Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
51
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 struct ath_txq *txq, struct list_head *bf_q,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb,
70 bool dequeue);
71
72 enum {
73 MCS_HT20,
74 MCS_HT20_SGI,
75 MCS_HT40,
76 MCS_HT40_SGI,
77 };
78
79 /*********************/
80 /* Aggregation logic */
81 /*********************/
82
83 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
84 __acquires(&txq->axq_lock)
85 {
86 spin_lock_bh(&txq->axq_lock);
87 }
88
89 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
90 __releases(&txq->axq_lock)
91 {
92 spin_unlock_bh(&txq->axq_lock);
93 }
94
95 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
96 __releases(&txq->axq_lock)
97 {
98 struct sk_buff_head q;
99 struct sk_buff *skb;
100
101 __skb_queue_head_init(&q);
102 skb_queue_splice_init(&txq->complete_q, &q);
103 spin_unlock_bh(&txq->axq_lock);
104
105 while ((skb = __skb_dequeue(&q)))
106 ieee80211_tx_status(sc->hw, skb);
107 }
108
109 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
110 {
111 struct ath_atx_ac *ac = tid->ac;
112
113 if (tid->paused)
114 return;
115
116 if (tid->sched)
117 return;
118
119 tid->sched = true;
120 list_add_tail(&tid->list, &ac->tid_q);
121
122 if (ac->sched)
123 return;
124
125 ac->sched = true;
126 list_add_tail(&ac->list, &txq->axq_acq);
127 }
128
129 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
130 {
131 struct ath_txq *txq = tid->ac->txq;
132
133 WARN_ON(!tid->paused);
134
135 ath_txq_lock(sc, txq);
136 tid->paused = false;
137
138 if (skb_queue_empty(&tid->buf_q))
139 goto unlock;
140
141 ath_tx_queue_tid(txq, tid);
142 ath_txq_schedule(sc, txq);
143 unlock:
144 ath_txq_unlock_complete(sc, txq);
145 }
146
147 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
148 {
149 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
150 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
151 sizeof(tx_info->rate_driver_data));
152 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
153 }
154
155 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
156 {
157 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
158 seqno << IEEE80211_SEQ_SEQ_SHIFT);
159 }
160
161 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
162 {
163 struct ath_txq *txq = tid->ac->txq;
164 struct sk_buff *skb;
165 struct ath_buf *bf;
166 struct list_head bf_head;
167 struct ath_tx_status ts;
168 struct ath_frame_info *fi;
169 bool sendbar = false;
170
171 INIT_LIST_HEAD(&bf_head);
172
173 memset(&ts, 0, sizeof(ts));
174
175 while ((skb = __skb_dequeue(&tid->buf_q))) {
176 fi = get_frame_info(skb);
177 bf = fi->bf;
178
179 if (bf && fi->retries) {
180 list_add_tail(&bf->list, &bf_head);
181 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
182 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
183 sendbar = true;
184 } else {
185 ath_tx_send_normal(sc, txq, NULL, skb);
186 }
187 }
188
189 if (tid->baw_head == tid->baw_tail) {
190 tid->state &= ~AGGR_ADDBA_COMPLETE;
191 tid->state &= ~AGGR_CLEANUP;
192 }
193
194 if (sendbar) {
195 ath_txq_unlock(sc, txq);
196 ath_send_bar(tid, tid->seq_start);
197 ath_txq_lock(sc, txq);
198 }
199 }
200
201 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
202 int seqno)
203 {
204 int index, cindex;
205
206 index = ATH_BA_INDEX(tid->seq_start, seqno);
207 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
208
209 __clear_bit(cindex, tid->tx_buf);
210
211 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
212 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
213 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
214 if (tid->bar_index >= 0)
215 tid->bar_index--;
216 }
217 }
218
219 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
220 u16 seqno)
221 {
222 int index, cindex;
223
224 index = ATH_BA_INDEX(tid->seq_start, seqno);
225 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
226 __set_bit(cindex, tid->tx_buf);
227
228 if (index >= ((tid->baw_tail - tid->baw_head) &
229 (ATH_TID_MAX_BUFS - 1))) {
230 tid->baw_tail = cindex;
231 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
232 }
233 }
234
235 /*
236 * TODO: For frame(s) that are in the retry state, we will reuse the
237 * sequence number(s) without setting the retry bit. The
238 * alternative is to give up on these and BAR the receiver's window
239 * forward.
240 */
241 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
242 struct ath_atx_tid *tid)
243
244 {
245 struct sk_buff *skb;
246 struct ath_buf *bf;
247 struct list_head bf_head;
248 struct ath_tx_status ts;
249 struct ath_frame_info *fi;
250
251 memset(&ts, 0, sizeof(ts));
252 INIT_LIST_HEAD(&bf_head);
253
254 while ((skb = __skb_dequeue(&tid->buf_q))) {
255 fi = get_frame_info(skb);
256 bf = fi->bf;
257
258 if (!bf) {
259 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
260 continue;
261 }
262
263 list_add_tail(&bf->list, &bf_head);
264
265 if (fi->retries)
266 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
267
268 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
269 }
270
271 tid->seq_next = tid->seq_start;
272 tid->baw_tail = tid->baw_head;
273 tid->bar_index = -1;
274 }
275
276 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
277 struct sk_buff *skb, int count)
278 {
279 struct ath_frame_info *fi = get_frame_info(skb);
280 struct ath_buf *bf = fi->bf;
281 struct ieee80211_hdr *hdr;
282 int prev = fi->retries;
283
284 TX_STAT_INC(txq->axq_qnum, a_retries);
285 fi->retries += count;
286
287 if (prev > 0)
288 return;
289
290 hdr = (struct ieee80211_hdr *)skb->data;
291 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
292 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
293 sizeof(*hdr), DMA_TO_DEVICE);
294 }
295
296 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
297 {
298 struct ath_buf *bf = NULL;
299
300 spin_lock_bh(&sc->tx.txbuflock);
301
302 if (unlikely(list_empty(&sc->tx.txbuf))) {
303 spin_unlock_bh(&sc->tx.txbuflock);
304 return NULL;
305 }
306
307 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
308 list_del(&bf->list);
309
310 spin_unlock_bh(&sc->tx.txbuflock);
311
312 return bf;
313 }
314
315 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
316 {
317 spin_lock_bh(&sc->tx.txbuflock);
318 list_add_tail(&bf->list, &sc->tx.txbuf);
319 spin_unlock_bh(&sc->tx.txbuflock);
320 }
321
322 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
323 {
324 struct ath_buf *tbf;
325
326 tbf = ath_tx_get_buffer(sc);
327 if (WARN_ON(!tbf))
328 return NULL;
329
330 ATH_TXBUF_RESET(tbf);
331
332 tbf->bf_mpdu = bf->bf_mpdu;
333 tbf->bf_buf_addr = bf->bf_buf_addr;
334 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
335 tbf->bf_state = bf->bf_state;
336
337 return tbf;
338 }
339
340 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
341 struct ath_tx_status *ts, int txok,
342 int *nframes, int *nbad)
343 {
344 struct ath_frame_info *fi;
345 u16 seq_st = 0;
346 u32 ba[WME_BA_BMP_SIZE >> 5];
347 int ba_index;
348 int isaggr = 0;
349
350 *nbad = 0;
351 *nframes = 0;
352
353 isaggr = bf_isaggr(bf);
354 if (isaggr) {
355 seq_st = ts->ts_seqnum;
356 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
357 }
358
359 while (bf) {
360 fi = get_frame_info(bf->bf_mpdu);
361 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
362
363 (*nframes)++;
364 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
365 (*nbad)++;
366
367 bf = bf->bf_next;
368 }
369 }
370
371
372 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
373 struct ath_buf *bf, struct list_head *bf_q,
374 struct ath_tx_status *ts, int txok, bool retry)
375 {
376 struct ath_node *an = NULL;
377 struct sk_buff *skb;
378 struct ieee80211_sta *sta;
379 struct ieee80211_hw *hw = sc->hw;
380 struct ieee80211_hdr *hdr;
381 struct ieee80211_tx_info *tx_info;
382 struct ath_atx_tid *tid = NULL;
383 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
384 struct list_head bf_head;
385 struct sk_buff_head bf_pending;
386 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
387 u32 ba[WME_BA_BMP_SIZE >> 5];
388 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
389 bool rc_update = true;
390 struct ieee80211_tx_rate rates[4];
391 struct ath_frame_info *fi;
392 int nframes;
393 u8 tidno;
394 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
395 int i, retries;
396 int bar_index = -1;
397
398 skb = bf->bf_mpdu;
399 hdr = (struct ieee80211_hdr *)skb->data;
400
401 tx_info = IEEE80211_SKB_CB(skb);
402
403 memcpy(rates, tx_info->control.rates, sizeof(rates));
404
405 retries = ts->ts_longretry + 1;
406 for (i = 0; i < ts->ts_rateindex; i++)
407 retries += rates[i].count;
408
409 rcu_read_lock();
410
411 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
412 if (!sta) {
413 rcu_read_unlock();
414
415 INIT_LIST_HEAD(&bf_head);
416 while (bf) {
417 bf_next = bf->bf_next;
418
419 if (!bf->bf_stale || bf_next != NULL)
420 list_move_tail(&bf->list, &bf_head);
421
422 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
423
424 bf = bf_next;
425 }
426 return;
427 }
428
429 an = (struct ath_node *)sta->drv_priv;
430 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
431 tid = ATH_AN_2_TID(an, tidno);
432 seq_first = tid->seq_start;
433
434 /*
435 * The hardware occasionally sends a tx status for the wrong TID.
436 * In this case, the BA status cannot be considered valid and all
437 * subframes need to be retransmitted
438 */
439 if (tidno != ts->tid)
440 txok = false;
441
442 isaggr = bf_isaggr(bf);
443 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
444
445 if (isaggr && txok) {
446 if (ts->ts_flags & ATH9K_TX_BA) {
447 seq_st = ts->ts_seqnum;
448 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
449 } else {
450 /*
451 * AR5416 can become deaf/mute when BA
452 * issue happens. Chip needs to be reset.
453 * But AP code may have sychronization issues
454 * when perform internal reset in this routine.
455 * Only enable reset in STA mode for now.
456 */
457 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
458 needreset = 1;
459 }
460 }
461
462 __skb_queue_head_init(&bf_pending);
463
464 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
465 while (bf) {
466 u16 seqno = bf->bf_state.seqno;
467
468 txfail = txpending = sendbar = 0;
469 bf_next = bf->bf_next;
470
471 skb = bf->bf_mpdu;
472 tx_info = IEEE80211_SKB_CB(skb);
473 fi = get_frame_info(skb);
474
475 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
476 /* transmit completion, subframe is
477 * acked by block ack */
478 acked_cnt++;
479 } else if (!isaggr && txok) {
480 /* transmit completion */
481 acked_cnt++;
482 } else if ((tid->state & AGGR_CLEANUP) || !retry) {
483 /*
484 * cleanup in progress, just fail
485 * the un-acked sub-frames
486 */
487 txfail = 1;
488 } else if (flush) {
489 txpending = 1;
490 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
491 if (txok || !an->sleeping)
492 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
493 retries);
494
495 txpending = 1;
496 } else {
497 txfail = 1;
498 txfail_cnt++;
499 bar_index = max_t(int, bar_index,
500 ATH_BA_INDEX(seq_first, seqno));
501 }
502
503 /*
504 * Make sure the last desc is reclaimed if it
505 * not a holding desc.
506 */
507 INIT_LIST_HEAD(&bf_head);
508 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
509 bf_next != NULL || !bf_last->bf_stale)
510 list_move_tail(&bf->list, &bf_head);
511
512 if (!txpending || (tid->state & AGGR_CLEANUP)) {
513 /*
514 * complete the acked-ones/xretried ones; update
515 * block-ack window
516 */
517 ath_tx_update_baw(sc, tid, seqno);
518
519 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
520 memcpy(tx_info->control.rates, rates, sizeof(rates));
521 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
522 rc_update = false;
523 }
524
525 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
526 !txfail);
527 } else {
528 /* retry the un-acked ones */
529 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
530 bf->bf_next == NULL && bf_last->bf_stale) {
531 struct ath_buf *tbf;
532
533 tbf = ath_clone_txbuf(sc, bf_last);
534 /*
535 * Update tx baw and complete the
536 * frame with failed status if we
537 * run out of tx buf.
538 */
539 if (!tbf) {
540 ath_tx_update_baw(sc, tid, seqno);
541
542 ath_tx_complete_buf(sc, bf, txq,
543 &bf_head, ts, 0);
544 bar_index = max_t(int, bar_index,
545 ATH_BA_INDEX(seq_first, seqno));
546 break;
547 }
548
549 fi->bf = tbf;
550 }
551
552 /*
553 * Put this buffer to the temporary pending
554 * queue to retain ordering
555 */
556 __skb_queue_tail(&bf_pending, skb);
557 }
558
559 bf = bf_next;
560 }
561
562 /* prepend un-acked frames to the beginning of the pending frame queue */
563 if (!skb_queue_empty(&bf_pending)) {
564 if (an->sleeping)
565 ieee80211_sta_set_buffered(sta, tid->tidno, true);
566
567 skb_queue_splice(&bf_pending, &tid->buf_q);
568 if (!an->sleeping) {
569 ath_tx_queue_tid(txq, tid);
570
571 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
572 tid->ac->clear_ps_filter = true;
573 }
574 }
575
576 if (bar_index >= 0) {
577 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
578
579 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
580 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
581
582 ath_txq_unlock(sc, txq);
583 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
584 ath_txq_lock(sc, txq);
585 }
586
587 if (tid->state & AGGR_CLEANUP)
588 ath_tx_flush_tid(sc, tid);
589
590 rcu_read_unlock();
591
592 if (needreset)
593 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
594 }
595
596 static bool ath_lookup_legacy(struct ath_buf *bf)
597 {
598 struct sk_buff *skb;
599 struct ieee80211_tx_info *tx_info;
600 struct ieee80211_tx_rate *rates;
601 int i;
602
603 skb = bf->bf_mpdu;
604 tx_info = IEEE80211_SKB_CB(skb);
605 rates = tx_info->control.rates;
606
607 for (i = 0; i < 4; i++) {
608 if (!rates[i].count || rates[i].idx < 0)
609 break;
610
611 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
612 return true;
613 }
614
615 return false;
616 }
617
618 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
619 struct ath_atx_tid *tid)
620 {
621 struct sk_buff *skb;
622 struct ieee80211_tx_info *tx_info;
623 struct ieee80211_tx_rate *rates;
624 u32 max_4ms_framelen, frmlen;
625 u16 aggr_limit, bt_aggr_limit, legacy = 0;
626 int q = tid->ac->txq->mac80211_qnum;
627 int i;
628
629 skb = bf->bf_mpdu;
630 tx_info = IEEE80211_SKB_CB(skb);
631 rates = tx_info->control.rates;
632
633 /*
634 * Find the lowest frame length among the rate series that will have a
635 * 4ms (or TXOP limited) transmit duration.
636 */
637 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
638
639 for (i = 0; i < 4; i++) {
640 int modeidx;
641
642 if (!rates[i].count)
643 continue;
644
645 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
646 legacy = 1;
647 break;
648 }
649
650 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
651 modeidx = MCS_HT40;
652 else
653 modeidx = MCS_HT20;
654
655 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
656 modeidx++;
657
658 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
659 max_4ms_framelen = min(max_4ms_framelen, frmlen);
660 }
661
662 /*
663 * limit aggregate size by the minimum rate if rate selected is
664 * not a probe rate, if rate selected is a probe rate then
665 * avoid aggregation of this packet.
666 */
667 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
668 return 0;
669
670 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
671
672 /*
673 * Override the default aggregation limit for BTCOEX.
674 */
675 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
676 if (bt_aggr_limit)
677 aggr_limit = bt_aggr_limit;
678
679 /*
680 * h/w can accept aggregates up to 16 bit lengths (65535).
681 * The IE, however can hold up to 65536, which shows up here
682 * as zero. Ignore 65536 since we are constrained by hw.
683 */
684 if (tid->an->maxampdu)
685 aggr_limit = min(aggr_limit, tid->an->maxampdu);
686
687 return aggr_limit;
688 }
689
690 /*
691 * Returns the number of delimiters to be added to
692 * meet the minimum required mpdudensity.
693 */
694 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
695 struct ath_buf *bf, u16 frmlen,
696 bool first_subfrm)
697 {
698 #define FIRST_DESC_NDELIMS 60
699 struct sk_buff *skb = bf->bf_mpdu;
700 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
701 u32 nsymbits, nsymbols;
702 u16 minlen;
703 u8 flags, rix;
704 int width, streams, half_gi, ndelim, mindelim;
705 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
706
707 /* Select standard number of delimiters based on frame length alone */
708 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
709
710 /*
711 * If encryption enabled, hardware requires some more padding between
712 * subframes.
713 * TODO - this could be improved to be dependent on the rate.
714 * The hardware can keep up at lower rates, but not higher rates
715 */
716 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
717 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
718 ndelim += ATH_AGGR_ENCRYPTDELIM;
719
720 /*
721 * Add delimiter when using RTS/CTS with aggregation
722 * and non enterprise AR9003 card
723 */
724 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
725 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
726 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
727
728 /*
729 * Convert desired mpdu density from microeconds to bytes based
730 * on highest rate in rate series (i.e. first rate) to determine
731 * required minimum length for subframe. Take into account
732 * whether high rate is 20 or 40Mhz and half or full GI.
733 *
734 * If there is no mpdu density restriction, no further calculation
735 * is needed.
736 */
737
738 if (tid->an->mpdudensity == 0)
739 return ndelim;
740
741 rix = tx_info->control.rates[0].idx;
742 flags = tx_info->control.rates[0].flags;
743 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
744 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
745
746 if (half_gi)
747 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
748 else
749 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
750
751 if (nsymbols == 0)
752 nsymbols = 1;
753
754 streams = HT_RC_2_STREAMS(rix);
755 nsymbits = bits_per_symbol[rix % 8][width] * streams;
756 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
757
758 if (frmlen < minlen) {
759 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
760 ndelim = max(mindelim, ndelim);
761 }
762
763 return ndelim;
764 }
765
766 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
767 struct ath_txq *txq,
768 struct ath_atx_tid *tid,
769 struct list_head *bf_q,
770 int *aggr_len)
771 {
772 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
773 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
774 int rl = 0, nframes = 0, ndelim, prev_al = 0;
775 u16 aggr_limit = 0, al = 0, bpad = 0,
776 al_delta, h_baw = tid->baw_size / 2;
777 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
778 struct ieee80211_tx_info *tx_info;
779 struct ath_frame_info *fi;
780 struct sk_buff *skb;
781 u16 seqno;
782
783 do {
784 skb = skb_peek(&tid->buf_q);
785 fi = get_frame_info(skb);
786 bf = fi->bf;
787 if (!fi->bf)
788 bf = ath_tx_setup_buffer(sc, txq, tid, skb, true);
789
790 if (!bf)
791 continue;
792
793 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
794 seqno = bf->bf_state.seqno;
795
796 /* do not step over block-ack window */
797 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
798 status = ATH_AGGR_BAW_CLOSED;
799 break;
800 }
801
802 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
803 struct ath_tx_status ts = {};
804 struct list_head bf_head;
805
806 INIT_LIST_HEAD(&bf_head);
807 list_add(&bf->list, &bf_head);
808 __skb_unlink(skb, &tid->buf_q);
809 ath_tx_update_baw(sc, tid, seqno);
810 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
811 continue;
812 }
813
814 if (!bf_first)
815 bf_first = bf;
816
817 if (!rl) {
818 aggr_limit = ath_lookup_rate(sc, bf, tid);
819 rl = 1;
820 }
821
822 /* do not exceed aggregation limit */
823 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
824
825 if (nframes &&
826 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
827 ath_lookup_legacy(bf))) {
828 status = ATH_AGGR_LIMITED;
829 break;
830 }
831
832 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
833 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
834 break;
835
836 /* do not exceed subframe limit */
837 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
838 status = ATH_AGGR_LIMITED;
839 break;
840 }
841
842 /* add padding for previous frame to aggregation length */
843 al += bpad + al_delta;
844
845 /*
846 * Get the delimiters needed to meet the MPDU
847 * density for this node.
848 */
849 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
850 !nframes);
851 bpad = PADBYTES(al_delta) + (ndelim << 2);
852
853 nframes++;
854 bf->bf_next = NULL;
855
856 /* link buffers of this frame to the aggregate */
857 if (!fi->retries)
858 ath_tx_addto_baw(sc, tid, seqno);
859 bf->bf_state.ndelim = ndelim;
860
861 __skb_unlink(skb, &tid->buf_q);
862 list_add_tail(&bf->list, bf_q);
863 if (bf_prev)
864 bf_prev->bf_next = bf;
865
866 bf_prev = bf;
867
868 } while (!skb_queue_empty(&tid->buf_q));
869
870 *aggr_len = al;
871
872 return status;
873 #undef PADBYTES
874 }
875
876 /*
877 * rix - rate index
878 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
879 * width - 0 for 20 MHz, 1 for 40 MHz
880 * half_gi - to use 4us v/s 3.6 us for symbol time
881 */
882 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
883 int width, int half_gi, bool shortPreamble)
884 {
885 u32 nbits, nsymbits, duration, nsymbols;
886 int streams;
887
888 /* find number of symbols: PLCP + data */
889 streams = HT_RC_2_STREAMS(rix);
890 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
891 nsymbits = bits_per_symbol[rix % 8][width] * streams;
892 nsymbols = (nbits + nsymbits - 1) / nsymbits;
893
894 if (!half_gi)
895 duration = SYMBOL_TIME(nsymbols);
896 else
897 duration = SYMBOL_TIME_HALFGI(nsymbols);
898
899 /* addup duration for legacy/ht training and signal fields */
900 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
901
902 return duration;
903 }
904
905 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
906 {
907 int streams = HT_RC_2_STREAMS(mcs);
908 int symbols, bits;
909 int bytes = 0;
910
911 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
912 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
913 bits -= OFDM_PLCP_BITS;
914 bytes = bits / 8;
915 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
916 if (bytes > 65532)
917 bytes = 65532;
918
919 return bytes;
920 }
921
922 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
923 {
924 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
925 int mcs;
926
927 /* 4ms is the default (and maximum) duration */
928 if (!txop || txop > 4096)
929 txop = 4096;
930
931 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
932 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
933 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
934 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
935 for (mcs = 0; mcs < 32; mcs++) {
936 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
937 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
938 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
939 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
940 }
941 }
942
943 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
944 struct ath_tx_info *info, int len)
945 {
946 struct ath_hw *ah = sc->sc_ah;
947 struct sk_buff *skb;
948 struct ieee80211_tx_info *tx_info;
949 struct ieee80211_tx_rate *rates;
950 const struct ieee80211_rate *rate;
951 struct ieee80211_hdr *hdr;
952 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
953 int i;
954 u8 rix = 0;
955
956 skb = bf->bf_mpdu;
957 tx_info = IEEE80211_SKB_CB(skb);
958 rates = tx_info->control.rates;
959 hdr = (struct ieee80211_hdr *)skb->data;
960
961 /* set dur_update_en for l-sig computation except for PS-Poll frames */
962 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
963 info->rtscts_rate = fi->rtscts_rate;
964
965 for (i = 0; i < 4; i++) {
966 bool is_40, is_sgi, is_sp;
967 int phy;
968
969 if (!rates[i].count || (rates[i].idx < 0))
970 continue;
971
972 rix = rates[i].idx;
973 info->rates[i].Tries = rates[i].count;
974
975 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
976 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
977 info->flags |= ATH9K_TXDESC_RTSENA;
978 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
979 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
980 info->flags |= ATH9K_TXDESC_CTSENA;
981 }
982
983 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
984 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
985 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
986 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
987
988 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
989 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
990 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
991
992 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
993 /* MCS rates */
994 info->rates[i].Rate = rix | 0x80;
995 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
996 ah->txchainmask, info->rates[i].Rate);
997 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
998 is_40, is_sgi, is_sp);
999 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1000 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1001 continue;
1002 }
1003
1004 /* legacy rates */
1005 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1006 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1007 !(rate->flags & IEEE80211_RATE_ERP_G))
1008 phy = WLAN_RC_PHY_CCK;
1009 else
1010 phy = WLAN_RC_PHY_OFDM;
1011
1012 info->rates[i].Rate = rate->hw_value;
1013 if (rate->hw_value_short) {
1014 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1015 info->rates[i].Rate |= rate->hw_value_short;
1016 } else {
1017 is_sp = false;
1018 }
1019
1020 if (bf->bf_state.bfs_paprd)
1021 info->rates[i].ChSel = ah->txchainmask;
1022 else
1023 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1024 ah->txchainmask, info->rates[i].Rate);
1025
1026 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1027 phy, rate->bitrate * 100, len, rix, is_sp);
1028 }
1029
1030 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1031 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1032 info->flags &= ~ATH9K_TXDESC_RTSENA;
1033
1034 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1035 if (info->flags & ATH9K_TXDESC_RTSENA)
1036 info->flags &= ~ATH9K_TXDESC_CTSENA;
1037 }
1038
1039 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1040 {
1041 struct ieee80211_hdr *hdr;
1042 enum ath9k_pkt_type htype;
1043 __le16 fc;
1044
1045 hdr = (struct ieee80211_hdr *)skb->data;
1046 fc = hdr->frame_control;
1047
1048 if (ieee80211_is_beacon(fc))
1049 htype = ATH9K_PKT_TYPE_BEACON;
1050 else if (ieee80211_is_probe_resp(fc))
1051 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1052 else if (ieee80211_is_atim(fc))
1053 htype = ATH9K_PKT_TYPE_ATIM;
1054 else if (ieee80211_is_pspoll(fc))
1055 htype = ATH9K_PKT_TYPE_PSPOLL;
1056 else
1057 htype = ATH9K_PKT_TYPE_NORMAL;
1058
1059 return htype;
1060 }
1061
1062 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1063 struct ath_txq *txq, int len)
1064 {
1065 struct ath_hw *ah = sc->sc_ah;
1066 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1067 struct ath_buf *bf_first = bf;
1068 struct ath_tx_info info;
1069 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1070
1071 memset(&info, 0, sizeof(info));
1072 info.is_first = true;
1073 info.is_last = true;
1074 info.txpower = MAX_RATE_POWER;
1075 info.qcu = txq->axq_qnum;
1076
1077 info.flags = ATH9K_TXDESC_INTREQ;
1078 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1079 info.flags |= ATH9K_TXDESC_NOACK;
1080 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1081 info.flags |= ATH9K_TXDESC_LDPC;
1082
1083 ath_buf_set_rate(sc, bf, &info, len);
1084
1085 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1086 info.flags |= ATH9K_TXDESC_CLRDMASK;
1087
1088 if (bf->bf_state.bfs_paprd)
1089 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1090
1091
1092 while (bf) {
1093 struct sk_buff *skb = bf->bf_mpdu;
1094 struct ath_frame_info *fi = get_frame_info(skb);
1095
1096 info.type = get_hw_packet_type(skb);
1097 if (bf->bf_next)
1098 info.link = bf->bf_next->bf_daddr;
1099 else
1100 info.link = 0;
1101
1102 info.buf_addr[0] = bf->bf_buf_addr;
1103 info.buf_len[0] = skb->len;
1104 info.pkt_len = fi->framelen;
1105 info.keyix = fi->keyix;
1106 info.keytype = fi->keytype;
1107
1108 if (aggr) {
1109 if (bf == bf_first)
1110 info.aggr = AGGR_BUF_FIRST;
1111 else if (!bf->bf_next)
1112 info.aggr = AGGR_BUF_LAST;
1113 else
1114 info.aggr = AGGR_BUF_MIDDLE;
1115
1116 info.ndelim = bf->bf_state.ndelim;
1117 info.aggr_len = len;
1118 }
1119
1120 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1121 bf = bf->bf_next;
1122 }
1123 }
1124
1125 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1126 struct ath_atx_tid *tid)
1127 {
1128 struct ath_buf *bf;
1129 enum ATH_AGGR_STATUS status;
1130 struct ieee80211_tx_info *tx_info;
1131 struct list_head bf_q;
1132 int aggr_len;
1133
1134 do {
1135 if (skb_queue_empty(&tid->buf_q))
1136 return;
1137
1138 INIT_LIST_HEAD(&bf_q);
1139
1140 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1141
1142 /*
1143 * no frames picked up to be aggregated;
1144 * block-ack window is not open.
1145 */
1146 if (list_empty(&bf_q))
1147 break;
1148
1149 bf = list_first_entry(&bf_q, struct ath_buf, list);
1150 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1151 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1152
1153 if (tid->ac->clear_ps_filter) {
1154 tid->ac->clear_ps_filter = false;
1155 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1156 } else {
1157 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1158 }
1159
1160 /* if only one frame, send as non-aggregate */
1161 if (bf == bf->bf_lastbf) {
1162 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1163 bf->bf_state.bf_type = BUF_AMPDU;
1164 } else {
1165 TX_STAT_INC(txq->axq_qnum, a_aggr);
1166 }
1167
1168 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1169 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1170 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1171 status != ATH_AGGR_BAW_CLOSED);
1172 }
1173
1174 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1175 u16 tid, u16 *ssn)
1176 {
1177 struct ath_atx_tid *txtid;
1178 struct ath_node *an;
1179 u8 density;
1180
1181 an = (struct ath_node *)sta->drv_priv;
1182 txtid = ATH_AN_2_TID(an, tid);
1183
1184 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1185 return -EAGAIN;
1186
1187 /* update ampdu factor/density, they may have changed. This may happen
1188 * in HT IBSS when a beacon with HT-info is received after the station
1189 * has already been added.
1190 */
1191 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1192 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1193 sta->ht_cap.ampdu_factor);
1194 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1195 an->mpdudensity = density;
1196 }
1197
1198 txtid->state |= AGGR_ADDBA_PROGRESS;
1199 txtid->paused = true;
1200 *ssn = txtid->seq_start = txtid->seq_next;
1201 txtid->bar_index = -1;
1202
1203 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1204 txtid->baw_head = txtid->baw_tail = 0;
1205
1206 return 0;
1207 }
1208
1209 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1210 {
1211 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1212 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1213 struct ath_txq *txq = txtid->ac->txq;
1214
1215 if (txtid->state & AGGR_CLEANUP)
1216 return;
1217
1218 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1219 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1220 return;
1221 }
1222
1223 ath_txq_lock(sc, txq);
1224 txtid->paused = true;
1225
1226 /*
1227 * If frames are still being transmitted for this TID, they will be
1228 * cleaned up during tx completion. To prevent race conditions, this
1229 * TID can only be reused after all in-progress subframes have been
1230 * completed.
1231 */
1232 if (txtid->baw_head != txtid->baw_tail)
1233 txtid->state |= AGGR_CLEANUP;
1234 else
1235 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1236
1237 ath_tx_flush_tid(sc, txtid);
1238 ath_txq_unlock_complete(sc, txq);
1239 }
1240
1241 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1242 struct ath_node *an)
1243 {
1244 struct ath_atx_tid *tid;
1245 struct ath_atx_ac *ac;
1246 struct ath_txq *txq;
1247 bool buffered;
1248 int tidno;
1249
1250 for (tidno = 0, tid = &an->tid[tidno];
1251 tidno < WME_NUM_TID; tidno++, tid++) {
1252
1253 if (!tid->sched)
1254 continue;
1255
1256 ac = tid->ac;
1257 txq = ac->txq;
1258
1259 ath_txq_lock(sc, txq);
1260
1261 buffered = !skb_queue_empty(&tid->buf_q);
1262
1263 tid->sched = false;
1264 list_del(&tid->list);
1265
1266 if (ac->sched) {
1267 ac->sched = false;
1268 list_del(&ac->list);
1269 }
1270
1271 ath_txq_unlock(sc, txq);
1272
1273 ieee80211_sta_set_buffered(sta, tidno, buffered);
1274 }
1275 }
1276
1277 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1278 {
1279 struct ath_atx_tid *tid;
1280 struct ath_atx_ac *ac;
1281 struct ath_txq *txq;
1282 int tidno;
1283
1284 for (tidno = 0, tid = &an->tid[tidno];
1285 tidno < WME_NUM_TID; tidno++, tid++) {
1286
1287 ac = tid->ac;
1288 txq = ac->txq;
1289
1290 ath_txq_lock(sc, txq);
1291 ac->clear_ps_filter = true;
1292
1293 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1294 ath_tx_queue_tid(txq, tid);
1295 ath_txq_schedule(sc, txq);
1296 }
1297
1298 ath_txq_unlock_complete(sc, txq);
1299 }
1300 }
1301
1302 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1303 {
1304 struct ath_atx_tid *txtid;
1305 struct ath_node *an;
1306
1307 an = (struct ath_node *)sta->drv_priv;
1308
1309 txtid = ATH_AN_2_TID(an, tid);
1310 txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1311 txtid->state |= AGGR_ADDBA_COMPLETE;
1312 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1313 ath_tx_resume_tid(sc, txtid);
1314 }
1315
1316 /********************/
1317 /* Queue Management */
1318 /********************/
1319
1320 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1321 struct ath_txq *txq)
1322 {
1323 struct ath_atx_ac *ac, *ac_tmp;
1324 struct ath_atx_tid *tid, *tid_tmp;
1325
1326 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1327 list_del(&ac->list);
1328 ac->sched = false;
1329 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1330 list_del(&tid->list);
1331 tid->sched = false;
1332 ath_tid_drain(sc, txq, tid);
1333 }
1334 }
1335 }
1336
1337 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1338 {
1339 struct ath_hw *ah = sc->sc_ah;
1340 struct ath9k_tx_queue_info qi;
1341 static const int subtype_txq_to_hwq[] = {
1342 [WME_AC_BE] = ATH_TXQ_AC_BE,
1343 [WME_AC_BK] = ATH_TXQ_AC_BK,
1344 [WME_AC_VI] = ATH_TXQ_AC_VI,
1345 [WME_AC_VO] = ATH_TXQ_AC_VO,
1346 };
1347 int axq_qnum, i;
1348
1349 memset(&qi, 0, sizeof(qi));
1350 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1351 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1352 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1353 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1354 qi.tqi_physCompBuf = 0;
1355
1356 /*
1357 * Enable interrupts only for EOL and DESC conditions.
1358 * We mark tx descriptors to receive a DESC interrupt
1359 * when a tx queue gets deep; otherwise waiting for the
1360 * EOL to reap descriptors. Note that this is done to
1361 * reduce interrupt load and this only defers reaping
1362 * descriptors, never transmitting frames. Aside from
1363 * reducing interrupts this also permits more concurrency.
1364 * The only potential downside is if the tx queue backs
1365 * up in which case the top half of the kernel may backup
1366 * due to a lack of tx descriptors.
1367 *
1368 * The UAPSD queue is an exception, since we take a desc-
1369 * based intr on the EOSP frames.
1370 */
1371 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1372 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1373 } else {
1374 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1375 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1376 else
1377 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1378 TXQ_FLAG_TXDESCINT_ENABLE;
1379 }
1380 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1381 if (axq_qnum == -1) {
1382 /*
1383 * NB: don't print a message, this happens
1384 * normally on parts with too few tx queues
1385 */
1386 return NULL;
1387 }
1388 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1389 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1390
1391 txq->axq_qnum = axq_qnum;
1392 txq->mac80211_qnum = -1;
1393 txq->axq_link = NULL;
1394 __skb_queue_head_init(&txq->complete_q);
1395 INIT_LIST_HEAD(&txq->axq_q);
1396 INIT_LIST_HEAD(&txq->axq_acq);
1397 spin_lock_init(&txq->axq_lock);
1398 txq->axq_depth = 0;
1399 txq->axq_ampdu_depth = 0;
1400 txq->axq_tx_inprogress = false;
1401 sc->tx.txqsetup |= 1<<axq_qnum;
1402
1403 txq->txq_headidx = txq->txq_tailidx = 0;
1404 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1405 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1406 }
1407 return &sc->tx.txq[axq_qnum];
1408 }
1409
1410 int ath_txq_update(struct ath_softc *sc, int qnum,
1411 struct ath9k_tx_queue_info *qinfo)
1412 {
1413 struct ath_hw *ah = sc->sc_ah;
1414 int error = 0;
1415 struct ath9k_tx_queue_info qi;
1416
1417 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1418
1419 ath9k_hw_get_txq_props(ah, qnum, &qi);
1420 qi.tqi_aifs = qinfo->tqi_aifs;
1421 qi.tqi_cwmin = qinfo->tqi_cwmin;
1422 qi.tqi_cwmax = qinfo->tqi_cwmax;
1423 qi.tqi_burstTime = qinfo->tqi_burstTime;
1424 qi.tqi_readyTime = qinfo->tqi_readyTime;
1425
1426 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1427 ath_err(ath9k_hw_common(sc->sc_ah),
1428 "Unable to update hardware queue %u!\n", qnum);
1429 error = -EIO;
1430 } else {
1431 ath9k_hw_resettxqueue(ah, qnum);
1432 }
1433
1434 return error;
1435 }
1436
1437 int ath_cabq_update(struct ath_softc *sc)
1438 {
1439 struct ath9k_tx_queue_info qi;
1440 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1441 int qnum = sc->beacon.cabq->axq_qnum;
1442
1443 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1444 /*
1445 * Ensure the readytime % is within the bounds.
1446 */
1447 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1448 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1449 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1450 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1451
1452 qi.tqi_readyTime = (cur_conf->beacon_interval *
1453 sc->config.cabqReadytime) / 100;
1454 ath_txq_update(sc, qnum, &qi);
1455
1456 return 0;
1457 }
1458
1459 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1460 {
1461 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1462 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1463 }
1464
1465 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1466 struct list_head *list, bool retry_tx)
1467 {
1468 struct ath_buf *bf, *lastbf;
1469 struct list_head bf_head;
1470 struct ath_tx_status ts;
1471
1472 memset(&ts, 0, sizeof(ts));
1473 ts.ts_status = ATH9K_TX_FLUSH;
1474 INIT_LIST_HEAD(&bf_head);
1475
1476 while (!list_empty(list)) {
1477 bf = list_first_entry(list, struct ath_buf, list);
1478
1479 if (bf->bf_stale) {
1480 list_del(&bf->list);
1481
1482 ath_tx_return_buffer(sc, bf);
1483 continue;
1484 }
1485
1486 lastbf = bf->bf_lastbf;
1487 list_cut_position(&bf_head, list, &lastbf->list);
1488
1489 txq->axq_depth--;
1490 if (bf_is_ampdu_not_probing(bf))
1491 txq->axq_ampdu_depth--;
1492
1493 if (bf_isampdu(bf))
1494 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1495 retry_tx);
1496 else
1497 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1498 }
1499 }
1500
1501 /*
1502 * Drain a given TX queue (could be Beacon or Data)
1503 *
1504 * This assumes output has been stopped and
1505 * we do not need to block ath_tx_tasklet.
1506 */
1507 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1508 {
1509 ath_txq_lock(sc, txq);
1510
1511 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1512 int idx = txq->txq_tailidx;
1513
1514 while (!list_empty(&txq->txq_fifo[idx])) {
1515 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1516 retry_tx);
1517
1518 INCR(idx, ATH_TXFIFO_DEPTH);
1519 }
1520 txq->txq_tailidx = idx;
1521 }
1522
1523 txq->axq_link = NULL;
1524 txq->axq_tx_inprogress = false;
1525 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1526
1527 /* flush any pending frames if aggregation is enabled */
1528 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
1529 ath_txq_drain_pending_buffers(sc, txq);
1530
1531 ath_txq_unlock_complete(sc, txq);
1532 }
1533
1534 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1535 {
1536 struct ath_hw *ah = sc->sc_ah;
1537 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1538 struct ath_txq *txq;
1539 int i;
1540 u32 npend = 0;
1541
1542 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1543 return true;
1544
1545 ath9k_hw_abort_tx_dma(ah);
1546
1547 /* Check if any queue remains active */
1548 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1549 if (!ATH_TXQ_SETUP(sc, i))
1550 continue;
1551
1552 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1553 npend |= BIT(i);
1554 }
1555
1556 if (npend)
1557 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1558
1559 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1560 if (!ATH_TXQ_SETUP(sc, i))
1561 continue;
1562
1563 /*
1564 * The caller will resume queues with ieee80211_wake_queues.
1565 * Mark the queue as not stopped to prevent ath_tx_complete
1566 * from waking the queue too early.
1567 */
1568 txq = &sc->tx.txq[i];
1569 txq->stopped = false;
1570 ath_draintxq(sc, txq, retry_tx);
1571 }
1572
1573 return !npend;
1574 }
1575
1576 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1577 {
1578 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1579 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1580 }
1581
1582 /* For each axq_acq entry, for each tid, try to schedule packets
1583 * for transmit until ampdu_depth has reached min Q depth.
1584 */
1585 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1586 {
1587 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1588 struct ath_atx_tid *tid, *last_tid;
1589
1590 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1591 list_empty(&txq->axq_acq) ||
1592 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1593 return;
1594
1595 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1596 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1597
1598 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1599 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1600 list_del(&ac->list);
1601 ac->sched = false;
1602
1603 while (!list_empty(&ac->tid_q)) {
1604 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1605 list);
1606 list_del(&tid->list);
1607 tid->sched = false;
1608
1609 if (tid->paused)
1610 continue;
1611
1612 ath_tx_sched_aggr(sc, txq, tid);
1613
1614 /*
1615 * add tid to round-robin queue if more frames
1616 * are pending for the tid
1617 */
1618 if (!skb_queue_empty(&tid->buf_q))
1619 ath_tx_queue_tid(txq, tid);
1620
1621 if (tid == last_tid ||
1622 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1623 break;
1624 }
1625
1626 if (!list_empty(&ac->tid_q) && !ac->sched) {
1627 ac->sched = true;
1628 list_add_tail(&ac->list, &txq->axq_acq);
1629 }
1630
1631 if (ac == last_ac ||
1632 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1633 return;
1634 }
1635 }
1636
1637 /***********/
1638 /* TX, DMA */
1639 /***********/
1640
1641 /*
1642 * Insert a chain of ath_buf (descriptors) on a txq and
1643 * assume the descriptors are already chained together by caller.
1644 */
1645 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1646 struct list_head *head, bool internal)
1647 {
1648 struct ath_hw *ah = sc->sc_ah;
1649 struct ath_common *common = ath9k_hw_common(ah);
1650 struct ath_buf *bf, *bf_last;
1651 bool puttxbuf = false;
1652 bool edma;
1653
1654 /*
1655 * Insert the frame on the outbound list and
1656 * pass it on to the hardware.
1657 */
1658
1659 if (list_empty(head))
1660 return;
1661
1662 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1663 bf = list_first_entry(head, struct ath_buf, list);
1664 bf_last = list_entry(head->prev, struct ath_buf, list);
1665
1666 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1667 txq->axq_qnum, txq->axq_depth);
1668
1669 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1670 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1671 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1672 puttxbuf = true;
1673 } else {
1674 list_splice_tail_init(head, &txq->axq_q);
1675
1676 if (txq->axq_link) {
1677 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1678 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1679 txq->axq_qnum, txq->axq_link,
1680 ito64(bf->bf_daddr), bf->bf_desc);
1681 } else if (!edma)
1682 puttxbuf = true;
1683
1684 txq->axq_link = bf_last->bf_desc;
1685 }
1686
1687 if (puttxbuf) {
1688 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1689 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1690 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1691 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1692 }
1693
1694 if (!edma) {
1695 TX_STAT_INC(txq->axq_qnum, txstart);
1696 ath9k_hw_txstart(ah, txq->axq_qnum);
1697 }
1698
1699 if (!internal) {
1700 txq->axq_depth++;
1701 if (bf_is_ampdu_not_probing(bf))
1702 txq->axq_ampdu_depth++;
1703 }
1704 }
1705
1706 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1707 struct sk_buff *skb, struct ath_tx_control *txctl)
1708 {
1709 struct ath_frame_info *fi = get_frame_info(skb);
1710 struct list_head bf_head;
1711 struct ath_buf *bf;
1712
1713 /*
1714 * Do not queue to h/w when any of the following conditions is true:
1715 * - there are pending frames in software queue
1716 * - the TID is currently paused for ADDBA/BAR request
1717 * - seqno is not within block-ack window
1718 * - h/w queue depth exceeds low water mark
1719 */
1720 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1721 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1722 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1723 /*
1724 * Add this frame to software queue for scheduling later
1725 * for aggregation.
1726 */
1727 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1728 __skb_queue_tail(&tid->buf_q, skb);
1729 if (!txctl->an || !txctl->an->sleeping)
1730 ath_tx_queue_tid(txctl->txq, tid);
1731 return;
1732 }
1733
1734 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
1735 if (!bf)
1736 return;
1737
1738 bf->bf_state.bf_type = BUF_AMPDU;
1739 INIT_LIST_HEAD(&bf_head);
1740 list_add(&bf->list, &bf_head);
1741
1742 /* Add sub-frame to BAW */
1743 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1744
1745 /* Queue to h/w without aggregation */
1746 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1747 bf->bf_lastbf = bf;
1748 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1749 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1750 }
1751
1752 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1753 struct ath_atx_tid *tid, struct sk_buff *skb)
1754 {
1755 struct ath_frame_info *fi = get_frame_info(skb);
1756 struct list_head bf_head;
1757 struct ath_buf *bf;
1758
1759 bf = fi->bf;
1760 if (!bf)
1761 bf = ath_tx_setup_buffer(sc, txq, tid, skb, false);
1762
1763 if (!bf)
1764 return;
1765
1766 INIT_LIST_HEAD(&bf_head);
1767 list_add_tail(&bf->list, &bf_head);
1768 bf->bf_state.bf_type = 0;
1769
1770 bf->bf_lastbf = bf;
1771 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1772 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1773 TX_STAT_INC(txq->axq_qnum, queued);
1774 }
1775
1776 static void setup_frame_info(struct ieee80211_hw *hw,
1777 struct ieee80211_sta *sta,
1778 struct sk_buff *skb,
1779 int framelen)
1780 {
1781 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1782 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1783 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1784 const struct ieee80211_rate *rate;
1785 struct ath_frame_info *fi = get_frame_info(skb);
1786 struct ath_node *an = NULL;
1787 enum ath9k_key_type keytype;
1788 bool short_preamble = false;
1789
1790 /*
1791 * We check if Short Preamble is needed for the CTS rate by
1792 * checking the BSS's global flag.
1793 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1794 */
1795 if (tx_info->control.vif &&
1796 tx_info->control.vif->bss_conf.use_short_preamble)
1797 short_preamble = true;
1798
1799 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1800 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1801
1802 if (sta)
1803 an = (struct ath_node *) sta->drv_priv;
1804
1805 memset(fi, 0, sizeof(*fi));
1806 if (hw_key)
1807 fi->keyix = hw_key->hw_key_idx;
1808 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1809 fi->keyix = an->ps_key;
1810 else
1811 fi->keyix = ATH9K_TXKEYIX_INVALID;
1812 fi->keytype = keytype;
1813 fi->framelen = framelen;
1814 fi->rtscts_rate = rate->hw_value;
1815 if (short_preamble)
1816 fi->rtscts_rate |= rate->hw_value_short;
1817 }
1818
1819 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1820 {
1821 struct ath_hw *ah = sc->sc_ah;
1822 struct ath9k_channel *curchan = ah->curchan;
1823 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1824 (curchan->channelFlags & CHANNEL_5GHZ) &&
1825 (chainmask == 0x7) && (rate < 0x90))
1826 return 0x3;
1827 else
1828 return chainmask;
1829 }
1830
1831 /*
1832 * Assign a descriptor (and sequence number if necessary,
1833 * and map buffer for DMA. Frees skb on error
1834 */
1835 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1836 struct ath_txq *txq,
1837 struct ath_atx_tid *tid,
1838 struct sk_buff *skb,
1839 bool dequeue)
1840 {
1841 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1842 struct ath_frame_info *fi = get_frame_info(skb);
1843 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1844 struct ath_buf *bf;
1845 int fragno;
1846 u16 seqno;
1847
1848 bf = ath_tx_get_buffer(sc);
1849 if (!bf) {
1850 ath_dbg(common, XMIT, "TX buffers are full\n");
1851 goto error;
1852 }
1853
1854 ATH_TXBUF_RESET(bf);
1855
1856 if (tid) {
1857 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1858 seqno = tid->seq_next;
1859 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1860
1861 if (fragno)
1862 hdr->seq_ctrl |= cpu_to_le16(fragno);
1863
1864 if (!ieee80211_has_morefrags(hdr->frame_control))
1865 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1866
1867 bf->bf_state.seqno = seqno;
1868 }
1869
1870 bf->bf_mpdu = skb;
1871
1872 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1873 skb->len, DMA_TO_DEVICE);
1874 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1875 bf->bf_mpdu = NULL;
1876 bf->bf_buf_addr = 0;
1877 ath_err(ath9k_hw_common(sc->sc_ah),
1878 "dma_mapping_error() on TX\n");
1879 ath_tx_return_buffer(sc, bf);
1880 goto error;
1881 }
1882
1883 fi->bf = bf;
1884
1885 return bf;
1886
1887 error:
1888 if (dequeue)
1889 __skb_unlink(skb, &tid->buf_q);
1890 dev_kfree_skb_any(skb);
1891 return NULL;
1892 }
1893
1894 /* FIXME: tx power */
1895 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1896 struct ath_tx_control *txctl)
1897 {
1898 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1900 struct ath_atx_tid *tid = NULL;
1901 struct ath_buf *bf;
1902 u8 tidno;
1903
1904 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
1905 ieee80211_is_data_qos(hdr->frame_control)) {
1906 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1907 IEEE80211_QOS_CTL_TID_MASK;
1908 tid = ATH_AN_2_TID(txctl->an, tidno);
1909
1910 WARN_ON(tid->ac->txq != txctl->txq);
1911 }
1912
1913 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1914 /*
1915 * Try aggregation if it's a unicast data frame
1916 * and the destination is HT capable.
1917 */
1918 ath_tx_send_ampdu(sc, tid, skb, txctl);
1919 } else {
1920 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
1921 if (!bf)
1922 return;
1923
1924 bf->bf_state.bfs_paprd = txctl->paprd;
1925
1926 if (txctl->paprd)
1927 bf->bf_state.bfs_paprd_timestamp = jiffies;
1928
1929 ath_tx_send_normal(sc, txctl->txq, tid, skb);
1930 }
1931 }
1932
1933 /* Upon failure caller should free skb */
1934 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1935 struct ath_tx_control *txctl)
1936 {
1937 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1938 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1939 struct ieee80211_sta *sta = txctl->sta;
1940 struct ieee80211_vif *vif = info->control.vif;
1941 struct ath_softc *sc = hw->priv;
1942 struct ath_txq *txq = txctl->txq;
1943 int padpos, padsize;
1944 int frmlen = skb->len + FCS_LEN;
1945 int q;
1946
1947 /* NOTE: sta can be NULL according to net/mac80211.h */
1948 if (sta)
1949 txctl->an = (struct ath_node *)sta->drv_priv;
1950
1951 if (info->control.hw_key)
1952 frmlen += info->control.hw_key->icv_len;
1953
1954 /*
1955 * As a temporary workaround, assign seq# here; this will likely need
1956 * to be cleaned up to work better with Beacon transmission and virtual
1957 * BSSes.
1958 */
1959 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1960 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1961 sc->tx.seq_no += 0x10;
1962 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1963 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1964 }
1965
1966 /* Add the padding after the header if this is not already done */
1967 padpos = ath9k_cmn_padpos(hdr->frame_control);
1968 padsize = padpos & 3;
1969 if (padsize && skb->len > padpos) {
1970 if (skb_headroom(skb) < padsize)
1971 return -ENOMEM;
1972
1973 skb_push(skb, padsize);
1974 memmove(skb->data, skb->data + padsize, padpos);
1975 hdr = (struct ieee80211_hdr *) skb->data;
1976 }
1977
1978 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1979 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1980 !ieee80211_is_data(hdr->frame_control))
1981 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1982
1983 setup_frame_info(hw, sta, skb, frmlen);
1984
1985 /*
1986 * At this point, the vif, hw_key and sta pointers in the tx control
1987 * info are no longer valid (overwritten by the ath_frame_info data.
1988 */
1989
1990 q = skb_get_queue_mapping(skb);
1991
1992 ath_txq_lock(sc, txq);
1993 if (txq == sc->tx.txq_map[q] &&
1994 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
1995 !txq->stopped) {
1996 ieee80211_stop_queue(sc->hw, q);
1997 txq->stopped = true;
1998 }
1999
2000 ath_tx_start_dma(sc, skb, txctl);
2001
2002 ath_txq_unlock(sc, txq);
2003
2004 return 0;
2005 }
2006
2007 /*****************/
2008 /* TX Completion */
2009 /*****************/
2010
2011 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2012 int tx_flags, struct ath_txq *txq)
2013 {
2014 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2015 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2016 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2017 int q, padpos, padsize;
2018 unsigned long flags;
2019
2020 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2021
2022 if (sc->sc_ah->caldata)
2023 sc->sc_ah->caldata->paprd_packet_sent = true;
2024
2025 if (!(tx_flags & ATH_TX_ERROR))
2026 /* Frame was ACKed */
2027 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2028
2029 padpos = ath9k_cmn_padpos(hdr->frame_control);
2030 padsize = padpos & 3;
2031 if (padsize && skb->len>padpos+padsize) {
2032 /*
2033 * Remove MAC header padding before giving the frame back to
2034 * mac80211.
2035 */
2036 memmove(skb->data + padsize, skb->data, padpos);
2037 skb_pull(skb, padsize);
2038 }
2039
2040 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2041 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2042 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2043 ath_dbg(common, PS,
2044 "Going back to sleep after having received TX status (0x%lx)\n",
2045 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2046 PS_WAIT_FOR_CAB |
2047 PS_WAIT_FOR_PSPOLL_DATA |
2048 PS_WAIT_FOR_TX_ACK));
2049 }
2050 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2051
2052 q = skb_get_queue_mapping(skb);
2053 if (txq == sc->tx.txq_map[q]) {
2054 if (WARN_ON(--txq->pending_frames < 0))
2055 txq->pending_frames = 0;
2056
2057 if (txq->stopped &&
2058 txq->pending_frames < sc->tx.txq_max_pending[q]) {
2059 ieee80211_wake_queue(sc->hw, q);
2060 txq->stopped = false;
2061 }
2062 }
2063
2064 __skb_queue_tail(&txq->complete_q, skb);
2065 }
2066
2067 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2068 struct ath_txq *txq, struct list_head *bf_q,
2069 struct ath_tx_status *ts, int txok)
2070 {
2071 struct sk_buff *skb = bf->bf_mpdu;
2072 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2073 unsigned long flags;
2074 int tx_flags = 0;
2075
2076 if (!txok)
2077 tx_flags |= ATH_TX_ERROR;
2078
2079 if (ts->ts_status & ATH9K_TXERR_FILT)
2080 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2081
2082 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2083 bf->bf_buf_addr = 0;
2084
2085 if (bf->bf_state.bfs_paprd) {
2086 if (time_after(jiffies,
2087 bf->bf_state.bfs_paprd_timestamp +
2088 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2089 dev_kfree_skb_any(skb);
2090 else
2091 complete(&sc->paprd_complete);
2092 } else {
2093 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2094 ath_tx_complete(sc, skb, tx_flags, txq);
2095 }
2096 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2097 * accidentally reference it later.
2098 */
2099 bf->bf_mpdu = NULL;
2100
2101 /*
2102 * Return the list of ath_buf of this mpdu to free queue
2103 */
2104 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2105 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2106 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2107 }
2108
2109 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2110 struct ath_tx_status *ts, int nframes, int nbad,
2111 int txok)
2112 {
2113 struct sk_buff *skb = bf->bf_mpdu;
2114 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2115 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2116 struct ieee80211_hw *hw = sc->hw;
2117 struct ath_hw *ah = sc->sc_ah;
2118 u8 i, tx_rateindex;
2119
2120 if (txok)
2121 tx_info->status.ack_signal = ts->ts_rssi;
2122
2123 tx_rateindex = ts->ts_rateindex;
2124 WARN_ON(tx_rateindex >= hw->max_rates);
2125
2126 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2127 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2128
2129 BUG_ON(nbad > nframes);
2130 }
2131 tx_info->status.ampdu_len = nframes;
2132 tx_info->status.ampdu_ack_len = nframes - nbad;
2133
2134 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2135 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2136 /*
2137 * If an underrun error is seen assume it as an excessive
2138 * retry only if max frame trigger level has been reached
2139 * (2 KB for single stream, and 4 KB for dual stream).
2140 * Adjust the long retry as if the frame was tried
2141 * hw->max_rate_tries times to affect how rate control updates
2142 * PER for the failed rate.
2143 * In case of congestion on the bus penalizing this type of
2144 * underruns should help hardware actually transmit new frames
2145 * successfully by eventually preferring slower rates.
2146 * This itself should also alleviate congestion on the bus.
2147 */
2148 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2149 ATH9K_TX_DELIM_UNDERRUN)) &&
2150 ieee80211_is_data(hdr->frame_control) &&
2151 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2152 tx_info->status.rates[tx_rateindex].count =
2153 hw->max_rate_tries;
2154 }
2155
2156 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2157 tx_info->status.rates[i].count = 0;
2158 tx_info->status.rates[i].idx = -1;
2159 }
2160
2161 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2162 }
2163
2164 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2165 struct ath_tx_status *ts, struct ath_buf *bf,
2166 struct list_head *bf_head)
2167 {
2168 int txok;
2169
2170 txq->axq_depth--;
2171 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2172 txq->axq_tx_inprogress = false;
2173 if (bf_is_ampdu_not_probing(bf))
2174 txq->axq_ampdu_depth--;
2175
2176 if (!bf_isampdu(bf)) {
2177 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2178 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2179 } else
2180 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2181
2182 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2183 ath_txq_schedule(sc, txq);
2184 }
2185
2186 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2187 {
2188 struct ath_hw *ah = sc->sc_ah;
2189 struct ath_common *common = ath9k_hw_common(ah);
2190 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2191 struct list_head bf_head;
2192 struct ath_desc *ds;
2193 struct ath_tx_status ts;
2194 int status;
2195
2196 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2197 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2198 txq->axq_link);
2199
2200 ath_txq_lock(sc, txq);
2201 for (;;) {
2202 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2203 break;
2204
2205 if (list_empty(&txq->axq_q)) {
2206 txq->axq_link = NULL;
2207 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2208 ath_txq_schedule(sc, txq);
2209 break;
2210 }
2211 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2212
2213 /*
2214 * There is a race condition that a BH gets scheduled
2215 * after sw writes TxE and before hw re-load the last
2216 * descriptor to get the newly chained one.
2217 * Software must keep the last DONE descriptor as a
2218 * holding descriptor - software does so by marking
2219 * it with the STALE flag.
2220 */
2221 bf_held = NULL;
2222 if (bf->bf_stale) {
2223 bf_held = bf;
2224 if (list_is_last(&bf_held->list, &txq->axq_q))
2225 break;
2226
2227 bf = list_entry(bf_held->list.next, struct ath_buf,
2228 list);
2229 }
2230
2231 lastbf = bf->bf_lastbf;
2232 ds = lastbf->bf_desc;
2233
2234 memset(&ts, 0, sizeof(ts));
2235 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2236 if (status == -EINPROGRESS)
2237 break;
2238
2239 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2240
2241 /*
2242 * Remove ath_buf's of the same transmit unit from txq,
2243 * however leave the last descriptor back as the holding
2244 * descriptor for hw.
2245 */
2246 lastbf->bf_stale = true;
2247 INIT_LIST_HEAD(&bf_head);
2248 if (!list_is_singular(&lastbf->list))
2249 list_cut_position(&bf_head,
2250 &txq->axq_q, lastbf->list.prev);
2251
2252 if (bf_held) {
2253 list_del(&bf_held->list);
2254 ath_tx_return_buffer(sc, bf_held);
2255 }
2256
2257 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2258 }
2259 ath_txq_unlock_complete(sc, txq);
2260 }
2261
2262 void ath_tx_tasklet(struct ath_softc *sc)
2263 {
2264 struct ath_hw *ah = sc->sc_ah;
2265 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2266 int i;
2267
2268 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2269 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2270 ath_tx_processq(sc, &sc->tx.txq[i]);
2271 }
2272 }
2273
2274 void ath_tx_edma_tasklet(struct ath_softc *sc)
2275 {
2276 struct ath_tx_status ts;
2277 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2278 struct ath_hw *ah = sc->sc_ah;
2279 struct ath_txq *txq;
2280 struct ath_buf *bf, *lastbf;
2281 struct list_head bf_head;
2282 int status;
2283
2284 for (;;) {
2285 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2286 break;
2287
2288 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2289 if (status == -EINPROGRESS)
2290 break;
2291 if (status == -EIO) {
2292 ath_dbg(common, XMIT, "Error processing tx status\n");
2293 break;
2294 }
2295
2296 /* Process beacon completions separately */
2297 if (ts.qid == sc->beacon.beaconq) {
2298 sc->beacon.tx_processed = true;
2299 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2300 continue;
2301 }
2302
2303 txq = &sc->tx.txq[ts.qid];
2304
2305 ath_txq_lock(sc, txq);
2306
2307 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2308 ath_txq_unlock(sc, txq);
2309 return;
2310 }
2311
2312 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2313 struct ath_buf, list);
2314 lastbf = bf->bf_lastbf;
2315
2316 INIT_LIST_HEAD(&bf_head);
2317 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2318 &lastbf->list);
2319
2320 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2321 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2322
2323 if (!list_empty(&txq->axq_q)) {
2324 struct list_head bf_q;
2325
2326 INIT_LIST_HEAD(&bf_q);
2327 txq->axq_link = NULL;
2328 list_splice_tail_init(&txq->axq_q, &bf_q);
2329 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2330 }
2331 }
2332
2333 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2334 ath_txq_unlock_complete(sc, txq);
2335 }
2336 }
2337
2338 /*****************/
2339 /* Init, Cleanup */
2340 /*****************/
2341
2342 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2343 {
2344 struct ath_descdma *dd = &sc->txsdma;
2345 u8 txs_len = sc->sc_ah->caps.txs_len;
2346
2347 dd->dd_desc_len = size * txs_len;
2348 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2349 &dd->dd_desc_paddr, GFP_KERNEL);
2350 if (!dd->dd_desc)
2351 return -ENOMEM;
2352
2353 return 0;
2354 }
2355
2356 static int ath_tx_edma_init(struct ath_softc *sc)
2357 {
2358 int err;
2359
2360 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2361 if (!err)
2362 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2363 sc->txsdma.dd_desc_paddr,
2364 ATH_TXSTATUS_RING_SIZE);
2365
2366 return err;
2367 }
2368
2369 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2370 {
2371 struct ath_descdma *dd = &sc->txsdma;
2372
2373 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2374 dd->dd_desc_paddr);
2375 }
2376
2377 int ath_tx_init(struct ath_softc *sc, int nbufs)
2378 {
2379 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2380 int error = 0;
2381
2382 spin_lock_init(&sc->tx.txbuflock);
2383
2384 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2385 "tx", nbufs, 1, 1);
2386 if (error != 0) {
2387 ath_err(common,
2388 "Failed to allocate tx descriptors: %d\n", error);
2389 goto err;
2390 }
2391
2392 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2393 "beacon", ATH_BCBUF, 1, 1);
2394 if (error != 0) {
2395 ath_err(common,
2396 "Failed to allocate beacon descriptors: %d\n", error);
2397 goto err;
2398 }
2399
2400 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2401
2402 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2403 error = ath_tx_edma_init(sc);
2404 if (error)
2405 goto err;
2406 }
2407
2408 err:
2409 if (error != 0)
2410 ath_tx_cleanup(sc);
2411
2412 return error;
2413 }
2414
2415 void ath_tx_cleanup(struct ath_softc *sc)
2416 {
2417 if (sc->beacon.bdma.dd_desc_len != 0)
2418 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2419
2420 if (sc->tx.txdma.dd_desc_len != 0)
2421 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2422
2423 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2424 ath_tx_edma_cleanup(sc);
2425 }
2426
2427 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2428 {
2429 struct ath_atx_tid *tid;
2430 struct ath_atx_ac *ac;
2431 int tidno, acno;
2432
2433 for (tidno = 0, tid = &an->tid[tidno];
2434 tidno < WME_NUM_TID;
2435 tidno++, tid++) {
2436 tid->an = an;
2437 tid->tidno = tidno;
2438 tid->seq_start = tid->seq_next = 0;
2439 tid->baw_size = WME_MAX_BA;
2440 tid->baw_head = tid->baw_tail = 0;
2441 tid->sched = false;
2442 tid->paused = false;
2443 tid->state &= ~AGGR_CLEANUP;
2444 __skb_queue_head_init(&tid->buf_q);
2445 acno = TID_TO_WME_AC(tidno);
2446 tid->ac = &an->ac[acno];
2447 tid->state &= ~AGGR_ADDBA_COMPLETE;
2448 tid->state &= ~AGGR_ADDBA_PROGRESS;
2449 }
2450
2451 for (acno = 0, ac = &an->ac[acno];
2452 acno < WME_NUM_AC; acno++, ac++) {
2453 ac->sched = false;
2454 ac->txq = sc->tx.txq_map[acno];
2455 INIT_LIST_HEAD(&ac->tid_q);
2456 }
2457 }
2458
2459 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2460 {
2461 struct ath_atx_ac *ac;
2462 struct ath_atx_tid *tid;
2463 struct ath_txq *txq;
2464 int tidno;
2465
2466 for (tidno = 0, tid = &an->tid[tidno];
2467 tidno < WME_NUM_TID; tidno++, tid++) {
2468
2469 ac = tid->ac;
2470 txq = ac->txq;
2471
2472 ath_txq_lock(sc, txq);
2473
2474 if (tid->sched) {
2475 list_del(&tid->list);
2476 tid->sched = false;
2477 }
2478
2479 if (ac->sched) {
2480 list_del(&ac->list);
2481 tid->ac->sched = false;
2482 }
2483
2484 ath_tid_drain(sc, txq, tid);
2485 tid->state &= ~AGGR_ADDBA_COMPLETE;
2486 tid->state &= ~AGGR_CLEANUP;
2487
2488 ath_txq_unlock(sc, txq);
2489 }
2490 }