_bbp_write(rt2x00dev, 77, r77);
703 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
704 break;
705 }
706 }
707
708 rt61pci_bbp_write(rt2x00dev, 3, r3);
709 rt61pci_bbp_write(rt2x00dev, 4, r4);
710 }
711
712 struct antenna_sel {
713 u8 word;
714 /*
715 * value[0] -> non-LNA
716 * value[1] -> LNA
717 */
718 u8 value[2];
719 };
720
721 static const struct antenna_sel antenna_sel_a[] = {
722 { 96, { 0x58, 0x78 } },
723 { 104, { 0x38, 0x48 } },
724 { 75, { 0xfe, 0x80 } },
725 { 86, { 0xfe, 0x80 } },
726 { 88, { 0xfe, 0x80 } },
727 { 35, { 0x60, 0x60 } },
728 { 97, { 0x58, 0x58 } },
729 { 98, { 0x58, 0x58 } },
730 };
731
732 static const struct antenna_sel antenna_sel_bg[] = {
733 { 96, { 0x48, 0x68 } },
734 { 104, { 0x2c, 0x3c } },
735 { 75, { 0xfe, 0x80 } },
736 { 86, { 0xfe, 0x80 } },
737 { 88, { 0xfe, 0x80 } },
738 { 35, { 0x50, 0x50 } },
739 { 97, { 0x48, 0x48 } },
740 { 98, { 0x48, 0x48 } },
741 };
742
743 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
744 const int antenna_tx, const int antenna_rx)
745 {
746 const struct antenna_sel *sel;
747 unsigned int lna;
748 unsigned int i;
749 u32 reg;
750
751 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
752
753 if (rt2x00dev->curr_hwmode == HWMODE_A) {
754 sel = antenna_sel_a;
755 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
756
757 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG, 0);
758 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A, 1);
759 } else {
760 sel = antenna_sel_bg;
761 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
762
763 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG, 1);
764 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A, 0);
765 }
766
767 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
768 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
769
770 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
771
772 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
773 rt2x00_rf(&rt2x00dev->chip, RF5325))
774 rt61pci_config_antenna_5x(rt2x00dev, antenna_tx, antenna_rx);
775 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
776 rt61pci_config_antenna_2x(rt2x00dev, antenna_tx, antenna_rx);
777 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
778 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
779 rt61pci_config_antenna_2x(rt2x00dev, antenna_tx,
780 antenna_rx);
781 else
782 rt61pci_config_antenna_2529(rt2x00dev, antenna_tx,
783 antenna_rx);
784 }
785 }
786
787 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
788 const int short_slot_time,
789 const int beacon_int)
790 {
791 u32 reg;
792
793 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
794 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME,
795 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
796 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
797
798 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
799 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, SIFS);
800 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
801 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, EIFS);
802 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
803
804 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
805 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
806 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
807
808 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
809 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
810 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
811
812 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
813 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, beacon_int * 16);
814 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
815 }
816
817 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
818 const unsigned int flags,
819 struct ieee80211_conf *conf)
820 {
821 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
822
823 if (flags & CONFIG_UPDATE_PHYMODE)
824 rt61pci_config_phymode(rt2x00dev, conf->phymode);
825 if (flags & CONFIG_UPDATE_CHANNEL)
826 rt61pci_config_channel(rt2x00dev, conf->channel_val,
827 conf->channel, conf->power_level);
828 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
829 rt61pci_config_txpower(rt2x00dev, conf->power_level);
830 if (flags & CONFIG_UPDATE_ANTENNA)
831 rt61pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
832 conf->antenna_sel_rx);
833 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
834 rt61pci_config_duration(rt2x00dev, short_slot_time,
835 conf->beacon_int);
836 }
837
838 /*
839 * LED functions.
840 */
841 static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev)
842 {
843 u32 reg;
844 u16 led_reg;
845 u8 arg0;
846 u8 arg1;
847
848 rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
849 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
850 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
851 rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
852
853 led_reg = rt2x00dev->led_reg;
854 rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 1);
855 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A)
856 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 1);
857 else
858 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 1);
859
860 arg0 = led_reg & 0xff;
861 arg1 = (led_reg >> 8) & 0xff;
862
863 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
864 }
865
866 static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev)
867 {
868 u16 led_reg;
869 u8 arg0;
870 u8 arg1;
871
872 led_reg = rt2x00dev->led_reg;
873 rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0);
874 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0);
875 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0);
876
877 arg0 = led_reg & 0xff;
878 arg1 = (led_reg >> 8) & 0xff;
879
880 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
881 }
882
883 static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi)
884 {
885 u8 led;
886
887 if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH)
888 return;
889
890 /*
891 * Led handling requires a positive value for the rssi,
892 * to do that correctly we need to add the correction.
893 */
894 rssi += rt2x00dev->rssi_offset;
895
896 if (rssi <= 30)
897 led = 0;
898 else if (rssi <= 39)
899 led = 1;
900 else if (rssi <= 49)
901 led = 2;
902 else if (rssi <= 53)
903 led = 3;
904 else if (rssi <= 63)
905 led = 4;
906 else
907 led = 5;
908
909 rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0);
910 }
911
912 /*
913 * Link tuning
914 */
915 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev)
916 {
917 u32 reg;
918
919 /*
920 * Update FCS error count from register.
921 */
922 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
923 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
924
925 /*
926 * Update False CCA count from register.
927 */
928 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
929 rt2x00dev->link.false_cca =
930 rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
931 }
932
933 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
934 {
935 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
936 rt2x00dev->link.vgc_level = 0x20;
937 }
938
939 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
940 {
941 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
942 u8 r17;
943 u8 up_bound;
944 u8 low_bound;
945
946 /*
947 * Update Led strength
948 */
949 rt61pci_activity_led(rt2x00dev, rssi);
950
951 rt61pci_bbp_read(rt2x00dev, 17, &r17);
952
953 /*
954 * Determine r17 bounds.
955 */
956 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
957 low_bound = 0x28;
958 up_bound = 0x48;
959 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
960 low_bound += 0x10;
961 up_bound += 0x10;
962 }
963 } else {
964 low_bound = 0x20;
965 up_bound = 0x40;
966 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
967 low_bound += 0x10;
968 up_bound += 0x10;
969 }
970 }
971
972 /*
973 * Special big-R17 for very short distance
974 */
975 if (rssi >= -35) {
976 if (r17 != 0x60)
977 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
978 return;
979 }
980
981 /*
982 * Special big-R17 for short distance
983 */
984 if (rssi >= -58) {
985 if (r17 != up_bound)
986 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
987 return;
988 }
989
990 /*
991 * Special big-R17 for middle-short distance
992 */
993 if (rssi >= -66) {
994 low_bound += 0x10;
995 if (r17 != low_bound)
996 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
997 return;
998 }
999
1000 /*
1001 * Special mid-R17 for middle distance
1002 */
1003 if (rssi >= -74) {
1004 low_bound += 0x08;
1005 if (r17 != low_bound)
1006 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1007 return;
1008 }
1009
1010 /*
1011 * Special case: Change up_bound based on the rssi.
1012 * Lower up_bound when rssi is weaker then -74 dBm.
1013 */
1014 up_bound -= 2 * (-74 - rssi);
1015 if (low_bound > up_bound)
1016 up_bound = low_bound;
1017
1018 if (r17 > up_bound) {
1019 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1020 return;
1021 }
1022
1023 /*
1024 * r17 does not yet exceed upper limit, continue and base
1025 * the r17 tuning on the false CCA count.
1026 */
1027 if (rt2x00dev->link.false_cca > 512 && r17 < up_bound) {
1028 if (++r17 > up_bound)
1029 r17 = up_bound;
1030 rt61pci_bbp_write(rt2x00dev, 17, r17);
1031 } else if (rt2x00dev->link.false_cca < 100 && r17 > low_bound) {
1032 if (--r17 < low_bound)
1033 r17 = low_bound;
1034 rt61pci_bbp_write(rt2x00dev, 17, r17);
1035 }
1036 }
1037
1038 /*
1039 * Firmware name function.
1040 */
1041 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1042 {
1043 char *fw_name;
1044
1045 switch (rt2x00dev->chip.rt) {
1046 case RT2561:
1047 fw_name = FIRMWARE_RT2561;
1048 break;
1049 case RT2561s:
1050 fw_name = FIRMWARE_RT2561s;
1051 break;
1052 case RT2661:
1053 fw_name = FIRMWARE_RT2661;
1054 break;
1055 default:
1056 fw_name = NULL;
1057 break;
1058 }
1059
1060 return fw_name;
1061 }
1062
1063 /*
1064 * Initialization functions.
1065 */
1066 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
1067 const size_t len)
1068 {
1069 int i;
1070 u32 reg;
1071
1072 /*
1073 * Wait for stable hardware.
1074 */
1075 for (i = 0; i < 100; i++) {
1076 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1077 if (reg)
1078 break;
1079 msleep(1);
1080 }
1081
1082 if (!reg) {
1083 ERROR(rt2x00dev, "Unstable hardware.\n");
1084 return -EBUSY;
1085 }
1086
1087 /*
1088 * Prepare MCU and mailbox for firmware loading.
1089 */
1090 reg = 0;
1091 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1092 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1093 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1094 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1095 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1096
1097 /*
1098 * Write firmware to device.
1099 */
1100 reg = 0;
1101 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1102 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1103 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1104
1105 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1106 data, len);
1107
1108 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1109 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1110
1111 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1112 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1113
1114 for (i = 0; i < 100; i++) {
1115 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1116 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1117 break;
1118 msleep(1);
1119 }
1120
1121 if (i == 100) {
1122 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1123 return -EBUSY;
1124 }
1125
1126 /*
1127 * Reset MAC and BBP registers.
1128 */
1129 reg = 0;
1130 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1131 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1132 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1133
1134 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1135 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1136 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1137 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1138
1139 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1140 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1141 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1142
1143 return 0;
1144 }
1145
1146 static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev)
1147 {
1148 struct data_ring *ring = rt2x00dev->rx;
1149 struct data_desc *rxd;
1150 unsigned int i;
1151 u32 word;
1152
1153 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1154
1155 for (i = 0; i < ring->stats.limit; i++) {
1156 rxd = ring->entry[i].priv;
1157
1158 rt2x00_desc_read(rxd, 5, &word);
1159 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1160 ring->entry[i].data_dma);
1161 rt2x00_desc_write(rxd, 5, word);
1162
1163 rt2x00_desc_read(rxd, 0, &word);
1164 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1165 rt2x00_desc_write(rxd, 0, word);
1166 }
1167
1168 rt2x00_ring_index_clear(rt2x00dev->rx);
1169 }
1170
1171 static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
1172 {
1173 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1174 struct data_desc *txd;
1175 unsigned int i;
1176 u32 word;
1177
1178 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1179
1180 for (i = 0; i < ring->stats.limit; i++) {
1181 txd = ring->entry[i].priv;
1182
1183 rt2x00_desc_read(txd, 1, &word);
1184 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1185 rt2x00_desc_write(txd, 1, word);
1186
1187 rt2x00_desc_read(txd, 5, &word);
1188 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, queue);
1189 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, i);
1190 rt2x00_desc_write(txd, 5, word);
1191
1192 rt2x00_desc_read(txd, 6, &word);
1193 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1194 ring->entry[i].data_dma);
1195 rt2x00_desc_write(txd, 6, word);
1196
1197 rt2x00_desc_read(txd, 0, &word);
1198 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1199 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1200 rt2x00_desc_write(txd, 0, word);
1201 }
1202
1203 rt2x00_ring_index_clear(ring);
1204 }
1205
1206 static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev)
1207 {
1208 u32 reg;
1209
1210 /*
1211 * Initialize rings.
1212 */
1213 rt61pci_init_rxring(rt2x00dev);
1214 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1215 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1216 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2);
1217 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3);
1218 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4);
1219
1220 /*
1221 * Initialize registers.
1222 */
1223 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1224 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1225 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
1226 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1227 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
1228 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1229 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit);
1230 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1231 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit);
1232 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1233
1234 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1235 rt2x00_set_field32(&reg, TX_RING_CSR1_MGMT_RING_SIZE,
1236 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit);
1237 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1238 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size /
1239 4);
1240 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1241
1242 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1243 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1244 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
1245 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1246
1247 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1248 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1249 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
1250 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1251
1252 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1253 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1254 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma);
1255 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1256
1257 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1258 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1259 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma);
1260 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1261
1262 rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, &reg);
1263 rt2x00_set_field32(&reg, MGMT_BASE_CSR_RING_REGISTER,
1264 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma);
1265 rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg);
1266
1267 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1268 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE,
1269 rt2x00dev->rx->stats.limit);
1270 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1271 rt2x00dev->rx->desc_size / 4);
1272 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1273 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1274
1275 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1276 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1277 rt2x00dev->rx->data_dma);
1278 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1279
1280 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1281 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1282 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1283 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1284 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1285 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_MGMT, 0);
1286 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1287
1288 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1289 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1290 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1291 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1292 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1293 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_MGMT, 1);
1294 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1295
1296 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1297 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1298 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1299
1300 return 0;
1301 }
1302
1303 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1304 {
1305 u32 reg;
1306
1307 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1308 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1309 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1310 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1311 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1312
1313 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1314 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1315 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1316 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1317 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1318 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1319 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1320 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1321 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1322 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1323
1324 /*
1325 * CCK TXD BBP registers
1326 */
1327 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1328 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1329 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1330 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1331 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1332 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1333 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1334 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1335 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1336 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1337
1338 /*
1339 * OFDM TXD BBP registers
1340 */
1341 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1342 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1343 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1344 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1345 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1346 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1347 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1348 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1349
1350 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1351 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1352 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1353 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1354 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1355 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1356
1357 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1358 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1359 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1360 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1361 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1362 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1363
1364 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1365
1366 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1367
1368 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1369 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1370 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1371
1372 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1373
1374 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1375 return -EBUSY;
1376
1377 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1378
1379 /*
1380 * Invalidate all Shared Keys (SEC_CSR0),
1381 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1382 */
1383 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1384 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1385 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1386
1387 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1388 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1389 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1390 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1391
1392 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1393
1394 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1395
1396 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1397
1398 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1399 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1400 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1401 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1402
1403 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1404 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1405 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1406 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1407
1408 /*
1409 * We must clear the error counters.
1410 * These registers are cleared on read,
1411 * so we may pass a useless variable to store the value.
1412 */
1413 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1414 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1415 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1416
1417 /*
1418 * Reset MAC and BBP registers.
1419 */
1420 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1421 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1422 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1423 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1424
1425 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1426 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1427 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1428 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1429
1430 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1431 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1432 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1433
1434 return 0;
1435 }
1436
1437 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1438 {
1439 unsigned int i;
1440 u16 eeprom;
1441 u8 reg_id;
1442 u8 value;
1443
1444 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1445 rt61pci_bbp_read(rt2x00dev, 0, &value);
1446 if ((value != 0xff) && (value != 0x00))
1447 goto continue_csr_init;
1448 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1449 udelay(REGISTER_BUSY_DELAY);
1450 }
1451
1452 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1453 return -EACCES;
1454
1455 continue_csr_init:
1456 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1457 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1458 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1459 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1460 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1461 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1462 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1463 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1464 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1465 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1466 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1467 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1468 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1469 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1470 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1471 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1472 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1473 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1474 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1475 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1476 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1477 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1478 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1479 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1480
1481 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1482 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1483 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1484
1485 if (eeprom != 0xffff && eeprom != 0x0000) {
1486 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1487 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1488 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1489 reg_id, value);
1490 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1491 }
1492 }
1493 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * Device state switch handlers.
1500 */
1501 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1502 enum dev_state state)
1503 {
1504 u32 reg;
1505
1506 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1508 state == STATE_RADIO_RX_OFF);
1509 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1510 }
1511
1512 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1513 enum dev_state state)
1514 {
1515 int mask = (state == STATE_RADIO_IRQ_OFF);
1516 u32 reg;
1517
1518 /*
1519 * When interrupts are being enabled, the interrupt registers
1520 * should clear the register to assure a clean state.
1521 */
1522 if (state == STATE_RADIO_IRQ_ON) {
1523 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1524 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1525
1526 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1527 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1528 }
1529
1530 /*
1531 * Only toggle the interrupts bits we are going to use.
1532 * Non-checked interrupt bits are disabled by default.
1533 */
1534 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1535 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1536 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1537 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1538 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1539 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1540
1541 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1542 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1543 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1544 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1545 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1546 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1547 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1548 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1549 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1550 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1551 }
1552
1553 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1554 {
1555 u32 reg;
1556
1557 /*
1558 * Initialize all registers.
1559 */
1560 if (rt61pci_init_rings(rt2x00dev) ||
1561 rt61pci_init_registers(rt2x00dev) ||
1562 rt61pci_init_bbp(rt2x00dev)) {
1563 ERROR(rt2x00dev, "Register initialization failed.\n");
1564 return -EIO;
1565 }
1566
1567 /*
1568 * Enable interrupts.
1569 */
1570 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1571
1572 /*
1573 * Enable RX.
1574 */
1575 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1576 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1577 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1578
1579 /*
1580 * Enable LED
1581 */
1582 rt61pci_enable_led(rt2x00dev);
1583
1584 return 0;
1585 }
1586
1587 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1588 {
1589 u32 reg;
1590
1591 /*
1592 * Disable LED
1593 */
1594 rt61pci_disable_led(rt2x00dev);
1595
1596 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1597
1598 /*
1599 * Disable synchronisation.
1600 */
1601 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1602
1603 /*
1604 * Cancel RX and TX.
1605 */
1606 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1607 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1608 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1609 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1610 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1611 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_MGMT, 1);
1612 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1613
1614 /*
1615 * Disable interrupts.
1616 */
1617 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1618 }
1619
1620 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1621 {
1622 u32 reg;
1623 unsigned int i;
1624 char put_to_sleep;
1625 char current_state;
1626
1627 put_to_sleep = (state != STATE_AWAKE);
1628
1629 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1630 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1631 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1632 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1633
1634 /*
1635 * Device is not guaranteed to be in the requested state yet.
1636 * We must wait until the register indicates that the
1637 * device has entered the correct state.
1638 */
1639 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1640 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1641 current_state =
1642 rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1643 if (current_state == !put_to_sleep)
1644 return 0;
1645 msleep(10);
1646 }
1647
1648 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1649 "current device state %d.\n", !put_to_sleep, current_state);
1650
1651 return -EBUSY;
1652 }
1653
1654 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1655 enum dev_state state)
1656 {
1657 int retval = 0;
1658
1659 switch (state) {
1660 case STATE_RADIO_ON:
1661 retval = rt61pci_enable_radio(rt2x00dev);
1662 break;
1663 case STATE_RADIO_OFF:
1664 rt61pci_disable_radio(rt2x00dev);
1665 break;
1666 case STATE_RADIO_RX_ON:
1667 case STATE_RADIO_RX_OFF:
1668 rt61pci_toggle_rx(rt2x00dev, state);
1669 break;
1670 case STATE_DEEP_SLEEP:
1671 case STATE_SLEEP:
1672 case STATE_STANDBY:
1673 case STATE_AWAKE:
1674 retval = rt61pci_set_state(rt2x00dev, state);
1675 break;
1676 default:
1677 retval = -ENOTSUPP;
1678 break;
1679 }
1680
1681 return retval;
1682 }
1683
1684 /*
1685 * TX descriptor initialization
1686 */
1687 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1688 struct data_desc *txd,
1689 struct data_entry_desc *desc,
1690 struct ieee80211_hdr *ieee80211hdr,
1691 unsigned int length,
1692 struct ieee80211_tx_control *control)
1693 {
1694 u32 word;
1695
1696 /*
1697 * Start writing the descriptor words.
1698 */
1699 rt2x00_desc_read(txd, 1, &word);
1700 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue);
1701 rt2x00_set_field32(&word, TXD_W1_AIFSN, desc->aifs);
1702 rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
1703 rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
1704 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1705 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1706 rt2x00_desc_write(txd, 1, word);
1707
1708 rt2x00_desc_read(txd, 2, &word);
1709 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
1710 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
1711 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
1712 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
1713 rt2x00_desc_write(txd, 2, word);
1714
1715 rt2x00_desc_read(txd, 5, &word);
1716 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1717 TXPOWER_TO_DEV(control->power_level));
1718 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1719 rt2x00_desc_write(txd, 5, word);
1720
1721 rt2x00_desc_read(txd, 11, &word);
1722 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, length);
1723 rt2x00_desc_write(txd, 11, word);
1724
1725 rt2x00_desc_read(txd, 0, &word);
1726 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1727 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1728 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1729 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1730 rt2x00_set_field32(&word, TXD_W0_ACK,
1731 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1732 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1733 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1734 rt2x00_set_field32(&word, TXD_W0_OFDM,
1735 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1736 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1737 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1738 !!(control->flags &
1739 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1740 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1741 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1742 rt2x00_set_field32(&word, TXD_W0_BURST,
1743 test_bit(ENTRY_TXD_BURST, &desc->flags));
1744 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1745 rt2x00_desc_write(txd, 0, word);
1746 }
1747
1748 /*
1749 * TX data initialization
1750 */
1751 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1752 unsigned int queue)
1753 {
1754 u32 reg;
1755
1756 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1757 /*
1758 * For Wi-Fi faily generated beacons between participating
1759 * stations. Set TBTT phase adaptive adjustment step to 8us.
1760 */
1761 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1762
1763 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1764 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1765 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1766 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1767 }
1768 return;
1769 }
1770
1771 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1772 if (queue == IEEE80211_TX_QUEUE_DATA0)
1773 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1774 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1775 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1776 else if (queue == IEEE80211_TX_QUEUE_DATA2)
1777 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1778 else if (queue == IEEE80211_TX_QUEUE_DATA3)
1779 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1780 else if (queue == IEEE80211_TX_QUEUE_DATA4)
1781 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_MGMT, 1);
1782 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1783 }
1784
1785 /*
1786 * RX control handlers
1787 */
1788 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1789 {
1790 u16 eeprom;
1791 u8 offset;
1792 u8 lna;
1793
1794 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1795 switch (lna) {
1796 case 3:
1797 offset = 90;
1798 break;
1799 case 2:
1800 offset = 74;
1801 break;
1802 case 1:
1803 offset = 64;
1804 break;
1805 default:
1806 return 0;
1807 }
1808
1809 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
1810 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1811 offset += 14;
1812
1813 if (lna == 3 || lna == 2)
1814 offset += 10;
1815
1816 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1817 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1818 } else {
1819 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1820 offset += 14;
1821
1822 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1823 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1824 }
1825
1826 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1827 }
1828
1829 static int rt61pci_fill_rxdone(struct data_entry *entry,
1830 int *signal, int *rssi, int *ofdm, int *size)
1831 {
1832 struct data_desc *rxd = entry->priv;
1833 u32 word0;
1834 u32 word1;
1835
1836 rt2x00_desc_read(rxd, 0, &word0);
1837 rt2x00_desc_read(rxd, 1, &word1);
1838
1839 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR) ||
1840 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1841 return -EINVAL;
1842
1843 /*
1844 * Obtain the status about this packet.
1845 */
1846 *signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1847 *rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1);
1848 *ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1849 *size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1850
1851 return 0;
1852 }
1853
1854 /*
1855 * Interrupt functions.
1856 */
1857 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1858 {
1859 struct data_ring *ring;
1860 struct data_entry *entry;
1861 struct data_desc *txd;
1862 u32 word;
1863 u32 reg;
1864 u32 old_reg;
1865 int type;
1866 int index;
1867 int tx_status;
1868 int retry;
1869
1870 /*
1871 * During each loop we will compare the freshly read
1872 * STA_CSR4 register value with the value read from
1873 * the previous loop. If the 2 values are equal then
1874 * we should stop processing because the chance it
1875 * quite big that the device has been unplugged and
1876 * we risk going into an endless loop.
1877 */
1878 old_reg = 0;
1879
1880 while (1) {
1881 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1882 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1883 break;
1884
1885 if (old_reg == reg)
1886 break;
1887 old_reg = reg;
1888
1889 /*
1890 * Skip this entry when it contains an invalid
1891 * ring identication number.
1892 */
1893 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1894 ring = rt2x00lib_get_ring(rt2x00dev, type);
1895 if (unlikely(!ring))
1896 continue;
1897
1898 /*
1899 * Skip this entry when it contains an invalid
1900 * index number.
1901 */
1902 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1903 if (unlikely(index >= ring->stats.limit))
1904 continue;
1905
1906 entry = &ring->entry[index];
1907 txd = entry->priv;
1908 rt2x00_desc_read(txd, 0, &word);
1909
1910 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1911 !rt2x00_get_field32(word, TXD_W0_VALID))
1912 return;
1913
1914 /*
1915 * Obtain the status about this packet.
1916 */
1917 tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1918 retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1919
1920 rt2x00lib_txdone(entry, tx_status, retry);
1921
1922 /*
1923 * Make this entry available for reuse.
1924 */
1925 entry->flags = 0;
1926 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1927 rt2x00_desc_write(txd, 0, word);
1928 rt2x00_ring_index_done_inc(entry->ring);
1929
1930 /*
1931 * If the data ring was full before the txdone handler
1932 * we must make sure the packet queue in the mac80211 stack
1933 * is reenabled when the txdone handler has finished.
1934 */
1935 if (!rt2x00_ring_full(ring))
1936 ieee80211_wake_queue(rt2x00dev->hw,
1937 entry->tx_status.control.queue);
1938 }
1939 }
1940
1941 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1942 {
1943 struct rt2x00_dev *rt2x00dev = dev_instance;
1944 u32 reg_mcu;
1945 u32 reg;
1946
1947 /*
1948 * Get the interrupt sources & saved to local variable.
1949 * Write register value back to clear pending interrupts.
1950 */
1951 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1952 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1953
1954 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1955 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1956
1957 if (!reg && !reg_mcu)
1958 return IRQ_NONE;
1959
1960 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1961 return IRQ_HANDLED;
1962
1963 /*
1964 * Handle interrupts, walk through all bits
1965 * and run the tasks, the bits are checked in order of
1966 * priority.
1967 */
1968
1969 /*
1970 * 1 - Rx ring done interrupt.
1971 */
1972 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1973 rt2x00pci_rxdone(rt2x00dev);
1974
1975 /*
1976 * 2 - Tx ring done interrupt.
1977 */
1978 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1979 rt61pci_txdone(rt2x00dev);
1980
1981 /*
1982 * 3 - Handle MCU command done.
1983 */
1984 if (reg_mcu)
1985 rt2x00pci_register_write(rt2x00dev,
1986 M2H_CMD_DONE_CSR, 0xffffffff);
1987
1988 return IRQ_HANDLED;
1989 }
1990
1991 /*
1992 * Device probe functions.
1993 */
1994 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1995 {
1996 struct eeprom_93cx6 eeprom;
1997 u32 reg;
1998 u16 word;
1999 u8 *mac;
2000 s8 value;
2001
2002 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2003
2004 eeprom.data = rt2x00dev;
2005 eeprom.register_read = rt61pci_eepromregister_read;
2006 eeprom.register_write = rt61pci_eepromregister_write;
2007 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2008 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2009 eeprom.reg_data_in = 0;
2010 eeprom.reg_data_out = 0;
2011 eeprom.reg_data_clock = 0;
2012 eeprom.reg_chip_select = 0;
2013
2014 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2015 EEPROM_SIZE / sizeof(u16));
2016
2017 /*
2018 * Start validation of the data that has been read.
2019 */
2020 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2021 if (!is_valid_ether_addr(mac)) {
2022 random_ether_addr(mac);
2023 EEPROM(rt2x00dev, "MAC: " MAC_FMT "\n", MAC_ARG(mac));
2024 }
2025
2026 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2027 if (word == 0xffff) {
2028 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2029 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2);
2030 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2);
2031 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2032 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2033 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2034 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2035 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2036 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2037 }
2038
2039 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2040 if (word == 0xffff) {
2041 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2042 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2043 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2044 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2045 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2046 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2047 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2048 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2049 }
2050
2051 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2052 if (word == 0xffff) {
2053 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2054 LED_MODE_DEFAULT);
2055 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2056 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2057 }
2058
2059 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2060 if (word == 0xffff) {
2061 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2062 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2063 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2064 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2065 }
2066
2067 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2068 if (word == 0xffff) {
2069 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2070 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2071 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2072 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2073 } else {
2074 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2075 if (value < -10 || value > 10)
2076 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2077 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2078 if (value < -10 || value > 10)
2079 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2080 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2081 }
2082
2083 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2084 if (word == 0xffff) {
2085 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2086 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2087 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2088 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2089 } else {
2090 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2091 if (value < -10 || value > 10)
2092 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2093 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2094 if (value < -10 || value > 10)
2095 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2096 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2097 }
2098
2099 return 0;
2100 }
2101
2102 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2103 {
2104 u32 reg;
2105 u16 value;
2106 u16 eeprom;
2107 u16 device;
2108
2109 /*
2110 * Read EEPROM word for configuration.
2111 */
2112 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2113
2114 /*
2115 * Identify RF chipset.
2116 * To determine the RT chip we have to read the
2117 * PCI header of the device.
2118 */
2119 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
2120 PCI_CONFIG_HEADER_DEVICE, &device);
2121 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2122 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2123 rt2x00_set_chip(rt2x00dev, device, value, reg);
2124
2125 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2126 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2127 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2128 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2129 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2130 return -ENODEV;
2131 }
2132
2133 /*
2134 * Identify default antenna configuration.
2135 */
2136 rt2x00dev->hw->conf.antenna_sel_tx =
2137 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2138 rt2x00dev->hw->conf.antenna_sel_rx =
2139 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2140
2141 /*
2142 * Read the Frame type.
2143 */
2144 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2145 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2146
2147 /*
2148 * Determine number of antenna's.
2149 */
2150 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2151 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2152
2153 /*
2154 * Detect if this device has an hardware controlled radio.
2155 */
2156 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2157 __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2158
2159 /*
2160 * Read frequency offset and RF programming sequence.
2161 */
2162 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2163 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2164 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2165
2166 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2167
2168 /*
2169 * Read external LNA informations.
2170 */
2171 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2172
2173 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2174 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2175 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2176 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2177
2178 /*
2179 * Store led settings, for correct led behaviour.
2180 * If the eeprom value is invalid,
2181 * switch to default led mode.
2182 */
2183 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2184
2185 rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2186
2187 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE,
2188 rt2x00dev->led_mode);
2189 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0,
2190 rt2x00_get_field16(eeprom,
2191 EEPROM_LED_POLARITY_GPIO_0));
2192 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1,
2193 rt2x00_get_field16(eeprom,
2194 EEPROM_LED_POLARITY_GPIO_1));
2195 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2,
2196 rt2x00_get_field16(eeprom,
2197 EEPROM_LED_POLARITY_GPIO_2));
2198 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3,
2199 rt2x00_get_field16(eeprom,
2200 EEPROM_LED_POLARITY_GPIO_3));
2201 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4,
2202 rt2x00_get_field16(eeprom,
2203 EEPROM_LED_POLARITY_GPIO_4));
2204 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT,
2205 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2206 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG,
2207 rt2x00_get_field16(eeprom,
2208 EEPROM_LED_POLARITY_RDY_G));
2209 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A,
2210 rt2x00_get_field16(eeprom,
2211 EEPROM_LED_POLARITY_RDY_A));
2212
2213 return 0;
2214 }
2215
2216 /*
2217 * RF value list for RF5225 & RF5325
2218 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2219 */
2220 static const struct rf_channel rf_vals_noseq[] = {
2221 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2222 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2223 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2224 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2225 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2226 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2227 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2228 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2229 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2230 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2231 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2232 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2233 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2234 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2235
2236 /* 802.11 UNI / HyperLan 2 */
2237 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2238 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2239 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2240 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2241 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2242 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2243 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2244 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2245
2246 /* 802.11 HyperLan 2 */
2247 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2248 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2249 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2250 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2251 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2252 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2253 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2254 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2255 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2256 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2257
2258 /* 802.11 UNII */
2259 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2260 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2261 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2262 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2263 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2264 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2265
2266 /* MMAC(Japan)J52 ch 34,38,42,46 */
2267 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2268 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2269 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2270 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2271 };
2272
2273 /*
2274 * RF value list for RF5225 & RF5325
2275 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2276 */
2277 static const struct rf_channel rf_vals_seq[] = {
2278 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2279 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2280 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2281 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2282 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2283 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2284 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2285 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2286 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2287 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2288 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2289 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2290 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2291 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2292
2293 /* 802.11 UNI / HyperLan 2 */
2294 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2295 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2296 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2297 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2298 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2299 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2300 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2301 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2302
2303 /* 802.11 HyperLan 2 */
2304 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2305 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2306 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2307 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2308 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2309 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2310 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2311 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2312 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2313 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2314
2315 /* 802.11 UNII */
2316 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2317 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2318 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2319 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2320 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2321 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2322
2323 /* MMAC(Japan)J52 ch 34,38,42,46 */
2324 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2325 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2326 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2327 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2328 };
2329
2330 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2331 {
2332 struct hw_mode_spec *spec = &rt2x00dev->spec;
2333 u8 *txpower;
2334 unsigned int i;
2335
2336 /*
2337 * Initialize all hw fields.
2338 */
2339 rt2x00dev->hw->flags =
2340 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2341 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2342 IEEE80211_HW_MONITOR_DURING_OPER |
2343 IEEE80211_HW_NO_PROBE_FILTERING;
2344 rt2x00dev->hw->extra_tx_headroom = 0;
2345 rt2x00dev->hw->max_signal = MAX_SIGNAL;
2346 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2347 rt2x00dev->hw->queues = 5;
2348
2349 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2350 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2351 rt2x00_eeprom_addr(rt2x00dev,
2352 EEPROM_MAC_ADDR_0));
2353
2354 /*
2355 * Convert tx_power array in eeprom.
2356 */
2357 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2358 for (i = 0; i < 14; i++)
2359 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2360
2361 /*
2362 * Initialize hw_mode information.
2363 */
2364 spec->num_modes = 2;
2365 spec->num_rates = 12;
2366 spec->tx_power_a = NULL;
2367 spec->tx_power_bg = txpower;
2368 spec->tx_power_default = DEFAULT_TXPOWER;
2369
2370 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2371 spec->num_channels = 14;
2372 spec->channels = rf_vals_noseq;
2373 } else {
2374 spec->num_channels = 14;
2375 spec->channels = rf_vals_seq;
2376 }
2377
2378 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2379 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2380 spec->num_modes = 3;
2381 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2382
2383 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2384 for (i = 0; i < 14; i++)
2385 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2386
2387 spec->tx_power_a = txpower;
2388 }
2389 }
2390
2391 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2392 {
2393 int retval;
2394
2395 /*
2396 * Allocate eeprom data.
2397 */
2398 retval = rt61pci_validate_eeprom(rt2x00dev);
2399 if (retval)
2400 return retval;
2401
2402 retval = rt61pci_init_eeprom(rt2x00dev);
2403 if (retval)
2404 return retval;
2405
2406 /*
2407 * Initialize hw specifications.
2408 */
2409 rt61pci_probe_hw_mode(rt2x00dev);
2410
2411 /*
2412 * This device requires firmware
2413 */
2414 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->flags);
2415
2416 /*
2417 * Set the rssi offset.
2418 */
2419 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2420
2421 return 0;
2422 }
2423
2424 /*
2425 * IEEE80211 stack callback functions.
2426 */
2427 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2428 u32 short_retry, u32 long_retry)
2429 {
2430 struct rt2x00_dev *rt2x00dev = hw->priv;
2431 u32 reg;
2432
2433 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2434 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2435 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2436 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2437
2438 return 0;
2439 }
2440
2441 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2442 {
2443 struct rt2x00_dev *rt2x00dev = hw->priv;
2444 u64 tsf;
2445 u32 reg;
2446
2447 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2448 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2449 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2450 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2451
2452 return tsf;
2453 }
2454
2455 static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
2456 {
2457 struct rt2x00_dev *rt2x00dev = hw->priv;
2458
2459 rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
2460 rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
2461 }
2462
2463 int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
2464 struct ieee80211_tx_control *control)
2465 {
2466 struct rt2x00_dev *rt2x00dev = hw->priv;
2467
2468 /*
2469 * Just in case the ieee80211 doesn't set this,
2470 * but we need this queue set for the descriptor
2471 * initialization.
2472 */
2473 control->queue = IEEE80211_TX_QUEUE_BEACON;
2474
2475 /*
2476 * We need to append the descriptor in front of the
2477 * beacon frame.
2478 */
2479 if (skb_headroom(skb) < TXD_DESC_SIZE) {
2480 if (pskb_expand_head(skb, TXD_DESC_SIZE, 0, GFP_ATOMIC)) {
2481 dev_kfree_skb(skb);
2482 return -ENOMEM;
2483 }
2484 }
2485
2486 /*
2487 * First we create the beacon.
2488 */
2489 skb_push(skb, TXD_DESC_SIZE);
2490 rt2x00lib_write_tx_desc(rt2x00dev, (struct data_desc *)skb->data,
2491 (struct ieee80211_hdr *)(skb->data +
2492 TXD_DESC_SIZE),
2493 skb->len - TXD_DESC_SIZE, control);
2494
2495 /*
2496 * Write entire beacon with descriptor to register,
2497 * and kick the beacon generator.
2498 */
2499 rt2x00pci_register_multiwrite(rt2x00dev, HW_BEACON_BASE0, skb->data, skb->len);
2500 rt61pci_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
2501
2502 return 0;
2503 }
2504
2505 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2506 .tx = rt2x00mac_tx,
2507 .add_interface = rt2x00mac_add_interface,
2508 .remove_interface = rt2x00mac_remove_interface,
2509 .config = rt2x00mac_config,
2510 .config_interface = rt2x00mac_config_interface,
2511 .set_multicast_list = rt2x00mac_set_multicast_list,
2512 .get_stats = rt2x00mac_get_stats,
2513 .set_retry_limit = rt61pci_set_retry_limit,
2514 .conf_tx = rt2x00mac_conf_tx,
2515 .get_tx_stats = rt2x00mac_get_tx_stats,
2516 .get_tsf = rt61pci_get_tsf,
2517 .reset_tsf = rt61pci_reset_tsf,
2518 .beacon_update = rt61pci_beacon_update,
2519 };
2520
2521 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2522 .irq_handler = rt61pci_interrupt,
2523 .probe_hw = rt61pci_probe_hw,
2524 .get_firmware_name = rt61pci_get_firmware_name,
2525 .load_firmware = rt61pci_load_firmware,
2526 .initialize = rt2x00pci_initialize,
2527 .uninitialize = rt2x00pci_uninitialize,
2528 .set_device_state = rt61pci_set_device_state,
2529 #ifdef CONFIG_RT61PCI_RFKILL
2530 .rfkill_poll = rt61pci_rfkill_poll,
2531 #endif /* CONFIG_RT61PCI_RFKILL */
2532 .link_stats = rt61pci_link_stats,
2533 .reset_tuner = rt61pci_reset_tuner,
2534 .link_tuner = rt61pci_link_tuner,
2535 .write_tx_desc = rt61pci_write_tx_desc,
2536 .write_tx_data = rt2x00pci_write_tx_data,
2537 .kick_tx_queue = rt61pci_kick_tx_queue,
2538 .fill_rxdone = rt61pci_fill_rxdone,
2539 .config_mac_addr = rt61pci_config_mac_addr,
2540 .config_bssid = rt61pci_config_bssid,
2541 .config_packet_filter = rt61pci_config_packet_filter,
2542 .config_type = rt61pci_config_type,
2543 .config = rt61pci_config,
2544 };
2545
2546 static const struct rt2x00_ops rt61pci_ops = {
2547 .name = DRV_NAME,
2548 .rxd_size = RXD_DESC_SIZE,
2549 .txd_size = TXD_DESC_SIZE,
2550 .eeprom_size = EEPROM_SIZE,
2551 .rf_size = RF_SIZE,
2552 .lib = &rt61pci_rt2x00_ops,
2553 .hw = &rt61pci_mac80211_ops,
2554 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2555 .debugfs = &rt61pci_rt2x00debug,
2556 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2557 };
2558
2559 /*
2560 * RT61pci module information.
2561 */
2562 static struct pci_device_id rt61pci_device_table[] = {
2563 /* RT2561s */
2564 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2565 /* RT2561 v2 */
2566 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2567 /* RT2661 */
2568 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2569 { 0, }
2570 };
2571
2572 MODULE_AUTHOR(DRV_PROJECT);
2573 MODULE_VERSION(DRV_VERSION);
2574 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2575 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2576 "PCI & PCMCIA chipset based cards");
2577 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2578 MODULE_FIRMWARE(FIRMWARE_RT2561);
2579 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2580 MODULE_FIRMWARE(FIRMWARE_RT2661);
2581 MODULE_LICENSE("GPL");
2582
2583 static struct pci_driver rt61pci_driver = {
2584 .name = DRV_NAME,
2585 .id_table = rt61pci_device_table,
2586 .probe = rt2x00pci_probe,
2587 .remove = __devexit_p(rt2x00pci_remove),
2588 .suspend = rt2x00pci_suspend,
2589 .resume = rt2x00pci_resume,
2590 };
2591
2592 static int __init rt61pci_init(void)
2593 {
2594 return pci_register_driver(&rt61pci_driver);
2595 }
2596
2597 static void __exit rt61pci_exit(void)
2598 {
2599 pci_unregister_driver(&rt61pci_driver);
2600 }
2601
2602 module_init(rt61pci_init);
2603 module_exit(rt61pci_exit);