ARM: mxs: icoll: Fix interrupts gpio bank 0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / iwlegacy / common.c
1 /******************************************************************************
2 *
3 * GPL LICENSE SUMMARY
4 *
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *****************************************************************************/
28
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/etherdevice.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/types.h>
35 #include <linux/lockdep.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/delay.h>
40 #include <linux/skbuff.h>
41 #include <net/mac80211.h>
42
43 #include "common.h"
44
45 int
46 _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
47 {
48 const int interval = 10; /* microseconds */
49 int t = 0;
50
51 do {
52 if ((_il_rd(il, addr) & mask) == (bits & mask))
53 return t;
54 udelay(interval);
55 t += interval;
56 } while (t < timeout);
57
58 return -ETIMEDOUT;
59 }
60 EXPORT_SYMBOL(_il_poll_bit);
61
62 void
63 il_set_bit(struct il_priv *p, u32 r, u32 m)
64 {
65 unsigned long reg_flags;
66
67 spin_lock_irqsave(&p->reg_lock, reg_flags);
68 _il_set_bit(p, r, m);
69 spin_unlock_irqrestore(&p->reg_lock, reg_flags);
70 }
71 EXPORT_SYMBOL(il_set_bit);
72
73 void
74 il_clear_bit(struct il_priv *p, u32 r, u32 m)
75 {
76 unsigned long reg_flags;
77
78 spin_lock_irqsave(&p->reg_lock, reg_flags);
79 _il_clear_bit(p, r, m);
80 spin_unlock_irqrestore(&p->reg_lock, reg_flags);
81 }
82 EXPORT_SYMBOL(il_clear_bit);
83
84 bool
85 _il_grab_nic_access(struct il_priv *il)
86 {
87 int ret;
88 u32 val;
89
90 /* this bit wakes up the NIC */
91 _il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
92
93 /*
94 * These bits say the device is running, and should keep running for
95 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
96 * but they do not indicate that embedded SRAM is restored yet;
97 * 3945 and 4965 have volatile SRAM, and must save/restore contents
98 * to/from host DRAM when sleeping/waking for power-saving.
99 * Each direction takes approximately 1/4 millisecond; with this
100 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
101 * series of register accesses are expected (e.g. reading Event Log),
102 * to keep device from sleeping.
103 *
104 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
105 * SRAM is okay/restored. We don't check that here because this call
106 * is just for hardware register access; but GP1 MAC_SLEEP check is a
107 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
108 *
109 */
110 ret =
111 _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
112 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
113 CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
114 if (unlikely(ret < 0)) {
115 val = _il_rd(il, CSR_GP_CNTRL);
116 WARN_ONCE(1, "Timeout waiting for ucode processor access "
117 "(CSR_GP_CNTRL 0x%08x)\n", val);
118 _il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
119 return false;
120 }
121
122 return true;
123 }
124 EXPORT_SYMBOL_GPL(_il_grab_nic_access);
125
126 int
127 il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
128 {
129 const int interval = 10; /* microseconds */
130 int t = 0;
131
132 do {
133 if ((il_rd(il, addr) & mask) == mask)
134 return t;
135 udelay(interval);
136 t += interval;
137 } while (t < timeout);
138
139 return -ETIMEDOUT;
140 }
141 EXPORT_SYMBOL(il_poll_bit);
142
143 u32
144 il_rd_prph(struct il_priv *il, u32 reg)
145 {
146 unsigned long reg_flags;
147 u32 val;
148
149 spin_lock_irqsave(&il->reg_lock, reg_flags);
150 _il_grab_nic_access(il);
151 val = _il_rd_prph(il, reg);
152 _il_release_nic_access(il);
153 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
154 return val;
155 }
156 EXPORT_SYMBOL(il_rd_prph);
157
158 void
159 il_wr_prph(struct il_priv *il, u32 addr, u32 val)
160 {
161 unsigned long reg_flags;
162
163 spin_lock_irqsave(&il->reg_lock, reg_flags);
164 if (likely(_il_grab_nic_access(il))) {
165 _il_wr_prph(il, addr, val);
166 _il_release_nic_access(il);
167 }
168 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
169 }
170 EXPORT_SYMBOL(il_wr_prph);
171
172 u32
173 il_read_targ_mem(struct il_priv *il, u32 addr)
174 {
175 unsigned long reg_flags;
176 u32 value;
177
178 spin_lock_irqsave(&il->reg_lock, reg_flags);
179 _il_grab_nic_access(il);
180
181 _il_wr(il, HBUS_TARG_MEM_RADDR, addr);
182 value = _il_rd(il, HBUS_TARG_MEM_RDAT);
183
184 _il_release_nic_access(il);
185 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
186 return value;
187 }
188 EXPORT_SYMBOL(il_read_targ_mem);
189
190 void
191 il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
192 {
193 unsigned long reg_flags;
194
195 spin_lock_irqsave(&il->reg_lock, reg_flags);
196 if (likely(_il_grab_nic_access(il))) {
197 _il_wr(il, HBUS_TARG_MEM_WADDR, addr);
198 _il_wr(il, HBUS_TARG_MEM_WDAT, val);
199 _il_release_nic_access(il);
200 }
201 spin_unlock_irqrestore(&il->reg_lock, reg_flags);
202 }
203 EXPORT_SYMBOL(il_write_targ_mem);
204
205 const char *
206 il_get_cmd_string(u8 cmd)
207 {
208 switch (cmd) {
209 IL_CMD(N_ALIVE);
210 IL_CMD(N_ERROR);
211 IL_CMD(C_RXON);
212 IL_CMD(C_RXON_ASSOC);
213 IL_CMD(C_QOS_PARAM);
214 IL_CMD(C_RXON_TIMING);
215 IL_CMD(C_ADD_STA);
216 IL_CMD(C_REM_STA);
217 IL_CMD(C_WEPKEY);
218 IL_CMD(N_3945_RX);
219 IL_CMD(C_TX);
220 IL_CMD(C_RATE_SCALE);
221 IL_CMD(C_LEDS);
222 IL_CMD(C_TX_LINK_QUALITY_CMD);
223 IL_CMD(C_CHANNEL_SWITCH);
224 IL_CMD(N_CHANNEL_SWITCH);
225 IL_CMD(C_SPECTRUM_MEASUREMENT);
226 IL_CMD(N_SPECTRUM_MEASUREMENT);
227 IL_CMD(C_POWER_TBL);
228 IL_CMD(N_PM_SLEEP);
229 IL_CMD(N_PM_DEBUG_STATS);
230 IL_CMD(C_SCAN);
231 IL_CMD(C_SCAN_ABORT);
232 IL_CMD(N_SCAN_START);
233 IL_CMD(N_SCAN_RESULTS);
234 IL_CMD(N_SCAN_COMPLETE);
235 IL_CMD(N_BEACON);
236 IL_CMD(C_TX_BEACON);
237 IL_CMD(C_TX_PWR_TBL);
238 IL_CMD(C_BT_CONFIG);
239 IL_CMD(C_STATS);
240 IL_CMD(N_STATS);
241 IL_CMD(N_CARD_STATE);
242 IL_CMD(N_MISSED_BEACONS);
243 IL_CMD(C_CT_KILL_CONFIG);
244 IL_CMD(C_SENSITIVITY);
245 IL_CMD(C_PHY_CALIBRATION);
246 IL_CMD(N_RX_PHY);
247 IL_CMD(N_RX_MPDU);
248 IL_CMD(N_RX);
249 IL_CMD(N_COMPRESSED_BA);
250 default:
251 return "UNKNOWN";
252
253 }
254 }
255 EXPORT_SYMBOL(il_get_cmd_string);
256
257 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
258
259 static void
260 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
261 struct il_rx_pkt *pkt)
262 {
263 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
264 IL_ERR("Bad return from %s (0x%08X)\n",
265 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
266 return;
267 }
268 #ifdef CONFIG_IWLEGACY_DEBUG
269 switch (cmd->hdr.cmd) {
270 case C_TX_LINK_QUALITY_CMD:
271 case C_SENSITIVITY:
272 D_HC_DUMP("back from %s (0x%08X)\n",
273 il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
274 break;
275 default:
276 D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
277 pkt->hdr.flags);
278 }
279 #endif
280 }
281
282 static int
283 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
284 {
285 int ret;
286
287 BUG_ON(!(cmd->flags & CMD_ASYNC));
288
289 /* An asynchronous command can not expect an SKB to be set. */
290 BUG_ON(cmd->flags & CMD_WANT_SKB);
291
292 /* Assign a generic callback if one is not provided */
293 if (!cmd->callback)
294 cmd->callback = il_generic_cmd_callback;
295
296 if (test_bit(S_EXIT_PENDING, &il->status))
297 return -EBUSY;
298
299 ret = il_enqueue_hcmd(il, cmd);
300 if (ret < 0) {
301 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
302 il_get_cmd_string(cmd->id), ret);
303 return ret;
304 }
305 return 0;
306 }
307
308 int
309 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
310 {
311 int cmd_idx;
312 int ret;
313
314 lockdep_assert_held(&il->mutex);
315
316 BUG_ON(cmd->flags & CMD_ASYNC);
317
318 /* A synchronous command can not have a callback set. */
319 BUG_ON(cmd->callback);
320
321 D_INFO("Attempting to send sync command %s\n",
322 il_get_cmd_string(cmd->id));
323
324 set_bit(S_HCMD_ACTIVE, &il->status);
325 D_INFO("Setting HCMD_ACTIVE for command %s\n",
326 il_get_cmd_string(cmd->id));
327
328 cmd_idx = il_enqueue_hcmd(il, cmd);
329 if (cmd_idx < 0) {
330 ret = cmd_idx;
331 IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
332 il_get_cmd_string(cmd->id), ret);
333 goto out;
334 }
335
336 ret = wait_event_timeout(il->wait_command_queue,
337 !test_bit(S_HCMD_ACTIVE, &il->status),
338 HOST_COMPLETE_TIMEOUT);
339 if (!ret) {
340 if (test_bit(S_HCMD_ACTIVE, &il->status)) {
341 IL_ERR("Error sending %s: time out after %dms.\n",
342 il_get_cmd_string(cmd->id),
343 jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
344
345 clear_bit(S_HCMD_ACTIVE, &il->status);
346 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
347 il_get_cmd_string(cmd->id));
348 ret = -ETIMEDOUT;
349 goto cancel;
350 }
351 }
352
353 if (test_bit(S_RFKILL, &il->status)) {
354 IL_ERR("Command %s aborted: RF KILL Switch\n",
355 il_get_cmd_string(cmd->id));
356 ret = -ECANCELED;
357 goto fail;
358 }
359 if (test_bit(S_FW_ERROR, &il->status)) {
360 IL_ERR("Command %s failed: FW Error\n",
361 il_get_cmd_string(cmd->id));
362 ret = -EIO;
363 goto fail;
364 }
365 if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
366 IL_ERR("Error: Response NULL in '%s'\n",
367 il_get_cmd_string(cmd->id));
368 ret = -EIO;
369 goto cancel;
370 }
371
372 ret = 0;
373 goto out;
374
375 cancel:
376 if (cmd->flags & CMD_WANT_SKB) {
377 /*
378 * Cancel the CMD_WANT_SKB flag for the cmd in the
379 * TX cmd queue. Otherwise in case the cmd comes
380 * in later, it will possibly set an invalid
381 * address (cmd->meta.source).
382 */
383 il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
384 }
385 fail:
386 if (cmd->reply_page) {
387 il_free_pages(il, cmd->reply_page);
388 cmd->reply_page = 0;
389 }
390 out:
391 return ret;
392 }
393 EXPORT_SYMBOL(il_send_cmd_sync);
394
395 int
396 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
397 {
398 if (cmd->flags & CMD_ASYNC)
399 return il_send_cmd_async(il, cmd);
400
401 return il_send_cmd_sync(il, cmd);
402 }
403 EXPORT_SYMBOL(il_send_cmd);
404
405 int
406 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
407 {
408 struct il_host_cmd cmd = {
409 .id = id,
410 .len = len,
411 .data = data,
412 };
413
414 return il_send_cmd_sync(il, &cmd);
415 }
416 EXPORT_SYMBOL(il_send_cmd_pdu);
417
418 int
419 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
420 void (*callback) (struct il_priv *il,
421 struct il_device_cmd *cmd,
422 struct il_rx_pkt *pkt))
423 {
424 struct il_host_cmd cmd = {
425 .id = id,
426 .len = len,
427 .data = data,
428 };
429
430 cmd.flags |= CMD_ASYNC;
431 cmd.callback = callback;
432
433 return il_send_cmd_async(il, &cmd);
434 }
435 EXPORT_SYMBOL(il_send_cmd_pdu_async);
436
437 /* default: IL_LED_BLINK(0) using blinking idx table */
438 static int led_mode;
439 module_param(led_mode, int, S_IRUGO);
440 MODULE_PARM_DESC(led_mode,
441 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
442
443 /* Throughput OFF time(ms) ON time (ms)
444 * >300 25 25
445 * >200 to 300 40 40
446 * >100 to 200 55 55
447 * >70 to 100 65 65
448 * >50 to 70 75 75
449 * >20 to 50 85 85
450 * >10 to 20 95 95
451 * >5 to 10 110 110
452 * >1 to 5 130 130
453 * >0 to 1 167 167
454 * <=0 SOLID ON
455 */
456 static const struct ieee80211_tpt_blink il_blink[] = {
457 {.throughput = 0, .blink_time = 334},
458 {.throughput = 1 * 1024 - 1, .blink_time = 260},
459 {.throughput = 5 * 1024 - 1, .blink_time = 220},
460 {.throughput = 10 * 1024 - 1, .blink_time = 190},
461 {.throughput = 20 * 1024 - 1, .blink_time = 170},
462 {.throughput = 50 * 1024 - 1, .blink_time = 150},
463 {.throughput = 70 * 1024 - 1, .blink_time = 130},
464 {.throughput = 100 * 1024 - 1, .blink_time = 110},
465 {.throughput = 200 * 1024 - 1, .blink_time = 80},
466 {.throughput = 300 * 1024 - 1, .blink_time = 50},
467 };
468
469 /*
470 * Adjust led blink rate to compensate on a MAC Clock difference on every HW
471 * Led blink rate analysis showed an average deviation of 0% on 3945,
472 * 5% on 4965 HW.
473 * Need to compensate on the led on/off time per HW according to the deviation
474 * to achieve the desired led frequency
475 * The calculation is: (100-averageDeviation)/100 * blinkTime
476 * For code efficiency the calculation will be:
477 * compensation = (100 - averageDeviation) * 64 / 100
478 * NewBlinkTime = (compensation * BlinkTime) / 64
479 */
480 static inline u8
481 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
482 {
483 if (!compensation) {
484 IL_ERR("undefined blink compensation: "
485 "use pre-defined blinking time\n");
486 return time;
487 }
488
489 return (u8) ((time * compensation) >> 6);
490 }
491
492 /* Set led pattern command */
493 static int
494 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
495 {
496 struct il_led_cmd led_cmd = {
497 .id = IL_LED_LINK,
498 .interval = IL_DEF_LED_INTRVL
499 };
500 int ret;
501
502 if (!test_bit(S_READY, &il->status))
503 return -EBUSY;
504
505 if (il->blink_on == on && il->blink_off == off)
506 return 0;
507
508 if (off == 0) {
509 /* led is SOLID_ON */
510 on = IL_LED_SOLID;
511 }
512
513 D_LED("Led blink time compensation=%u\n",
514 il->cfg->led_compensation);
515 led_cmd.on =
516 il_blink_compensation(il, on,
517 il->cfg->led_compensation);
518 led_cmd.off =
519 il_blink_compensation(il, off,
520 il->cfg->led_compensation);
521
522 ret = il->ops->send_led_cmd(il, &led_cmd);
523 if (!ret) {
524 il->blink_on = on;
525 il->blink_off = off;
526 }
527 return ret;
528 }
529
530 static void
531 il_led_brightness_set(struct led_classdev *led_cdev,
532 enum led_brightness brightness)
533 {
534 struct il_priv *il = container_of(led_cdev, struct il_priv, led);
535 unsigned long on = 0;
536
537 if (brightness > 0)
538 on = IL_LED_SOLID;
539
540 il_led_cmd(il, on, 0);
541 }
542
543 static int
544 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
545 unsigned long *delay_off)
546 {
547 struct il_priv *il = container_of(led_cdev, struct il_priv, led);
548
549 return il_led_cmd(il, *delay_on, *delay_off);
550 }
551
552 void
553 il_leds_init(struct il_priv *il)
554 {
555 int mode = led_mode;
556 int ret;
557
558 if (mode == IL_LED_DEFAULT)
559 mode = il->cfg->led_mode;
560
561 il->led.name =
562 kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
563 il->led.brightness_set = il_led_brightness_set;
564 il->led.blink_set = il_led_blink_set;
565 il->led.max_brightness = 1;
566
567 switch (mode) {
568 case IL_LED_DEFAULT:
569 WARN_ON(1);
570 break;
571 case IL_LED_BLINK:
572 il->led.default_trigger =
573 ieee80211_create_tpt_led_trigger(il->hw,
574 IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
575 il_blink,
576 ARRAY_SIZE(il_blink));
577 break;
578 case IL_LED_RF_STATE:
579 il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
580 break;
581 }
582
583 ret = led_classdev_register(&il->pci_dev->dev, &il->led);
584 if (ret) {
585 kfree(il->led.name);
586 return;
587 }
588
589 il->led_registered = true;
590 }
591 EXPORT_SYMBOL(il_leds_init);
592
593 void
594 il_leds_exit(struct il_priv *il)
595 {
596 if (!il->led_registered)
597 return;
598
599 led_classdev_unregister(&il->led);
600 kfree(il->led.name);
601 }
602 EXPORT_SYMBOL(il_leds_exit);
603
604 /************************** EEPROM BANDS ****************************
605 *
606 * The il_eeprom_band definitions below provide the mapping from the
607 * EEPROM contents to the specific channel number supported for each
608 * band.
609 *
610 * For example, il_priv->eeprom.band_3_channels[4] from the band_3
611 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
612 * The specific geography and calibration information for that channel
613 * is contained in the eeprom map itself.
614 *
615 * During init, we copy the eeprom information and channel map
616 * information into il->channel_info_24/52 and il->channel_map_24/52
617 *
618 * channel_map_24/52 provides the idx in the channel_info array for a
619 * given channel. We have to have two separate maps as there is channel
620 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
621 * band_2
622 *
623 * A value of 0xff stored in the channel_map indicates that the channel
624 * is not supported by the hardware at all.
625 *
626 * A value of 0xfe in the channel_map indicates that the channel is not
627 * valid for Tx with the current hardware. This means that
628 * while the system can tune and receive on a given channel, it may not
629 * be able to associate or transmit any frames on that
630 * channel. There is no corresponding channel information for that
631 * entry.
632 *
633 *********************************************************************/
634
635 /* 2.4 GHz */
636 const u8 il_eeprom_band_1[14] = {
637 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
638 };
639
640 /* 5.2 GHz bands */
641 static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */
642 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
643 };
644
645 static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */
646 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
647 };
648
649 static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */
650 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
651 };
652
653 static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */
654 145, 149, 153, 157, 161, 165
655 };
656
657 static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */
658 1, 2, 3, 4, 5, 6, 7
659 };
660
661 static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */
662 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
663 };
664
665 /******************************************************************************
666 *
667 * EEPROM related functions
668 *
669 ******************************************************************************/
670
671 static int
672 il_eeprom_verify_signature(struct il_priv *il)
673 {
674 u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
675 int ret = 0;
676
677 D_EEPROM("EEPROM signature=0x%08x\n", gp);
678 switch (gp) {
679 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
680 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
681 break;
682 default:
683 IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
684 ret = -ENOENT;
685 break;
686 }
687 return ret;
688 }
689
690 const u8 *
691 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
692 {
693 BUG_ON(offset >= il->cfg->eeprom_size);
694 return &il->eeprom[offset];
695 }
696 EXPORT_SYMBOL(il_eeprom_query_addr);
697
698 u16
699 il_eeprom_query16(const struct il_priv *il, size_t offset)
700 {
701 if (!il->eeprom)
702 return 0;
703 return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
704 }
705 EXPORT_SYMBOL(il_eeprom_query16);
706
707 /**
708 * il_eeprom_init - read EEPROM contents
709 *
710 * Load the EEPROM contents from adapter into il->eeprom
711 *
712 * NOTE: This routine uses the non-debug IO access functions.
713 */
714 int
715 il_eeprom_init(struct il_priv *il)
716 {
717 __le16 *e;
718 u32 gp = _il_rd(il, CSR_EEPROM_GP);
719 int sz;
720 int ret;
721 u16 addr;
722
723 /* allocate eeprom */
724 sz = il->cfg->eeprom_size;
725 D_EEPROM("NVM size = %d\n", sz);
726 il->eeprom = kzalloc(sz, GFP_KERNEL);
727 if (!il->eeprom) {
728 ret = -ENOMEM;
729 goto alloc_err;
730 }
731 e = (__le16 *) il->eeprom;
732
733 il->ops->apm_init(il);
734
735 ret = il_eeprom_verify_signature(il);
736 if (ret < 0) {
737 IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
738 ret = -ENOENT;
739 goto err;
740 }
741
742 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
743 ret = il->ops->eeprom_acquire_semaphore(il);
744 if (ret < 0) {
745 IL_ERR("Failed to acquire EEPROM semaphore.\n");
746 ret = -ENOENT;
747 goto err;
748 }
749
750 /* eeprom is an array of 16bit values */
751 for (addr = 0; addr < sz; addr += sizeof(u16)) {
752 u32 r;
753
754 _il_wr(il, CSR_EEPROM_REG,
755 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
756
757 ret =
758 _il_poll_bit(il, CSR_EEPROM_REG,
759 CSR_EEPROM_REG_READ_VALID_MSK,
760 CSR_EEPROM_REG_READ_VALID_MSK,
761 IL_EEPROM_ACCESS_TIMEOUT);
762 if (ret < 0) {
763 IL_ERR("Time out reading EEPROM[%d]\n", addr);
764 goto done;
765 }
766 r = _il_rd(il, CSR_EEPROM_REG);
767 e[addr / 2] = cpu_to_le16(r >> 16);
768 }
769
770 D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
771 il_eeprom_query16(il, EEPROM_VERSION));
772
773 ret = 0;
774 done:
775 il->ops->eeprom_release_semaphore(il);
776
777 err:
778 if (ret)
779 il_eeprom_free(il);
780 /* Reset chip to save power until we load uCode during "up". */
781 il_apm_stop(il);
782 alloc_err:
783 return ret;
784 }
785 EXPORT_SYMBOL(il_eeprom_init);
786
787 void
788 il_eeprom_free(struct il_priv *il)
789 {
790 kfree(il->eeprom);
791 il->eeprom = NULL;
792 }
793 EXPORT_SYMBOL(il_eeprom_free);
794
795 static void
796 il_init_band_reference(const struct il_priv *il, int eep_band,
797 int *eeprom_ch_count,
798 const struct il_eeprom_channel **eeprom_ch_info,
799 const u8 **eeprom_ch_idx)
800 {
801 u32 offset = il->cfg->regulatory_bands[eep_band - 1];
802
803 switch (eep_band) {
804 case 1: /* 2.4GHz band */
805 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
806 *eeprom_ch_info =
807 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
808 offset);
809 *eeprom_ch_idx = il_eeprom_band_1;
810 break;
811 case 2: /* 4.9GHz band */
812 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
813 *eeprom_ch_info =
814 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
815 offset);
816 *eeprom_ch_idx = il_eeprom_band_2;
817 break;
818 case 3: /* 5.2GHz band */
819 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
820 *eeprom_ch_info =
821 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
822 offset);
823 *eeprom_ch_idx = il_eeprom_band_3;
824 break;
825 case 4: /* 5.5GHz band */
826 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
827 *eeprom_ch_info =
828 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
829 offset);
830 *eeprom_ch_idx = il_eeprom_band_4;
831 break;
832 case 5: /* 5.7GHz band */
833 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
834 *eeprom_ch_info =
835 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
836 offset);
837 *eeprom_ch_idx = il_eeprom_band_5;
838 break;
839 case 6: /* 2.4GHz ht40 channels */
840 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
841 *eeprom_ch_info =
842 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
843 offset);
844 *eeprom_ch_idx = il_eeprom_band_6;
845 break;
846 case 7: /* 5 GHz ht40 channels */
847 *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
848 *eeprom_ch_info =
849 (struct il_eeprom_channel *)il_eeprom_query_addr(il,
850 offset);
851 *eeprom_ch_idx = il_eeprom_band_7;
852 break;
853 default:
854 BUG();
855 }
856 }
857
858 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
859 ? # x " " : "")
860 /**
861 * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
862 *
863 * Does not set up a command, or touch hardware.
864 */
865 static int
866 il_mod_ht40_chan_info(struct il_priv *il, enum ieee80211_band band, u16 channel,
867 const struct il_eeprom_channel *eeprom_ch,
868 u8 clear_ht40_extension_channel)
869 {
870 struct il_channel_info *ch_info;
871
872 ch_info =
873 (struct il_channel_info *)il_get_channel_info(il, band, channel);
874
875 if (!il_is_channel_valid(ch_info))
876 return -1;
877
878 D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
879 " Ad-Hoc %ssupported\n", ch_info->channel,
880 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
881 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
882 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
883 CHECK_AND_PRINT(DFS), eeprom_ch->flags,
884 eeprom_ch->max_power_avg,
885 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
886 !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
887
888 ch_info->ht40_eeprom = *eeprom_ch;
889 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
890 ch_info->ht40_flags = eeprom_ch->flags;
891 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
892 ch_info->ht40_extension_channel &=
893 ~clear_ht40_extension_channel;
894
895 return 0;
896 }
897
898 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
899 ? # x " " : "")
900
901 /**
902 * il_init_channel_map - Set up driver's info for all possible channels
903 */
904 int
905 il_init_channel_map(struct il_priv *il)
906 {
907 int eeprom_ch_count = 0;
908 const u8 *eeprom_ch_idx = NULL;
909 const struct il_eeprom_channel *eeprom_ch_info = NULL;
910 int band, ch;
911 struct il_channel_info *ch_info;
912
913 if (il->channel_count) {
914 D_EEPROM("Channel map already initialized.\n");
915 return 0;
916 }
917
918 D_EEPROM("Initializing regulatory info from EEPROM\n");
919
920 il->channel_count =
921 ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
922 ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
923 ARRAY_SIZE(il_eeprom_band_5);
924
925 D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
926
927 il->channel_info =
928 kzalloc(sizeof(struct il_channel_info) * il->channel_count,
929 GFP_KERNEL);
930 if (!il->channel_info) {
931 IL_ERR("Could not allocate channel_info\n");
932 il->channel_count = 0;
933 return -ENOMEM;
934 }
935
936 ch_info = il->channel_info;
937
938 /* Loop through the 5 EEPROM bands adding them in order to the
939 * channel map we maintain (that contains additional information than
940 * what just in the EEPROM) */
941 for (band = 1; band <= 5; band++) {
942
943 il_init_band_reference(il, band, &eeprom_ch_count,
944 &eeprom_ch_info, &eeprom_ch_idx);
945
946 /* Loop through each band adding each of the channels */
947 for (ch = 0; ch < eeprom_ch_count; ch++) {
948 ch_info->channel = eeprom_ch_idx[ch];
949 ch_info->band =
950 (band ==
951 1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
952
953 /* permanently store EEPROM's channel regulatory flags
954 * and max power in channel info database. */
955 ch_info->eeprom = eeprom_ch_info[ch];
956
957 /* Copy the run-time flags so they are there even on
958 * invalid channels */
959 ch_info->flags = eeprom_ch_info[ch].flags;
960 /* First write that ht40 is not enabled, and then enable
961 * one by one */
962 ch_info->ht40_extension_channel =
963 IEEE80211_CHAN_NO_HT40;
964
965 if (!(il_is_channel_valid(ch_info))) {
966 D_EEPROM("Ch. %d Flags %x [%sGHz] - "
967 "No traffic\n", ch_info->channel,
968 ch_info->flags,
969 il_is_channel_a_band(ch_info) ? "5.2" :
970 "2.4");
971 ch_info++;
972 continue;
973 }
974
975 /* Initialize regulatory-based run-time data */
976 ch_info->max_power_avg = ch_info->curr_txpow =
977 eeprom_ch_info[ch].max_power_avg;
978 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
979 ch_info->min_power = 0;
980
981 D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
982 " Ad-Hoc %ssupported\n", ch_info->channel,
983 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
984 CHECK_AND_PRINT_I(VALID),
985 CHECK_AND_PRINT_I(IBSS),
986 CHECK_AND_PRINT_I(ACTIVE),
987 CHECK_AND_PRINT_I(RADAR),
988 CHECK_AND_PRINT_I(WIDE),
989 CHECK_AND_PRINT_I(DFS),
990 eeprom_ch_info[ch].flags,
991 eeprom_ch_info[ch].max_power_avg,
992 ((eeprom_ch_info[ch].
993 flags & EEPROM_CHANNEL_IBSS) &&
994 !(eeprom_ch_info[ch].
995 flags & EEPROM_CHANNEL_RADAR)) ? "" :
996 "not ");
997
998 ch_info++;
999 }
1000 }
1001
1002 /* Check if we do have HT40 channels */
1003 if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
1004 il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
1005 return 0;
1006
1007 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1008 for (band = 6; band <= 7; band++) {
1009 enum ieee80211_band ieeeband;
1010
1011 il_init_band_reference(il, band, &eeprom_ch_count,
1012 &eeprom_ch_info, &eeprom_ch_idx);
1013
1014 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1015 ieeeband =
1016 (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1017
1018 /* Loop through each band adding each of the channels */
1019 for (ch = 0; ch < eeprom_ch_count; ch++) {
1020 /* Set up driver's info for lower half */
1021 il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
1022 &eeprom_ch_info[ch],
1023 IEEE80211_CHAN_NO_HT40PLUS);
1024
1025 /* Set up driver's info for upper half */
1026 il_mod_ht40_chan_info(il, ieeeband,
1027 eeprom_ch_idx[ch] + 4,
1028 &eeprom_ch_info[ch],
1029 IEEE80211_CHAN_NO_HT40MINUS);
1030 }
1031 }
1032
1033 return 0;
1034 }
1035 EXPORT_SYMBOL(il_init_channel_map);
1036
1037 /*
1038 * il_free_channel_map - undo allocations in il_init_channel_map
1039 */
1040 void
1041 il_free_channel_map(struct il_priv *il)
1042 {
1043 kfree(il->channel_info);
1044 il->channel_count = 0;
1045 }
1046 EXPORT_SYMBOL(il_free_channel_map);
1047
1048 /**
1049 * il_get_channel_info - Find driver's ilate channel info
1050 *
1051 * Based on band and channel number.
1052 */
1053 const struct il_channel_info *
1054 il_get_channel_info(const struct il_priv *il, enum ieee80211_band band,
1055 u16 channel)
1056 {
1057 int i;
1058
1059 switch (band) {
1060 case IEEE80211_BAND_5GHZ:
1061 for (i = 14; i < il->channel_count; i++) {
1062 if (il->channel_info[i].channel == channel)
1063 return &il->channel_info[i];
1064 }
1065 break;
1066 case IEEE80211_BAND_2GHZ:
1067 if (channel >= 1 && channel <= 14)
1068 return &il->channel_info[channel - 1];
1069 break;
1070 default:
1071 BUG();
1072 }
1073
1074 return NULL;
1075 }
1076 EXPORT_SYMBOL(il_get_channel_info);
1077
1078 /*
1079 * Setting power level allows the card to go to sleep when not busy.
1080 *
1081 * We calculate a sleep command based on the required latency, which
1082 * we get from mac80211. In order to handle thermal throttling, we can
1083 * also use pre-defined power levels.
1084 */
1085
1086 /*
1087 * This defines the old power levels. They are still used by default
1088 * (level 1) and for thermal throttle (levels 3 through 5)
1089 */
1090
1091 struct il_power_vec_entry {
1092 struct il_powertable_cmd cmd;
1093 u8 no_dtim; /* number of skip dtim */
1094 };
1095
1096 static void
1097 il_power_sleep_cam_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
1098 {
1099 memset(cmd, 0, sizeof(*cmd));
1100
1101 if (il->power_data.pci_pm)
1102 cmd->flags |= IL_POWER_PCI_PM_MSK;
1103
1104 D_POWER("Sleep command for CAM\n");
1105 }
1106
1107 static int
1108 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
1109 {
1110 D_POWER("Sending power/sleep command\n");
1111 D_POWER("Flags value = 0x%08X\n", cmd->flags);
1112 D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
1113 D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
1114 D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
1115 le32_to_cpu(cmd->sleep_interval[0]),
1116 le32_to_cpu(cmd->sleep_interval[1]),
1117 le32_to_cpu(cmd->sleep_interval[2]),
1118 le32_to_cpu(cmd->sleep_interval[3]),
1119 le32_to_cpu(cmd->sleep_interval[4]));
1120
1121 return il_send_cmd_pdu(il, C_POWER_TBL,
1122 sizeof(struct il_powertable_cmd), cmd);
1123 }
1124
1125 static int
1126 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
1127 {
1128 int ret;
1129 bool update_chains;
1130
1131 lockdep_assert_held(&il->mutex);
1132
1133 /* Don't update the RX chain when chain noise calibration is running */
1134 update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
1135 il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
1136
1137 if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
1138 return 0;
1139
1140 if (!il_is_ready_rf(il))
1141 return -EIO;
1142
1143 /* scan complete use sleep_power_next, need to be updated */
1144 memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1145 if (test_bit(S_SCANNING, &il->status) && !force) {
1146 D_INFO("Defer power set mode while scanning\n");
1147 return 0;
1148 }
1149
1150 if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1151 set_bit(S_POWER_PMI, &il->status);
1152
1153 ret = il_set_power(il, cmd);
1154 if (!ret) {
1155 if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1156 clear_bit(S_POWER_PMI, &il->status);
1157
1158 if (il->ops->update_chain_flags && update_chains)
1159 il->ops->update_chain_flags(il);
1160 else if (il->ops->update_chain_flags)
1161 D_POWER("Cannot update the power, chain noise "
1162 "calibration running: %d\n",
1163 il->chain_noise_data.state);
1164
1165 memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1166 } else
1167 IL_ERR("set power fail, ret = %d", ret);
1168
1169 return ret;
1170 }
1171
1172 int
1173 il_power_update_mode(struct il_priv *il, bool force)
1174 {
1175 struct il_powertable_cmd cmd;
1176
1177 il_power_sleep_cam_cmd(il, &cmd);
1178 return il_power_set_mode(il, &cmd, force);
1179 }
1180 EXPORT_SYMBOL(il_power_update_mode);
1181
1182 /* initialize to default */
1183 void
1184 il_power_initialize(struct il_priv *il)
1185 {
1186 u16 lctl;
1187
1188 pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
1189 il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
1190
1191 il->power_data.debug_sleep_level_override = -1;
1192
1193 memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1194 }
1195 EXPORT_SYMBOL(il_power_initialize);
1196
1197 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1198 * sending probe req. This should be set long enough to hear probe responses
1199 * from more than one AP. */
1200 #define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */
1201 #define IL_ACTIVE_DWELL_TIME_52 (20)
1202
1203 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1204 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1205
1206 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1207 * Must be set longer than active dwell time.
1208 * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1209 #define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */
1210 #define IL_PASSIVE_DWELL_TIME_52 (10)
1211 #define IL_PASSIVE_DWELL_BASE (100)
1212 #define IL_CHANNEL_TUNE_TIME 5
1213
1214 static int
1215 il_send_scan_abort(struct il_priv *il)
1216 {
1217 int ret;
1218 struct il_rx_pkt *pkt;
1219 struct il_host_cmd cmd = {
1220 .id = C_SCAN_ABORT,
1221 .flags = CMD_WANT_SKB,
1222 };
1223
1224 /* Exit instantly with error when device is not ready
1225 * to receive scan abort command or it does not perform
1226 * hardware scan currently */
1227 if (!test_bit(S_READY, &il->status) ||
1228 !test_bit(S_GEO_CONFIGURED, &il->status) ||
1229 !test_bit(S_SCAN_HW, &il->status) ||
1230 test_bit(S_FW_ERROR, &il->status) ||
1231 test_bit(S_EXIT_PENDING, &il->status))
1232 return -EIO;
1233
1234 ret = il_send_cmd_sync(il, &cmd);
1235 if (ret)
1236 return ret;
1237
1238 pkt = (struct il_rx_pkt *)cmd.reply_page;
1239 if (pkt->u.status != CAN_ABORT_STATUS) {
1240 /* The scan abort will return 1 for success or
1241 * 2 for "failure". A failure condition can be
1242 * due to simply not being in an active scan which
1243 * can occur if we send the scan abort before we
1244 * the microcode has notified us that a scan is
1245 * completed. */
1246 D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1247 ret = -EIO;
1248 }
1249
1250 il_free_pages(il, cmd.reply_page);
1251 return ret;
1252 }
1253
1254 static void
1255 il_complete_scan(struct il_priv *il, bool aborted)
1256 {
1257 /* check if scan was requested from mac80211 */
1258 if (il->scan_request) {
1259 D_SCAN("Complete scan in mac80211\n");
1260 ieee80211_scan_completed(il->hw, aborted);
1261 }
1262
1263 il->scan_vif = NULL;
1264 il->scan_request = NULL;
1265 }
1266
1267 void
1268 il_force_scan_end(struct il_priv *il)
1269 {
1270 lockdep_assert_held(&il->mutex);
1271
1272 if (!test_bit(S_SCANNING, &il->status)) {
1273 D_SCAN("Forcing scan end while not scanning\n");
1274 return;
1275 }
1276
1277 D_SCAN("Forcing scan end\n");
1278 clear_bit(S_SCANNING, &il->status);
1279 clear_bit(S_SCAN_HW, &il->status);
1280 clear_bit(S_SCAN_ABORTING, &il->status);
1281 il_complete_scan(il, true);
1282 }
1283
1284 static void
1285 il_do_scan_abort(struct il_priv *il)
1286 {
1287 int ret;
1288
1289 lockdep_assert_held(&il->mutex);
1290
1291 if (!test_bit(S_SCANNING, &il->status)) {
1292 D_SCAN("Not performing scan to abort\n");
1293 return;
1294 }
1295
1296 if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1297 D_SCAN("Scan abort in progress\n");
1298 return;
1299 }
1300
1301 ret = il_send_scan_abort(il);
1302 if (ret) {
1303 D_SCAN("Send scan abort failed %d\n", ret);
1304 il_force_scan_end(il);
1305 } else
1306 D_SCAN("Successfully send scan abort\n");
1307 }
1308
1309 /**
1310 * il_scan_cancel - Cancel any currently executing HW scan
1311 */
1312 int
1313 il_scan_cancel(struct il_priv *il)
1314 {
1315 D_SCAN("Queuing abort scan\n");
1316 queue_work(il->workqueue, &il->abort_scan);
1317 return 0;
1318 }
1319 EXPORT_SYMBOL(il_scan_cancel);
1320
1321 /**
1322 * il_scan_cancel_timeout - Cancel any currently executing HW scan
1323 * @ms: amount of time to wait (in milliseconds) for scan to abort
1324 *
1325 */
1326 int
1327 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1328 {
1329 unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1330
1331 lockdep_assert_held(&il->mutex);
1332
1333 D_SCAN("Scan cancel timeout\n");
1334
1335 il_do_scan_abort(il);
1336
1337 while (time_before_eq(jiffies, timeout)) {
1338 if (!test_bit(S_SCAN_HW, &il->status))
1339 break;
1340 msleep(20);
1341 }
1342
1343 return test_bit(S_SCAN_HW, &il->status);
1344 }
1345 EXPORT_SYMBOL(il_scan_cancel_timeout);
1346
1347 /* Service response to C_SCAN (0x80) */
1348 static void
1349 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1350 {
1351 #ifdef CONFIG_IWLEGACY_DEBUG
1352 struct il_rx_pkt *pkt = rxb_addr(rxb);
1353 struct il_scanreq_notification *notif =
1354 (struct il_scanreq_notification *)pkt->u.raw;
1355
1356 D_SCAN("Scan request status = 0x%x\n", notif->status);
1357 #endif
1358 }
1359
1360 /* Service N_SCAN_START (0x82) */
1361 static void
1362 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1363 {
1364 struct il_rx_pkt *pkt = rxb_addr(rxb);
1365 struct il_scanstart_notification *notif =
1366 (struct il_scanstart_notification *)pkt->u.raw;
1367 il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1368 D_SCAN("Scan start: " "%d [802.11%s] "
1369 "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1370 notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1371 le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1372 }
1373
1374 /* Service N_SCAN_RESULTS (0x83) */
1375 static void
1376 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1377 {
1378 #ifdef CONFIG_IWLEGACY_DEBUG
1379 struct il_rx_pkt *pkt = rxb_addr(rxb);
1380 struct il_scanresults_notification *notif =
1381 (struct il_scanresults_notification *)pkt->u.raw;
1382
1383 D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1384 "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1385 le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1386 le32_to_cpu(notif->stats[0]),
1387 le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1388 #endif
1389 }
1390
1391 /* Service N_SCAN_COMPLETE (0x84) */
1392 static void
1393 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1394 {
1395
1396 #ifdef CONFIG_IWLEGACY_DEBUG
1397 struct il_rx_pkt *pkt = rxb_addr(rxb);
1398 struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1399 #endif
1400
1401 D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1402 scan_notif->scanned_channels, scan_notif->tsf_low,
1403 scan_notif->tsf_high, scan_notif->status);
1404
1405 /* The HW is no longer scanning */
1406 clear_bit(S_SCAN_HW, &il->status);
1407
1408 D_SCAN("Scan on %sGHz took %dms\n",
1409 (il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
1410 jiffies_to_msecs(jiffies - il->scan_start));
1411
1412 queue_work(il->workqueue, &il->scan_completed);
1413 }
1414
1415 void
1416 il_setup_rx_scan_handlers(struct il_priv *il)
1417 {
1418 /* scan handlers */
1419 il->handlers[C_SCAN] = il_hdl_scan;
1420 il->handlers[N_SCAN_START] = il_hdl_scan_start;
1421 il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1422 il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1423 }
1424 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1425
1426 inline u16
1427 il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
1428 u8 n_probes)
1429 {
1430 if (band == IEEE80211_BAND_5GHZ)
1431 return IL_ACTIVE_DWELL_TIME_52 +
1432 IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1433 else
1434 return IL_ACTIVE_DWELL_TIME_24 +
1435 IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1436 }
1437 EXPORT_SYMBOL(il_get_active_dwell_time);
1438
1439 u16
1440 il_get_passive_dwell_time(struct il_priv *il, enum ieee80211_band band,
1441 struct ieee80211_vif *vif)
1442 {
1443 u16 value;
1444
1445 u16 passive =
1446 (band ==
1447 IEEE80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1448 IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1449 IL_PASSIVE_DWELL_TIME_52;
1450
1451 if (il_is_any_associated(il)) {
1452 /*
1453 * If we're associated, we clamp the maximum passive
1454 * dwell time to be 98% of the smallest beacon interval
1455 * (minus 2 * channel tune time)
1456 */
1457 value = il->vif ? il->vif->bss_conf.beacon_int : 0;
1458 if (value > IL_PASSIVE_DWELL_BASE || !value)
1459 value = IL_PASSIVE_DWELL_BASE;
1460 value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1461 passive = min(value, passive);
1462 }
1463
1464 return passive;
1465 }
1466 EXPORT_SYMBOL(il_get_passive_dwell_time);
1467
1468 void
1469 il_init_scan_params(struct il_priv *il)
1470 {
1471 u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1472 if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
1473 il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
1474 if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
1475 il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
1476 }
1477 EXPORT_SYMBOL(il_init_scan_params);
1478
1479 static int
1480 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1481 {
1482 int ret;
1483
1484 lockdep_assert_held(&il->mutex);
1485
1486 cancel_delayed_work(&il->scan_check);
1487
1488 if (!il_is_ready_rf(il)) {
1489 IL_WARN("Request scan called when driver not ready.\n");
1490 return -EIO;
1491 }
1492
1493 if (test_bit(S_SCAN_HW, &il->status)) {
1494 D_SCAN("Multiple concurrent scan requests in parallel.\n");
1495 return -EBUSY;
1496 }
1497
1498 if (test_bit(S_SCAN_ABORTING, &il->status)) {
1499 D_SCAN("Scan request while abort pending.\n");
1500 return -EBUSY;
1501 }
1502
1503 D_SCAN("Starting scan...\n");
1504
1505 set_bit(S_SCANNING, &il->status);
1506 il->scan_start = jiffies;
1507
1508 ret = il->ops->request_scan(il, vif);
1509 if (ret) {
1510 clear_bit(S_SCANNING, &il->status);
1511 return ret;
1512 }
1513
1514 queue_delayed_work(il->workqueue, &il->scan_check,
1515 IL_SCAN_CHECK_WATCHDOG);
1516
1517 return 0;
1518 }
1519
1520 int
1521 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1522 struct cfg80211_scan_request *req)
1523 {
1524 struct il_priv *il = hw->priv;
1525 int ret;
1526
1527 if (req->n_channels == 0) {
1528 IL_ERR("Can not scan on no channels.\n");
1529 return -EINVAL;
1530 }
1531
1532 mutex_lock(&il->mutex);
1533 D_MAC80211("enter\n");
1534
1535 if (test_bit(S_SCANNING, &il->status)) {
1536 D_SCAN("Scan already in progress.\n");
1537 ret = -EAGAIN;
1538 goto out_unlock;
1539 }
1540
1541 /* mac80211 will only ask for one band at a time */
1542 il->scan_request = req;
1543 il->scan_vif = vif;
1544 il->scan_band = req->channels[0]->band;
1545
1546 ret = il_scan_initiate(il, vif);
1547
1548 out_unlock:
1549 D_MAC80211("leave ret %d\n", ret);
1550 mutex_unlock(&il->mutex);
1551
1552 return ret;
1553 }
1554 EXPORT_SYMBOL(il_mac_hw_scan);
1555
1556 static void
1557 il_bg_scan_check(struct work_struct *data)
1558 {
1559 struct il_priv *il =
1560 container_of(data, struct il_priv, scan_check.work);
1561
1562 D_SCAN("Scan check work\n");
1563
1564 /* Since we are here firmware does not finish scan and
1565 * most likely is in bad shape, so we don't bother to
1566 * send abort command, just force scan complete to mac80211 */
1567 mutex_lock(&il->mutex);
1568 il_force_scan_end(il);
1569 mutex_unlock(&il->mutex);
1570 }
1571
1572 /**
1573 * il_fill_probe_req - fill in all required fields and IE for probe request
1574 */
1575
1576 u16
1577 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1578 const u8 *ta, const u8 *ies, int ie_len, int left)
1579 {
1580 int len = 0;
1581 u8 *pos = NULL;
1582
1583 /* Make sure there is enough space for the probe request,
1584 * two mandatory IEs and the data */
1585 left -= 24;
1586 if (left < 0)
1587 return 0;
1588
1589 frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1590 eth_broadcast_addr(frame->da);
1591 memcpy(frame->sa, ta, ETH_ALEN);
1592 eth_broadcast_addr(frame->bssid);
1593 frame->seq_ctrl = 0;
1594
1595 len += 24;
1596
1597 /* ...next IE... */
1598 pos = &frame->u.probe_req.variable[0];
1599
1600 /* fill in our indirect SSID IE */
1601 left -= 2;
1602 if (left < 0)
1603 return 0;
1604 *pos++ = WLAN_EID_SSID;
1605 *pos++ = 0;
1606
1607 len += 2;
1608
1609 if (WARN_ON(left < ie_len))
1610 return len;
1611
1612 if (ies && ie_len) {
1613 memcpy(pos, ies, ie_len);
1614 len += ie_len;
1615 }
1616
1617 return (u16) len;
1618 }
1619 EXPORT_SYMBOL(il_fill_probe_req);
1620
1621 static void
1622 il_bg_abort_scan(struct work_struct *work)
1623 {
1624 struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1625
1626 D_SCAN("Abort scan work\n");
1627
1628 /* We keep scan_check work queued in case when firmware will not
1629 * report back scan completed notification */
1630 mutex_lock(&il->mutex);
1631 il_scan_cancel_timeout(il, 200);
1632 mutex_unlock(&il->mutex);
1633 }
1634
1635 static void
1636 il_bg_scan_completed(struct work_struct *work)
1637 {
1638 struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1639 bool aborted;
1640
1641 D_SCAN("Completed scan.\n");
1642
1643 cancel_delayed_work(&il->scan_check);
1644
1645 mutex_lock(&il->mutex);
1646
1647 aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1648 if (aborted)
1649 D_SCAN("Aborted scan completed.\n");
1650
1651 if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1652 D_SCAN("Scan already completed.\n");
1653 goto out_settings;
1654 }
1655
1656 il_complete_scan(il, aborted);
1657
1658 out_settings:
1659 /* Can we still talk to firmware ? */
1660 if (!il_is_ready_rf(il))
1661 goto out;
1662
1663 /*
1664 * We do not commit power settings while scan is pending,
1665 * do it now if the settings changed.
1666 */
1667 il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1668 il_set_tx_power(il, il->tx_power_next, false);
1669
1670 il->ops->post_scan(il);
1671
1672 out:
1673 mutex_unlock(&il->mutex);
1674 }
1675
1676 void
1677 il_setup_scan_deferred_work(struct il_priv *il)
1678 {
1679 INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1680 INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1681 INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1682 }
1683 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1684
1685 void
1686 il_cancel_scan_deferred_work(struct il_priv *il)
1687 {
1688 cancel_work_sync(&il->abort_scan);
1689 cancel_work_sync(&il->scan_completed);
1690
1691 if (cancel_delayed_work_sync(&il->scan_check)) {
1692 mutex_lock(&il->mutex);
1693 il_force_scan_end(il);
1694 mutex_unlock(&il->mutex);
1695 }
1696 }
1697 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1698
1699 /* il->sta_lock must be held */
1700 static void
1701 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1702 {
1703
1704 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1705 IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1706 sta_id, il->stations[sta_id].sta.sta.addr);
1707
1708 if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1709 D_ASSOC("STA id %u addr %pM already present"
1710 " in uCode (according to driver)\n", sta_id,
1711 il->stations[sta_id].sta.sta.addr);
1712 } else {
1713 il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1714 D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1715 il->stations[sta_id].sta.sta.addr);
1716 }
1717 }
1718
1719 static int
1720 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1721 struct il_rx_pkt *pkt, bool sync)
1722 {
1723 u8 sta_id = addsta->sta.sta_id;
1724 unsigned long flags;
1725 int ret = -EIO;
1726
1727 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1728 IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1729 return ret;
1730 }
1731
1732 D_INFO("Processing response for adding station %u\n", sta_id);
1733
1734 spin_lock_irqsave(&il->sta_lock, flags);
1735
1736 switch (pkt->u.add_sta.status) {
1737 case ADD_STA_SUCCESS_MSK:
1738 D_INFO("C_ADD_STA PASSED\n");
1739 il_sta_ucode_activate(il, sta_id);
1740 ret = 0;
1741 break;
1742 case ADD_STA_NO_ROOM_IN_TBL:
1743 IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1744 break;
1745 case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1746 IL_ERR("Adding station %d failed, no block ack resource.\n",
1747 sta_id);
1748 break;
1749 case ADD_STA_MODIFY_NON_EXIST_STA:
1750 IL_ERR("Attempting to modify non-existing station %d\n",
1751 sta_id);
1752 break;
1753 default:
1754 D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1755 break;
1756 }
1757
1758 D_INFO("%s station id %u addr %pM\n",
1759 il->stations[sta_id].sta.mode ==
1760 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1761 il->stations[sta_id].sta.sta.addr);
1762
1763 /*
1764 * XXX: The MAC address in the command buffer is often changed from
1765 * the original sent to the device. That is, the MAC address
1766 * written to the command buffer often is not the same MAC address
1767 * read from the command buffer when the command returns. This
1768 * issue has not yet been resolved and this debugging is left to
1769 * observe the problem.
1770 */
1771 D_INFO("%s station according to cmd buffer %pM\n",
1772 il->stations[sta_id].sta.mode ==
1773 STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1774 spin_unlock_irqrestore(&il->sta_lock, flags);
1775
1776 return ret;
1777 }
1778
1779 static void
1780 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1781 struct il_rx_pkt *pkt)
1782 {
1783 struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1784
1785 il_process_add_sta_resp(il, addsta, pkt, false);
1786
1787 }
1788
1789 int
1790 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1791 {
1792 struct il_rx_pkt *pkt = NULL;
1793 int ret = 0;
1794 u8 data[sizeof(*sta)];
1795 struct il_host_cmd cmd = {
1796 .id = C_ADD_STA,
1797 .flags = flags,
1798 .data = data,
1799 };
1800 u8 sta_id __maybe_unused = sta->sta.sta_id;
1801
1802 D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1803 flags & CMD_ASYNC ? "a" : "");
1804
1805 if (flags & CMD_ASYNC)
1806 cmd.callback = il_add_sta_callback;
1807 else {
1808 cmd.flags |= CMD_WANT_SKB;
1809 might_sleep();
1810 }
1811
1812 cmd.len = il->ops->build_addsta_hcmd(sta, data);
1813 ret = il_send_cmd(il, &cmd);
1814
1815 if (ret || (flags & CMD_ASYNC))
1816 return ret;
1817
1818 if (ret == 0) {
1819 pkt = (struct il_rx_pkt *)cmd.reply_page;
1820 ret = il_process_add_sta_resp(il, sta, pkt, true);
1821 }
1822 il_free_pages(il, cmd.reply_page);
1823
1824 return ret;
1825 }
1826 EXPORT_SYMBOL(il_send_add_sta);
1827
1828 static void
1829 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
1830 {
1831 struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
1832 __le32 sta_flags;
1833
1834 if (!sta || !sta_ht_inf->ht_supported)
1835 goto done;
1836
1837 D_ASSOC("spatial multiplexing power save mode: %s\n",
1838 (sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
1839 (sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
1840 "disabled");
1841
1842 sta_flags = il->stations[idx].sta.station_flags;
1843
1844 sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1845
1846 switch (sta->smps_mode) {
1847 case IEEE80211_SMPS_STATIC:
1848 sta_flags |= STA_FLG_MIMO_DIS_MSK;
1849 break;
1850 case IEEE80211_SMPS_DYNAMIC:
1851 sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1852 break;
1853 case IEEE80211_SMPS_OFF:
1854 break;
1855 default:
1856 IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode);
1857 break;
1858 }
1859
1860 sta_flags |=
1861 cpu_to_le32((u32) sta_ht_inf->
1862 ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1863
1864 sta_flags |=
1865 cpu_to_le32((u32) sta_ht_inf->
1866 ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1867
1868 if (il_is_ht40_tx_allowed(il, &sta->ht_cap))
1869 sta_flags |= STA_FLG_HT40_EN_MSK;
1870 else
1871 sta_flags &= ~STA_FLG_HT40_EN_MSK;
1872
1873 il->stations[idx].sta.station_flags = sta_flags;
1874 done:
1875 return;
1876 }
1877
1878 /**
1879 * il_prep_station - Prepare station information for addition
1880 *
1881 * should be called with sta_lock held
1882 */
1883 u8
1884 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
1885 struct ieee80211_sta *sta)
1886 {
1887 struct il_station_entry *station;
1888 int i;
1889 u8 sta_id = IL_INVALID_STATION;
1890 u16 rate;
1891
1892 if (is_ap)
1893 sta_id = IL_AP_ID;
1894 else if (is_broadcast_ether_addr(addr))
1895 sta_id = il->hw_params.bcast_id;
1896 else
1897 for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1898 if (ether_addr_equal(il->stations[i].sta.sta.addr,
1899 addr)) {
1900 sta_id = i;
1901 break;
1902 }
1903
1904 if (!il->stations[i].used &&
1905 sta_id == IL_INVALID_STATION)
1906 sta_id = i;
1907 }
1908
1909 /*
1910 * These two conditions have the same outcome, but keep them
1911 * separate
1912 */
1913 if (unlikely(sta_id == IL_INVALID_STATION))
1914 return sta_id;
1915
1916 /*
1917 * uCode is not able to deal with multiple requests to add a
1918 * station. Keep track if one is in progress so that we do not send
1919 * another.
1920 */
1921 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1922 D_INFO("STA %d already in process of being added.\n", sta_id);
1923 return sta_id;
1924 }
1925
1926 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1927 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1928 ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
1929 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1930 sta_id, addr);
1931 return sta_id;
1932 }
1933
1934 station = &il->stations[sta_id];
1935 station->used = IL_STA_DRIVER_ACTIVE;
1936 D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1937 il->num_stations++;
1938
1939 /* Set up the C_ADD_STA command to send to device */
1940 memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1941 memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1942 station->sta.mode = 0;
1943 station->sta.sta.sta_id = sta_id;
1944 station->sta.station_flags = 0;
1945
1946 /*
1947 * OK to call unconditionally, since local stations (IBSS BSSID
1948 * STA and broadcast STA) pass in a NULL sta, and mac80211
1949 * doesn't allow HT IBSS.
1950 */
1951 il_set_ht_add_station(il, sta_id, sta);
1952
1953 /* 3945 only */
1954 rate = (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
1955 /* Turn on both antennas for the station... */
1956 station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
1957
1958 return sta_id;
1959
1960 }
1961 EXPORT_SYMBOL_GPL(il_prep_station);
1962
1963 #define STA_WAIT_TIMEOUT (HZ/2)
1964
1965 /**
1966 * il_add_station_common -
1967 */
1968 int
1969 il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
1970 struct ieee80211_sta *sta, u8 *sta_id_r)
1971 {
1972 unsigned long flags_spin;
1973 int ret = 0;
1974 u8 sta_id;
1975 struct il_addsta_cmd sta_cmd;
1976
1977 *sta_id_r = 0;
1978 spin_lock_irqsave(&il->sta_lock, flags_spin);
1979 sta_id = il_prep_station(il, addr, is_ap, sta);
1980 if (sta_id == IL_INVALID_STATION) {
1981 IL_ERR("Unable to prepare station %pM for addition\n", addr);
1982 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1983 return -EINVAL;
1984 }
1985
1986 /*
1987 * uCode is not able to deal with multiple requests to add a
1988 * station. Keep track if one is in progress so that we do not send
1989 * another.
1990 */
1991 if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1992 D_INFO("STA %d already in process of being added.\n", sta_id);
1993 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
1994 return -EEXIST;
1995 }
1996
1997 if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1998 (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
1999 D_ASSOC("STA %d (%pM) already added, not adding again.\n",
2000 sta_id, addr);
2001 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2002 return -EEXIST;
2003 }
2004
2005 il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
2006 memcpy(&sta_cmd, &il->stations[sta_id].sta,
2007 sizeof(struct il_addsta_cmd));
2008 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2009
2010 /* Add station to device's station table */
2011 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2012 if (ret) {
2013 spin_lock_irqsave(&il->sta_lock, flags_spin);
2014 IL_ERR("Adding station %pM failed.\n",
2015 il->stations[sta_id].sta.sta.addr);
2016 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2017 il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2018 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2019 }
2020 *sta_id_r = sta_id;
2021 return ret;
2022 }
2023 EXPORT_SYMBOL(il_add_station_common);
2024
2025 /**
2026 * il_sta_ucode_deactivate - deactivate ucode status for a station
2027 *
2028 * il->sta_lock must be held
2029 */
2030 static void
2031 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
2032 {
2033 /* Ucode must be active and driver must be non active */
2034 if ((il->stations[sta_id].
2035 used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
2036 IL_STA_UCODE_ACTIVE)
2037 IL_ERR("removed non active STA %u\n", sta_id);
2038
2039 il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
2040
2041 memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
2042 D_ASSOC("Removed STA %u\n", sta_id);
2043 }
2044
2045 static int
2046 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
2047 bool temporary)
2048 {
2049 struct il_rx_pkt *pkt;
2050 int ret;
2051
2052 unsigned long flags_spin;
2053 struct il_rem_sta_cmd rm_sta_cmd;
2054
2055 struct il_host_cmd cmd = {
2056 .id = C_REM_STA,
2057 .len = sizeof(struct il_rem_sta_cmd),
2058 .flags = CMD_SYNC,
2059 .data = &rm_sta_cmd,
2060 };
2061
2062 memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
2063 rm_sta_cmd.num_sta = 1;
2064 memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
2065
2066 cmd.flags |= CMD_WANT_SKB;
2067
2068 ret = il_send_cmd(il, &cmd);
2069
2070 if (ret)
2071 return ret;
2072
2073 pkt = (struct il_rx_pkt *)cmd.reply_page;
2074 if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
2075 IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
2076 ret = -EIO;
2077 }
2078
2079 if (!ret) {
2080 switch (pkt->u.rem_sta.status) {
2081 case REM_STA_SUCCESS_MSK:
2082 if (!temporary) {
2083 spin_lock_irqsave(&il->sta_lock, flags_spin);
2084 il_sta_ucode_deactivate(il, sta_id);
2085 spin_unlock_irqrestore(&il->sta_lock,
2086 flags_spin);
2087 }
2088 D_ASSOC("C_REM_STA PASSED\n");
2089 break;
2090 default:
2091 ret = -EIO;
2092 IL_ERR("C_REM_STA failed\n");
2093 break;
2094 }
2095 }
2096 il_free_pages(il, cmd.reply_page);
2097
2098 return ret;
2099 }
2100
2101 /**
2102 * il_remove_station - Remove driver's knowledge of station.
2103 */
2104 int
2105 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
2106 {
2107 unsigned long flags;
2108
2109 if (!il_is_ready(il)) {
2110 D_INFO("Unable to remove station %pM, device not ready.\n",
2111 addr);
2112 /*
2113 * It is typical for stations to be removed when we are
2114 * going down. Return success since device will be down
2115 * soon anyway
2116 */
2117 return 0;
2118 }
2119
2120 D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr);
2121
2122 if (WARN_ON(sta_id == IL_INVALID_STATION))
2123 return -EINVAL;
2124
2125 spin_lock_irqsave(&il->sta_lock, flags);
2126
2127 if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2128 D_INFO("Removing %pM but non DRIVER active\n", addr);
2129 goto out_err;
2130 }
2131
2132 if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2133 D_INFO("Removing %pM but non UCODE active\n", addr);
2134 goto out_err;
2135 }
2136
2137 if (il->stations[sta_id].used & IL_STA_LOCAL) {
2138 kfree(il->stations[sta_id].lq);
2139 il->stations[sta_id].lq = NULL;
2140 }
2141
2142 il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2143
2144 il->num_stations--;
2145
2146 BUG_ON(il->num_stations < 0);
2147
2148 spin_unlock_irqrestore(&il->sta_lock, flags);
2149
2150 return il_send_remove_station(il, addr, sta_id, false);
2151 out_err:
2152 spin_unlock_irqrestore(&il->sta_lock, flags);
2153 return -EINVAL;
2154 }
2155 EXPORT_SYMBOL_GPL(il_remove_station);
2156
2157 /**
2158 * il_clear_ucode_stations - clear ucode station table bits
2159 *
2160 * This function clears all the bits in the driver indicating
2161 * which stations are active in the ucode. Call when something
2162 * other than explicit station management would cause this in
2163 * the ucode, e.g. unassociated RXON.
2164 */
2165 void
2166 il_clear_ucode_stations(struct il_priv *il)
2167 {
2168 int i;
2169 unsigned long flags_spin;
2170 bool cleared = false;
2171
2172 D_INFO("Clearing ucode stations in driver\n");
2173
2174 spin_lock_irqsave(&il->sta_lock, flags_spin);
2175 for (i = 0; i < il->hw_params.max_stations; i++) {
2176 if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2177 D_INFO("Clearing ucode active for station %d\n", i);
2178 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2179 cleared = true;
2180 }
2181 }
2182 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2183
2184 if (!cleared)
2185 D_INFO("No active stations found to be cleared\n");
2186 }
2187 EXPORT_SYMBOL(il_clear_ucode_stations);
2188
2189 /**
2190 * il_restore_stations() - Restore driver known stations to device
2191 *
2192 * All stations considered active by driver, but not present in ucode, is
2193 * restored.
2194 *
2195 * Function sleeps.
2196 */
2197 void
2198 il_restore_stations(struct il_priv *il)
2199 {
2200 struct il_addsta_cmd sta_cmd;
2201 struct il_link_quality_cmd lq;
2202 unsigned long flags_spin;
2203 int i;
2204 bool found = false;
2205 int ret;
2206 bool send_lq;
2207
2208 if (!il_is_ready(il)) {
2209 D_INFO("Not ready yet, not restoring any stations.\n");
2210 return;
2211 }
2212
2213 D_ASSOC("Restoring all known stations ... start.\n");
2214 spin_lock_irqsave(&il->sta_lock, flags_spin);
2215 for (i = 0; i < il->hw_params.max_stations; i++) {
2216 if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2217 !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2218 D_ASSOC("Restoring sta %pM\n",
2219 il->stations[i].sta.sta.addr);
2220 il->stations[i].sta.mode = 0;
2221 il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2222 found = true;
2223 }
2224 }
2225
2226 for (i = 0; i < il->hw_params.max_stations; i++) {
2227 if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2228 memcpy(&sta_cmd, &il->stations[i].sta,
2229 sizeof(struct il_addsta_cmd));
2230 send_lq = false;
2231 if (il->stations[i].lq) {
2232 memcpy(&lq, il->stations[i].lq,
2233 sizeof(struct il_link_quality_cmd));
2234 send_lq = true;
2235 }
2236 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2237 ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2238 if (ret) {
2239 spin_lock_irqsave(&il->sta_lock, flags_spin);
2240 IL_ERR("Adding station %pM failed.\n",
2241 il->stations[i].sta.sta.addr);
2242 il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2243 il->stations[i].used &=
2244 ~IL_STA_UCODE_INPROGRESS;
2245 spin_unlock_irqrestore(&il->sta_lock,
2246 flags_spin);
2247 }
2248 /*
2249 * Rate scaling has already been initialized, send
2250 * current LQ command
2251 */
2252 if (send_lq)
2253 il_send_lq_cmd(il, &lq, CMD_SYNC, true);
2254 spin_lock_irqsave(&il->sta_lock, flags_spin);
2255 il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2256 }
2257 }
2258
2259 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2260 if (!found)
2261 D_INFO("Restoring all known stations"
2262 " .... no stations to be restored.\n");
2263 else
2264 D_INFO("Restoring all known stations" " .... complete.\n");
2265 }
2266 EXPORT_SYMBOL(il_restore_stations);
2267
2268 int
2269 il_get_free_ucode_key_idx(struct il_priv *il)
2270 {
2271 int i;
2272
2273 for (i = 0; i < il->sta_key_max_num; i++)
2274 if (!test_and_set_bit(i, &il->ucode_key_table))
2275 return i;
2276
2277 return WEP_INVALID_OFFSET;
2278 }
2279 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2280
2281 void
2282 il_dealloc_bcast_stations(struct il_priv *il)
2283 {
2284 unsigned long flags;
2285 int i;
2286
2287 spin_lock_irqsave(&il->sta_lock, flags);
2288 for (i = 0; i < il->hw_params.max_stations; i++) {
2289 if (!(il->stations[i].used & IL_STA_BCAST))
2290 continue;
2291
2292 il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2293 il->num_stations--;
2294 BUG_ON(il->num_stations < 0);
2295 kfree(il->stations[i].lq);
2296 il->stations[i].lq = NULL;
2297 }
2298 spin_unlock_irqrestore(&il->sta_lock, flags);
2299 }
2300 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2301
2302 #ifdef CONFIG_IWLEGACY_DEBUG
2303 static void
2304 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2305 {
2306 int i;
2307 D_RATE("lq station id 0x%x\n", lq->sta_id);
2308 D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2309 lq->general_params.dual_stream_ant_msk);
2310
2311 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2312 D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2313 }
2314 #else
2315 static inline void
2316 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2317 {
2318 }
2319 #endif
2320
2321 /**
2322 * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2323 *
2324 * It sometimes happens when a HT rate has been in use and we
2325 * loose connectivity with AP then mac80211 will first tell us that the
2326 * current channel is not HT anymore before removing the station. In such a
2327 * scenario the RXON flags will be updated to indicate we are not
2328 * communicating HT anymore, but the LQ command may still contain HT rates.
2329 * Test for this to prevent driver from sending LQ command between the time
2330 * RXON flags are updated and when LQ command is updated.
2331 */
2332 static bool
2333 il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
2334 {
2335 int i;
2336
2337 if (il->ht.enabled)
2338 return true;
2339
2340 D_INFO("Channel %u is not an HT channel\n", il->active.channel);
2341 for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2342 if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2343 D_INFO("idx %d of LQ expects HT channel\n", i);
2344 return false;
2345 }
2346 }
2347 return true;
2348 }
2349
2350 /**
2351 * il_send_lq_cmd() - Send link quality command
2352 * @init: This command is sent as part of station initialization right
2353 * after station has been added.
2354 *
2355 * The link quality command is sent as the last step of station creation.
2356 * This is the special case in which init is set and we call a callback in
2357 * this case to clear the state indicating that station creation is in
2358 * progress.
2359 */
2360 int
2361 il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
2362 u8 flags, bool init)
2363 {
2364 int ret = 0;
2365 unsigned long flags_spin;
2366
2367 struct il_host_cmd cmd = {
2368 .id = C_TX_LINK_QUALITY_CMD,
2369 .len = sizeof(struct il_link_quality_cmd),
2370 .flags = flags,
2371 .data = lq,
2372 };
2373
2374 if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2375 return -EINVAL;
2376
2377 spin_lock_irqsave(&il->sta_lock, flags_spin);
2378 if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2379 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2380 return -EINVAL;
2381 }
2382 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2383
2384 il_dump_lq_cmd(il, lq);
2385 BUG_ON(init && (cmd.flags & CMD_ASYNC));
2386
2387 if (il_is_lq_table_valid(il, lq))
2388 ret = il_send_cmd(il, &cmd);
2389 else
2390 ret = -EINVAL;
2391
2392 if (cmd.flags & CMD_ASYNC)
2393 return ret;
2394
2395 if (init) {
2396 D_INFO("init LQ command complete,"
2397 " clearing sta addition status for sta %d\n",
2398 lq->sta_id);
2399 spin_lock_irqsave(&il->sta_lock, flags_spin);
2400 il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2401 spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2402 }
2403 return ret;
2404 }
2405 EXPORT_SYMBOL(il_send_lq_cmd);
2406
2407 int
2408 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2409 struct ieee80211_sta *sta)
2410 {
2411 struct il_priv *il = hw->priv;
2412 struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2413 int ret;
2414
2415 mutex_lock(&il->mutex);
2416 D_MAC80211("enter station %pM\n", sta->addr);
2417
2418 ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2419 if (ret)
2420 IL_ERR("Error removing station %pM\n", sta->addr);
2421
2422 D_MAC80211("leave ret %d\n", ret);
2423 mutex_unlock(&il->mutex);
2424
2425 return ret;
2426 }
2427 EXPORT_SYMBOL(il_mac_sta_remove);
2428
2429 /************************** RX-FUNCTIONS ****************************/
2430 /*
2431 * Rx theory of operation
2432 *
2433 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2434 * each of which point to Receive Buffers to be filled by the NIC. These get
2435 * used not only for Rx frames, but for any command response or notification
2436 * from the NIC. The driver and NIC manage the Rx buffers by means
2437 * of idxes into the circular buffer.
2438 *
2439 * Rx Queue Indexes
2440 * The host/firmware share two idx registers for managing the Rx buffers.
2441 *
2442 * The READ idx maps to the first position that the firmware may be writing
2443 * to -- the driver can read up to (but not including) this position and get
2444 * good data.
2445 * The READ idx is managed by the firmware once the card is enabled.
2446 *
2447 * The WRITE idx maps to the last position the driver has read from -- the
2448 * position preceding WRITE is the last slot the firmware can place a packet.
2449 *
2450 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2451 * WRITE = READ.
2452 *
2453 * During initialization, the host sets up the READ queue position to the first
2454 * IDX position, and WRITE to the last (READ - 1 wrapped)
2455 *
2456 * When the firmware places a packet in a buffer, it will advance the READ idx
2457 * and fire the RX interrupt. The driver can then query the READ idx and
2458 * process as many packets as possible, moving the WRITE idx forward as it
2459 * resets the Rx queue buffers with new memory.
2460 *
2461 * The management in the driver is as follows:
2462 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
2463 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2464 * to replenish the iwl->rxq->rx_free.
2465 * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2466 * iwl->rxq is replenished and the READ IDX is updated (updating the
2467 * 'processed' and 'read' driver idxes as well)
2468 * + A received packet is processed and handed to the kernel network stack,
2469 * detached from the iwl->rxq. The driver 'processed' idx is updated.
2470 * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2471 * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2472 * IDX is not incremented and iwl->status(RX_STALLED) is set. If there
2473 * were enough free buffers and RX_STALLED is set it is cleared.
2474 *
2475 *
2476 * Driver sequence:
2477 *
2478 * il_rx_queue_alloc() Allocates rx_free
2479 * il_rx_replenish() Replenishes rx_free list from rx_used, and calls
2480 * il_rx_queue_restock
2481 * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2482 * queue, updates firmware pointers, and updates
2483 * the WRITE idx. If insufficient rx_free buffers
2484 * are available, schedules il_rx_replenish
2485 *
2486 * -- enable interrupts --
2487 * ISR - il_rx() Detach il_rx_bufs from pool up to the
2488 * READ IDX, detaching the SKB from the pool.
2489 * Moves the packet buffer from queue to rx_used.
2490 * Calls il_rx_queue_restock to refill any empty
2491 * slots.
2492 * ...
2493 *
2494 */
2495
2496 /**
2497 * il_rx_queue_space - Return number of free slots available in queue.
2498 */
2499 int
2500 il_rx_queue_space(const struct il_rx_queue *q)
2501 {
2502 int s = q->read - q->write;
2503 if (s <= 0)
2504 s += RX_QUEUE_SIZE;
2505 /* keep some buffer to not confuse full and empty queue */
2506 s -= 2;
2507 if (s < 0)
2508 s = 0;
2509 return s;
2510 }
2511 EXPORT_SYMBOL(il_rx_queue_space);
2512
2513 /**
2514 * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2515 */
2516 void
2517 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2518 {
2519 unsigned long flags;
2520 u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2521 u32 reg;
2522
2523 spin_lock_irqsave(&q->lock, flags);
2524
2525 if (q->need_update == 0)
2526 goto exit_unlock;
2527
2528 /* If power-saving is in use, make sure device is awake */
2529 if (test_bit(S_POWER_PMI, &il->status)) {
2530 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2531
2532 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2533 D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2534 reg);
2535 il_set_bit(il, CSR_GP_CNTRL,
2536 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2537 goto exit_unlock;
2538 }
2539
2540 q->write_actual = (q->write & ~0x7);
2541 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2542
2543 /* Else device is assumed to be awake */
2544 } else {
2545 /* Device expects a multiple of 8 */
2546 q->write_actual = (q->write & ~0x7);
2547 il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2548 }
2549
2550 q->need_update = 0;
2551
2552 exit_unlock:
2553 spin_unlock_irqrestore(&q->lock, flags);
2554 }
2555 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2556
2557 int
2558 il_rx_queue_alloc(struct il_priv *il)
2559 {
2560 struct il_rx_queue *rxq = &il->rxq;
2561 struct device *dev = &il->pci_dev->dev;
2562 int i;
2563
2564 spin_lock_init(&rxq->lock);
2565 INIT_LIST_HEAD(&rxq->rx_free);
2566 INIT_LIST_HEAD(&rxq->rx_used);
2567
2568 /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2569 rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2570 GFP_KERNEL);
2571 if (!rxq->bd)
2572 goto err_bd;
2573
2574 rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2575 &rxq->rb_stts_dma, GFP_KERNEL);
2576 if (!rxq->rb_stts)
2577 goto err_rb;
2578
2579 /* Fill the rx_used queue with _all_ of the Rx buffers */
2580 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2581 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2582
2583 /* Set us so that we have processed and used all buffers, but have
2584 * not restocked the Rx queue with fresh buffers */
2585 rxq->read = rxq->write = 0;
2586 rxq->write_actual = 0;
2587 rxq->free_count = 0;
2588 rxq->need_update = 0;
2589 return 0;
2590
2591 err_rb:
2592 dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2593 rxq->bd_dma);
2594 err_bd:
2595 return -ENOMEM;
2596 }
2597 EXPORT_SYMBOL(il_rx_queue_alloc);
2598
2599 void
2600 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2601 {
2602 struct il_rx_pkt *pkt = rxb_addr(rxb);
2603 struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2604
2605 if (!report->state) {
2606 D_11H("Spectrum Measure Notification: Start\n");
2607 return;
2608 }
2609
2610 memcpy(&il->measure_report, report, sizeof(*report));
2611 il->measurement_status |= MEASUREMENT_READY;
2612 }
2613 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2614
2615 /*
2616 * returns non-zero if packet should be dropped
2617 */
2618 int
2619 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2620 u32 decrypt_res, struct ieee80211_rx_status *stats)
2621 {
2622 u16 fc = le16_to_cpu(hdr->frame_control);
2623
2624 /*
2625 * All contexts have the same setting here due to it being
2626 * a module parameter, so OK to check any context.
2627 */
2628 if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2629 return 0;
2630
2631 if (!(fc & IEEE80211_FCTL_PROTECTED))
2632 return 0;
2633
2634 D_RX("decrypt_res:0x%x\n", decrypt_res);
2635 switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2636 case RX_RES_STATUS_SEC_TYPE_TKIP:
2637 /* The uCode has got a bad phase 1 Key, pushes the packet.
2638 * Decryption will be done in SW. */
2639 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2640 RX_RES_STATUS_BAD_KEY_TTAK)
2641 break;
2642
2643 case RX_RES_STATUS_SEC_TYPE_WEP:
2644 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2645 RX_RES_STATUS_BAD_ICV_MIC) {
2646 /* bad ICV, the packet is destroyed since the
2647 * decryption is inplace, drop it */
2648 D_RX("Packet destroyed\n");
2649 return -1;
2650 }
2651 case RX_RES_STATUS_SEC_TYPE_CCMP:
2652 if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2653 RX_RES_STATUS_DECRYPT_OK) {
2654 D_RX("hw decrypt successfully!!!\n");
2655 stats->flag |= RX_FLAG_DECRYPTED;
2656 }
2657 break;
2658
2659 default:
2660 break;
2661 }
2662 return 0;
2663 }
2664 EXPORT_SYMBOL(il_set_decrypted_flag);
2665
2666 /**
2667 * il_txq_update_write_ptr - Send new write idx to hardware
2668 */
2669 void
2670 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2671 {
2672 u32 reg = 0;
2673 int txq_id = txq->q.id;
2674
2675 if (txq->need_update == 0)
2676 return;
2677
2678 /* if we're trying to save power */
2679 if (test_bit(S_POWER_PMI, &il->status)) {
2680 /* wake up nic if it's powered down ...
2681 * uCode will wake up, and interrupt us again, so next
2682 * time we'll skip this part. */
2683 reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2684
2685 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2686 D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2687 txq_id, reg);
2688 il_set_bit(il, CSR_GP_CNTRL,
2689 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2690 return;
2691 }
2692
2693 il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2694
2695 /*
2696 * else not in power-save mode,
2697 * uCode will never sleep when we're
2698 * trying to tx (during RFKILL, we're not trying to tx).
2699 */
2700 } else
2701 _il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2702 txq->need_update = 0;
2703 }
2704 EXPORT_SYMBOL(il_txq_update_write_ptr);
2705
2706 /**
2707 * il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's
2708 */
2709 void
2710 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2711 {
2712 struct il_tx_queue *txq = &il->txq[txq_id];
2713 struct il_queue *q = &txq->q;
2714
2715 if (q->n_bd == 0)
2716 return;
2717
2718 while (q->write_ptr != q->read_ptr) {
2719 il->ops->txq_free_tfd(il, txq);
2720 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2721 }
2722 }
2723 EXPORT_SYMBOL(il_tx_queue_unmap);
2724
2725 /**
2726 * il_tx_queue_free - Deallocate DMA queue.
2727 * @txq: Transmit queue to deallocate.
2728 *
2729 * Empty queue by removing and destroying all BD's.
2730 * Free all buffers.
2731 * 0-fill, but do not free "txq" descriptor structure.
2732 */
2733 void
2734 il_tx_queue_free(struct il_priv *il, int txq_id)
2735 {
2736 struct il_tx_queue *txq = &il->txq[txq_id];
2737 struct device *dev = &il->pci_dev->dev;
2738 int i;
2739
2740 il_tx_queue_unmap(il, txq_id);
2741
2742 /* De-alloc array of command/tx buffers */
2743 for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2744 kfree(txq->cmd[i]);
2745
2746 /* De-alloc circular buffer of TFDs */
2747 if (txq->q.n_bd)
2748 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2749 txq->tfds, txq->q.dma_addr);
2750
2751 /* De-alloc array of per-TFD driver data */
2752 kfree(txq->skbs);
2753 txq->skbs = NULL;
2754
2755 /* deallocate arrays */
2756 kfree(txq->cmd);
2757 kfree(txq->meta);
2758 txq->cmd = NULL;
2759 txq->meta = NULL;
2760
2761 /* 0-fill queue descriptor structure */
2762 memset(txq, 0, sizeof(*txq));
2763 }
2764 EXPORT_SYMBOL(il_tx_queue_free);
2765
2766 /**
2767 * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2768 */
2769 void
2770 il_cmd_queue_unmap(struct il_priv *il)
2771 {
2772 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2773 struct il_queue *q = &txq->q;
2774 int i;
2775
2776 if (q->n_bd == 0)
2777 return;
2778
2779 while (q->read_ptr != q->write_ptr) {
2780 i = il_get_cmd_idx(q, q->read_ptr, 0);
2781
2782 if (txq->meta[i].flags & CMD_MAPPED) {
2783 pci_unmap_single(il->pci_dev,
2784 dma_unmap_addr(&txq->meta[i], mapping),
2785 dma_unmap_len(&txq->meta[i], len),
2786 PCI_DMA_BIDIRECTIONAL);
2787 txq->meta[i].flags = 0;
2788 }
2789
2790 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2791 }
2792
2793 i = q->n_win;
2794 if (txq->meta[i].flags & CMD_MAPPED) {
2795 pci_unmap_single(il->pci_dev,
2796 dma_unmap_addr(&txq->meta[i], mapping),
2797 dma_unmap_len(&txq->meta[i], len),
2798 PCI_DMA_BIDIRECTIONAL);
2799 txq->meta[i].flags = 0;
2800 }
2801 }
2802 EXPORT_SYMBOL(il_cmd_queue_unmap);
2803
2804 /**
2805 * il_cmd_queue_free - Deallocate DMA queue.
2806 * @txq: Transmit queue to deallocate.
2807 *
2808 * Empty queue by removing and destroying all BD's.
2809 * Free all buffers.
2810 * 0-fill, but do not free "txq" descriptor structure.
2811 */
2812 void
2813 il_cmd_queue_free(struct il_priv *il)
2814 {
2815 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2816 struct device *dev = &il->pci_dev->dev;
2817 int i;
2818
2819 il_cmd_queue_unmap(il);
2820
2821 /* De-alloc array of command/tx buffers */
2822 for (i = 0; i <= TFD_CMD_SLOTS; i++)
2823 kfree(txq->cmd[i]);
2824
2825 /* De-alloc circular buffer of TFDs */
2826 if (txq->q.n_bd)
2827 dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2828 txq->tfds, txq->q.dma_addr);
2829
2830 /* deallocate arrays */
2831 kfree(txq->cmd);
2832 kfree(txq->meta);
2833 txq->cmd = NULL;
2834 txq->meta = NULL;
2835
2836 /* 0-fill queue descriptor structure */
2837 memset(txq, 0, sizeof(*txq));
2838 }
2839 EXPORT_SYMBOL(il_cmd_queue_free);
2840
2841 /*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
2842 * DMA services
2843 *
2844 * Theory of operation
2845 *
2846 * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2847 * of buffer descriptors, each of which points to one or more data buffers for
2848 * the device to read from or fill. Driver and device exchange status of each
2849 * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
2850 * entries in each circular buffer, to protect against confusing empty and full
2851 * queue states.
2852 *
2853 * The device reads or writes the data in the queues via the device's several
2854 * DMA/FIFO channels. Each queue is mapped to a single DMA channel.
2855 *
2856 * For Tx queue, there are low mark and high mark limits. If, after queuing
2857 * the packet for Tx, free space become < low mark, Tx queue stopped. When
2858 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2859 * Tx queue resumed.
2860 *
2861 * See more detailed info in 4965.h.
2862 ***************************************************/
2863
2864 int
2865 il_queue_space(const struct il_queue *q)
2866 {
2867 int s = q->read_ptr - q->write_ptr;
2868
2869 if (q->read_ptr > q->write_ptr)
2870 s -= q->n_bd;
2871
2872 if (s <= 0)
2873 s += q->n_win;
2874 /* keep some reserve to not confuse empty and full situations */
2875 s -= 2;
2876 if (s < 0)
2877 s = 0;
2878 return s;
2879 }
2880 EXPORT_SYMBOL(il_queue_space);
2881
2882
2883 /**
2884 * il_queue_init - Initialize queue's high/low-water and read/write idxes
2885 */
2886 static int
2887 il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id)
2888 {
2889 /*
2890 * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2891 * il_queue_inc_wrap and il_queue_dec_wrap are broken.
2892 */
2893 BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2894 /* FIXME: remove q->n_bd */
2895 q->n_bd = TFD_QUEUE_SIZE_MAX;
2896
2897 q->n_win = slots;
2898 q->id = id;
2899
2900 /* slots_must be power-of-two size, otherwise
2901 * il_get_cmd_idx is broken. */
2902 BUG_ON(!is_power_of_2(slots));
2903
2904 q->low_mark = q->n_win / 4;
2905 if (q->low_mark < 4)
2906 q->low_mark = 4;
2907
2908 q->high_mark = q->n_win / 8;
2909 if (q->high_mark < 2)
2910 q->high_mark = 2;
2911
2912 q->write_ptr = q->read_ptr = 0;
2913
2914 return 0;
2915 }
2916
2917 /**
2918 * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2919 */
2920 static int
2921 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2922 {
2923 struct device *dev = &il->pci_dev->dev;
2924 size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2925
2926 /* Driver ilate data, only for Tx (not command) queues,
2927 * not shared with device. */
2928 if (id != il->cmd_queue) {
2929 txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX, sizeof(struct skb *),
2930 GFP_KERNEL);
2931 if (!txq->skbs) {
2932 IL_ERR("Fail to alloc skbs\n");
2933 goto error;
2934 }
2935 } else
2936 txq->skbs = NULL;
2937
2938 /* Circular buffer of transmit frame descriptors (TFDs),
2939 * shared with device */
2940 txq->tfds =
2941 dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
2942 if (!txq->tfds)
2943 goto error;
2944
2945 txq->q.id = id;
2946
2947 return 0;
2948
2949 error:
2950 kfree(txq->skbs);
2951 txq->skbs = NULL;
2952
2953 return -ENOMEM;
2954 }
2955
2956 /**
2957 * il_tx_queue_init - Allocate and initialize one tx/cmd queue
2958 */
2959 int
2960 il_tx_queue_init(struct il_priv *il, u32 txq_id)
2961 {
2962 int i, len, ret;
2963 int slots, actual_slots;
2964 struct il_tx_queue *txq = &il->txq[txq_id];
2965
2966 /*
2967 * Alloc buffer array for commands (Tx or other types of commands).
2968 * For the command queue (#4/#9), allocate command space + one big
2969 * command for scan, since scan command is very huge; the system will
2970 * not have two scans at the same time, so only one is needed.
2971 * For normal Tx queues (all other queues), no super-size command
2972 * space is needed.
2973 */
2974 if (txq_id == il->cmd_queue) {
2975 slots = TFD_CMD_SLOTS;
2976 actual_slots = slots + 1;
2977 } else {
2978 slots = TFD_TX_CMD_SLOTS;
2979 actual_slots = slots;
2980 }
2981
2982 txq->meta =
2983 kzalloc(sizeof(struct il_cmd_meta) * actual_slots, GFP_KERNEL);
2984 txq->cmd =
2985 kzalloc(sizeof(struct il_device_cmd *) * actual_slots, GFP_KERNEL);
2986
2987 if (!txq->meta || !txq->cmd)
2988 goto out_free_arrays;
2989
2990 len = sizeof(struct il_device_cmd);
2991 for (i = 0; i < actual_slots; i++) {
2992 /* only happens for cmd queue */
2993 if (i == slots)
2994 len = IL_MAX_CMD_SIZE;
2995
2996 txq->cmd[i] = kmalloc(len, GFP_KERNEL);
2997 if (!txq->cmd[i])
2998 goto err;
2999 }
3000
3001 /* Alloc driver data array and TFD circular buffer */
3002 ret = il_tx_queue_alloc(il, txq, txq_id);
3003 if (ret)
3004 goto err;
3005
3006 txq->need_update = 0;
3007
3008 /*
3009 * For the default queues 0-3, set up the swq_id
3010 * already -- all others need to get one later
3011 * (if they need one at all).
3012 */
3013 if (txq_id < 4)
3014 il_set_swq_id(txq, txq_id, txq_id);
3015
3016 /* Initialize queue's high/low-water marks, and head/tail idxes */
3017 il_queue_init(il, &txq->q, slots, txq_id);
3018
3019 /* Tell device where to find queue */
3020 il->ops->txq_init(il, txq);
3021
3022 return 0;
3023 err:
3024 for (i = 0; i < actual_slots; i++)
3025 kfree(txq->cmd[i]);
3026 out_free_arrays:
3027 kfree(txq->meta);
3028 kfree(txq->cmd);
3029
3030 return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL(il_tx_queue_init);
3033
3034 void
3035 il_tx_queue_reset(struct il_priv *il, u32 txq_id)
3036 {
3037 int slots, actual_slots;
3038 struct il_tx_queue *txq = &il->txq[txq_id];
3039
3040 if (txq_id == il->cmd_queue) {
3041 slots = TFD_CMD_SLOTS;
3042 actual_slots = TFD_CMD_SLOTS + 1;
3043 } else {
3044 slots = TFD_TX_CMD_SLOTS;
3045 actual_slots = TFD_TX_CMD_SLOTS;
3046 }
3047
3048 memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
3049 txq->need_update = 0;
3050
3051 /* Initialize queue's high/low-water marks, and head/tail idxes */
3052 il_queue_init(il, &txq->q, slots, txq_id);
3053
3054 /* Tell device where to find queue */
3055 il->ops->txq_init(il, txq);
3056 }
3057 EXPORT_SYMBOL(il_tx_queue_reset);
3058
3059 /*************** HOST COMMAND QUEUE FUNCTIONS *****/
3060
3061 /**
3062 * il_enqueue_hcmd - enqueue a uCode command
3063 * @il: device ilate data point
3064 * @cmd: a point to the ucode command structure
3065 *
3066 * The function returns < 0 values to indicate the operation is
3067 * failed. On success, it turns the idx (> 0) of command in the
3068 * command queue.
3069 */
3070 int
3071 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
3072 {
3073 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3074 struct il_queue *q = &txq->q;
3075 struct il_device_cmd *out_cmd;
3076 struct il_cmd_meta *out_meta;
3077 dma_addr_t phys_addr;
3078 unsigned long flags;
3079 int len;
3080 u32 idx;
3081 u16 fix_size;
3082
3083 cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len);
3084 fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
3085
3086 /* If any of the command structures end up being larger than
3087 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
3088 * we will need to increase the size of the TFD entries
3089 * Also, check to see if command buffer should not exceed the size
3090 * of device_cmd and max_cmd_size. */
3091 BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3092 !(cmd->flags & CMD_SIZE_HUGE));
3093 BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3094
3095 if (il_is_rfkill(il) || il_is_ctkill(il)) {
3096 IL_WARN("Not sending command - %s KILL\n",
3097 il_is_rfkill(il) ? "RF" : "CT");
3098 return -EIO;
3099 }
3100
3101 spin_lock_irqsave(&il->hcmd_lock, flags);
3102
3103 if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3104 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3105
3106 IL_ERR("Restarting adapter due to command queue full\n");
3107 queue_work(il->workqueue, &il->restart);
3108 return -ENOSPC;
3109 }
3110
3111 idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3112 out_cmd = txq->cmd[idx];
3113 out_meta = &txq->meta[idx];
3114
3115 if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3116 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3117 return -ENOSPC;
3118 }
3119
3120 memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
3121 out_meta->flags = cmd->flags | CMD_MAPPED;
3122 if (cmd->flags & CMD_WANT_SKB)
3123 out_meta->source = cmd;
3124 if (cmd->flags & CMD_ASYNC)
3125 out_meta->callback = cmd->callback;
3126
3127 out_cmd->hdr.cmd = cmd->id;
3128 memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
3129
3130 /* At this point, the out_cmd now has all of the incoming cmd
3131 * information */
3132
3133 out_cmd->hdr.flags = 0;
3134 out_cmd->hdr.sequence =
3135 cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3136 if (cmd->flags & CMD_SIZE_HUGE)
3137 out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3138 len = sizeof(struct il_device_cmd);
3139 if (idx == TFD_CMD_SLOTS)
3140 len = IL_MAX_CMD_SIZE;
3141
3142 #ifdef CONFIG_IWLEGACY_DEBUG
3143 switch (out_cmd->hdr.cmd) {
3144 case C_TX_LINK_QUALITY_CMD:
3145 case C_SENSITIVITY:
3146 D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3147 "%d bytes at %d[%d]:%d\n",
3148 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3149 le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3150 q->write_ptr, idx, il->cmd_queue);
3151 break;
3152 default:
3153 D_HC("Sending command %s (#%x), seq: 0x%04X, "
3154 "%d bytes at %d[%d]:%d\n",
3155 il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3156 le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3157 idx, il->cmd_queue);
3158 }
3159 #endif
3160
3161 phys_addr =
3162 pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
3163 PCI_DMA_BIDIRECTIONAL);
3164 if (unlikely(pci_dma_mapping_error(il->pci_dev, phys_addr))) {
3165 idx = -ENOMEM;
3166 goto out;
3167 }
3168 dma_unmap_addr_set(out_meta, mapping, phys_addr);
3169 dma_unmap_len_set(out_meta, len, fix_size);
3170
3171 txq->need_update = 1;
3172
3173 if (il->ops->txq_update_byte_cnt_tbl)
3174 /* Set up entry in queue's byte count circular buffer */
3175 il->ops->txq_update_byte_cnt_tbl(il, txq, 0);
3176
3177 il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1,
3178 U32_PAD(cmd->len));
3179
3180 /* Increment and update queue's write idx */
3181 q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3182 il_txq_update_write_ptr(il, txq);
3183
3184 out:
3185 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3186 return idx;
3187 }
3188
3189 /**
3190 * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3191 *
3192 * When FW advances 'R' idx, all entries between old and new 'R' idx
3193 * need to be reclaimed. As result, some free space forms. If there is
3194 * enough free space (> low mark), wake the stack that feeds us.
3195 */
3196 static void
3197 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3198 {
3199 struct il_tx_queue *txq = &il->txq[txq_id];
3200 struct il_queue *q = &txq->q;
3201 int nfreed = 0;
3202
3203 if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3204 IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3205 "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3206 q->write_ptr, q->read_ptr);
3207 return;
3208 }
3209
3210 for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3211 q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3212
3213 if (nfreed++ > 0) {
3214 IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3215 q->write_ptr, q->read_ptr);
3216 queue_work(il->workqueue, &il->restart);
3217 }
3218
3219 }
3220 }
3221
3222 /**
3223 * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3224 * @rxb: Rx buffer to reclaim
3225 *
3226 * If an Rx buffer has an async callback associated with it the callback
3227 * will be executed. The attached skb (if present) will only be freed
3228 * if the callback returns 1
3229 */
3230 void
3231 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3232 {
3233 struct il_rx_pkt *pkt = rxb_addr(rxb);
3234 u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3235 int txq_id = SEQ_TO_QUEUE(sequence);
3236 int idx = SEQ_TO_IDX(sequence);
3237 int cmd_idx;
3238 bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3239 struct il_device_cmd *cmd;
3240 struct il_cmd_meta *meta;
3241 struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3242 unsigned long flags;
3243
3244 /* If a Tx command is being handled and it isn't in the actual
3245 * command queue then there a command routing bug has been introduced
3246 * in the queue management code. */
3247 if (WARN
3248 (txq_id != il->cmd_queue,
3249 "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3250 txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3251 il->txq[il->cmd_queue].q.write_ptr)) {
3252 il_print_hex_error(il, pkt, 32);
3253 return;
3254 }
3255
3256 cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3257 cmd = txq->cmd[cmd_idx];
3258 meta = &txq->meta[cmd_idx];
3259
3260 txq->time_stamp = jiffies;
3261
3262 pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
3263 dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
3264
3265 /* Input error checking is done when commands are added to queue. */
3266 if (meta->flags & CMD_WANT_SKB) {
3267 meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3268 rxb->page = NULL;
3269 } else if (meta->callback)
3270 meta->callback(il, cmd, pkt);
3271
3272 spin_lock_irqsave(&il->hcmd_lock, flags);
3273
3274 il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3275
3276 if (!(meta->flags & CMD_ASYNC)) {
3277 clear_bit(S_HCMD_ACTIVE, &il->status);
3278 D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3279 il_get_cmd_string(cmd->hdr.cmd));
3280 wake_up(&il->wait_command_queue);
3281 }
3282
3283 /* Mark as unmapped */
3284 meta->flags = 0;
3285
3286 spin_unlock_irqrestore(&il->hcmd_lock, flags);
3287 }
3288 EXPORT_SYMBOL(il_tx_cmd_complete);
3289
3290 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3291 MODULE_VERSION(IWLWIFI_VERSION);
3292 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3293 MODULE_LICENSE("GPL");
3294
3295 /*
3296 * set bt_coex_active to true, uCode will do kill/defer
3297 * every time the priority line is asserted (BT is sending signals on the
3298 * priority line in the PCIx).
3299 * set bt_coex_active to false, uCode will ignore the BT activity and
3300 * perform the normal operation
3301 *
3302 * User might experience transmit issue on some platform due to WiFi/BT
3303 * co-exist problem. The possible behaviors are:
3304 * Able to scan and finding all the available AP
3305 * Not able to associate with any AP
3306 * On those platforms, WiFi communication can be restored by set
3307 * "bt_coex_active" module parameter to "false"
3308 *
3309 * default: bt_coex_active = true (BT_COEX_ENABLE)
3310 */
3311 static bool bt_coex_active = true;
3312 module_param(bt_coex_active, bool, S_IRUGO);
3313 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3314
3315 u32 il_debug_level;
3316 EXPORT_SYMBOL(il_debug_level);
3317
3318 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3319 EXPORT_SYMBOL(il_bcast_addr);
3320
3321 #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
3322 #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
3323 static void
3324 il_init_ht_hw_capab(const struct il_priv *il,
3325 struct ieee80211_sta_ht_cap *ht_info,
3326 enum ieee80211_band band)
3327 {
3328 u16 max_bit_rate = 0;
3329 u8 rx_chains_num = il->hw_params.rx_chains_num;
3330 u8 tx_chains_num = il->hw_params.tx_chains_num;
3331
3332 ht_info->cap = 0;
3333 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3334
3335 ht_info->ht_supported = true;
3336
3337 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3338 max_bit_rate = MAX_BIT_RATE_20_MHZ;
3339 if (il->hw_params.ht40_channel & BIT(band)) {
3340 ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3341 ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3342 ht_info->mcs.rx_mask[4] = 0x01;
3343 max_bit_rate = MAX_BIT_RATE_40_MHZ;
3344 }
3345
3346 if (il->cfg->mod_params->amsdu_size_8K)
3347 ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3348
3349 ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3350 ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3351
3352 ht_info->mcs.rx_mask[0] = 0xFF;
3353 if (rx_chains_num >= 2)
3354 ht_info->mcs.rx_mask[1] = 0xFF;
3355 if (rx_chains_num >= 3)
3356 ht_info->mcs.rx_mask[2] = 0xFF;
3357
3358 /* Highest supported Rx data rate */
3359 max_bit_rate *= rx_chains_num;
3360 WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3361 ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3362
3363 /* Tx MCS capabilities */
3364 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3365 if (tx_chains_num != rx_chains_num) {
3366 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3367 ht_info->mcs.tx_params |=
3368 ((tx_chains_num -
3369 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3370 }
3371 }
3372
3373 /**
3374 * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3375 */
3376 int
3377 il_init_geos(struct il_priv *il)
3378 {
3379 struct il_channel_info *ch;
3380 struct ieee80211_supported_band *sband;
3381 struct ieee80211_channel *channels;
3382 struct ieee80211_channel *geo_ch;
3383 struct ieee80211_rate *rates;
3384 int i = 0;
3385 s8 max_tx_power = 0;
3386
3387 if (il->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
3388 il->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
3389 D_INFO("Geography modes already initialized.\n");
3390 set_bit(S_GEO_CONFIGURED, &il->status);
3391 return 0;
3392 }
3393
3394 channels =
3395 kzalloc(sizeof(struct ieee80211_channel) * il->channel_count,
3396 GFP_KERNEL);
3397 if (!channels)
3398 return -ENOMEM;
3399
3400 rates =
3401 kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3402 GFP_KERNEL);
3403 if (!rates) {
3404 kfree(channels);
3405 return -ENOMEM;
3406 }
3407
3408 /* 5.2GHz channels start after the 2.4GHz channels */
3409 sband = &il->bands[IEEE80211_BAND_5GHZ];
3410 sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3411 /* just OFDM */
3412 sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3413 sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3414
3415 if (il->cfg->sku & IL_SKU_N)
3416 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_5GHZ);
3417
3418 sband = &il->bands[IEEE80211_BAND_2GHZ];
3419 sband->channels = channels;
3420 /* OFDM & CCK */
3421 sband->bitrates = rates;
3422 sband->n_bitrates = RATE_COUNT_LEGACY;
3423
3424 if (il->cfg->sku & IL_SKU_N)
3425 il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_2GHZ);
3426
3427 il->ieee_channels = channels;
3428 il->ieee_rates = rates;
3429
3430 for (i = 0; i < il->channel_count; i++) {
3431 ch = &il->channel_info[i];
3432
3433 if (!il_is_channel_valid(ch))
3434 continue;
3435
3436 sband = &il->bands[ch->band];
3437
3438 geo_ch = &sband->channels[sband->n_channels++];
3439
3440 geo_ch->center_freq =
3441 ieee80211_channel_to_frequency(ch->channel, ch->band);
3442 geo_ch->max_power = ch->max_power_avg;
3443 geo_ch->max_antenna_gain = 0xff;
3444 geo_ch->hw_value = ch->channel;
3445
3446 if (il_is_channel_valid(ch)) {
3447 if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3448 geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
3449
3450 if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3451 geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
3452
3453 if (ch->flags & EEPROM_CHANNEL_RADAR)
3454 geo_ch->flags |= IEEE80211_CHAN_RADAR;
3455
3456 geo_ch->flags |= ch->ht40_extension_channel;
3457
3458 if (ch->max_power_avg > max_tx_power)
3459 max_tx_power = ch->max_power_avg;
3460 } else {
3461 geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3462 }
3463
3464 D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3465 geo_ch->center_freq,
3466 il_is_channel_a_band(ch) ? "5.2" : "2.4",
3467 geo_ch->
3468 flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3469 geo_ch->flags);
3470 }
3471
3472 il->tx_power_device_lmt = max_tx_power;
3473 il->tx_power_user_lmt = max_tx_power;
3474 il->tx_power_next = max_tx_power;
3475
3476 if (il->bands[IEEE80211_BAND_5GHZ].n_channels == 0 &&
3477 (il->cfg->sku & IL_SKU_A)) {
3478 IL_INFO("Incorrectly detected BG card as ABG. "
3479 "Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3480 il->pci_dev->device, il->pci_dev->subsystem_device);
3481 il->cfg->sku &= ~IL_SKU_A;
3482 }
3483
3484 IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3485 il->bands[IEEE80211_BAND_2GHZ].n_channels,
3486 il->bands[IEEE80211_BAND_5GHZ].n_channels);
3487
3488 set_bit(S_GEO_CONFIGURED, &il->status);
3489
3490 return 0;
3491 }
3492 EXPORT_SYMBOL(il_init_geos);
3493
3494 /*
3495 * il_free_geos - undo allocations in il_init_geos
3496 */
3497 void
3498 il_free_geos(struct il_priv *il)
3499 {
3500 kfree(il->ieee_channels);
3501 kfree(il->ieee_rates);
3502 clear_bit(S_GEO_CONFIGURED, &il->status);
3503 }
3504 EXPORT_SYMBOL(il_free_geos);
3505
3506 static bool
3507 il_is_channel_extension(struct il_priv *il, enum ieee80211_band band,
3508 u16 channel, u8 extension_chan_offset)
3509 {
3510 const struct il_channel_info *ch_info;
3511
3512 ch_info = il_get_channel_info(il, band, channel);
3513 if (!il_is_channel_valid(ch_info))
3514 return false;
3515
3516 if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3517 return !(ch_info->
3518 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3519 else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3520 return !(ch_info->
3521 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3522
3523 return false;
3524 }
3525
3526 bool
3527 il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap)
3528 {
3529 if (!il->ht.enabled || !il->ht.is_40mhz)
3530 return false;
3531
3532 /*
3533 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3534 * the bit will not set if it is pure 40MHz case
3535 */
3536 if (ht_cap && !ht_cap->ht_supported)
3537 return false;
3538
3539 #ifdef CONFIG_IWLEGACY_DEBUGFS
3540 if (il->disable_ht40)
3541 return false;
3542 #endif
3543
3544 return il_is_channel_extension(il, il->band,
3545 le16_to_cpu(il->staging.channel),
3546 il->ht.extension_chan_offset);
3547 }
3548 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3549
3550 static u16
3551 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3552 {
3553 u16 new_val;
3554 u16 beacon_factor;
3555
3556 /*
3557 * If mac80211 hasn't given us a beacon interval, program
3558 * the default into the device.
3559 */
3560 if (!beacon_val)
3561 return DEFAULT_BEACON_INTERVAL;
3562
3563 /*
3564 * If the beacon interval we obtained from the peer
3565 * is too large, we'll have to wake up more often
3566 * (and in IBSS case, we'll beacon too much)
3567 *
3568 * For example, if max_beacon_val is 4096, and the
3569 * requested beacon interval is 7000, we'll have to
3570 * use 3500 to be able to wake up on the beacons.
3571 *
3572 * This could badly influence beacon detection stats.
3573 */
3574
3575 beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3576 new_val = beacon_val / beacon_factor;
3577
3578 if (!new_val)
3579 new_val = max_beacon_val;
3580
3581 return new_val;
3582 }
3583
3584 int
3585 il_send_rxon_timing(struct il_priv *il)
3586 {
3587 u64 tsf;
3588 s32 interval_tm, rem;
3589 struct ieee80211_conf *conf = NULL;
3590 u16 beacon_int;
3591 struct ieee80211_vif *vif = il->vif;
3592
3593 conf = &il->hw->conf;
3594
3595 lockdep_assert_held(&il->mutex);
3596
3597 memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd));
3598
3599 il->timing.timestamp = cpu_to_le64(il->timestamp);
3600 il->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3601
3602 beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3603
3604 /*
3605 * TODO: For IBSS we need to get atim_win from mac80211,
3606 * for now just always use 0
3607 */
3608 il->timing.atim_win = 0;
3609
3610 beacon_int =
3611 il_adjust_beacon_interval(beacon_int,
3612 il->hw_params.max_beacon_itrvl *
3613 TIME_UNIT);
3614 il->timing.beacon_interval = cpu_to_le16(beacon_int);
3615
3616 tsf = il->timestamp; /* tsf is modifed by do_div: copy it */
3617 interval_tm = beacon_int * TIME_UNIT;
3618 rem = do_div(tsf, interval_tm);
3619 il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3620
3621 il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3622
3623 D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3624 le16_to_cpu(il->timing.beacon_interval),
3625 le32_to_cpu(il->timing.beacon_init_val),
3626 le16_to_cpu(il->timing.atim_win));
3627
3628 return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing),
3629 &il->timing);
3630 }
3631 EXPORT_SYMBOL(il_send_rxon_timing);
3632
3633 void
3634 il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt)
3635 {
3636 struct il_rxon_cmd *rxon = &il->staging;
3637
3638 if (hw_decrypt)
3639 rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3640 else
3641 rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3642
3643 }
3644 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3645
3646 /* validate RXON structure is valid */
3647 int
3648 il_check_rxon_cmd(struct il_priv *il)
3649 {
3650 struct il_rxon_cmd *rxon = &il->staging;
3651 bool error = false;
3652
3653 if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3654 if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3655 IL_WARN("check 2.4G: wrong narrow\n");
3656 error = true;
3657 }
3658 if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3659 IL_WARN("check 2.4G: wrong radar\n");
3660 error = true;
3661 }
3662 } else {
3663 if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3664 IL_WARN("check 5.2G: not short slot!\n");
3665 error = true;
3666 }
3667 if (rxon->flags & RXON_FLG_CCK_MSK) {
3668 IL_WARN("check 5.2G: CCK!\n");
3669 error = true;
3670 }
3671 }
3672 if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3673 IL_WARN("mac/bssid mcast!\n");
3674 error = true;
3675 }
3676
3677 /* make sure basic rates 6Mbps and 1Mbps are supported */
3678 if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3679 (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3680 IL_WARN("neither 1 nor 6 are basic\n");
3681 error = true;
3682 }
3683
3684 if (le16_to_cpu(rxon->assoc_id) > 2007) {
3685 IL_WARN("aid > 2007\n");
3686 error = true;
3687 }
3688
3689 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3690 (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3691 IL_WARN("CCK and short slot\n");
3692 error = true;
3693 }
3694
3695 if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3696 (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3697 IL_WARN("CCK and auto detect");
3698 error = true;
3699 }
3700
3701 if ((rxon->
3702 flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3703 RXON_FLG_TGG_PROTECT_MSK) {
3704 IL_WARN("TGg but no auto-detect\n");
3705 error = true;
3706 }
3707
3708 if (error)
3709 IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3710
3711 if (error) {
3712 IL_ERR("Invalid RXON\n");
3713 return -EINVAL;
3714 }
3715 return 0;
3716 }
3717 EXPORT_SYMBOL(il_check_rxon_cmd);
3718
3719 /**
3720 * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3721 * @il: staging_rxon is compared to active_rxon
3722 *
3723 * If the RXON structure is changing enough to require a new tune,
3724 * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3725 * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3726 */
3727 int
3728 il_full_rxon_required(struct il_priv *il)
3729 {
3730 const struct il_rxon_cmd *staging = &il->staging;
3731 const struct il_rxon_cmd *active = &il->active;
3732
3733 #define CHK(cond) \
3734 if ((cond)) { \
3735 D_INFO("need full RXON - " #cond "\n"); \
3736 return 1; \
3737 }
3738
3739 #define CHK_NEQ(c1, c2) \
3740 if ((c1) != (c2)) { \
3741 D_INFO("need full RXON - " \
3742 #c1 " != " #c2 " - %d != %d\n", \
3743 (c1), (c2)); \
3744 return 1; \
3745 }
3746
3747 /* These items are only settable from the full RXON command */
3748 CHK(!il_is_associated(il));
3749 CHK(!ether_addr_equal(staging->bssid_addr, active->bssid_addr));
3750 CHK(!ether_addr_equal(staging->node_addr, active->node_addr));
3751 CHK(!ether_addr_equal(staging->wlap_bssid_addr,
3752 active->wlap_bssid_addr));
3753 CHK_NEQ(staging->dev_type, active->dev_type);
3754 CHK_NEQ(staging->channel, active->channel);
3755 CHK_NEQ(staging->air_propagation, active->air_propagation);
3756 CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3757 active->ofdm_ht_single_stream_basic_rates);
3758 CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3759 active->ofdm_ht_dual_stream_basic_rates);
3760 CHK_NEQ(staging->assoc_id, active->assoc_id);
3761
3762 /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3763 * be updated with the RXON_ASSOC command -- however only some
3764 * flag transitions are allowed using RXON_ASSOC */
3765
3766 /* Check if we are not switching bands */
3767 CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3768 active->flags & RXON_FLG_BAND_24G_MSK);
3769
3770 /* Check if we are switching association toggle */
3771 CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3772 active->filter_flags & RXON_FILTER_ASSOC_MSK);
3773
3774 #undef CHK
3775 #undef CHK_NEQ
3776
3777 return 0;
3778 }
3779 EXPORT_SYMBOL(il_full_rxon_required);
3780
3781 u8
3782 il_get_lowest_plcp(struct il_priv *il)
3783 {
3784 /*
3785 * Assign the lowest rate -- should really get this from
3786 * the beacon skb from mac80211.
3787 */
3788 if (il->staging.flags & RXON_FLG_BAND_24G_MSK)
3789 return RATE_1M_PLCP;
3790 else
3791 return RATE_6M_PLCP;
3792 }
3793 EXPORT_SYMBOL(il_get_lowest_plcp);
3794
3795 static void
3796 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3797 {
3798 struct il_rxon_cmd *rxon = &il->staging;
3799
3800 if (!il->ht.enabled) {
3801 rxon->flags &=
3802 ~(RXON_FLG_CHANNEL_MODE_MSK |
3803 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3804 | RXON_FLG_HT_PROT_MSK);
3805 return;
3806 }
3807
3808 rxon->flags |=
3809 cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3810
3811 /* Set up channel bandwidth:
3812 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3813 /* clear the HT channel mode before set the mode */
3814 rxon->flags &=
3815 ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3816 if (il_is_ht40_tx_allowed(il, NULL)) {
3817 /* pure ht40 */
3818 if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3819 rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3820 /* Note: control channel is opposite of extension channel */
3821 switch (il->ht.extension_chan_offset) {
3822 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3823 rxon->flags &=
3824 ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3825 break;
3826 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3827 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3828 break;
3829 }
3830 } else {
3831 /* Note: control channel is opposite of extension channel */
3832 switch (il->ht.extension_chan_offset) {
3833 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3834 rxon->flags &=
3835 ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3836 rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3837 break;
3838 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3839 rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3840 rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3841 break;
3842 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3843 default:
3844 /* channel location only valid if in Mixed mode */
3845 IL_ERR("invalid extension channel offset\n");
3846 break;
3847 }
3848 }
3849 } else {
3850 rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
3851 }
3852
3853 if (il->ops->set_rxon_chain)
3854 il->ops->set_rxon_chain(il);
3855
3856 D_ASSOC("rxon flags 0x%X operation mode :0x%X "
3857 "extension channel offset 0x%x\n", le32_to_cpu(rxon->flags),
3858 il->ht.protection, il->ht.extension_chan_offset);
3859 }
3860
3861 void
3862 il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3863 {
3864 _il_set_rxon_ht(il, ht_conf);
3865 }
3866 EXPORT_SYMBOL(il_set_rxon_ht);
3867
3868 /* Return valid, unused, channel for a passive scan to reset the RF */
3869 u8
3870 il_get_single_channel_number(struct il_priv *il, enum ieee80211_band band)
3871 {
3872 const struct il_channel_info *ch_info;
3873 int i;
3874 u8 channel = 0;
3875 u8 min, max;
3876
3877 if (band == IEEE80211_BAND_5GHZ) {
3878 min = 14;
3879 max = il->channel_count;
3880 } else {
3881 min = 0;
3882 max = 14;
3883 }
3884
3885 for (i = min; i < max; i++) {
3886 channel = il->channel_info[i].channel;
3887 if (channel == le16_to_cpu(il->staging.channel))
3888 continue;
3889
3890 ch_info = il_get_channel_info(il, band, channel);
3891 if (il_is_channel_valid(ch_info))
3892 break;
3893 }
3894
3895 return channel;
3896 }
3897 EXPORT_SYMBOL(il_get_single_channel_number);
3898
3899 /**
3900 * il_set_rxon_channel - Set the band and channel values in staging RXON
3901 * @ch: requested channel as a pointer to struct ieee80211_channel
3902
3903 * NOTE: Does not commit to the hardware; it sets appropriate bit fields
3904 * in the staging RXON flag structure based on the ch->band
3905 */
3906 int
3907 il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch)
3908 {
3909 enum ieee80211_band band = ch->band;
3910 u16 channel = ch->hw_value;
3911
3912 if (le16_to_cpu(il->staging.channel) == channel && il->band == band)
3913 return 0;
3914
3915 il->staging.channel = cpu_to_le16(channel);
3916 if (band == IEEE80211_BAND_5GHZ)
3917 il->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
3918 else
3919 il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3920
3921 il->band = band;
3922
3923 D_INFO("Staging channel set to %d [%d]\n", channel, band);
3924
3925 return 0;
3926 }
3927 EXPORT_SYMBOL(il_set_rxon_channel);
3928
3929 void
3930 il_set_flags_for_band(struct il_priv *il, enum ieee80211_band band,
3931 struct ieee80211_vif *vif)
3932 {
3933 if (band == IEEE80211_BAND_5GHZ) {
3934 il->staging.flags &=
3935 ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK |
3936 RXON_FLG_CCK_MSK);
3937 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3938 } else {
3939 /* Copied from il_post_associate() */
3940 if (vif && vif->bss_conf.use_short_slot)
3941 il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3942 else
3943 il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
3944
3945 il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3946 il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
3947 il->staging.flags &= ~RXON_FLG_CCK_MSK;
3948 }
3949 }
3950 EXPORT_SYMBOL(il_set_flags_for_band);
3951
3952 /*
3953 * initialize rxon structure with default values from eeprom
3954 */
3955 void
3956 il_connection_init_rx_config(struct il_priv *il)
3957 {
3958 const struct il_channel_info *ch_info;
3959
3960 memset(&il->staging, 0, sizeof(il->staging));
3961
3962 switch (il->iw_mode) {
3963 case NL80211_IFTYPE_UNSPECIFIED:
3964 il->staging.dev_type = RXON_DEV_TYPE_ESS;
3965 break;
3966 case NL80211_IFTYPE_STATION:
3967 il->staging.dev_type = RXON_DEV_TYPE_ESS;
3968 il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
3969 break;
3970 case NL80211_IFTYPE_ADHOC:
3971 il->staging.dev_type = RXON_DEV_TYPE_IBSS;
3972 il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
3973 il->staging.filter_flags =
3974 RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK;
3975 break;
3976 default:
3977 IL_ERR("Unsupported interface type %d\n", il->vif->type);
3978 return;
3979 }
3980
3981 #if 0
3982 /* TODO: Figure out when short_preamble would be set and cache from
3983 * that */
3984 if (!hw_to_local(il->hw)->short_preamble)
3985 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
3986 else
3987 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
3988 #endif
3989
3990 ch_info =
3991 il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel));
3992
3993 if (!ch_info)
3994 ch_info = &il->channel_info[0];
3995
3996 il->staging.channel = cpu_to_le16(ch_info->channel);
3997 il->band = ch_info->band;
3998
3999 il_set_flags_for_band(il, il->band, il->vif);
4000
4001 il->staging.ofdm_basic_rates =
4002 (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4003 il->staging.cck_basic_rates =
4004 (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4005
4006 /* clear both MIX and PURE40 mode flag */
4007 il->staging.flags &=
4008 ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40);
4009 if (il->vif)
4010 memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN);
4011
4012 il->staging.ofdm_ht_single_stream_basic_rates = 0xff;
4013 il->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
4014 }
4015 EXPORT_SYMBOL(il_connection_init_rx_config);
4016
4017 void
4018 il_set_rate(struct il_priv *il)
4019 {
4020 const struct ieee80211_supported_band *hw = NULL;
4021 struct ieee80211_rate *rate;
4022 int i;
4023
4024 hw = il_get_hw_mode(il, il->band);
4025 if (!hw) {
4026 IL_ERR("Failed to set rate: unable to get hw mode\n");
4027 return;
4028 }
4029
4030 il->active_rate = 0;
4031
4032 for (i = 0; i < hw->n_bitrates; i++) {
4033 rate = &(hw->bitrates[i]);
4034 if (rate->hw_value < RATE_COUNT_LEGACY)
4035 il->active_rate |= (1 << rate->hw_value);
4036 }
4037
4038 D_RATE("Set active_rate = %0x\n", il->active_rate);
4039
4040 il->staging.cck_basic_rates =
4041 (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4042
4043 il->staging.ofdm_basic_rates =
4044 (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4045 }
4046 EXPORT_SYMBOL(il_set_rate);
4047
4048 void
4049 il_chswitch_done(struct il_priv *il, bool is_success)
4050 {
4051 if (test_bit(S_EXIT_PENDING, &il->status))
4052 return;
4053
4054 if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4055 ieee80211_chswitch_done(il->vif, is_success);
4056 }
4057 EXPORT_SYMBOL(il_chswitch_done);
4058
4059 void
4060 il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
4061 {
4062 struct il_rx_pkt *pkt = rxb_addr(rxb);
4063 struct il_csa_notification *csa = &(pkt->u.csa_notif);
4064 struct il_rxon_cmd *rxon = (void *)&il->active;
4065
4066 if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4067 return;
4068
4069 if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
4070 rxon->channel = csa->channel;
4071 il->staging.channel = csa->channel;
4072 D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel));
4073 il_chswitch_done(il, true);
4074 } else {
4075 IL_ERR("CSA notif (fail) : channel %d\n",
4076 le16_to_cpu(csa->channel));
4077 il_chswitch_done(il, false);
4078 }
4079 }
4080 EXPORT_SYMBOL(il_hdl_csa);
4081
4082 #ifdef CONFIG_IWLEGACY_DEBUG
4083 void
4084 il_print_rx_config_cmd(struct il_priv *il)
4085 {
4086 struct il_rxon_cmd *rxon = &il->staging;
4087
4088 D_RADIO("RX CONFIG:\n");
4089 il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
4090 D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
4091 D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
4092 D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags));
4093 D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
4094 D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates);
4095 D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
4096 D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
4097 D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
4098 D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
4099 }
4100 EXPORT_SYMBOL(il_print_rx_config_cmd);
4101 #endif
4102 /**
4103 * il_irq_handle_error - called for HW or SW error interrupt from card
4104 */
4105 void
4106 il_irq_handle_error(struct il_priv *il)
4107 {
4108 /* Set the FW error flag -- cleared on il_down */
4109 set_bit(S_FW_ERROR, &il->status);
4110
4111 /* Cancel currently queued command. */
4112 clear_bit(S_HCMD_ACTIVE, &il->status);
4113
4114 IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version);
4115
4116 il->ops->dump_nic_error_log(il);
4117 if (il->ops->dump_fh)
4118 il->ops->dump_fh(il, NULL, false);
4119 #ifdef CONFIG_IWLEGACY_DEBUG
4120 if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
4121 il_print_rx_config_cmd(il);
4122 #endif
4123
4124 wake_up(&il->wait_command_queue);
4125
4126 /* Keep the restart process from trying to send host
4127 * commands by clearing the INIT status bit */
4128 clear_bit(S_READY, &il->status);
4129
4130 if (!test_bit(S_EXIT_PENDING, &il->status)) {
4131 IL_DBG(IL_DL_FW_ERRORS,
4132 "Restarting adapter due to uCode error.\n");
4133
4134 if (il->cfg->mod_params->restart_fw)
4135 queue_work(il->workqueue, &il->restart);
4136 }
4137 }
4138 EXPORT_SYMBOL(il_irq_handle_error);
4139
4140 static int
4141 _il_apm_stop_master(struct il_priv *il)
4142 {
4143 int ret = 0;
4144
4145 /* stop device's busmaster DMA activity */
4146 _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
4147
4148 ret =
4149 _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
4150 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
4151 if (ret < 0)
4152 IL_WARN("Master Disable Timed Out, 100 usec\n");
4153
4154 D_INFO("stop master\n");
4155
4156 return ret;
4157 }
4158
4159 void
4160 _il_apm_stop(struct il_priv *il)
4161 {
4162 lockdep_assert_held(&il->reg_lock);
4163
4164 D_INFO("Stop card, put in low power state\n");
4165
4166 /* Stop device's DMA activity */
4167 _il_apm_stop_master(il);
4168
4169 /* Reset the entire device */
4170 _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
4171
4172 udelay(10);
4173
4174 /*
4175 * Clear "initialization complete" bit to move adapter from
4176 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
4177 */
4178 _il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4179 }
4180 EXPORT_SYMBOL(_il_apm_stop);
4181
4182 void
4183 il_apm_stop(struct il_priv *il)
4184 {
4185 unsigned long flags;
4186
4187 spin_lock_irqsave(&il->reg_lock, flags);
4188 _il_apm_stop(il);
4189 spin_unlock_irqrestore(&il->reg_lock, flags);
4190 }
4191 EXPORT_SYMBOL(il_apm_stop);
4192
4193 /*
4194 * Start up NIC's basic functionality after it has been reset
4195 * (e.g. after platform boot, or shutdown via il_apm_stop())
4196 * NOTE: This does not load uCode nor start the embedded processor
4197 */
4198 int
4199 il_apm_init(struct il_priv *il)
4200 {
4201 int ret = 0;
4202 u16 lctl;
4203
4204 D_INFO("Init card's basic functions\n");
4205
4206 /*
4207 * Use "set_bit" below rather than "write", to preserve any hardware
4208 * bits already set by default after reset.
4209 */
4210
4211 /* Disable L0S exit timer (platform NMI Work/Around) */
4212 il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4213 CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
4214
4215 /*
4216 * Disable L0s without affecting L1;
4217 * don't wait for ICH L0s (ICH bug W/A)
4218 */
4219 il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4220 CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
4221
4222 /* Set FH wait threshold to maximum (HW error during stress W/A) */
4223 il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
4224
4225 /*
4226 * Enable HAP INTA (interrupt from management bus) to
4227 * wake device's PCI Express link L1a -> L0s
4228 * NOTE: This is no-op for 3945 (non-existent bit)
4229 */
4230 il_set_bit(il, CSR_HW_IF_CONFIG_REG,
4231 CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
4232
4233 /*
4234 * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
4235 * Check if BIOS (or OS) enabled L1-ASPM on this device.
4236 * If so (likely), disable L0S, so device moves directly L0->L1;
4237 * costs negligible amount of power savings.
4238 * If not (unlikely), enable L0S, so there is at least some
4239 * power savings, even without L1.
4240 */
4241 if (il->cfg->set_l0s) {
4242 pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
4243 if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
4244 /* L1-ASPM enabled; disable(!) L0S */
4245 il_set_bit(il, CSR_GIO_REG,
4246 CSR_GIO_REG_VAL_L0S_ENABLED);
4247 D_POWER("L1 Enabled; Disabling L0S\n");
4248 } else {
4249 /* L1-ASPM disabled; enable(!) L0S */
4250 il_clear_bit(il, CSR_GIO_REG,
4251 CSR_GIO_REG_VAL_L0S_ENABLED);
4252 D_POWER("L1 Disabled; Enabling L0S\n");
4253 }
4254 }
4255
4256 /* Configure analog phase-lock-loop before activating to D0A */
4257 if (il->cfg->pll_cfg_val)
4258 il_set_bit(il, CSR_ANA_PLL_CFG,
4259 il->cfg->pll_cfg_val);
4260
4261 /*
4262 * Set "initialization complete" bit to move adapter from
4263 * D0U* --> D0A* (powered-up active) state.
4264 */
4265 il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4266
4267 /*
4268 * Wait for clock stabilization; once stabilized, access to
4269 * device-internal resources is supported, e.g. il_wr_prph()
4270 * and accesses to uCode SRAM.
4271 */
4272 ret =
4273 _il_poll_bit(il, CSR_GP_CNTRL,
4274 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
4275 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
4276 if (ret < 0) {
4277 D_INFO("Failed to init the card\n");
4278 goto out;
4279 }
4280
4281 /*
4282 * Enable DMA and BSM (if used) clocks, wait for them to stabilize.
4283 * BSM (Boostrap State Machine) is only in 3945 and 4965.
4284 *
4285 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
4286 * do not disable clocks. This preserves any hardware bits already
4287 * set by default in "CLK_CTRL_REG" after reset.
4288 */
4289 if (il->cfg->use_bsm)
4290 il_wr_prph(il, APMG_CLK_EN_REG,
4291 APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
4292 else
4293 il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
4294 udelay(20);
4295
4296 /* Disable L1-Active */
4297 il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
4298 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
4299
4300 out:
4301 return ret;
4302 }
4303 EXPORT_SYMBOL(il_apm_init);
4304
4305 int
4306 il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
4307 {
4308 int ret;
4309 s8 prev_tx_power;
4310 bool defer;
4311
4312 lockdep_assert_held(&il->mutex);
4313
4314 if (il->tx_power_user_lmt == tx_power && !force)
4315 return 0;
4316
4317 if (!il->ops->send_tx_power)
4318 return -EOPNOTSUPP;
4319
4320 /* 0 dBm mean 1 milliwatt */
4321 if (tx_power < 0) {
4322 IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power);
4323 return -EINVAL;
4324 }
4325
4326 if (tx_power > il->tx_power_device_lmt) {
4327 IL_WARN("Requested user TXPOWER %d above upper limit %d.\n",
4328 tx_power, il->tx_power_device_lmt);
4329 return -EINVAL;
4330 }
4331
4332 if (!il_is_ready_rf(il))
4333 return -EIO;
4334
4335 /* scan complete and commit_rxon use tx_power_next value,
4336 * it always need to be updated for newest request */
4337 il->tx_power_next = tx_power;
4338
4339 /* do not set tx power when scanning or channel changing */
4340 defer = test_bit(S_SCANNING, &il->status) ||
4341 memcmp(&il->active, &il->staging, sizeof(il->staging));
4342 if (defer && !force) {
4343 D_INFO("Deferring tx power set\n");
4344 return 0;
4345 }
4346
4347 prev_tx_power = il->tx_power_user_lmt;
4348 il->tx_power_user_lmt = tx_power;
4349
4350 ret = il->ops->send_tx_power(il);
4351
4352 /* if fail to set tx_power, restore the orig. tx power */
4353 if (ret) {
4354 il->tx_power_user_lmt = prev_tx_power;
4355 il->tx_power_next = prev_tx_power;
4356 }
4357 return ret;
4358 }
4359 EXPORT_SYMBOL(il_set_tx_power);
4360
4361 void
4362 il_send_bt_config(struct il_priv *il)
4363 {
4364 struct il_bt_cmd bt_cmd = {
4365 .lead_time = BT_LEAD_TIME_DEF,
4366 .max_kill = BT_MAX_KILL_DEF,
4367 .kill_ack_mask = 0,
4368 .kill_cts_mask = 0,
4369 };
4370
4371 if (!bt_coex_active)
4372 bt_cmd.flags = BT_COEX_DISABLE;
4373 else
4374 bt_cmd.flags = BT_COEX_ENABLE;
4375
4376 D_INFO("BT coex %s\n",
4377 (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
4378
4379 if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd))
4380 IL_ERR("failed to send BT Coex Config\n");
4381 }
4382 EXPORT_SYMBOL(il_send_bt_config);
4383
4384 int
4385 il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
4386 {
4387 struct il_stats_cmd stats_cmd = {
4388 .configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0,
4389 };
4390
4391 if (flags & CMD_ASYNC)
4392 return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd),
4393 &stats_cmd, NULL);
4394 else
4395 return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd),
4396 &stats_cmd);
4397 }
4398 EXPORT_SYMBOL(il_send_stats_request);
4399
4400 void
4401 il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb)
4402 {
4403 #ifdef CONFIG_IWLEGACY_DEBUG
4404 struct il_rx_pkt *pkt = rxb_addr(rxb);
4405 struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
4406 D_RX("sleep mode: %d, src: %d\n",
4407 sleep->pm_sleep_mode, sleep->pm_wakeup_src);
4408 #endif
4409 }
4410 EXPORT_SYMBOL(il_hdl_pm_sleep);
4411
4412 void
4413 il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb)
4414 {
4415 struct il_rx_pkt *pkt = rxb_addr(rxb);
4416 u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
4417 D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len,
4418 il_get_cmd_string(pkt->hdr.cmd));
4419 il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
4420 }
4421 EXPORT_SYMBOL(il_hdl_pm_debug_stats);
4422
4423 void
4424 il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb)
4425 {
4426 struct il_rx_pkt *pkt = rxb_addr(rxb);
4427
4428 IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
4429 "seq 0x%04X ser 0x%08X\n",
4430 le32_to_cpu(pkt->u.err_resp.error_type),
4431 il_get_cmd_string(pkt->u.err_resp.cmd_id),
4432 pkt->u.err_resp.cmd_id,
4433 le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
4434 le32_to_cpu(pkt->u.err_resp.error_info));
4435 }
4436 EXPORT_SYMBOL(il_hdl_error);
4437
4438 void
4439 il_clear_isr_stats(struct il_priv *il)
4440 {
4441 memset(&il->isr_stats, 0, sizeof(il->isr_stats));
4442 }
4443
4444 int
4445 il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
4446 const struct ieee80211_tx_queue_params *params)
4447 {
4448 struct il_priv *il = hw->priv;
4449 unsigned long flags;
4450 int q;
4451
4452 D_MAC80211("enter\n");
4453
4454 if (!il_is_ready_rf(il)) {
4455 D_MAC80211("leave - RF not ready\n");
4456 return -EIO;
4457 }
4458
4459 if (queue >= AC_NUM) {
4460 D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
4461 return 0;
4462 }
4463
4464 q = AC_NUM - 1 - queue;
4465
4466 spin_lock_irqsave(&il->lock, flags);
4467
4468 il->qos_data.def_qos_parm.ac[q].cw_min =
4469 cpu_to_le16(params->cw_min);
4470 il->qos_data.def_qos_parm.ac[q].cw_max =
4471 cpu_to_le16(params->cw_max);
4472 il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
4473 il->qos_data.def_qos_parm.ac[q].edca_txop =
4474 cpu_to_le16((params->txop * 32));
4475
4476 il->qos_data.def_qos_parm.ac[q].reserved1 = 0;
4477
4478 spin_unlock_irqrestore(&il->lock, flags);
4479
4480 D_MAC80211("leave\n");
4481 return 0;
4482 }
4483 EXPORT_SYMBOL(il_mac_conf_tx);
4484
4485 int
4486 il_mac_tx_last_beacon(struct ieee80211_hw *hw)
4487 {
4488 struct il_priv *il = hw->priv;
4489 int ret;
4490
4491 D_MAC80211("enter\n");
4492
4493 ret = (il->ibss_manager == IL_IBSS_MANAGER);
4494
4495 D_MAC80211("leave ret %d\n", ret);
4496 return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
4499
4500 static int
4501 il_set_mode(struct il_priv *il)
4502 {
4503 il_connection_init_rx_config(il);
4504
4505 if (il->ops->set_rxon_chain)
4506 il->ops->set_rxon_chain(il);
4507
4508 return il_commit_rxon(il);
4509 }
4510
4511 int
4512 il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4513 {
4514 struct il_priv *il = hw->priv;
4515 int err;
4516 bool reset;
4517
4518 mutex_lock(&il->mutex);
4519 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4520
4521 if (!il_is_ready_rf(il)) {
4522 IL_WARN("Try to add interface when device not ready\n");
4523 err = -EINVAL;
4524 goto out;
4525 }
4526
4527 /*
4528 * We do not support multiple virtual interfaces, but on hardware reset
4529 * we have to add the same interface again.
4530 */
4531 reset = (il->vif == vif);
4532 if (il->vif && !reset) {
4533 err = -EOPNOTSUPP;
4534 goto out;
4535 }
4536
4537 il->vif = vif;
4538 il->iw_mode = vif->type;
4539
4540 err = il_set_mode(il);
4541 if (err) {
4542 IL_WARN("Fail to set mode %d\n", vif->type);
4543 if (!reset) {
4544 il->vif = NULL;
4545 il->iw_mode = NL80211_IFTYPE_STATION;
4546 }
4547 }
4548
4549 out:
4550 D_MAC80211("leave err %d\n", err);
4551 mutex_unlock(&il->mutex);
4552
4553 return err;
4554 }
4555 EXPORT_SYMBOL(il_mac_add_interface);
4556
4557 static void
4558 il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif)
4559 {
4560 lockdep_assert_held(&il->mutex);
4561
4562 if (il->scan_vif == vif) {
4563 il_scan_cancel_timeout(il, 200);
4564 il_force_scan_end(il);
4565 }
4566
4567 il_set_mode(il);
4568 }
4569
4570 void
4571 il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4572 {
4573 struct il_priv *il = hw->priv;
4574
4575 mutex_lock(&il->mutex);
4576 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4577
4578 WARN_ON(il->vif != vif);
4579 il->vif = NULL;
4580 il->iw_mode = NL80211_IFTYPE_UNSPECIFIED;
4581 il_teardown_interface(il, vif);
4582 memset(il->bssid, 0, ETH_ALEN);
4583
4584 D_MAC80211("leave\n");
4585 mutex_unlock(&il->mutex);
4586 }
4587 EXPORT_SYMBOL(il_mac_remove_interface);
4588
4589 int
4590 il_alloc_txq_mem(struct il_priv *il)
4591 {
4592 if (!il->txq)
4593 il->txq =
4594 kzalloc(sizeof(struct il_tx_queue) *
4595 il->cfg->num_of_queues, GFP_KERNEL);
4596 if (!il->txq) {
4597 IL_ERR("Not enough memory for txq\n");
4598 return -ENOMEM;
4599 }
4600 return 0;
4601 }
4602 EXPORT_SYMBOL(il_alloc_txq_mem);
4603
4604 void
4605 il_free_txq_mem(struct il_priv *il)
4606 {
4607 kfree(il->txq);
4608 il->txq = NULL;
4609 }
4610 EXPORT_SYMBOL(il_free_txq_mem);
4611
4612 int
4613 il_force_reset(struct il_priv *il, bool external)
4614 {
4615 struct il_force_reset *force_reset;
4616
4617 if (test_bit(S_EXIT_PENDING, &il->status))
4618 return -EINVAL;
4619
4620 force_reset = &il->force_reset;
4621 force_reset->reset_request_count++;
4622 if (!external) {
4623 if (force_reset->last_force_reset_jiffies &&
4624 time_after(force_reset->last_force_reset_jiffies +
4625 force_reset->reset_duration, jiffies)) {
4626 D_INFO("force reset rejected\n");
4627 force_reset->reset_reject_count++;
4628 return -EAGAIN;
4629 }
4630 }
4631 force_reset->reset_success_count++;
4632 force_reset->last_force_reset_jiffies = jiffies;
4633
4634 /*
4635 * if the request is from external(ex: debugfs),
4636 * then always perform the request in regardless the module
4637 * parameter setting
4638 * if the request is from internal (uCode error or driver
4639 * detect failure), then fw_restart module parameter
4640 * need to be check before performing firmware reload
4641 */
4642
4643 if (!external && !il->cfg->mod_params->restart_fw) {
4644 D_INFO("Cancel firmware reload based on "
4645 "module parameter setting\n");
4646 return 0;
4647 }
4648
4649 IL_ERR("On demand firmware reload\n");
4650
4651 /* Set the FW error flag -- cleared on il_down */
4652 set_bit(S_FW_ERROR, &il->status);
4653 wake_up(&il->wait_command_queue);
4654 /*
4655 * Keep the restart process from trying to send host
4656 * commands by clearing the INIT status bit
4657 */
4658 clear_bit(S_READY, &il->status);
4659 queue_work(il->workqueue, &il->restart);
4660
4661 return 0;
4662 }
4663
4664 int
4665 il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4666 enum nl80211_iftype newtype, bool newp2p)
4667 {
4668 struct il_priv *il = hw->priv;
4669 int err;
4670
4671 mutex_lock(&il->mutex);
4672 D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n",
4673 vif->type, vif->addr, newtype, newp2p);
4674
4675 if (newp2p) {
4676 err = -EOPNOTSUPP;
4677 goto out;
4678 }
4679
4680 if (!il->vif || !il_is_ready_rf(il)) {
4681 /*
4682 * Huh? But wait ... this can maybe happen when
4683 * we're in the middle of a firmware restart!
4684 */
4685 err = -EBUSY;
4686 goto out;
4687 }
4688
4689 /* success */
4690 vif->type = newtype;
4691 vif->p2p = false;
4692 il->iw_mode = newtype;
4693 il_teardown_interface(il, vif);
4694 err = 0;
4695
4696 out:
4697 D_MAC80211("leave err %d\n", err);
4698 mutex_unlock(&il->mutex);
4699
4700 return err;
4701 }
4702 EXPORT_SYMBOL(il_mac_change_interface);
4703
4704 void il_mac_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
4705 {
4706 struct il_priv *il = hw->priv;
4707 unsigned long timeout = jiffies + msecs_to_jiffies(500);
4708 int i;
4709
4710 mutex_lock(&il->mutex);
4711 D_MAC80211("enter\n");
4712
4713 if (il->txq == NULL)
4714 goto out;
4715
4716 for (i = 0; i < il->hw_params.max_txq_num; i++) {
4717 struct il_queue *q;
4718
4719 if (i == il->cmd_queue)
4720 continue;
4721
4722 q = &il->txq[i].q;
4723 if (q->read_ptr == q->write_ptr)
4724 continue;
4725
4726 if (time_after(jiffies, timeout)) {
4727 IL_ERR("Failed to flush queue %d\n", q->id);
4728 break;
4729 }
4730
4731 msleep(20);
4732 }
4733 out:
4734 D_MAC80211("leave\n");
4735 mutex_unlock(&il->mutex);
4736 }
4737 EXPORT_SYMBOL(il_mac_flush);
4738
4739 /*
4740 * On every watchdog tick we check (latest) time stamp. If it does not
4741 * change during timeout period and queue is not empty we reset firmware.
4742 */
4743 static int
4744 il_check_stuck_queue(struct il_priv *il, int cnt)
4745 {
4746 struct il_tx_queue *txq = &il->txq[cnt];
4747 struct il_queue *q = &txq->q;
4748 unsigned long timeout;
4749 unsigned long now = jiffies;
4750 int ret;
4751
4752 if (q->read_ptr == q->write_ptr) {
4753 txq->time_stamp = now;
4754 return 0;
4755 }
4756
4757 timeout =
4758 txq->time_stamp +
4759 msecs_to_jiffies(il->cfg->wd_timeout);
4760
4761 if (time_after(now, timeout)) {
4762 IL_ERR("Queue %d stuck for %u ms.\n", q->id,
4763 jiffies_to_msecs(now - txq->time_stamp));
4764 ret = il_force_reset(il, false);
4765 return (ret == -EAGAIN) ? 0 : 1;
4766 }
4767
4768 return 0;
4769 }
4770
4771 /*
4772 * Making watchdog tick be a quarter of timeout assure we will
4773 * discover the queue hung between timeout and 1.25*timeout
4774 */
4775 #define IL_WD_TICK(timeout) ((timeout) / 4)
4776
4777 /*
4778 * Watchdog timer callback, we check each tx queue for stuck, if if hung
4779 * we reset the firmware. If everything is fine just rearm the timer.
4780 */
4781 void
4782 il_bg_watchdog(unsigned long data)
4783 {
4784 struct il_priv *il = (struct il_priv *)data;
4785 int cnt;
4786 unsigned long timeout;
4787
4788 if (test_bit(S_EXIT_PENDING, &il->status))
4789 return;
4790
4791 timeout = il->cfg->wd_timeout;
4792 if (timeout == 0)
4793 return;
4794
4795 /* monitor and check for stuck cmd queue */
4796 if (il_check_stuck_queue(il, il->cmd_queue))
4797 return;
4798
4799 /* monitor and check for other stuck queues */
4800 for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
4801 /* skip as we already checked the command queue */
4802 if (cnt == il->cmd_queue)
4803 continue;
4804 if (il_check_stuck_queue(il, cnt))
4805 return;
4806 }
4807
4808 mod_timer(&il->watchdog,
4809 jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4810 }
4811 EXPORT_SYMBOL(il_bg_watchdog);
4812
4813 void
4814 il_setup_watchdog(struct il_priv *il)
4815 {
4816 unsigned int timeout = il->cfg->wd_timeout;
4817
4818 if (timeout)
4819 mod_timer(&il->watchdog,
4820 jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4821 else
4822 del_timer(&il->watchdog);
4823 }
4824 EXPORT_SYMBOL(il_setup_watchdog);
4825
4826 /*
4827 * extended beacon time format
4828 * time in usec will be changed into a 32-bit value in extended:internal format
4829 * the extended part is the beacon counts
4830 * the internal part is the time in usec within one beacon interval
4831 */
4832 u32
4833 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval)
4834 {
4835 u32 quot;
4836 u32 rem;
4837 u32 interval = beacon_interval * TIME_UNIT;
4838
4839 if (!interval || !usec)
4840 return 0;
4841
4842 quot =
4843 (usec /
4844 interval) & (il_beacon_time_mask_high(il,
4845 il->hw_params.
4846 beacon_time_tsf_bits) >> il->
4847 hw_params.beacon_time_tsf_bits);
4848 rem =
4849 (usec % interval) & il_beacon_time_mask_low(il,
4850 il->hw_params.
4851 beacon_time_tsf_bits);
4852
4853 return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
4854 }
4855 EXPORT_SYMBOL(il_usecs_to_beacons);
4856
4857 /* base is usually what we get from ucode with each received frame,
4858 * the same as HW timer counter counting down
4859 */
4860 __le32
4861 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
4862 u32 beacon_interval)
4863 {
4864 u32 base_low = base & il_beacon_time_mask_low(il,
4865 il->hw_params.
4866 beacon_time_tsf_bits);
4867 u32 addon_low = addon & il_beacon_time_mask_low(il,
4868 il->hw_params.
4869 beacon_time_tsf_bits);
4870 u32 interval = beacon_interval * TIME_UNIT;
4871 u32 res = (base & il_beacon_time_mask_high(il,
4872 il->hw_params.
4873 beacon_time_tsf_bits)) +
4874 (addon & il_beacon_time_mask_high(il,
4875 il->hw_params.
4876 beacon_time_tsf_bits));
4877
4878 if (base_low > addon_low)
4879 res += base_low - addon_low;
4880 else if (base_low < addon_low) {
4881 res += interval + base_low - addon_low;
4882 res += (1 << il->hw_params.beacon_time_tsf_bits);
4883 } else
4884 res += (1 << il->hw_params.beacon_time_tsf_bits);
4885
4886 return cpu_to_le32(res);
4887 }
4888 EXPORT_SYMBOL(il_add_beacon_time);
4889
4890 #ifdef CONFIG_PM_SLEEP
4891
4892 static int
4893 il_pci_suspend(struct device *device)
4894 {
4895 struct pci_dev *pdev = to_pci_dev(device);
4896 struct il_priv *il = pci_get_drvdata(pdev);
4897
4898 /*
4899 * This function is called when system goes into suspend state
4900 * mac80211 will call il_mac_stop() from the mac80211 suspend function
4901 * first but since il_mac_stop() has no knowledge of who the caller is,
4902 * it will not call apm_ops.stop() to stop the DMA operation.
4903 * Calling apm_ops.stop here to make sure we stop the DMA.
4904 */
4905 il_apm_stop(il);
4906
4907 return 0;
4908 }
4909
4910 static int
4911 il_pci_resume(struct device *device)
4912 {
4913 struct pci_dev *pdev = to_pci_dev(device);
4914 struct il_priv *il = pci_get_drvdata(pdev);
4915 bool hw_rfkill = false;
4916
4917 /*
4918 * We disable the RETRY_TIMEOUT register (0x41) to keep
4919 * PCI Tx retries from interfering with C3 CPU state.
4920 */
4921 pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
4922
4923 il_enable_interrupts(il);
4924
4925 if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
4926 hw_rfkill = true;
4927
4928 if (hw_rfkill)
4929 set_bit(S_RFKILL, &il->status);
4930 else
4931 clear_bit(S_RFKILL, &il->status);
4932
4933 wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
4934
4935 return 0;
4936 }
4937
4938 SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume);
4939 EXPORT_SYMBOL(il_pm_ops);
4940
4941 #endif /* CONFIG_PM_SLEEP */
4942
4943 static void
4944 il_update_qos(struct il_priv *il)
4945 {
4946 if (test_bit(S_EXIT_PENDING, &il->status))
4947 return;
4948
4949 il->qos_data.def_qos_parm.qos_flags = 0;
4950
4951 if (il->qos_data.qos_active)
4952 il->qos_data.def_qos_parm.qos_flags |=
4953 QOS_PARAM_FLG_UPDATE_EDCA_MSK;
4954
4955 if (il->ht.enabled)
4956 il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
4957
4958 D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
4959 il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags);
4960
4961 il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd),
4962 &il->qos_data.def_qos_parm, NULL);
4963 }
4964
4965 /**
4966 * il_mac_config - mac80211 config callback
4967 */
4968 int
4969 il_mac_config(struct ieee80211_hw *hw, u32 changed)
4970 {
4971 struct il_priv *il = hw->priv;
4972 const struct il_channel_info *ch_info;
4973 struct ieee80211_conf *conf = &hw->conf;
4974 struct ieee80211_channel *channel = conf->chandef.chan;
4975 struct il_ht_config *ht_conf = &il->current_ht_config;
4976 unsigned long flags = 0;
4977 int ret = 0;
4978 u16 ch;
4979 int scan_active = 0;
4980 bool ht_changed = false;
4981
4982 mutex_lock(&il->mutex);
4983 D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value,
4984 changed);
4985
4986 if (unlikely(test_bit(S_SCANNING, &il->status))) {
4987 scan_active = 1;
4988 D_MAC80211("scan active\n");
4989 }
4990
4991 if (changed &
4992 (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) {
4993 /* mac80211 uses static for non-HT which is what we want */
4994 il->current_ht_config.smps = conf->smps_mode;
4995
4996 /*
4997 * Recalculate chain counts.
4998 *
4999 * If monitor mode is enabled then mac80211 will
5000 * set up the SM PS mode to OFF if an HT channel is
5001 * configured.
5002 */
5003 if (il->ops->set_rxon_chain)
5004 il->ops->set_rxon_chain(il);
5005 }
5006
5007 /* during scanning mac80211 will delay channel setting until
5008 * scan finish with changed = 0
5009 */
5010 if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
5011
5012 if (scan_active)
5013 goto set_ch_out;
5014
5015 ch = channel->hw_value;
5016 ch_info = il_get_channel_info(il, channel->band, ch);
5017 if (!il_is_channel_valid(ch_info)) {
5018 D_MAC80211("leave - invalid channel\n");
5019 ret = -EINVAL;
5020 goto set_ch_out;
5021 }
5022
5023 if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
5024 !il_is_channel_ibss(ch_info)) {
5025 D_MAC80211("leave - not IBSS channel\n");
5026 ret = -EINVAL;
5027 goto set_ch_out;
5028 }
5029
5030 spin_lock_irqsave(&il->lock, flags);
5031
5032 /* Configure HT40 channels */
5033 if (il->ht.enabled != conf_is_ht(conf)) {
5034 il->ht.enabled = conf_is_ht(conf);
5035 ht_changed = true;
5036 }
5037 if (il->ht.enabled) {
5038 if (conf_is_ht40_minus(conf)) {
5039 il->ht.extension_chan_offset =
5040 IEEE80211_HT_PARAM_CHA_SEC_BELOW;
5041 il->ht.is_40mhz = true;
5042 } else if (conf_is_ht40_plus(conf)) {
5043 il->ht.extension_chan_offset =
5044 IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
5045 il->ht.is_40mhz = true;
5046 } else {
5047 il->ht.extension_chan_offset =
5048 IEEE80211_HT_PARAM_CHA_SEC_NONE;
5049 il->ht.is_40mhz = false;
5050 }
5051 } else
5052 il->ht.is_40mhz = false;
5053
5054 /*
5055 * Default to no protection. Protection mode will
5056 * later be set from BSS config in il_ht_conf
5057 */
5058 il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE;
5059
5060 /* if we are switching from ht to 2.4 clear flags
5061 * from any ht related info since 2.4 does not
5062 * support ht */
5063 if ((le16_to_cpu(il->staging.channel) != ch))
5064 il->staging.flags = 0;
5065
5066 il_set_rxon_channel(il, channel);
5067 il_set_rxon_ht(il, ht_conf);
5068
5069 il_set_flags_for_band(il, channel->band, il->vif);
5070
5071 spin_unlock_irqrestore(&il->lock, flags);
5072
5073 if (il->ops->update_bcast_stations)
5074 ret = il->ops->update_bcast_stations(il);
5075
5076 set_ch_out:
5077 /* The list of supported rates and rate mask can be different
5078 * for each band; since the band may have changed, reset
5079 * the rate mask to what mac80211 lists */
5080 il_set_rate(il);
5081 }
5082
5083 if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) {
5084 ret = il_power_update_mode(il, false);
5085 if (ret)
5086 D_MAC80211("Error setting sleep level\n");
5087 }
5088
5089 if (changed & IEEE80211_CONF_CHANGE_POWER) {
5090 D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt,
5091 conf->power_level);
5092
5093 il_set_tx_power(il, conf->power_level, false);
5094 }
5095
5096 if (!il_is_ready(il)) {
5097 D_MAC80211("leave - not ready\n");
5098 goto out;
5099 }
5100
5101 if (scan_active)
5102 goto out;
5103
5104 if (memcmp(&il->active, &il->staging, sizeof(il->staging)))
5105 il_commit_rxon(il);
5106 else
5107 D_INFO("Not re-sending same RXON configuration.\n");
5108 if (ht_changed)
5109 il_update_qos(il);
5110
5111 out:
5112 D_MAC80211("leave ret %d\n", ret);
5113 mutex_unlock(&il->mutex);
5114
5115 return ret;
5116 }
5117 EXPORT_SYMBOL(il_mac_config);
5118
5119 void
5120 il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5121 {
5122 struct il_priv *il = hw->priv;
5123 unsigned long flags;
5124
5125 mutex_lock(&il->mutex);
5126 D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
5127
5128 spin_lock_irqsave(&il->lock, flags);
5129
5130 memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
5131
5132 /* new association get rid of ibss beacon skb */
5133 if (il->beacon_skb)
5134 dev_kfree_skb(il->beacon_skb);
5135 il->beacon_skb = NULL;
5136 il->timestamp = 0;
5137
5138 spin_unlock_irqrestore(&il->lock, flags);
5139
5140 il_scan_cancel_timeout(il, 100);
5141 if (!il_is_ready_rf(il)) {
5142 D_MAC80211("leave - not ready\n");
5143 mutex_unlock(&il->mutex);
5144 return;
5145 }
5146
5147 /* we are restarting association process */
5148 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5149 il_commit_rxon(il);
5150
5151 il_set_rate(il);
5152
5153 D_MAC80211("leave\n");
5154 mutex_unlock(&il->mutex);
5155 }
5156 EXPORT_SYMBOL(il_mac_reset_tsf);
5157
5158 static void
5159 il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif)
5160 {
5161 struct il_ht_config *ht_conf = &il->current_ht_config;
5162 struct ieee80211_sta *sta;
5163 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
5164
5165 D_ASSOC("enter:\n");
5166
5167 if (!il->ht.enabled)
5168 return;
5169
5170 il->ht.protection =
5171 bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
5172 il->ht.non_gf_sta_present =
5173 !!(bss_conf->
5174 ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
5175
5176 ht_conf->single_chain_sufficient = false;
5177
5178 switch (vif->type) {
5179 case NL80211_IFTYPE_STATION:
5180 rcu_read_lock();
5181 sta = ieee80211_find_sta(vif, bss_conf->bssid);
5182 if (sta) {
5183 struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
5184 int maxstreams;
5185
5186 maxstreams =
5187 (ht_cap->mcs.
5188 tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
5189 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
5190 maxstreams += 1;
5191
5192 if (ht_cap->mcs.rx_mask[1] == 0 &&
5193 ht_cap->mcs.rx_mask[2] == 0)
5194 ht_conf->single_chain_sufficient = true;
5195 if (maxstreams <= 1)
5196 ht_conf->single_chain_sufficient = true;
5197 } else {
5198 /*
5199 * If at all, this can only happen through a race
5200 * when the AP disconnects us while we're still
5201 * setting up the connection, in that case mac80211
5202 * will soon tell us about that.
5203 */
5204 ht_conf->single_chain_sufficient = true;
5205 }
5206 rcu_read_unlock();
5207 break;
5208 case NL80211_IFTYPE_ADHOC:
5209 ht_conf->single_chain_sufficient = true;
5210 break;
5211 default:
5212 break;
5213 }
5214
5215 D_ASSOC("leave\n");
5216 }
5217
5218 static inline void
5219 il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif)
5220 {
5221 /*
5222 * inform the ucode that there is no longer an
5223 * association and that no more packets should be
5224 * sent
5225 */
5226 il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5227 il->staging.assoc_id = 0;
5228 il_commit_rxon(il);
5229 }
5230
5231 static void
5232 il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5233 {
5234 struct il_priv *il = hw->priv;
5235 unsigned long flags;
5236 __le64 timestamp;
5237 struct sk_buff *skb = ieee80211_beacon_get(hw, vif);
5238
5239 if (!skb)
5240 return;
5241
5242 D_MAC80211("enter\n");
5243
5244 lockdep_assert_held(&il->mutex);
5245
5246 if (!il->beacon_enabled) {
5247 IL_ERR("update beacon with no beaconing enabled\n");
5248 dev_kfree_skb(skb);
5249 return;
5250 }
5251
5252 spin_lock_irqsave(&il->lock, flags);
5253
5254 if (il->beacon_skb)
5255 dev_kfree_skb(il->beacon_skb);
5256
5257 il->beacon_skb = skb;
5258
5259 timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
5260 il->timestamp = le64_to_cpu(timestamp);
5261
5262 D_MAC80211("leave\n");
5263 spin_unlock_irqrestore(&il->lock, flags);
5264
5265 if (!il_is_ready_rf(il)) {
5266 D_MAC80211("leave - RF not ready\n");
5267 return;
5268 }
5269
5270 il->ops->post_associate(il);
5271 }
5272
5273 void
5274 il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
5275 struct ieee80211_bss_conf *bss_conf, u32 changes)
5276 {
5277 struct il_priv *il = hw->priv;
5278 int ret;
5279
5280 mutex_lock(&il->mutex);
5281 D_MAC80211("enter: changes 0x%x\n", changes);
5282
5283 if (!il_is_alive(il)) {
5284 D_MAC80211("leave - not alive\n");
5285 mutex_unlock(&il->mutex);
5286 return;
5287 }
5288
5289 if (changes & BSS_CHANGED_QOS) {
5290 unsigned long flags;
5291
5292 spin_lock_irqsave(&il->lock, flags);
5293 il->qos_data.qos_active = bss_conf->qos;
5294 il_update_qos(il);
5295 spin_unlock_irqrestore(&il->lock, flags);
5296 }
5297
5298 if (changes & BSS_CHANGED_BEACON_ENABLED) {
5299 /* FIXME: can we remove beacon_enabled ? */
5300 if (vif->bss_conf.enable_beacon)
5301 il->beacon_enabled = true;
5302 else
5303 il->beacon_enabled = false;
5304 }
5305
5306 if (changes & BSS_CHANGED_BSSID) {
5307 D_MAC80211("BSSID %pM\n", bss_conf->bssid);
5308
5309 /*
5310 * If there is currently a HW scan going on in the background,
5311 * then we need to cancel it, otherwise sometimes we are not
5312 * able to authenticate (FIXME: why ?)
5313 */
5314 if (il_scan_cancel_timeout(il, 100)) {
5315 D_MAC80211("leave - scan abort failed\n");
5316 mutex_unlock(&il->mutex);
5317 return;
5318 }
5319
5320 /* mac80211 only sets assoc when in STATION mode */
5321 memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN);
5322
5323 /* FIXME: currently needed in a few places */
5324 memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5325 }
5326
5327 /*
5328 * This needs to be after setting the BSSID in case
5329 * mac80211 decides to do both changes at once because
5330 * it will invoke post_associate.
5331 */
5332 if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
5333 il_beacon_update(hw, vif);
5334
5335 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
5336 D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble);
5337 if (bss_conf->use_short_preamble)
5338 il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
5339 else
5340 il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
5341 }
5342
5343 if (changes & BSS_CHANGED_ERP_CTS_PROT) {
5344 D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot);
5345 if (bss_conf->use_cts_prot && il->band != IEEE80211_BAND_5GHZ)
5346 il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
5347 else
5348 il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
5349 if (bss_conf->use_cts_prot)
5350 il->staging.flags |= RXON_FLG_SELF_CTS_EN;
5351 else
5352 il->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
5353 }
5354
5355 if (changes & BSS_CHANGED_BASIC_RATES) {
5356 /* XXX use this information
5357 *
5358 * To do that, remove code from il_set_rate() and put something
5359 * like this here:
5360 *
5361 if (A-band)
5362 il->staging.ofdm_basic_rates =
5363 bss_conf->basic_rates;
5364 else
5365 il->staging.ofdm_basic_rates =
5366 bss_conf->basic_rates >> 4;
5367 il->staging.cck_basic_rates =
5368 bss_conf->basic_rates & 0xF;
5369 */
5370 }
5371
5372 if (changes & BSS_CHANGED_HT) {
5373 il_ht_conf(il, vif);
5374
5375 if (il->ops->set_rxon_chain)
5376 il->ops->set_rxon_chain(il);
5377 }
5378
5379 if (changes & BSS_CHANGED_ASSOC) {
5380 D_MAC80211("ASSOC %d\n", bss_conf->assoc);
5381 if (bss_conf->assoc) {
5382 il->timestamp = bss_conf->sync_tsf;
5383
5384 if (!il_is_rfkill(il))
5385 il->ops->post_associate(il);
5386 } else
5387 il_set_no_assoc(il, vif);
5388 }
5389
5390 if (changes && il_is_associated(il) && bss_conf->aid) {
5391 D_MAC80211("Changes (%#x) while associated\n", changes);
5392 ret = il_send_rxon_assoc(il);
5393 if (!ret) {
5394 /* Sync active_rxon with latest change. */
5395 memcpy((void *)&il->active, &il->staging,
5396 sizeof(struct il_rxon_cmd));
5397 }
5398 }
5399
5400 if (changes & BSS_CHANGED_BEACON_ENABLED) {
5401 if (vif->bss_conf.enable_beacon) {
5402 memcpy(il->staging.bssid_addr, bss_conf->bssid,
5403 ETH_ALEN);
5404 memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5405 il->ops->config_ap(il);
5406 } else
5407 il_set_no_assoc(il, vif);
5408 }
5409
5410 if (changes & BSS_CHANGED_IBSS) {
5411 ret = il->ops->manage_ibss_station(il, vif,
5412 bss_conf->ibss_joined);
5413 if (ret)
5414 IL_ERR("failed to %s IBSS station %pM\n",
5415 bss_conf->ibss_joined ? "add" : "remove",
5416 bss_conf->bssid);
5417 }
5418
5419 D_MAC80211("leave\n");
5420 mutex_unlock(&il->mutex);
5421 }
5422 EXPORT_SYMBOL(il_mac_bss_info_changed);
5423
5424 irqreturn_t
5425 il_isr(int irq, void *data)
5426 {
5427 struct il_priv *il = data;
5428 u32 inta, inta_mask;
5429 u32 inta_fh;
5430 unsigned long flags;
5431 if (!il)
5432 return IRQ_NONE;
5433
5434 spin_lock_irqsave(&il->lock, flags);
5435
5436 /* Disable (but don't clear!) interrupts here to avoid
5437 * back-to-back ISRs and sporadic interrupts from our NIC.
5438 * If we have something to service, the tasklet will re-enable ints.
5439 * If we *don't* have something, we'll re-enable before leaving here. */
5440 inta_mask = _il_rd(il, CSR_INT_MASK); /* just for debug */
5441 _il_wr(il, CSR_INT_MASK, 0x00000000);
5442
5443 /* Discover which interrupts are active/pending */
5444 inta = _il_rd(il, CSR_INT);
5445 inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
5446
5447 /* Ignore interrupt if there's nothing in NIC to service.
5448 * This may be due to IRQ shared with another device,
5449 * or due to sporadic interrupts thrown from our NIC. */
5450 if (!inta && !inta_fh) {
5451 D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n");
5452 goto none;
5453 }
5454
5455 if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
5456 /* Hardware disappeared. It might have already raised
5457 * an interrupt */
5458 IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
5459 goto unplugged;
5460 }
5461
5462 D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask,
5463 inta_fh);
5464
5465 inta &= ~CSR_INT_BIT_SCD;
5466
5467 /* il_irq_tasklet() will service interrupts and re-enable them */
5468 if (likely(inta || inta_fh))
5469 tasklet_schedule(&il->irq_tasklet);
5470
5471 unplugged:
5472 spin_unlock_irqrestore(&il->lock, flags);
5473 return IRQ_HANDLED;
5474
5475 none:
5476 /* re-enable interrupts here since we don't have anything to service. */
5477 /* only Re-enable if disabled by irq */
5478 if (test_bit(S_INT_ENABLED, &il->status))
5479 il_enable_interrupts(il);
5480 spin_unlock_irqrestore(&il->lock, flags);
5481 return IRQ_NONE;
5482 }
5483 EXPORT_SYMBOL(il_isr);
5484
5485 /*
5486 * il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
5487 * function.
5488 */
5489 void
5490 il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
5491 __le16 fc, __le32 *tx_flags)
5492 {
5493 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
5494 *tx_flags |= TX_CMD_FLG_RTS_MSK;
5495 *tx_flags &= ~TX_CMD_FLG_CTS_MSK;
5496 *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5497
5498 if (!ieee80211_is_mgmt(fc))
5499 return;
5500
5501 switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
5502 case cpu_to_le16(IEEE80211_STYPE_AUTH):
5503 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
5504 case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
5505 case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
5506 *tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5507 *tx_flags |= TX_CMD_FLG_CTS_MSK;
5508 break;
5509 }
5510 } else if (info->control.rates[0].
5511 flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
5512 *tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5513 *tx_flags |= TX_CMD_FLG_CTS_MSK;
5514 *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5515 }
5516 }
5517 EXPORT_SYMBOL(il_tx_cmd_protection);