xenbus_client.c: correct exit path for xenbus_map_ring_valloc_hvm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
51
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 struct ath_txq *txq, struct list_head *bf_q,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70
71 enum {
72 MCS_HT20,
73 MCS_HT20_SGI,
74 MCS_HT40,
75 MCS_HT40_SGI,
76 };
77
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 __acquires(&txq->axq_lock)
84 {
85 spin_lock_bh(&txq->axq_lock);
86 }
87
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 __releases(&txq->axq_lock)
90 {
91 spin_unlock_bh(&txq->axq_lock);
92 }
93
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 __releases(&txq->axq_lock)
96 {
97 struct sk_buff_head q;
98 struct sk_buff *skb;
99
100 __skb_queue_head_init(&q);
101 skb_queue_splice_init(&txq->complete_q, &q);
102 spin_unlock_bh(&txq->axq_lock);
103
104 while ((skb = __skb_dequeue(&q)))
105 ieee80211_tx_status(sc->hw, skb);
106 }
107
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 struct ath_atx_ac *ac = tid->ac;
111
112 if (tid->paused)
113 return;
114
115 if (tid->sched)
116 return;
117
118 tid->sched = true;
119 list_add_tail(&tid->list, &ac->tid_q);
120
121 if (ac->sched)
122 return;
123
124 ac->sched = true;
125 list_add_tail(&ac->list, &txq->axq_acq);
126 }
127
128 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 {
130 struct ath_txq *txq = tid->ac->txq;
131
132 WARN_ON(!tid->paused);
133
134 ath_txq_lock(sc, txq);
135 tid->paused = false;
136
137 if (skb_queue_empty(&tid->buf_q))
138 goto unlock;
139
140 ath_tx_queue_tid(txq, tid);
141 ath_txq_schedule(sc, txq);
142 unlock:
143 ath_txq_unlock_complete(sc, txq);
144 }
145
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 sizeof(tx_info->rate_driver_data));
151 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
152 }
153
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
157 seqno << IEEE80211_SEQ_SEQ_SHIFT);
158 }
159
160 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
161 struct ath_buf *bf)
162 {
163 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
164 ARRAY_SIZE(bf->rates));
165 }
166
167 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
168 {
169 struct ath_txq *txq = tid->ac->txq;
170 struct sk_buff *skb;
171 struct ath_buf *bf;
172 struct list_head bf_head;
173 struct ath_tx_status ts;
174 struct ath_frame_info *fi;
175 bool sendbar = false;
176
177 INIT_LIST_HEAD(&bf_head);
178
179 memset(&ts, 0, sizeof(ts));
180
181 while ((skb = __skb_dequeue(&tid->buf_q))) {
182 fi = get_frame_info(skb);
183 bf = fi->bf;
184
185 if (!bf) {
186 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
187 if (!bf) {
188 ieee80211_free_txskb(sc->hw, skb);
189 continue;
190 }
191 }
192
193 if (fi->retries) {
194 list_add_tail(&bf->list, &bf_head);
195 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
196 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
197 sendbar = true;
198 } else {
199 ath_set_rates(tid->an->vif, tid->an->sta, bf);
200 ath_tx_send_normal(sc, txq, NULL, skb);
201 }
202 }
203
204 if (tid->baw_head == tid->baw_tail) {
205 tid->state &= ~AGGR_ADDBA_COMPLETE;
206 tid->state &= ~AGGR_CLEANUP;
207 }
208
209 if (sendbar) {
210 ath_txq_unlock(sc, txq);
211 ath_send_bar(tid, tid->seq_start);
212 ath_txq_lock(sc, txq);
213 }
214 }
215
216 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
217 int seqno)
218 {
219 int index, cindex;
220
221 index = ATH_BA_INDEX(tid->seq_start, seqno);
222 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
223
224 __clear_bit(cindex, tid->tx_buf);
225
226 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
227 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
228 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
229 if (tid->bar_index >= 0)
230 tid->bar_index--;
231 }
232 }
233
234 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
235 u16 seqno)
236 {
237 int index, cindex;
238
239 index = ATH_BA_INDEX(tid->seq_start, seqno);
240 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
241 __set_bit(cindex, tid->tx_buf);
242
243 if (index >= ((tid->baw_tail - tid->baw_head) &
244 (ATH_TID_MAX_BUFS - 1))) {
245 tid->baw_tail = cindex;
246 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
247 }
248 }
249
250 /*
251 * TODO: For frame(s) that are in the retry state, we will reuse the
252 * sequence number(s) without setting the retry bit. The
253 * alternative is to give up on these and BAR the receiver's window
254 * forward.
255 */
256 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
257 struct ath_atx_tid *tid)
258
259 {
260 struct sk_buff *skb;
261 struct ath_buf *bf;
262 struct list_head bf_head;
263 struct ath_tx_status ts;
264 struct ath_frame_info *fi;
265
266 memset(&ts, 0, sizeof(ts));
267 INIT_LIST_HEAD(&bf_head);
268
269 while ((skb = __skb_dequeue(&tid->buf_q))) {
270 fi = get_frame_info(skb);
271 bf = fi->bf;
272
273 if (!bf) {
274 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
275 continue;
276 }
277
278 list_add_tail(&bf->list, &bf_head);
279
280 if (fi->retries)
281 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
282
283 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
284 }
285
286 tid->seq_next = tid->seq_start;
287 tid->baw_tail = tid->baw_head;
288 tid->bar_index = -1;
289 }
290
291 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
292 struct sk_buff *skb, int count)
293 {
294 struct ath_frame_info *fi = get_frame_info(skb);
295 struct ath_buf *bf = fi->bf;
296 struct ieee80211_hdr *hdr;
297 int prev = fi->retries;
298
299 TX_STAT_INC(txq->axq_qnum, a_retries);
300 fi->retries += count;
301
302 if (prev > 0)
303 return;
304
305 hdr = (struct ieee80211_hdr *)skb->data;
306 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
307 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
308 sizeof(*hdr), DMA_TO_DEVICE);
309 }
310
311 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
312 {
313 struct ath_buf *bf = NULL;
314
315 spin_lock_bh(&sc->tx.txbuflock);
316
317 if (unlikely(list_empty(&sc->tx.txbuf))) {
318 spin_unlock_bh(&sc->tx.txbuflock);
319 return NULL;
320 }
321
322 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
323 list_del(&bf->list);
324
325 spin_unlock_bh(&sc->tx.txbuflock);
326
327 return bf;
328 }
329
330 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
331 {
332 spin_lock_bh(&sc->tx.txbuflock);
333 list_add_tail(&bf->list, &sc->tx.txbuf);
334 spin_unlock_bh(&sc->tx.txbuflock);
335 }
336
337 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
338 {
339 struct ath_buf *tbf;
340
341 tbf = ath_tx_get_buffer(sc);
342 if (WARN_ON(!tbf))
343 return NULL;
344
345 ATH_TXBUF_RESET(tbf);
346
347 tbf->bf_mpdu = bf->bf_mpdu;
348 tbf->bf_buf_addr = bf->bf_buf_addr;
349 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
350 tbf->bf_state = bf->bf_state;
351
352 return tbf;
353 }
354
355 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
356 struct ath_tx_status *ts, int txok,
357 int *nframes, int *nbad)
358 {
359 struct ath_frame_info *fi;
360 u16 seq_st = 0;
361 u32 ba[WME_BA_BMP_SIZE >> 5];
362 int ba_index;
363 int isaggr = 0;
364
365 *nbad = 0;
366 *nframes = 0;
367
368 isaggr = bf_isaggr(bf);
369 if (isaggr) {
370 seq_st = ts->ts_seqnum;
371 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
372 }
373
374 while (bf) {
375 fi = get_frame_info(bf->bf_mpdu);
376 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
377
378 (*nframes)++;
379 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
380 (*nbad)++;
381
382 bf = bf->bf_next;
383 }
384 }
385
386
387 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
388 struct ath_buf *bf, struct list_head *bf_q,
389 struct ath_tx_status *ts, int txok)
390 {
391 struct ath_node *an = NULL;
392 struct sk_buff *skb;
393 struct ieee80211_sta *sta;
394 struct ieee80211_hw *hw = sc->hw;
395 struct ieee80211_hdr *hdr;
396 struct ieee80211_tx_info *tx_info;
397 struct ath_atx_tid *tid = NULL;
398 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
399 struct list_head bf_head;
400 struct sk_buff_head bf_pending;
401 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
402 u32 ba[WME_BA_BMP_SIZE >> 5];
403 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
404 bool rc_update = true, isba;
405 struct ieee80211_tx_rate rates[4];
406 struct ath_frame_info *fi;
407 int nframes;
408 u8 tidno;
409 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
410 int i, retries;
411 int bar_index = -1;
412
413 skb = bf->bf_mpdu;
414 hdr = (struct ieee80211_hdr *)skb->data;
415
416 tx_info = IEEE80211_SKB_CB(skb);
417
418 memcpy(rates, bf->rates, sizeof(rates));
419
420 retries = ts->ts_longretry + 1;
421 for (i = 0; i < ts->ts_rateindex; i++)
422 retries += rates[i].count;
423
424 rcu_read_lock();
425
426 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
427 if (!sta) {
428 rcu_read_unlock();
429
430 INIT_LIST_HEAD(&bf_head);
431 while (bf) {
432 bf_next = bf->bf_next;
433
434 if (!bf->bf_stale || bf_next != NULL)
435 list_move_tail(&bf->list, &bf_head);
436
437 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
438
439 bf = bf_next;
440 }
441 return;
442 }
443
444 an = (struct ath_node *)sta->drv_priv;
445 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
446 tid = ATH_AN_2_TID(an, tidno);
447 seq_first = tid->seq_start;
448 isba = ts->ts_flags & ATH9K_TX_BA;
449
450 /*
451 * The hardware occasionally sends a tx status for the wrong TID.
452 * In this case, the BA status cannot be considered valid and all
453 * subframes need to be retransmitted
454 *
455 * Only BlockAcks have a TID and therefore normal Acks cannot be
456 * checked
457 */
458 if (isba && tidno != ts->tid)
459 txok = false;
460
461 isaggr = bf_isaggr(bf);
462 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
463
464 if (isaggr && txok) {
465 if (ts->ts_flags & ATH9K_TX_BA) {
466 seq_st = ts->ts_seqnum;
467 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
468 } else {
469 /*
470 * AR5416 can become deaf/mute when BA
471 * issue happens. Chip needs to be reset.
472 * But AP code may have sychronization issues
473 * when perform internal reset in this routine.
474 * Only enable reset in STA mode for now.
475 */
476 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
477 needreset = 1;
478 }
479 }
480
481 __skb_queue_head_init(&bf_pending);
482
483 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
484 while (bf) {
485 u16 seqno = bf->bf_state.seqno;
486
487 txfail = txpending = sendbar = 0;
488 bf_next = bf->bf_next;
489
490 skb = bf->bf_mpdu;
491 tx_info = IEEE80211_SKB_CB(skb);
492 fi = get_frame_info(skb);
493
494 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
495 /* transmit completion, subframe is
496 * acked by block ack */
497 acked_cnt++;
498 } else if (!isaggr && txok) {
499 /* transmit completion */
500 acked_cnt++;
501 } else if (tid->state & AGGR_CLEANUP) {
502 /*
503 * cleanup in progress, just fail
504 * the un-acked sub-frames
505 */
506 txfail = 1;
507 } else if (flush) {
508 txpending = 1;
509 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
510 if (txok || !an->sleeping)
511 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
512 retries);
513
514 txpending = 1;
515 } else {
516 txfail = 1;
517 txfail_cnt++;
518 bar_index = max_t(int, bar_index,
519 ATH_BA_INDEX(seq_first, seqno));
520 }
521
522 /*
523 * Make sure the last desc is reclaimed if it
524 * not a holding desc.
525 */
526 INIT_LIST_HEAD(&bf_head);
527 if (bf_next != NULL || !bf_last->bf_stale)
528 list_move_tail(&bf->list, &bf_head);
529
530 if (!txpending || (tid->state & AGGR_CLEANUP)) {
531 /*
532 * complete the acked-ones/xretried ones; update
533 * block-ack window
534 */
535 ath_tx_update_baw(sc, tid, seqno);
536
537 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
538 memcpy(tx_info->control.rates, rates, sizeof(rates));
539 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
540 rc_update = false;
541 }
542
543 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
544 !txfail);
545 } else {
546 /* retry the un-acked ones */
547 if (bf->bf_next == NULL && bf_last->bf_stale) {
548 struct ath_buf *tbf;
549
550 tbf = ath_clone_txbuf(sc, bf_last);
551 /*
552 * Update tx baw and complete the
553 * frame with failed status if we
554 * run out of tx buf.
555 */
556 if (!tbf) {
557 ath_tx_update_baw(sc, tid, seqno);
558
559 ath_tx_complete_buf(sc, bf, txq,
560 &bf_head, ts, 0);
561 bar_index = max_t(int, bar_index,
562 ATH_BA_INDEX(seq_first, seqno));
563 break;
564 }
565
566 fi->bf = tbf;
567 }
568
569 /*
570 * Put this buffer to the temporary pending
571 * queue to retain ordering
572 */
573 __skb_queue_tail(&bf_pending, skb);
574 }
575
576 bf = bf_next;
577 }
578
579 /* prepend un-acked frames to the beginning of the pending frame queue */
580 if (!skb_queue_empty(&bf_pending)) {
581 if (an->sleeping)
582 ieee80211_sta_set_buffered(sta, tid->tidno, true);
583
584 skb_queue_splice(&bf_pending, &tid->buf_q);
585 if (!an->sleeping) {
586 ath_tx_queue_tid(txq, tid);
587
588 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
589 tid->ac->clear_ps_filter = true;
590 }
591 }
592
593 if (bar_index >= 0) {
594 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
595
596 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
597 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
598
599 ath_txq_unlock(sc, txq);
600 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
601 ath_txq_lock(sc, txq);
602 }
603
604 if (tid->state & AGGR_CLEANUP)
605 ath_tx_flush_tid(sc, tid);
606
607 rcu_read_unlock();
608
609 if (needreset)
610 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
611 }
612
613 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
614 {
615 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
616 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
617 }
618
619 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
620 struct ath_tx_status *ts, struct ath_buf *bf,
621 struct list_head *bf_head)
622 {
623 bool txok, flush;
624
625 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
626 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
627 txq->axq_tx_inprogress = false;
628
629 txq->axq_depth--;
630 if (bf_is_ampdu_not_probing(bf))
631 txq->axq_ampdu_depth--;
632
633 if (!bf_isampdu(bf)) {
634 if (!flush)
635 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
636 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
637 } else
638 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
639
640 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
641 ath_txq_schedule(sc, txq);
642 }
643
644 static bool ath_lookup_legacy(struct ath_buf *bf)
645 {
646 struct sk_buff *skb;
647 struct ieee80211_tx_info *tx_info;
648 struct ieee80211_tx_rate *rates;
649 int i;
650
651 skb = bf->bf_mpdu;
652 tx_info = IEEE80211_SKB_CB(skb);
653 rates = tx_info->control.rates;
654
655 for (i = 0; i < 4; i++) {
656 if (!rates[i].count || rates[i].idx < 0)
657 break;
658
659 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
660 return true;
661 }
662
663 return false;
664 }
665
666 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
667 struct ath_atx_tid *tid)
668 {
669 struct sk_buff *skb;
670 struct ieee80211_tx_info *tx_info;
671 struct ieee80211_tx_rate *rates;
672 u32 max_4ms_framelen, frmlen;
673 u16 aggr_limit, bt_aggr_limit, legacy = 0;
674 int q = tid->ac->txq->mac80211_qnum;
675 int i;
676
677 skb = bf->bf_mpdu;
678 tx_info = IEEE80211_SKB_CB(skb);
679 rates = tx_info->control.rates;
680
681 /*
682 * Find the lowest frame length among the rate series that will have a
683 * 4ms (or TXOP limited) transmit duration.
684 */
685 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
686
687 for (i = 0; i < 4; i++) {
688 int modeidx;
689
690 if (!rates[i].count)
691 continue;
692
693 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
694 legacy = 1;
695 break;
696 }
697
698 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
699 modeidx = MCS_HT40;
700 else
701 modeidx = MCS_HT20;
702
703 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
704 modeidx++;
705
706 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
707 max_4ms_framelen = min(max_4ms_framelen, frmlen);
708 }
709
710 /*
711 * limit aggregate size by the minimum rate if rate selected is
712 * not a probe rate, if rate selected is a probe rate then
713 * avoid aggregation of this packet.
714 */
715 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
716 return 0;
717
718 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
719
720 /*
721 * Override the default aggregation limit for BTCOEX.
722 */
723 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
724 if (bt_aggr_limit)
725 aggr_limit = bt_aggr_limit;
726
727 /*
728 * h/w can accept aggregates up to 16 bit lengths (65535).
729 * The IE, however can hold up to 65536, which shows up here
730 * as zero. Ignore 65536 since we are constrained by hw.
731 */
732 if (tid->an->maxampdu)
733 aggr_limit = min(aggr_limit, tid->an->maxampdu);
734
735 return aggr_limit;
736 }
737
738 /*
739 * Returns the number of delimiters to be added to
740 * meet the minimum required mpdudensity.
741 */
742 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
743 struct ath_buf *bf, u16 frmlen,
744 bool first_subfrm)
745 {
746 #define FIRST_DESC_NDELIMS 60
747 u32 nsymbits, nsymbols;
748 u16 minlen;
749 u8 flags, rix;
750 int width, streams, half_gi, ndelim, mindelim;
751 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
752
753 /* Select standard number of delimiters based on frame length alone */
754 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
755
756 /*
757 * If encryption enabled, hardware requires some more padding between
758 * subframes.
759 * TODO - this could be improved to be dependent on the rate.
760 * The hardware can keep up at lower rates, but not higher rates
761 */
762 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
763 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
764 ndelim += ATH_AGGR_ENCRYPTDELIM;
765
766 /*
767 * Add delimiter when using RTS/CTS with aggregation
768 * and non enterprise AR9003 card
769 */
770 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
771 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
772 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
773
774 /*
775 * Convert desired mpdu density from microeconds to bytes based
776 * on highest rate in rate series (i.e. first rate) to determine
777 * required minimum length for subframe. Take into account
778 * whether high rate is 20 or 40Mhz and half or full GI.
779 *
780 * If there is no mpdu density restriction, no further calculation
781 * is needed.
782 */
783
784 if (tid->an->mpdudensity == 0)
785 return ndelim;
786
787 rix = bf->rates[0].idx;
788 flags = bf->rates[0].flags;
789 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
790 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
791
792 if (half_gi)
793 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
794 else
795 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
796
797 if (nsymbols == 0)
798 nsymbols = 1;
799
800 streams = HT_RC_2_STREAMS(rix);
801 nsymbits = bits_per_symbol[rix % 8][width] * streams;
802 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
803
804 if (frmlen < minlen) {
805 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
806 ndelim = max(mindelim, ndelim);
807 }
808
809 return ndelim;
810 }
811
812 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
813 struct ath_txq *txq,
814 struct ath_atx_tid *tid,
815 struct list_head *bf_q,
816 int *aggr_len)
817 {
818 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
819 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
820 int rl = 0, nframes = 0, ndelim, prev_al = 0;
821 u16 aggr_limit = 0, al = 0, bpad = 0,
822 al_delta, h_baw = tid->baw_size / 2;
823 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
824 struct ieee80211_tx_info *tx_info;
825 struct ath_frame_info *fi;
826 struct sk_buff *skb;
827 u16 seqno;
828
829 do {
830 skb = skb_peek(&tid->buf_q);
831 fi = get_frame_info(skb);
832 bf = fi->bf;
833 if (!fi->bf)
834 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
835
836 if (!bf) {
837 __skb_unlink(skb, &tid->buf_q);
838 ieee80211_free_txskb(sc->hw, skb);
839 continue;
840 }
841
842 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
843 seqno = bf->bf_state.seqno;
844
845 /* do not step over block-ack window */
846 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
847 status = ATH_AGGR_BAW_CLOSED;
848 break;
849 }
850
851 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
852 struct ath_tx_status ts = {};
853 struct list_head bf_head;
854
855 INIT_LIST_HEAD(&bf_head);
856 list_add(&bf->list, &bf_head);
857 __skb_unlink(skb, &tid->buf_q);
858 ath_tx_update_baw(sc, tid, seqno);
859 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
860 continue;
861 }
862
863 if (!bf_first)
864 bf_first = bf;
865
866 if (!rl) {
867 ath_set_rates(tid->an->vif, tid->an->sta, bf);
868 aggr_limit = ath_lookup_rate(sc, bf, tid);
869 rl = 1;
870 }
871
872 /* do not exceed aggregation limit */
873 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
874
875 if (nframes &&
876 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
877 ath_lookup_legacy(bf))) {
878 status = ATH_AGGR_LIMITED;
879 break;
880 }
881
882 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
883 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
884 break;
885
886 /* do not exceed subframe limit */
887 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
888 status = ATH_AGGR_LIMITED;
889 break;
890 }
891
892 /* add padding for previous frame to aggregation length */
893 al += bpad + al_delta;
894
895 /*
896 * Get the delimiters needed to meet the MPDU
897 * density for this node.
898 */
899 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
900 !nframes);
901 bpad = PADBYTES(al_delta) + (ndelim << 2);
902
903 nframes++;
904 bf->bf_next = NULL;
905
906 /* link buffers of this frame to the aggregate */
907 if (!fi->retries)
908 ath_tx_addto_baw(sc, tid, seqno);
909 bf->bf_state.ndelim = ndelim;
910
911 __skb_unlink(skb, &tid->buf_q);
912 list_add_tail(&bf->list, bf_q);
913 if (bf_prev)
914 bf_prev->bf_next = bf;
915
916 bf_prev = bf;
917
918 } while (!skb_queue_empty(&tid->buf_q));
919
920 *aggr_len = al;
921
922 return status;
923 #undef PADBYTES
924 }
925
926 /*
927 * rix - rate index
928 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
929 * width - 0 for 20 MHz, 1 for 40 MHz
930 * half_gi - to use 4us v/s 3.6 us for symbol time
931 */
932 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
933 int width, int half_gi, bool shortPreamble)
934 {
935 u32 nbits, nsymbits, duration, nsymbols;
936 int streams;
937
938 /* find number of symbols: PLCP + data */
939 streams = HT_RC_2_STREAMS(rix);
940 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
941 nsymbits = bits_per_symbol[rix % 8][width] * streams;
942 nsymbols = (nbits + nsymbits - 1) / nsymbits;
943
944 if (!half_gi)
945 duration = SYMBOL_TIME(nsymbols);
946 else
947 duration = SYMBOL_TIME_HALFGI(nsymbols);
948
949 /* addup duration for legacy/ht training and signal fields */
950 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
951
952 return duration;
953 }
954
955 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
956 {
957 int streams = HT_RC_2_STREAMS(mcs);
958 int symbols, bits;
959 int bytes = 0;
960
961 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
962 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
963 bits -= OFDM_PLCP_BITS;
964 bytes = bits / 8;
965 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
966 if (bytes > 65532)
967 bytes = 65532;
968
969 return bytes;
970 }
971
972 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
973 {
974 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
975 int mcs;
976
977 /* 4ms is the default (and maximum) duration */
978 if (!txop || txop > 4096)
979 txop = 4096;
980
981 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
982 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
983 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
984 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
985 for (mcs = 0; mcs < 32; mcs++) {
986 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
987 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
988 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
989 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
990 }
991 }
992
993 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
994 struct ath_tx_info *info, int len)
995 {
996 struct ath_hw *ah = sc->sc_ah;
997 struct sk_buff *skb;
998 struct ieee80211_tx_info *tx_info;
999 struct ieee80211_tx_rate *rates;
1000 const struct ieee80211_rate *rate;
1001 struct ieee80211_hdr *hdr;
1002 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1003 int i;
1004 u8 rix = 0;
1005
1006 skb = bf->bf_mpdu;
1007 tx_info = IEEE80211_SKB_CB(skb);
1008 rates = bf->rates;
1009 hdr = (struct ieee80211_hdr *)skb->data;
1010
1011 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1012 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1013 info->rtscts_rate = fi->rtscts_rate;
1014
1015 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1016 bool is_40, is_sgi, is_sp;
1017 int phy;
1018
1019 if (!rates[i].count || (rates[i].idx < 0))
1020 continue;
1021
1022 rix = rates[i].idx;
1023 info->rates[i].Tries = rates[i].count;
1024
1025 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1026 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1027 info->flags |= ATH9K_TXDESC_RTSENA;
1028 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1029 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1030 info->flags |= ATH9K_TXDESC_CTSENA;
1031 }
1032
1033 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1034 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1035 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1036 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1037
1038 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1039 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1040 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1041
1042 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1043 /* MCS rates */
1044 info->rates[i].Rate = rix | 0x80;
1045 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1046 ah->txchainmask, info->rates[i].Rate);
1047 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1048 is_40, is_sgi, is_sp);
1049 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1050 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1051 continue;
1052 }
1053
1054 /* legacy rates */
1055 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1056 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1057 !(rate->flags & IEEE80211_RATE_ERP_G))
1058 phy = WLAN_RC_PHY_CCK;
1059 else
1060 phy = WLAN_RC_PHY_OFDM;
1061
1062 info->rates[i].Rate = rate->hw_value;
1063 if (rate->hw_value_short) {
1064 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1065 info->rates[i].Rate |= rate->hw_value_short;
1066 } else {
1067 is_sp = false;
1068 }
1069
1070 if (bf->bf_state.bfs_paprd)
1071 info->rates[i].ChSel = ah->txchainmask;
1072 else
1073 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1074 ah->txchainmask, info->rates[i].Rate);
1075
1076 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1077 phy, rate->bitrate * 100, len, rix, is_sp);
1078 }
1079
1080 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1081 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1082 info->flags &= ~ATH9K_TXDESC_RTSENA;
1083
1084 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1085 if (info->flags & ATH9K_TXDESC_RTSENA)
1086 info->flags &= ~ATH9K_TXDESC_CTSENA;
1087 }
1088
1089 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1090 {
1091 struct ieee80211_hdr *hdr;
1092 enum ath9k_pkt_type htype;
1093 __le16 fc;
1094
1095 hdr = (struct ieee80211_hdr *)skb->data;
1096 fc = hdr->frame_control;
1097
1098 if (ieee80211_is_beacon(fc))
1099 htype = ATH9K_PKT_TYPE_BEACON;
1100 else if (ieee80211_is_probe_resp(fc))
1101 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1102 else if (ieee80211_is_atim(fc))
1103 htype = ATH9K_PKT_TYPE_ATIM;
1104 else if (ieee80211_is_pspoll(fc))
1105 htype = ATH9K_PKT_TYPE_PSPOLL;
1106 else
1107 htype = ATH9K_PKT_TYPE_NORMAL;
1108
1109 return htype;
1110 }
1111
1112 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1113 struct ath_txq *txq, int len)
1114 {
1115 struct ath_hw *ah = sc->sc_ah;
1116 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1117 struct ath_buf *bf_first = bf;
1118 struct ath_tx_info info;
1119 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1120
1121 memset(&info, 0, sizeof(info));
1122 info.is_first = true;
1123 info.is_last = true;
1124 info.txpower = MAX_RATE_POWER;
1125 info.qcu = txq->axq_qnum;
1126
1127 info.flags = ATH9K_TXDESC_INTREQ;
1128 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1129 info.flags |= ATH9K_TXDESC_NOACK;
1130 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1131 info.flags |= ATH9K_TXDESC_LDPC;
1132
1133 ath_buf_set_rate(sc, bf, &info, len);
1134
1135 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1136 info.flags |= ATH9K_TXDESC_CLRDMASK;
1137
1138 if (bf->bf_state.bfs_paprd)
1139 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1140
1141
1142 while (bf) {
1143 struct sk_buff *skb = bf->bf_mpdu;
1144 struct ath_frame_info *fi = get_frame_info(skb);
1145
1146 info.type = get_hw_packet_type(skb);
1147 if (bf->bf_next)
1148 info.link = bf->bf_next->bf_daddr;
1149 else
1150 info.link = 0;
1151
1152 info.buf_addr[0] = bf->bf_buf_addr;
1153 info.buf_len[0] = skb->len;
1154 info.pkt_len = fi->framelen;
1155 info.keyix = fi->keyix;
1156 info.keytype = fi->keytype;
1157
1158 if (aggr) {
1159 if (bf == bf_first)
1160 info.aggr = AGGR_BUF_FIRST;
1161 else if (!bf->bf_next)
1162 info.aggr = AGGR_BUF_LAST;
1163 else
1164 info.aggr = AGGR_BUF_MIDDLE;
1165
1166 info.ndelim = bf->bf_state.ndelim;
1167 info.aggr_len = len;
1168 }
1169
1170 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1171 bf = bf->bf_next;
1172 }
1173 }
1174
1175 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1176 struct ath_atx_tid *tid)
1177 {
1178 struct ath_buf *bf;
1179 enum ATH_AGGR_STATUS status;
1180 struct ieee80211_tx_info *tx_info;
1181 struct list_head bf_q;
1182 int aggr_len;
1183
1184 do {
1185 if (skb_queue_empty(&tid->buf_q))
1186 return;
1187
1188 INIT_LIST_HEAD(&bf_q);
1189
1190 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1191
1192 /*
1193 * no frames picked up to be aggregated;
1194 * block-ack window is not open.
1195 */
1196 if (list_empty(&bf_q))
1197 break;
1198
1199 bf = list_first_entry(&bf_q, struct ath_buf, list);
1200 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1201 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1202
1203 if (tid->ac->clear_ps_filter) {
1204 tid->ac->clear_ps_filter = false;
1205 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1206 } else {
1207 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1208 }
1209
1210 /* if only one frame, send as non-aggregate */
1211 if (bf == bf->bf_lastbf) {
1212 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1213 bf->bf_state.bf_type = BUF_AMPDU;
1214 } else {
1215 TX_STAT_INC(txq->axq_qnum, a_aggr);
1216 }
1217
1218 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1219 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1220 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1221 status != ATH_AGGR_BAW_CLOSED);
1222 }
1223
1224 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1225 u16 tid, u16 *ssn)
1226 {
1227 struct ath_atx_tid *txtid;
1228 struct ath_node *an;
1229 u8 density;
1230
1231 an = (struct ath_node *)sta->drv_priv;
1232 txtid = ATH_AN_2_TID(an, tid);
1233
1234 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1235 return -EAGAIN;
1236
1237 /* update ampdu factor/density, they may have changed. This may happen
1238 * in HT IBSS when a beacon with HT-info is received after the station
1239 * has already been added.
1240 */
1241 if (sta->ht_cap.ht_supported) {
1242 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1243 sta->ht_cap.ampdu_factor);
1244 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1245 an->mpdudensity = density;
1246 }
1247
1248 txtid->state |= AGGR_ADDBA_PROGRESS;
1249 txtid->paused = true;
1250 *ssn = txtid->seq_start = txtid->seq_next;
1251 txtid->bar_index = -1;
1252
1253 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1254 txtid->baw_head = txtid->baw_tail = 0;
1255
1256 return 0;
1257 }
1258
1259 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1260 {
1261 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1262 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1263 struct ath_txq *txq = txtid->ac->txq;
1264
1265 if (txtid->state & AGGR_CLEANUP)
1266 return;
1267
1268 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1269 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1270 return;
1271 }
1272
1273 ath_txq_lock(sc, txq);
1274 txtid->paused = true;
1275
1276 /*
1277 * If frames are still being transmitted for this TID, they will be
1278 * cleaned up during tx completion. To prevent race conditions, this
1279 * TID can only be reused after all in-progress subframes have been
1280 * completed.
1281 */
1282 if (txtid->baw_head != txtid->baw_tail)
1283 txtid->state |= AGGR_CLEANUP;
1284 else
1285 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1286
1287 ath_tx_flush_tid(sc, txtid);
1288 ath_txq_unlock_complete(sc, txq);
1289 }
1290
1291 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1292 struct ath_node *an)
1293 {
1294 struct ath_atx_tid *tid;
1295 struct ath_atx_ac *ac;
1296 struct ath_txq *txq;
1297 bool buffered;
1298 int tidno;
1299
1300 for (tidno = 0, tid = &an->tid[tidno];
1301 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1302
1303 if (!tid->sched)
1304 continue;
1305
1306 ac = tid->ac;
1307 txq = ac->txq;
1308
1309 ath_txq_lock(sc, txq);
1310
1311 buffered = !skb_queue_empty(&tid->buf_q);
1312
1313 tid->sched = false;
1314 list_del(&tid->list);
1315
1316 if (ac->sched) {
1317 ac->sched = false;
1318 list_del(&ac->list);
1319 }
1320
1321 ath_txq_unlock(sc, txq);
1322
1323 ieee80211_sta_set_buffered(sta, tidno, buffered);
1324 }
1325 }
1326
1327 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1328 {
1329 struct ath_atx_tid *tid;
1330 struct ath_atx_ac *ac;
1331 struct ath_txq *txq;
1332 int tidno;
1333
1334 for (tidno = 0, tid = &an->tid[tidno];
1335 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1336
1337 ac = tid->ac;
1338 txq = ac->txq;
1339
1340 ath_txq_lock(sc, txq);
1341 ac->clear_ps_filter = true;
1342
1343 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1344 ath_tx_queue_tid(txq, tid);
1345 ath_txq_schedule(sc, txq);
1346 }
1347
1348 ath_txq_unlock_complete(sc, txq);
1349 }
1350 }
1351
1352 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1353 {
1354 struct ath_atx_tid *txtid;
1355 struct ath_node *an;
1356
1357 an = (struct ath_node *)sta->drv_priv;
1358
1359 txtid = ATH_AN_2_TID(an, tid);
1360 txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1361 txtid->state |= AGGR_ADDBA_COMPLETE;
1362 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1363 ath_tx_resume_tid(sc, txtid);
1364 }
1365
1366 /********************/
1367 /* Queue Management */
1368 /********************/
1369
1370 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1371 {
1372 struct ath_hw *ah = sc->sc_ah;
1373 struct ath9k_tx_queue_info qi;
1374 static const int subtype_txq_to_hwq[] = {
1375 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1376 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1377 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1378 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1379 };
1380 int axq_qnum, i;
1381
1382 memset(&qi, 0, sizeof(qi));
1383 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1384 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1385 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1386 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1387 qi.tqi_physCompBuf = 0;
1388
1389 /*
1390 * Enable interrupts only for EOL and DESC conditions.
1391 * We mark tx descriptors to receive a DESC interrupt
1392 * when a tx queue gets deep; otherwise waiting for the
1393 * EOL to reap descriptors. Note that this is done to
1394 * reduce interrupt load and this only defers reaping
1395 * descriptors, never transmitting frames. Aside from
1396 * reducing interrupts this also permits more concurrency.
1397 * The only potential downside is if the tx queue backs
1398 * up in which case the top half of the kernel may backup
1399 * due to a lack of tx descriptors.
1400 *
1401 * The UAPSD queue is an exception, since we take a desc-
1402 * based intr on the EOSP frames.
1403 */
1404 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1405 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1406 } else {
1407 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1408 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1409 else
1410 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1411 TXQ_FLAG_TXDESCINT_ENABLE;
1412 }
1413 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1414 if (axq_qnum == -1) {
1415 /*
1416 * NB: don't print a message, this happens
1417 * normally on parts with too few tx queues
1418 */
1419 return NULL;
1420 }
1421 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1422 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1423
1424 txq->axq_qnum = axq_qnum;
1425 txq->mac80211_qnum = -1;
1426 txq->axq_link = NULL;
1427 __skb_queue_head_init(&txq->complete_q);
1428 INIT_LIST_HEAD(&txq->axq_q);
1429 INIT_LIST_HEAD(&txq->axq_acq);
1430 spin_lock_init(&txq->axq_lock);
1431 txq->axq_depth = 0;
1432 txq->axq_ampdu_depth = 0;
1433 txq->axq_tx_inprogress = false;
1434 sc->tx.txqsetup |= 1<<axq_qnum;
1435
1436 txq->txq_headidx = txq->txq_tailidx = 0;
1437 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1438 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1439 }
1440 return &sc->tx.txq[axq_qnum];
1441 }
1442
1443 int ath_txq_update(struct ath_softc *sc, int qnum,
1444 struct ath9k_tx_queue_info *qinfo)
1445 {
1446 struct ath_hw *ah = sc->sc_ah;
1447 int error = 0;
1448 struct ath9k_tx_queue_info qi;
1449
1450 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1451
1452 ath9k_hw_get_txq_props(ah, qnum, &qi);
1453 qi.tqi_aifs = qinfo->tqi_aifs;
1454 qi.tqi_cwmin = qinfo->tqi_cwmin;
1455 qi.tqi_cwmax = qinfo->tqi_cwmax;
1456 qi.tqi_burstTime = qinfo->tqi_burstTime;
1457 qi.tqi_readyTime = qinfo->tqi_readyTime;
1458
1459 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1460 ath_err(ath9k_hw_common(sc->sc_ah),
1461 "Unable to update hardware queue %u!\n", qnum);
1462 error = -EIO;
1463 } else {
1464 ath9k_hw_resettxqueue(ah, qnum);
1465 }
1466
1467 return error;
1468 }
1469
1470 int ath_cabq_update(struct ath_softc *sc)
1471 {
1472 struct ath9k_tx_queue_info qi;
1473 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1474 int qnum = sc->beacon.cabq->axq_qnum;
1475
1476 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1477 /*
1478 * Ensure the readytime % is within the bounds.
1479 */
1480 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1481 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1482 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1483 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1484
1485 qi.tqi_readyTime = (cur_conf->beacon_interval *
1486 sc->config.cabqReadytime) / 100;
1487 ath_txq_update(sc, qnum, &qi);
1488
1489 return 0;
1490 }
1491
1492 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1493 struct list_head *list)
1494 {
1495 struct ath_buf *bf, *lastbf;
1496 struct list_head bf_head;
1497 struct ath_tx_status ts;
1498
1499 memset(&ts, 0, sizeof(ts));
1500 ts.ts_status = ATH9K_TX_FLUSH;
1501 INIT_LIST_HEAD(&bf_head);
1502
1503 while (!list_empty(list)) {
1504 bf = list_first_entry(list, struct ath_buf, list);
1505
1506 if (bf->bf_stale) {
1507 list_del(&bf->list);
1508
1509 ath_tx_return_buffer(sc, bf);
1510 continue;
1511 }
1512
1513 lastbf = bf->bf_lastbf;
1514 list_cut_position(&bf_head, list, &lastbf->list);
1515 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1516 }
1517 }
1518
1519 /*
1520 * Drain a given TX queue (could be Beacon or Data)
1521 *
1522 * This assumes output has been stopped and
1523 * we do not need to block ath_tx_tasklet.
1524 */
1525 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1526 {
1527 ath_txq_lock(sc, txq);
1528
1529 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1530 int idx = txq->txq_tailidx;
1531
1532 while (!list_empty(&txq->txq_fifo[idx])) {
1533 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1534
1535 INCR(idx, ATH_TXFIFO_DEPTH);
1536 }
1537 txq->txq_tailidx = idx;
1538 }
1539
1540 txq->axq_link = NULL;
1541 txq->axq_tx_inprogress = false;
1542 ath_drain_txq_list(sc, txq, &txq->axq_q);
1543
1544 ath_txq_unlock_complete(sc, txq);
1545 }
1546
1547 bool ath_drain_all_txq(struct ath_softc *sc)
1548 {
1549 struct ath_hw *ah = sc->sc_ah;
1550 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1551 struct ath_txq *txq;
1552 int i;
1553 u32 npend = 0;
1554
1555 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1556 return true;
1557
1558 ath9k_hw_abort_tx_dma(ah);
1559
1560 /* Check if any queue remains active */
1561 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1562 if (!ATH_TXQ_SETUP(sc, i))
1563 continue;
1564
1565 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1566 npend |= BIT(i);
1567 }
1568
1569 if (npend)
1570 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1571
1572 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1573 if (!ATH_TXQ_SETUP(sc, i))
1574 continue;
1575
1576 /*
1577 * The caller will resume queues with ieee80211_wake_queues.
1578 * Mark the queue as not stopped to prevent ath_tx_complete
1579 * from waking the queue too early.
1580 */
1581 txq = &sc->tx.txq[i];
1582 txq->stopped = false;
1583 ath_draintxq(sc, txq);
1584 }
1585
1586 return !npend;
1587 }
1588
1589 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1590 {
1591 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1592 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1593 }
1594
1595 /* For each axq_acq entry, for each tid, try to schedule packets
1596 * for transmit until ampdu_depth has reached min Q depth.
1597 */
1598 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1599 {
1600 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1601 struct ath_atx_tid *tid, *last_tid;
1602
1603 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1604 list_empty(&txq->axq_acq) ||
1605 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1606 return;
1607
1608 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1609 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1610
1611 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1612 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1613 list_del(&ac->list);
1614 ac->sched = false;
1615
1616 while (!list_empty(&ac->tid_q)) {
1617 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1618 list);
1619 list_del(&tid->list);
1620 tid->sched = false;
1621
1622 if (tid->paused)
1623 continue;
1624
1625 ath_tx_sched_aggr(sc, txq, tid);
1626
1627 /*
1628 * add tid to round-robin queue if more frames
1629 * are pending for the tid
1630 */
1631 if (!skb_queue_empty(&tid->buf_q))
1632 ath_tx_queue_tid(txq, tid);
1633
1634 if (tid == last_tid ||
1635 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1636 break;
1637 }
1638
1639 if (!list_empty(&ac->tid_q) && !ac->sched) {
1640 ac->sched = true;
1641 list_add_tail(&ac->list, &txq->axq_acq);
1642 }
1643
1644 if (ac == last_ac ||
1645 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1646 return;
1647 }
1648 }
1649
1650 /***********/
1651 /* TX, DMA */
1652 /***********/
1653
1654 /*
1655 * Insert a chain of ath_buf (descriptors) on a txq and
1656 * assume the descriptors are already chained together by caller.
1657 */
1658 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1659 struct list_head *head, bool internal)
1660 {
1661 struct ath_hw *ah = sc->sc_ah;
1662 struct ath_common *common = ath9k_hw_common(ah);
1663 struct ath_buf *bf, *bf_last;
1664 bool puttxbuf = false;
1665 bool edma;
1666
1667 /*
1668 * Insert the frame on the outbound list and
1669 * pass it on to the hardware.
1670 */
1671
1672 if (list_empty(head))
1673 return;
1674
1675 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1676 bf = list_first_entry(head, struct ath_buf, list);
1677 bf_last = list_entry(head->prev, struct ath_buf, list);
1678
1679 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1680 txq->axq_qnum, txq->axq_depth);
1681
1682 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1683 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1684 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1685 puttxbuf = true;
1686 } else {
1687 list_splice_tail_init(head, &txq->axq_q);
1688
1689 if (txq->axq_link) {
1690 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1691 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1692 txq->axq_qnum, txq->axq_link,
1693 ito64(bf->bf_daddr), bf->bf_desc);
1694 } else if (!edma)
1695 puttxbuf = true;
1696
1697 txq->axq_link = bf_last->bf_desc;
1698 }
1699
1700 if (puttxbuf) {
1701 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1702 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1703 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1704 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1705 }
1706
1707 if (!edma) {
1708 TX_STAT_INC(txq->axq_qnum, txstart);
1709 ath9k_hw_txstart(ah, txq->axq_qnum);
1710 }
1711
1712 if (!internal) {
1713 txq->axq_depth++;
1714 if (bf_is_ampdu_not_probing(bf))
1715 txq->axq_ampdu_depth++;
1716 }
1717 }
1718
1719 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1720 struct sk_buff *skb, struct ath_tx_control *txctl)
1721 {
1722 struct ath_frame_info *fi = get_frame_info(skb);
1723 struct list_head bf_head;
1724 struct ath_buf *bf;
1725
1726 /*
1727 * Do not queue to h/w when any of the following conditions is true:
1728 * - there are pending frames in software queue
1729 * - the TID is currently paused for ADDBA/BAR request
1730 * - seqno is not within block-ack window
1731 * - h/w queue depth exceeds low water mark
1732 */
1733 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1734 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1735 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1736 /*
1737 * Add this frame to software queue for scheduling later
1738 * for aggregation.
1739 */
1740 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1741 __skb_queue_tail(&tid->buf_q, skb);
1742 if (!txctl->an || !txctl->an->sleeping)
1743 ath_tx_queue_tid(txctl->txq, tid);
1744 return;
1745 }
1746
1747 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1748 if (!bf) {
1749 ieee80211_free_txskb(sc->hw, skb);
1750 return;
1751 }
1752
1753 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1754 bf->bf_state.bf_type = BUF_AMPDU;
1755 INIT_LIST_HEAD(&bf_head);
1756 list_add(&bf->list, &bf_head);
1757
1758 /* Add sub-frame to BAW */
1759 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1760
1761 /* Queue to h/w without aggregation */
1762 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1763 bf->bf_lastbf = bf;
1764 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1765 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1766 }
1767
1768 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1769 struct ath_atx_tid *tid, struct sk_buff *skb)
1770 {
1771 struct ath_frame_info *fi = get_frame_info(skb);
1772 struct list_head bf_head;
1773 struct ath_buf *bf;
1774
1775 bf = fi->bf;
1776
1777 INIT_LIST_HEAD(&bf_head);
1778 list_add_tail(&bf->list, &bf_head);
1779 bf->bf_state.bf_type = 0;
1780
1781 bf->bf_next = NULL;
1782 bf->bf_lastbf = bf;
1783 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1784 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1785 TX_STAT_INC(txq->axq_qnum, queued);
1786 }
1787
1788 static void setup_frame_info(struct ieee80211_hw *hw,
1789 struct ieee80211_sta *sta,
1790 struct sk_buff *skb,
1791 int framelen)
1792 {
1793 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1794 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1795 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1796 const struct ieee80211_rate *rate;
1797 struct ath_frame_info *fi = get_frame_info(skb);
1798 struct ath_node *an = NULL;
1799 enum ath9k_key_type keytype;
1800 bool short_preamble = false;
1801
1802 /*
1803 * We check if Short Preamble is needed for the CTS rate by
1804 * checking the BSS's global flag.
1805 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1806 */
1807 if (tx_info->control.vif &&
1808 tx_info->control.vif->bss_conf.use_short_preamble)
1809 short_preamble = true;
1810
1811 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1812 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1813
1814 if (sta)
1815 an = (struct ath_node *) sta->drv_priv;
1816
1817 memset(fi, 0, sizeof(*fi));
1818 if (hw_key)
1819 fi->keyix = hw_key->hw_key_idx;
1820 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1821 fi->keyix = an->ps_key;
1822 else
1823 fi->keyix = ATH9K_TXKEYIX_INVALID;
1824 fi->keytype = keytype;
1825 fi->framelen = framelen;
1826 fi->rtscts_rate = rate->hw_value;
1827 if (short_preamble)
1828 fi->rtscts_rate |= rate->hw_value_short;
1829 }
1830
1831 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1832 {
1833 struct ath_hw *ah = sc->sc_ah;
1834 struct ath9k_channel *curchan = ah->curchan;
1835
1836 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1837 (curchan->channelFlags & CHANNEL_5GHZ) &&
1838 (chainmask == 0x7) && (rate < 0x90))
1839 return 0x3;
1840 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1841 IS_CCK_RATE(rate))
1842 return 0x2;
1843 else
1844 return chainmask;
1845 }
1846
1847 /*
1848 * Assign a descriptor (and sequence number if necessary,
1849 * and map buffer for DMA. Frees skb on error
1850 */
1851 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1852 struct ath_txq *txq,
1853 struct ath_atx_tid *tid,
1854 struct sk_buff *skb)
1855 {
1856 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1857 struct ath_frame_info *fi = get_frame_info(skb);
1858 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1859 struct ath_buf *bf;
1860 int fragno;
1861 u16 seqno;
1862
1863 bf = ath_tx_get_buffer(sc);
1864 if (!bf) {
1865 ath_dbg(common, XMIT, "TX buffers are full\n");
1866 return NULL;
1867 }
1868
1869 ATH_TXBUF_RESET(bf);
1870
1871 if (tid) {
1872 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1873 seqno = tid->seq_next;
1874 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1875
1876 if (fragno)
1877 hdr->seq_ctrl |= cpu_to_le16(fragno);
1878
1879 if (!ieee80211_has_morefrags(hdr->frame_control))
1880 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1881
1882 bf->bf_state.seqno = seqno;
1883 }
1884
1885 bf->bf_mpdu = skb;
1886
1887 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1888 skb->len, DMA_TO_DEVICE);
1889 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1890 bf->bf_mpdu = NULL;
1891 bf->bf_buf_addr = 0;
1892 ath_err(ath9k_hw_common(sc->sc_ah),
1893 "dma_mapping_error() on TX\n");
1894 ath_tx_return_buffer(sc, bf);
1895 return NULL;
1896 }
1897
1898 fi->bf = bf;
1899
1900 return bf;
1901 }
1902
1903 /* Upon failure caller should free skb */
1904 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1905 struct ath_tx_control *txctl)
1906 {
1907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1908 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1909 struct ieee80211_sta *sta = txctl->sta;
1910 struct ieee80211_vif *vif = info->control.vif;
1911 struct ath_softc *sc = hw->priv;
1912 struct ath_txq *txq = txctl->txq;
1913 struct ath_atx_tid *tid = NULL;
1914 struct ath_buf *bf;
1915 int padpos, padsize;
1916 int frmlen = skb->len + FCS_LEN;
1917 u8 tidno;
1918 int q;
1919
1920 /* NOTE: sta can be NULL according to net/mac80211.h */
1921 if (sta)
1922 txctl->an = (struct ath_node *)sta->drv_priv;
1923
1924 if (info->control.hw_key)
1925 frmlen += info->control.hw_key->icv_len;
1926
1927 /*
1928 * As a temporary workaround, assign seq# here; this will likely need
1929 * to be cleaned up to work better with Beacon transmission and virtual
1930 * BSSes.
1931 */
1932 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1933 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1934 sc->tx.seq_no += 0x10;
1935 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1936 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1937 }
1938
1939 /* Add the padding after the header if this is not already done */
1940 padpos = ieee80211_hdrlen(hdr->frame_control);
1941 padsize = padpos & 3;
1942 if (padsize && skb->len > padpos) {
1943 if (skb_headroom(skb) < padsize)
1944 return -ENOMEM;
1945
1946 skb_push(skb, padsize);
1947 memmove(skb->data, skb->data + padsize, padpos);
1948 hdr = (struct ieee80211_hdr *) skb->data;
1949 }
1950
1951 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1952 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1953 !ieee80211_is_data(hdr->frame_control))
1954 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1955
1956 setup_frame_info(hw, sta, skb, frmlen);
1957
1958 /*
1959 * At this point, the vif, hw_key and sta pointers in the tx control
1960 * info are no longer valid (overwritten by the ath_frame_info data.
1961 */
1962
1963 q = skb_get_queue_mapping(skb);
1964
1965 ath_txq_lock(sc, txq);
1966 if (txq == sc->tx.txq_map[q] &&
1967 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
1968 !txq->stopped) {
1969 ieee80211_stop_queue(sc->hw, q);
1970 txq->stopped = true;
1971 }
1972
1973 if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
1974 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1975 IEEE80211_QOS_CTL_TID_MASK;
1976 tid = ATH_AN_2_TID(txctl->an, tidno);
1977
1978 WARN_ON(tid->ac->txq != txctl->txq);
1979 }
1980
1981 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1982 /*
1983 * Try aggregation if it's a unicast data frame
1984 * and the destination is HT capable.
1985 */
1986 ath_tx_send_ampdu(sc, tid, skb, txctl);
1987 goto out;
1988 }
1989
1990 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1991 if (!bf) {
1992 if (txctl->paprd)
1993 dev_kfree_skb_any(skb);
1994 else
1995 ieee80211_free_txskb(sc->hw, skb);
1996 goto out;
1997 }
1998
1999 bf->bf_state.bfs_paprd = txctl->paprd;
2000
2001 if (txctl->paprd)
2002 bf->bf_state.bfs_paprd_timestamp = jiffies;
2003
2004 ath_set_rates(vif, sta, bf);
2005 ath_tx_send_normal(sc, txctl->txq, tid, skb);
2006
2007 out:
2008 ath_txq_unlock(sc, txq);
2009
2010 return 0;
2011 }
2012
2013 /*****************/
2014 /* TX Completion */
2015 /*****************/
2016
2017 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2018 int tx_flags, struct ath_txq *txq)
2019 {
2020 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2021 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2022 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2023 int q, padpos, padsize;
2024 unsigned long flags;
2025
2026 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2027
2028 if (sc->sc_ah->caldata)
2029 sc->sc_ah->caldata->paprd_packet_sent = true;
2030
2031 if (!(tx_flags & ATH_TX_ERROR))
2032 /* Frame was ACKed */
2033 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2034
2035 padpos = ieee80211_hdrlen(hdr->frame_control);
2036 padsize = padpos & 3;
2037 if (padsize && skb->len>padpos+padsize) {
2038 /*
2039 * Remove MAC header padding before giving the frame back to
2040 * mac80211.
2041 */
2042 memmove(skb->data + padsize, skb->data, padpos);
2043 skb_pull(skb, padsize);
2044 }
2045
2046 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2047 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2048 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2049 ath_dbg(common, PS,
2050 "Going back to sleep after having received TX status (0x%lx)\n",
2051 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2052 PS_WAIT_FOR_CAB |
2053 PS_WAIT_FOR_PSPOLL_DATA |
2054 PS_WAIT_FOR_TX_ACK));
2055 }
2056 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2057
2058 q = skb_get_queue_mapping(skb);
2059 if (txq == sc->tx.txq_map[q]) {
2060 if (WARN_ON(--txq->pending_frames < 0))
2061 txq->pending_frames = 0;
2062
2063 if (txq->stopped &&
2064 txq->pending_frames < sc->tx.txq_max_pending[q]) {
2065 ieee80211_wake_queue(sc->hw, q);
2066 txq->stopped = false;
2067 }
2068 }
2069
2070 __skb_queue_tail(&txq->complete_q, skb);
2071 }
2072
2073 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2074 struct ath_txq *txq, struct list_head *bf_q,
2075 struct ath_tx_status *ts, int txok)
2076 {
2077 struct sk_buff *skb = bf->bf_mpdu;
2078 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2079 unsigned long flags;
2080 int tx_flags = 0;
2081
2082 if (!txok)
2083 tx_flags |= ATH_TX_ERROR;
2084
2085 if (ts->ts_status & ATH9K_TXERR_FILT)
2086 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2087
2088 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2089 bf->bf_buf_addr = 0;
2090
2091 if (bf->bf_state.bfs_paprd) {
2092 if (time_after(jiffies,
2093 bf->bf_state.bfs_paprd_timestamp +
2094 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2095 dev_kfree_skb_any(skb);
2096 else
2097 complete(&sc->paprd_complete);
2098 } else {
2099 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2100 ath_tx_complete(sc, skb, tx_flags, txq);
2101 }
2102 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2103 * accidentally reference it later.
2104 */
2105 bf->bf_mpdu = NULL;
2106
2107 /*
2108 * Return the list of ath_buf of this mpdu to free queue
2109 */
2110 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2111 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2112 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2113 }
2114
2115 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2116 struct ath_tx_status *ts, int nframes, int nbad,
2117 int txok)
2118 {
2119 struct sk_buff *skb = bf->bf_mpdu;
2120 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2121 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2122 struct ieee80211_hw *hw = sc->hw;
2123 struct ath_hw *ah = sc->sc_ah;
2124 u8 i, tx_rateindex;
2125
2126 if (txok)
2127 tx_info->status.ack_signal = ts->ts_rssi;
2128
2129 tx_rateindex = ts->ts_rateindex;
2130 WARN_ON(tx_rateindex >= hw->max_rates);
2131
2132 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2133 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2134
2135 BUG_ON(nbad > nframes);
2136 }
2137 tx_info->status.ampdu_len = nframes;
2138 tx_info->status.ampdu_ack_len = nframes - nbad;
2139
2140 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2141 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2142 /*
2143 * If an underrun error is seen assume it as an excessive
2144 * retry only if max frame trigger level has been reached
2145 * (2 KB for single stream, and 4 KB for dual stream).
2146 * Adjust the long retry as if the frame was tried
2147 * hw->max_rate_tries times to affect how rate control updates
2148 * PER for the failed rate.
2149 * In case of congestion on the bus penalizing this type of
2150 * underruns should help hardware actually transmit new frames
2151 * successfully by eventually preferring slower rates.
2152 * This itself should also alleviate congestion on the bus.
2153 */
2154 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2155 ATH9K_TX_DELIM_UNDERRUN)) &&
2156 ieee80211_is_data(hdr->frame_control) &&
2157 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2158 tx_info->status.rates[tx_rateindex].count =
2159 hw->max_rate_tries;
2160 }
2161
2162 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2163 tx_info->status.rates[i].count = 0;
2164 tx_info->status.rates[i].idx = -1;
2165 }
2166
2167 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2168 }
2169
2170 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2171 {
2172 struct ath_hw *ah = sc->sc_ah;
2173 struct ath_common *common = ath9k_hw_common(ah);
2174 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2175 struct list_head bf_head;
2176 struct ath_desc *ds;
2177 struct ath_tx_status ts;
2178 int status;
2179
2180 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2181 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2182 txq->axq_link);
2183
2184 ath_txq_lock(sc, txq);
2185 for (;;) {
2186 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2187 break;
2188
2189 if (list_empty(&txq->axq_q)) {
2190 txq->axq_link = NULL;
2191 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2192 ath_txq_schedule(sc, txq);
2193 break;
2194 }
2195 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2196
2197 /*
2198 * There is a race condition that a BH gets scheduled
2199 * after sw writes TxE and before hw re-load the last
2200 * descriptor to get the newly chained one.
2201 * Software must keep the last DONE descriptor as a
2202 * holding descriptor - software does so by marking
2203 * it with the STALE flag.
2204 */
2205 bf_held = NULL;
2206 if (bf->bf_stale) {
2207 bf_held = bf;
2208 if (list_is_last(&bf_held->list, &txq->axq_q))
2209 break;
2210
2211 bf = list_entry(bf_held->list.next, struct ath_buf,
2212 list);
2213 }
2214
2215 lastbf = bf->bf_lastbf;
2216 ds = lastbf->bf_desc;
2217
2218 memset(&ts, 0, sizeof(ts));
2219 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2220 if (status == -EINPROGRESS)
2221 break;
2222
2223 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2224
2225 /*
2226 * Remove ath_buf's of the same transmit unit from txq,
2227 * however leave the last descriptor back as the holding
2228 * descriptor for hw.
2229 */
2230 lastbf->bf_stale = true;
2231 INIT_LIST_HEAD(&bf_head);
2232 if (!list_is_singular(&lastbf->list))
2233 list_cut_position(&bf_head,
2234 &txq->axq_q, lastbf->list.prev);
2235
2236 if (bf_held) {
2237 list_del(&bf_held->list);
2238 ath_tx_return_buffer(sc, bf_held);
2239 }
2240
2241 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2242 }
2243 ath_txq_unlock_complete(sc, txq);
2244 }
2245
2246 void ath_tx_tasklet(struct ath_softc *sc)
2247 {
2248 struct ath_hw *ah = sc->sc_ah;
2249 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2250 int i;
2251
2252 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2253 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2254 ath_tx_processq(sc, &sc->tx.txq[i]);
2255 }
2256 }
2257
2258 void ath_tx_edma_tasklet(struct ath_softc *sc)
2259 {
2260 struct ath_tx_status ts;
2261 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2262 struct ath_hw *ah = sc->sc_ah;
2263 struct ath_txq *txq;
2264 struct ath_buf *bf, *lastbf;
2265 struct list_head bf_head;
2266 struct list_head *fifo_list;
2267 int status;
2268
2269 for (;;) {
2270 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2271 break;
2272
2273 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2274 if (status == -EINPROGRESS)
2275 break;
2276 if (status == -EIO) {
2277 ath_dbg(common, XMIT, "Error processing tx status\n");
2278 break;
2279 }
2280
2281 /* Process beacon completions separately */
2282 if (ts.qid == sc->beacon.beaconq) {
2283 sc->beacon.tx_processed = true;
2284 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2285 continue;
2286 }
2287
2288 txq = &sc->tx.txq[ts.qid];
2289
2290 ath_txq_lock(sc, txq);
2291
2292 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2293
2294 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2295 if (list_empty(fifo_list)) {
2296 ath_txq_unlock(sc, txq);
2297 return;
2298 }
2299
2300 bf = list_first_entry(fifo_list, struct ath_buf, list);
2301 if (bf->bf_stale) {
2302 list_del(&bf->list);
2303 ath_tx_return_buffer(sc, bf);
2304 bf = list_first_entry(fifo_list, struct ath_buf, list);
2305 }
2306
2307 lastbf = bf->bf_lastbf;
2308
2309 INIT_LIST_HEAD(&bf_head);
2310 if (list_is_last(&lastbf->list, fifo_list)) {
2311 list_splice_tail_init(fifo_list, &bf_head);
2312 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2313
2314 if (!list_empty(&txq->axq_q)) {
2315 struct list_head bf_q;
2316
2317 INIT_LIST_HEAD(&bf_q);
2318 txq->axq_link = NULL;
2319 list_splice_tail_init(&txq->axq_q, &bf_q);
2320 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2321 }
2322 } else {
2323 lastbf->bf_stale = true;
2324 if (bf != lastbf)
2325 list_cut_position(&bf_head, fifo_list,
2326 lastbf->list.prev);
2327 }
2328
2329 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2330 ath_txq_unlock_complete(sc, txq);
2331 }
2332 }
2333
2334 /*****************/
2335 /* Init, Cleanup */
2336 /*****************/
2337
2338 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2339 {
2340 struct ath_descdma *dd = &sc->txsdma;
2341 u8 txs_len = sc->sc_ah->caps.txs_len;
2342
2343 dd->dd_desc_len = size * txs_len;
2344 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2345 &dd->dd_desc_paddr, GFP_KERNEL);
2346 if (!dd->dd_desc)
2347 return -ENOMEM;
2348
2349 return 0;
2350 }
2351
2352 static int ath_tx_edma_init(struct ath_softc *sc)
2353 {
2354 int err;
2355
2356 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2357 if (!err)
2358 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2359 sc->txsdma.dd_desc_paddr,
2360 ATH_TXSTATUS_RING_SIZE);
2361
2362 return err;
2363 }
2364
2365 int ath_tx_init(struct ath_softc *sc, int nbufs)
2366 {
2367 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2368 int error = 0;
2369
2370 spin_lock_init(&sc->tx.txbuflock);
2371
2372 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2373 "tx", nbufs, 1, 1);
2374 if (error != 0) {
2375 ath_err(common,
2376 "Failed to allocate tx descriptors: %d\n", error);
2377 return error;
2378 }
2379
2380 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2381 "beacon", ATH_BCBUF, 1, 1);
2382 if (error != 0) {
2383 ath_err(common,
2384 "Failed to allocate beacon descriptors: %d\n", error);
2385 return error;
2386 }
2387
2388 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2389
2390 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2391 error = ath_tx_edma_init(sc);
2392
2393 return error;
2394 }
2395
2396 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2397 {
2398 struct ath_atx_tid *tid;
2399 struct ath_atx_ac *ac;
2400 int tidno, acno;
2401
2402 for (tidno = 0, tid = &an->tid[tidno];
2403 tidno < IEEE80211_NUM_TIDS;
2404 tidno++, tid++) {
2405 tid->an = an;
2406 tid->tidno = tidno;
2407 tid->seq_start = tid->seq_next = 0;
2408 tid->baw_size = WME_MAX_BA;
2409 tid->baw_head = tid->baw_tail = 0;
2410 tid->sched = false;
2411 tid->paused = false;
2412 tid->state &= ~AGGR_CLEANUP;
2413 __skb_queue_head_init(&tid->buf_q);
2414 acno = TID_TO_WME_AC(tidno);
2415 tid->ac = &an->ac[acno];
2416 tid->state &= ~AGGR_ADDBA_COMPLETE;
2417 tid->state &= ~AGGR_ADDBA_PROGRESS;
2418 }
2419
2420 for (acno = 0, ac = &an->ac[acno];
2421 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2422 ac->sched = false;
2423 ac->txq = sc->tx.txq_map[acno];
2424 INIT_LIST_HEAD(&ac->tid_q);
2425 }
2426 }
2427
2428 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2429 {
2430 struct ath_atx_ac *ac;
2431 struct ath_atx_tid *tid;
2432 struct ath_txq *txq;
2433 int tidno;
2434
2435 for (tidno = 0, tid = &an->tid[tidno];
2436 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2437
2438 ac = tid->ac;
2439 txq = ac->txq;
2440
2441 ath_txq_lock(sc, txq);
2442
2443 if (tid->sched) {
2444 list_del(&tid->list);
2445 tid->sched = false;
2446 }
2447
2448 if (ac->sched) {
2449 list_del(&ac->list);
2450 tid->ac->sched = false;
2451 }
2452
2453 ath_tid_drain(sc, txq, tid);
2454 tid->state &= ~AGGR_ADDBA_COMPLETE;
2455 tid->state &= ~AGGR_CLEANUP;
2456
2457 ath_txq_unlock(sc, txq);
2458 }
2459 }