Merge branch 'omap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/slab.h>
19
20 #include "ath9k.h"
21
22 static const struct ath_rate_table ar5416_11na_ratetable = {
23 68,
24 8, /* MCS start */
25 {
26 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
27 5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
28 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
29 7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
30 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
31 10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
32 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
33 13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
34 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
35 17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
36 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
37 23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
38 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
39 27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
40 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
41 29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
42 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
43 6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
44 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
45 12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
46 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
47 18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
48 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
49 25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
50 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
51 36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
52 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
53 48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
54 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
55 53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
56 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
57 59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
58 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
59 65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
60 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
61 12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
62 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
63 24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
64 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
65 36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
66 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
67 48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
68 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
69 69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
70 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
71 89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
72 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
73 98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
74 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
75 108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
76 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
77 120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
78 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
79 17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
80 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
81 35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
82 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
83 52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
84 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
85 70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
86 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
87 104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
88 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
89 115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
90 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
91 137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
92 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
93 151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
94 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
95 152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
96 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
97 168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
98 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
99 168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
100 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
101 185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
102 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
103 13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
104 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
105 25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
106 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
107 38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
108 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
109 49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
110 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
111 72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
112 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
113 92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
114 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
115 102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
116 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
117 112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
118 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
119 122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
120 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
121 25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
122 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
123 49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
124 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
125 71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
126 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
127 92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
128 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
129 130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
130 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
131 162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
132 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
133 178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
134 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
135 192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
136 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
137 207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
138 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
139 36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
140 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
141 72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
142 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
143 108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
144 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
145 142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
146 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
147 205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
148 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
149 224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
150 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
151 263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
152 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
153 288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
154 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
155 290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
156 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
157 317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
158 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
159 317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
160 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
161 346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
162 },
163 50, /* probe interval */
164 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
165 };
166
167 /* 4ms frame limit not used for NG mode. The values filled
168 * for HT are the 64K max aggregate limit */
169
170 static const struct ath_rate_table ar5416_11ng_ratetable = {
171 72,
172 12, /* MCS start */
173 {
174 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
175 900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
176 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
177 1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
178 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
179 4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
180 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
181 8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
182 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
183 5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
184 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
185 7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
186 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
187 10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
188 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
189 14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
190 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
191 17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
192 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
193 23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
194 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
195 27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
196 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
197 30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
198 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
199 6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
200 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
201 12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
202 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
203 18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
204 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
205 25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
206 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
207 36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
208 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
209 48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
210 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
211 53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
212 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
213 59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
214 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
215 65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
216 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
217 12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
218 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
219 24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
220 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
221 36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
222 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
223 48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
224 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
225 69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
226 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
227 89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
228 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
229 98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
230 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
231 108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
232 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
233 120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
234 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
235 17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
236 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
237 35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
238 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
239 52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
240 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
241 70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
242 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
243 104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
244 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
245 115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
246 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
247 137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
248 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
249 151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
250 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
251 152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
252 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
253 168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
254 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
255 168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
256 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
257 185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
258 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
259 13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
260 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
261 25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
262 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
263 38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
264 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
265 49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
266 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
267 72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
268 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
269 92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
270 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
271 102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
272 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
273 112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
274 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
275 122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
276 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
277 25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
278 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
279 49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
280 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
281 71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
282 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
283 92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
284 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
285 130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
286 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
287 162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
288 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
289 178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
290 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
291 192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
292 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
293 207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
294 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
295 36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
296 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
297 72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
298 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
299 108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
300 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
301 142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
302 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
303 205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
304 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
305 224700, 20, 20, 8, 64, 65, 65 }, /* 270 Mb */
306 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
307 263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
308 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
309 288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
310 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
311 290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
312 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
313 317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
314 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
315 317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
316 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
317 346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
318 },
319 50, /* probe interval */
320 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
321 };
322
323 static const struct ath_rate_table ar5416_11a_ratetable = {
324 8,
325 0,
326 {
327 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
328 5400, 0, 12, 0},
329 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
330 7800, 1, 18, 0},
331 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
332 10000, 2, 24, 2},
333 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
334 13900, 3, 36, 2},
335 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
336 17300, 4, 48, 4},
337 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
338 23000, 5, 72, 4},
339 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
340 27400, 6, 96, 4},
341 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
342 29300, 7, 108, 4},
343 },
344 50, /* probe interval */
345 0, /* Phy rates allowed initially */
346 };
347
348 static const struct ath_rate_table ar5416_11g_ratetable = {
349 12,
350 0,
351 {
352 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
353 900, 0, 2, 0},
354 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
355 1900, 1, 4, 1},
356 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
357 4900, 2, 11, 2},
358 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
359 8100, 3, 22, 3},
360 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
361 5400, 4, 12, 4},
362 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
363 7800, 5, 18, 4},
364 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
365 10000, 6, 24, 6},
366 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
367 13900, 7, 36, 6},
368 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
369 17300, 8, 48, 8},
370 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
371 23000, 9, 72, 8},
372 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
373 27400, 10, 96, 8},
374 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 11, 108, 8},
376 },
377 50, /* probe interval */
378 0, /* Phy rates allowed initially */
379 };
380
381 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
382 struct ieee80211_tx_rate *rate);
383
384 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
385 struct ath_rate_priv *ath_rc_priv)
386 {
387 u8 i, j, idx, idx_next;
388
389 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
390 for (j = 0; j <= i-1; j++) {
391 idx = ath_rc_priv->valid_rate_index[j];
392 idx_next = ath_rc_priv->valid_rate_index[j+1];
393
394 if (rate_table->info[idx].ratekbps >
395 rate_table->info[idx_next].ratekbps) {
396 ath_rc_priv->valid_rate_index[j] = idx_next;
397 ath_rc_priv->valid_rate_index[j+1] = idx;
398 }
399 }
400 }
401 }
402
403 static void ath_rc_init_valid_rate_idx(struct ath_rate_priv *ath_rc_priv)
404 {
405 u8 i;
406
407 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
408 ath_rc_priv->valid_rate_index[i] = 0;
409 }
410
411 static inline void ath_rc_set_valid_rate_idx(struct ath_rate_priv *ath_rc_priv,
412 u8 index, int valid_tx_rate)
413 {
414 BUG_ON(index > ath_rc_priv->rate_table_size);
415 ath_rc_priv->valid_rate_index[index] = !!valid_tx_rate;
416 }
417
418 static inline
419 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
420 struct ath_rate_priv *ath_rc_priv,
421 u8 cur_valid_txrate,
422 u8 *next_idx)
423 {
424 u8 i;
425
426 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
427 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
428 *next_idx = ath_rc_priv->valid_rate_index[i+1];
429 return 1;
430 }
431 }
432
433 /* No more valid rates */
434 *next_idx = 0;
435
436 return 0;
437 }
438
439 /* Return true only for single stream */
440
441 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
442 {
443 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
444 return 0;
445 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
446 return 0;
447 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
448 return 0;
449 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
450 return 0;
451 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
452 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
453 return 0;
454 return 1;
455 }
456
457 static inline int
458 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
459 struct ath_rate_priv *ath_rc_priv,
460 u8 cur_valid_txrate, u8 *next_idx)
461 {
462 int8_t i;
463
464 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
465 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
466 *next_idx = ath_rc_priv->valid_rate_index[i-1];
467 return 1;
468 }
469 }
470
471 return 0;
472 }
473
474 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
475 const struct ath_rate_table *rate_table,
476 u32 capflag)
477 {
478 u8 i, hi = 0;
479
480 for (i = 0; i < rate_table->rate_cnt; i++) {
481 if (rate_table->info[i].rate_flags & RC_LEGACY) {
482 u32 phy = rate_table->info[i].phy;
483 u8 valid_rate_count = 0;
484
485 if (!ath_rc_valid_phyrate(phy, capflag, 0))
486 continue;
487
488 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
489
490 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
491 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
492 ath_rc_set_valid_rate_idx(ath_rc_priv, i, 1);
493 hi = i;
494 }
495 }
496
497 return hi;
498 }
499
500 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
501 const struct ath_rate_table *rate_table,
502 struct ath_rateset *rateset,
503 u32 capflag)
504 {
505 u8 i, j, hi = 0;
506
507 /* Use intersection of working rates and valid rates */
508 for (i = 0; i < rateset->rs_nrates; i++) {
509 for (j = 0; j < rate_table->rate_cnt; j++) {
510 u32 phy = rate_table->info[j].phy;
511 u16 rate_flags = rate_table->info[j].rate_flags;
512 u8 rate = rateset->rs_rates[i];
513 u8 dot11rate = rate_table->info[j].dot11rate;
514
515 /* We allow a rate only if its valid and the
516 * capflag matches one of the validity
517 * (VALID/VALID_20/VALID_40) flags */
518
519 if ((rate == dot11rate) &&
520 (rate_flags & WLAN_RC_CAP_MODE(capflag)) ==
521 WLAN_RC_CAP_MODE(capflag) &&
522 (rate_flags & WLAN_RC_CAP_STREAM(capflag)) &&
523 !WLAN_RC_PHY_HT(phy)) {
524 u8 valid_rate_count = 0;
525
526 if (!ath_rc_valid_phyrate(phy, capflag, 0))
527 continue;
528
529 valid_rate_count =
530 ath_rc_priv->valid_phy_ratecnt[phy];
531
532 ath_rc_priv->valid_phy_rateidx[phy]
533 [valid_rate_count] = j;
534 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
535 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
536 hi = A_MAX(hi, j);
537 }
538 }
539 }
540
541 return hi;
542 }
543
544 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
545 const struct ath_rate_table *rate_table,
546 u8 *mcs_set, u32 capflag)
547 {
548 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
549
550 u8 i, j, hi = 0;
551
552 /* Use intersection of working rates and valid rates */
553 for (i = 0; i < rateset->rs_nrates; i++) {
554 for (j = 0; j < rate_table->rate_cnt; j++) {
555 u32 phy = rate_table->info[j].phy;
556 u16 rate_flags = rate_table->info[j].rate_flags;
557 u8 rate = rateset->rs_rates[i];
558 u8 dot11rate = rate_table->info[j].dot11rate;
559
560 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
561 !(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
562 !WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
563 continue;
564
565 if (!ath_rc_valid_phyrate(phy, capflag, 0))
566 continue;
567
568 ath_rc_priv->valid_phy_rateidx[phy]
569 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
570 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
571 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
572 hi = A_MAX(hi, j);
573 }
574 }
575
576 return hi;
577 }
578
579 /* Finds the highest rate index we can use */
580 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
581 struct ath_rate_priv *ath_rc_priv,
582 const struct ath_rate_table *rate_table,
583 int *is_probing)
584 {
585 u32 best_thruput, this_thruput, now_msec;
586 u8 rate, next_rate, best_rate, maxindex, minindex;
587 int8_t index = 0;
588
589 now_msec = jiffies_to_msecs(jiffies);
590 *is_probing = 0;
591 best_thruput = 0;
592 maxindex = ath_rc_priv->max_valid_rate-1;
593 minindex = 0;
594 best_rate = minindex;
595
596 /*
597 * Try the higher rate first. It will reduce memory moving time
598 * if we have very good channel characteristics.
599 */
600 for (index = maxindex; index >= minindex ; index--) {
601 u8 per_thres;
602
603 rate = ath_rc_priv->valid_rate_index[index];
604 if (rate > ath_rc_priv->rate_max_phy)
605 continue;
606
607 /*
608 * For TCP the average collision rate is around 11%,
609 * so we ignore PERs less than this. This is to
610 * prevent the rate we are currently using (whose
611 * PER might be in the 10-15 range because of TCP
612 * collisions) looking worse than the next lower
613 * rate whose PER has decayed close to 0. If we
614 * used to next lower rate, its PER would grow to
615 * 10-15 and we would be worse off then staying
616 * at the current rate.
617 */
618 per_thres = ath_rc_priv->per[rate];
619 if (per_thres < 12)
620 per_thres = 12;
621
622 this_thruput = rate_table->info[rate].user_ratekbps *
623 (100 - per_thres);
624
625 if (best_thruput <= this_thruput) {
626 best_thruput = this_thruput;
627 best_rate = rate;
628 }
629 }
630
631 rate = best_rate;
632
633 /*
634 * Must check the actual rate (ratekbps) to account for
635 * non-monoticity of 11g's rate table
636 */
637
638 if (rate >= ath_rc_priv->rate_max_phy) {
639 rate = ath_rc_priv->rate_max_phy;
640
641 /* Probe the next allowed phy state */
642 if (ath_rc_get_nextvalid_txrate(rate_table,
643 ath_rc_priv, rate, &next_rate) &&
644 (now_msec - ath_rc_priv->probe_time >
645 rate_table->probe_interval) &&
646 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
647 rate = next_rate;
648 ath_rc_priv->probe_rate = rate;
649 ath_rc_priv->probe_time = now_msec;
650 ath_rc_priv->hw_maxretry_pktcnt = 0;
651 *is_probing = 1;
652 }
653 }
654
655 if (rate > (ath_rc_priv->rate_table_size - 1))
656 rate = ath_rc_priv->rate_table_size - 1;
657
658 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
659 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
660 return rate;
661
662 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
663 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
664 return rate;
665
666 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
667 return rate;
668
669 /* This should not happen */
670 WARN_ON(1);
671
672 rate = ath_rc_priv->valid_rate_index[0];
673
674 return rate;
675 }
676
677 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
678 struct ieee80211_tx_rate *rate,
679 struct ieee80211_tx_rate_control *txrc,
680 u8 tries, u8 rix, int rtsctsenable)
681 {
682 rate->count = tries;
683 rate->idx = rate_table->info[rix].ratecode;
684
685 if (txrc->short_preamble)
686 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
687 if (txrc->rts || rtsctsenable)
688 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
689
690 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
691 rate->flags |= IEEE80211_TX_RC_MCS;
692 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
693 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
694 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
695 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
696 }
697 }
698
699 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
700 const struct ath_rate_table *rate_table,
701 struct ieee80211_tx_info *tx_info)
702 {
703 struct ieee80211_tx_rate *rates = tx_info->control.rates;
704 int i = 0, rix = 0, cix, enable_g_protection = 0;
705
706 /* get the cix for the lowest valid rix */
707 for (i = 3; i >= 0; i--) {
708 if (rates[i].count && (rates[i].idx >= 0)) {
709 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
710 break;
711 }
712 }
713 cix = rate_table->info[rix].ctrl_rate;
714
715 /* All protection frames are transmited at 2Mb/s for 802.11g,
716 * otherwise we transmit them at 1Mb/s */
717 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
718 !conf_is_ht(&sc->hw->conf))
719 enable_g_protection = 1;
720
721 /*
722 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
723 * just CTS. Note that this is only done for OFDM/HT unicast frames.
724 */
725 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
726 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
727 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
728 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
729 cix = rate_table->info[enable_g_protection].ctrl_rate;
730 }
731
732 tx_info->control.rts_cts_rate_idx = cix;
733 }
734
735 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
736 struct ieee80211_tx_rate_control *txrc)
737 {
738 struct ath_softc *sc = priv;
739 struct ath_rate_priv *ath_rc_priv = priv_sta;
740 const struct ath_rate_table *rate_table;
741 struct sk_buff *skb = txrc->skb;
742 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
743 struct ieee80211_tx_rate *rates = tx_info->control.rates;
744 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
745 __le16 fc = hdr->frame_control;
746 u8 try_per_rate, i = 0, rix;
747 int is_probe = 0;
748
749 if (rate_control_send_low(sta, priv_sta, txrc))
750 return;
751
752 /*
753 * For Multi Rate Retry we use a different number of
754 * retry attempt counts. This ends up looking like this:
755 *
756 * MRR[0] = 4
757 * MRR[1] = 4
758 * MRR[2] = 4
759 * MRR[3] = 8
760 *
761 */
762 try_per_rate = 4;
763
764 rate_table = ath_rc_priv->rate_table;
765 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table, &is_probe);
766
767 /*
768 * If we're in HT mode and both us and our peer supports LDPC.
769 * We don't need to check our own device's capabilities as our own
770 * ht capabilities would have already been intersected with our peer's.
771 */
772 if (conf_is_ht(&sc->hw->conf) &&
773 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
774 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
775
776 if (conf_is_ht(&sc->hw->conf) &&
777 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
778 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
779
780 if (is_probe) {
781 /* set one try for probe rates. For the
782 * probes don't enable rts */
783 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
784 1, rix, 0);
785
786 /* Get the next tried/allowed rate. No RTS for the next series
787 * after the probe rate
788 */
789 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
790 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
791 try_per_rate, rix, 0);
792
793 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
794 } else {
795 /* Set the choosen rate. No RTS for first series entry. */
796 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
797 try_per_rate, rix, 0);
798 }
799
800 /* Fill in the other rates for multirate retry */
801 for ( ; i < 4; i++) {
802 /* Use twice the number of tries for the last MRR segment. */
803 if (i + 1 == 4)
804 try_per_rate = 8;
805
806 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
807 /* All other rates in the series have RTS enabled */
808 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
809 try_per_rate, rix, 1);
810 }
811
812 /*
813 * NB:Change rate series to enable aggregation when operating
814 * at lower MCS rates. When first rate in series is MCS2
815 * in HT40 @ 2.4GHz, series should look like:
816 *
817 * {MCS2, MCS1, MCS0, MCS0}.
818 *
819 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
820 * look like:
821 *
822 * {MCS3, MCS2, MCS1, MCS1}
823 *
824 * So, set fourth rate in series to be same as third one for
825 * above conditions.
826 */
827 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
828 (conf_is_ht(&sc->hw->conf))) {
829 u8 dot11rate = rate_table->info[rix].dot11rate;
830 u8 phy = rate_table->info[rix].phy;
831 if (i == 4 &&
832 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
833 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
834 rates[3].idx = rates[2].idx;
835 rates[3].flags = rates[2].flags;
836 }
837 }
838
839 /*
840 * Force hardware to use computed duration for next
841 * fragment by disabling multi-rate retry, which
842 * updates duration based on the multi-rate duration table.
843 *
844 * FIXME: Fix duration
845 */
846 if (ieee80211_has_morefrags(fc) ||
847 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
848 rates[1].count = rates[2].count = rates[3].count = 0;
849 rates[1].idx = rates[2].idx = rates[3].idx = 0;
850 rates[0].count = ATH_TXMAXTRY;
851 }
852
853 /* Setup RTS/CTS */
854 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
855 }
856
857 static bool ath_rc_update_per(struct ath_softc *sc,
858 const struct ath_rate_table *rate_table,
859 struct ath_rate_priv *ath_rc_priv,
860 struct ieee80211_tx_info *tx_info,
861 int tx_rate, int xretries, int retries,
862 u32 now_msec)
863 {
864 bool state_change = false;
865 int count, n_bad_frames;
866 u8 last_per;
867 static const u32 nretry_to_per_lookup[10] = {
868 100 * 0 / 1,
869 100 * 1 / 4,
870 100 * 1 / 2,
871 100 * 3 / 4,
872 100 * 4 / 5,
873 100 * 5 / 6,
874 100 * 6 / 7,
875 100 * 7 / 8,
876 100 * 8 / 9,
877 100 * 9 / 10
878 };
879
880 last_per = ath_rc_priv->per[tx_rate];
881 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
882
883 if (xretries) {
884 if (xretries == 1) {
885 ath_rc_priv->per[tx_rate] += 30;
886 if (ath_rc_priv->per[tx_rate] > 100)
887 ath_rc_priv->per[tx_rate] = 100;
888 } else {
889 /* xretries == 2 */
890 count = ARRAY_SIZE(nretry_to_per_lookup);
891 if (retries >= count)
892 retries = count - 1;
893
894 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
895 ath_rc_priv->per[tx_rate] =
896 (u8)(last_per - (last_per >> 3) + (100 >> 3));
897 }
898
899 /* xretries == 1 or 2 */
900
901 if (ath_rc_priv->probe_rate == tx_rate)
902 ath_rc_priv->probe_rate = 0;
903
904 } else { /* xretries == 0 */
905 count = ARRAY_SIZE(nretry_to_per_lookup);
906 if (retries >= count)
907 retries = count - 1;
908
909 if (n_bad_frames) {
910 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
911 * Assuming that n_frames is not 0. The current PER
912 * from the retries is 100 * retries / (retries+1),
913 * since the first retries attempts failed, and the
914 * next one worked. For the one that worked,
915 * n_bad_frames subframes out of n_frames wored,
916 * so the PER for that part is
917 * 100 * n_bad_frames / n_frames, and it contributes
918 * 100 * n_bad_frames / (n_frames * (retries+1)) to
919 * the above PER. The expression below is a
920 * simplified version of the sum of these two terms.
921 */
922 if (tx_info->status.ampdu_len > 0) {
923 int n_frames, n_bad_tries;
924 u8 cur_per, new_per;
925
926 n_bad_tries = retries * tx_info->status.ampdu_len +
927 n_bad_frames;
928 n_frames = tx_info->status.ampdu_len * (retries + 1);
929 cur_per = (100 * n_bad_tries / n_frames) >> 3;
930 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
931 ath_rc_priv->per[tx_rate] = new_per;
932 }
933 } else {
934 ath_rc_priv->per[tx_rate] =
935 (u8)(last_per - (last_per >> 3) +
936 (nretry_to_per_lookup[retries] >> 3));
937 }
938
939
940 /*
941 * If we got at most one retry then increase the max rate if
942 * this was a probe. Otherwise, ignore the probe.
943 */
944 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
945 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
946 /*
947 * Since we probed with just a single attempt,
948 * any retries means the probe failed. Also,
949 * if the attempt worked, but more than half
950 * the subframes were bad then also consider
951 * the probe a failure.
952 */
953 ath_rc_priv->probe_rate = 0;
954 } else {
955 u8 probe_rate = 0;
956
957 ath_rc_priv->rate_max_phy =
958 ath_rc_priv->probe_rate;
959 probe_rate = ath_rc_priv->probe_rate;
960
961 if (ath_rc_priv->per[probe_rate] > 30)
962 ath_rc_priv->per[probe_rate] = 20;
963
964 ath_rc_priv->probe_rate = 0;
965
966 /*
967 * Since this probe succeeded, we allow the next
968 * probe twice as soon. This allows the maxRate
969 * to move up faster if the probes are
970 * successful.
971 */
972 ath_rc_priv->probe_time =
973 now_msec - rate_table->probe_interval / 2;
974 }
975 }
976
977 if (retries > 0) {
978 /*
979 * Don't update anything. We don't know if
980 * this was because of collisions or poor signal.
981 */
982 ath_rc_priv->hw_maxretry_pktcnt = 0;
983 } else {
984 /*
985 * It worked with no retries. First ignore bogus (small)
986 * rssi_ack values.
987 */
988 if (tx_rate == ath_rc_priv->rate_max_phy &&
989 ath_rc_priv->hw_maxretry_pktcnt < 255) {
990 ath_rc_priv->hw_maxretry_pktcnt++;
991 }
992
993 }
994 }
995
996 return state_change;
997 }
998
999 static void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
1000 int xretries, int retries, u8 per)
1001 {
1002 struct ath_rc_stats *stats = &rc->rcstats[rix];
1003
1004 stats->xretries += xretries;
1005 stats->retries += retries;
1006 stats->per = per;
1007 }
1008
1009 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1010 If you can make sense of all this, you really need to go out more. */
1011
1012 static void ath_rc_update_ht(struct ath_softc *sc,
1013 struct ath_rate_priv *ath_rc_priv,
1014 struct ieee80211_tx_info *tx_info,
1015 int tx_rate, int xretries, int retries)
1016 {
1017 u32 now_msec = jiffies_to_msecs(jiffies);
1018 int rate;
1019 u8 last_per;
1020 bool state_change = false;
1021 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1022 int size = ath_rc_priv->rate_table_size;
1023
1024 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1025 return;
1026
1027 last_per = ath_rc_priv->per[tx_rate];
1028
1029 /* Update PER first */
1030 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1031 tx_info, tx_rate, xretries,
1032 retries, now_msec);
1033
1034 /*
1035 * If this rate looks bad (high PER) then stop using it for
1036 * a while (except if we are probing).
1037 */
1038 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1039 rate_table->info[tx_rate].ratekbps <=
1040 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1041 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1042 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1043
1044 /* Don't probe for a little while. */
1045 ath_rc_priv->probe_time = now_msec;
1046 }
1047
1048 /* Make sure the rates below this have lower PER */
1049 /* Monotonicity is kept only for rates below the current rate. */
1050 if (ath_rc_priv->per[tx_rate] < last_per) {
1051 for (rate = tx_rate - 1; rate >= 0; rate--) {
1052
1053 if (ath_rc_priv->per[rate] >
1054 ath_rc_priv->per[rate+1]) {
1055 ath_rc_priv->per[rate] =
1056 ath_rc_priv->per[rate+1];
1057 }
1058 }
1059 }
1060
1061 /* Maintain monotonicity for rates above the current rate */
1062 for (rate = tx_rate; rate < size - 1; rate++) {
1063 if (ath_rc_priv->per[rate+1] <
1064 ath_rc_priv->per[rate])
1065 ath_rc_priv->per[rate+1] =
1066 ath_rc_priv->per[rate];
1067 }
1068
1069 /* Every so often, we reduce the thresholds
1070 * and PER (different for CCK and OFDM). */
1071 if (now_msec - ath_rc_priv->per_down_time >=
1072 rate_table->probe_interval) {
1073 for (rate = 0; rate < size; rate++) {
1074 ath_rc_priv->per[rate] =
1075 7 * ath_rc_priv->per[rate] / 8;
1076 }
1077
1078 ath_rc_priv->per_down_time = now_msec;
1079 }
1080
1081 ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1082 ath_rc_priv->per[tx_rate]);
1083
1084 }
1085
1086 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
1087 struct ieee80211_tx_rate *rate)
1088 {
1089 int rix = 0, i = 0;
1090 static const int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
1091
1092 if (!(rate->flags & IEEE80211_TX_RC_MCS))
1093 return rate->idx;
1094
1095 while (rate->idx > mcs_rix_off[i] &&
1096 i < ARRAY_SIZE(mcs_rix_off)) {
1097 rix++; i++;
1098 }
1099
1100 rix += rate->idx + rate_table->mcs_start;
1101
1102 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1103 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1104 rix = rate_table->info[rix].ht_index;
1105 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1106 rix = rate_table->info[rix].sgi_index;
1107 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1108 rix = rate_table->info[rix].cw40index;
1109
1110 return rix;
1111 }
1112
1113 static void ath_rc_tx_status(struct ath_softc *sc,
1114 struct ath_rate_priv *ath_rc_priv,
1115 struct ieee80211_tx_info *tx_info,
1116 int final_ts_idx, int xretries, int long_retry)
1117 {
1118 const struct ath_rate_table *rate_table;
1119 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1120 u8 flags;
1121 u32 i = 0, rix;
1122
1123 rate_table = ath_rc_priv->rate_table;
1124
1125 /*
1126 * If the first rate is not the final index, there
1127 * are intermediate rate failures to be processed.
1128 */
1129 if (final_ts_idx != 0) {
1130 /* Process intermediate rates that failed.*/
1131 for (i = 0; i < final_ts_idx ; i++) {
1132 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1133 flags = rates[i].flags;
1134
1135 /* If HT40 and we have switched mode from
1136 * 40 to 20 => don't update */
1137
1138 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1139 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1140 return;
1141
1142 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1143 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1144 rix, xretries ? 1 : 2,
1145 rates[i].count);
1146 }
1147 }
1148 } else {
1149 /*
1150 * Handle the special case of MIMO PS burst, where the second
1151 * aggregate is sent out with only one rate and one try.
1152 * Treating it as an excessive retry penalizes the rate
1153 * inordinately.
1154 */
1155 if (rates[0].count == 1 && xretries == 1)
1156 xretries = 2;
1157 }
1158
1159 flags = rates[i].flags;
1160
1161 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1162 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1163 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1164 return;
1165
1166 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1167 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1168 }
1169
1170 static const
1171 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1172 enum ieee80211_band band,
1173 bool is_ht)
1174 {
1175 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1176
1177 switch(band) {
1178 case IEEE80211_BAND_2GHZ:
1179 if (is_ht)
1180 return &ar5416_11ng_ratetable;
1181 return &ar5416_11g_ratetable;
1182 case IEEE80211_BAND_5GHZ:
1183 if (is_ht)
1184 return &ar5416_11na_ratetable;
1185 return &ar5416_11a_ratetable;
1186 default:
1187 ath_dbg(common, ATH_DBG_CONFIG, "Invalid band\n");
1188 return NULL;
1189 }
1190 }
1191
1192 static void ath_rc_init(struct ath_softc *sc,
1193 struct ath_rate_priv *ath_rc_priv,
1194 struct ieee80211_supported_band *sband,
1195 struct ieee80211_sta *sta,
1196 const struct ath_rate_table *rate_table)
1197 {
1198 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1199 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1200 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1201 u8 i, j, k, hi = 0, hthi = 0;
1202
1203 /* Initial rate table size. Will change depending
1204 * on the working rate set */
1205 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1206
1207 /* Initialize thresholds according to the global rate table */
1208 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1209 ath_rc_priv->per[i] = 0;
1210 }
1211
1212 /* Determine the valid rates */
1213 ath_rc_init_valid_rate_idx(ath_rc_priv);
1214
1215 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1216 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1217 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1218 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1219 }
1220
1221 if (!rateset->rs_nrates) {
1222 /* No working rate, just initialize valid rates */
1223 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1224 ath_rc_priv->ht_cap);
1225 } else {
1226 /* Use intersection of working rates and valid rates */
1227 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1228 rateset, ath_rc_priv->ht_cap);
1229 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1230 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1231 rate_table,
1232 ht_mcs,
1233 ath_rc_priv->ht_cap);
1234 }
1235 hi = A_MAX(hi, hthi);
1236 }
1237
1238 ath_rc_priv->rate_table_size = hi + 1;
1239 ath_rc_priv->rate_max_phy = 0;
1240 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1241
1242 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1243 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1244 ath_rc_priv->valid_rate_index[k++] =
1245 ath_rc_priv->valid_phy_rateidx[i][j];
1246 }
1247
1248 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1249 || !ath_rc_priv->valid_phy_ratecnt[i])
1250 continue;
1251
1252 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1253 }
1254 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1255 BUG_ON(k > RATE_TABLE_SIZE);
1256
1257 ath_rc_priv->max_valid_rate = k;
1258 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1259 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1260 ath_rc_priv->rate_table = rate_table;
1261
1262 ath_dbg(common, ATH_DBG_CONFIG,
1263 "RC Initialized with capabilities: 0x%x\n",
1264 ath_rc_priv->ht_cap);
1265 }
1266
1267 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1268 bool is_cw40, bool is_sgi)
1269 {
1270 u8 caps = 0;
1271
1272 if (sta->ht_cap.ht_supported) {
1273 caps = WLAN_RC_HT_FLAG;
1274 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1275 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1276 else if (sta->ht_cap.mcs.rx_mask[1])
1277 caps |= WLAN_RC_DS_FLAG;
1278 if (is_cw40)
1279 caps |= WLAN_RC_40_FLAG;
1280 if (is_sgi)
1281 caps |= WLAN_RC_SGI_FLAG;
1282 }
1283
1284 return caps;
1285 }
1286
1287 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an,
1288 u8 tidno)
1289 {
1290 struct ath_atx_tid *txtid;
1291
1292 if (!(sc->sc_flags & SC_OP_TXAGGR))
1293 return false;
1294
1295 txtid = ATH_AN_2_TID(an, tidno);
1296
1297 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1298 return true;
1299 return false;
1300 }
1301
1302
1303 /***********************************/
1304 /* mac80211 Rate Control callbacks */
1305 /***********************************/
1306
1307 static void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1308 {
1309 struct ath_rc_stats *stats;
1310
1311 stats = &rc->rcstats[final_rate];
1312 stats->success++;
1313 }
1314
1315
1316 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1317 struct ieee80211_sta *sta, void *priv_sta,
1318 struct sk_buff *skb)
1319 {
1320 struct ath_softc *sc = priv;
1321 struct ath_rate_priv *ath_rc_priv = priv_sta;
1322 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1323 struct ieee80211_hdr *hdr;
1324 int final_ts_idx = 0, tx_status = 0;
1325 int long_retry = 0;
1326 __le16 fc;
1327 int i;
1328
1329 hdr = (struct ieee80211_hdr *)skb->data;
1330 fc = hdr->frame_control;
1331 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
1332 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1333 if (!rate->count)
1334 break;
1335
1336 final_ts_idx = i;
1337 long_retry = rate->count - 1;
1338 }
1339
1340 if (!priv_sta || !ieee80211_is_data(fc))
1341 return;
1342
1343 /* This packet was aggregated but doesn't carry status info */
1344 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1345 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1346 return;
1347
1348 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1349 return;
1350
1351 if (!(tx_info->flags & IEEE80211_TX_STAT_AMPDU)) {
1352 tx_info->status.ampdu_ack_len =
1353 (tx_info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
1354 tx_info->status.ampdu_len = 1;
1355 }
1356
1357 if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1358 tx_status = 1;
1359
1360 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1361 long_retry);
1362
1363 /* Check if aggregation has to be enabled for this tid */
1364 if (conf_is_ht(&sc->hw->conf) &&
1365 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1366 if (ieee80211_is_data_qos(fc) &&
1367 skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1368 u8 *qc, tid;
1369 struct ath_node *an;
1370
1371 qc = ieee80211_get_qos_ctl(hdr);
1372 tid = qc[0] & 0xf;
1373 an = (struct ath_node *)sta->drv_priv;
1374
1375 if(ath_tx_aggr_check(sc, an, tid))
1376 ieee80211_start_tx_ba_session(sta, tid, 0);
1377 }
1378 }
1379
1380 ath_debug_stat_rc(ath_rc_priv,
1381 ath_rc_get_rateindex(ath_rc_priv->rate_table,
1382 &tx_info->status.rates[final_ts_idx]));
1383 }
1384
1385 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1386 struct ieee80211_sta *sta, void *priv_sta)
1387 {
1388 struct ath_softc *sc = priv;
1389 struct ath_rate_priv *ath_rc_priv = priv_sta;
1390 const struct ath_rate_table *rate_table;
1391 bool is_cw40, is_sgi = false;
1392 int i, j = 0;
1393
1394 for (i = 0; i < sband->n_bitrates; i++) {
1395 if (sta->supp_rates[sband->band] & BIT(i)) {
1396 ath_rc_priv->neg_rates.rs_rates[j]
1397 = (sband->bitrates[i].bitrate * 2) / 10;
1398 j++;
1399 }
1400 }
1401 ath_rc_priv->neg_rates.rs_nrates = j;
1402
1403 if (sta->ht_cap.ht_supported) {
1404 for (i = 0, j = 0; i < 77; i++) {
1405 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1406 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1407 if (j == ATH_RATE_MAX)
1408 break;
1409 }
1410 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1411 }
1412
1413 is_cw40 = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40);
1414
1415 if (is_cw40)
1416 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1417 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1418 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1419
1420 /* Choose rate table first */
1421
1422 rate_table = ath_choose_rate_table(sc, sband->band,
1423 sta->ht_cap.ht_supported);
1424
1425 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi);
1426 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1427 }
1428
1429 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1430 struct ieee80211_sta *sta, void *priv_sta,
1431 u32 changed, enum nl80211_channel_type oper_chan_type)
1432 {
1433 struct ath_softc *sc = priv;
1434 struct ath_rate_priv *ath_rc_priv = priv_sta;
1435 const struct ath_rate_table *rate_table = NULL;
1436 bool oper_cw40 = false, oper_sgi;
1437 bool local_cw40 = !!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1438 bool local_sgi = !!(ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG);
1439
1440 /* FIXME: Handle AP mode later when we support CWM */
1441
1442 if (changed & IEEE80211_RC_HT_CHANGED) {
1443 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1444 return;
1445
1446 if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
1447 oper_chan_type == NL80211_CHAN_HT40PLUS)
1448 oper_cw40 = true;
1449
1450 if (oper_cw40)
1451 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1452 true : false;
1453 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1454 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1455 true : false;
1456 else
1457 oper_sgi = false;
1458
1459 if ((local_cw40 != oper_cw40) || (local_sgi != oper_sgi)) {
1460 rate_table = ath_choose_rate_table(sc, sband->band,
1461 sta->ht_cap.ht_supported);
1462 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1463 oper_cw40, oper_sgi);
1464 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1465
1466 ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1467 "Operating HT Bandwidth changed to: %d\n",
1468 sc->hw->conf.channel_type);
1469 }
1470 }
1471 }
1472
1473 #ifdef CONFIG_ATH9K_DEBUGFS
1474
1475 static int ath9k_debugfs_open(struct inode *inode, struct file *file)
1476 {
1477 file->private_data = inode->i_private;
1478 return 0;
1479 }
1480
1481 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1482 size_t count, loff_t *ppos)
1483 {
1484 struct ath_rate_priv *rc = file->private_data;
1485 char *buf;
1486 unsigned int len = 0, max;
1487 int i = 0;
1488 ssize_t retval;
1489
1490 if (rc->rate_table == NULL)
1491 return 0;
1492
1493 max = 80 + rc->rate_table->rate_cnt * 1024 + 1;
1494 buf = kmalloc(max, GFP_KERNEL);
1495 if (buf == NULL)
1496 return -ENOMEM;
1497
1498 len += sprintf(buf, "%6s %6s %6s "
1499 "%10s %10s %10s %10s\n",
1500 "HT", "MCS", "Rate",
1501 "Success", "Retries", "XRetries", "PER");
1502
1503 for (i = 0; i < rc->rate_table->rate_cnt; i++) {
1504 u32 ratekbps = rc->rate_table->info[i].ratekbps;
1505 struct ath_rc_stats *stats = &rc->rcstats[i];
1506 char mcs[5];
1507 char htmode[5];
1508 int used_mcs = 0, used_htmode = 0;
1509
1510 if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1511 used_mcs = snprintf(mcs, 5, "%d",
1512 rc->rate_table->info[i].ratecode);
1513
1514 if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1515 used_htmode = snprintf(htmode, 5, "HT40");
1516 else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1517 used_htmode = snprintf(htmode, 5, "HT20");
1518 else
1519 used_htmode = snprintf(htmode, 5, "????");
1520 }
1521
1522 mcs[used_mcs] = '\0';
1523 htmode[used_htmode] = '\0';
1524
1525 len += snprintf(buf + len, max - len,
1526 "%6s %6s %3u.%d: "
1527 "%10u %10u %10u %10u\n",
1528 htmode,
1529 mcs,
1530 ratekbps / 1000,
1531 (ratekbps % 1000) / 100,
1532 stats->success,
1533 stats->retries,
1534 stats->xretries,
1535 stats->per);
1536 }
1537
1538 if (len > max)
1539 len = max;
1540
1541 retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1542 kfree(buf);
1543 return retval;
1544 }
1545
1546 static const struct file_operations fops_rcstat = {
1547 .read = read_file_rcstat,
1548 .open = ath9k_debugfs_open,
1549 .owner = THIS_MODULE
1550 };
1551
1552 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1553 struct dentry *dir)
1554 {
1555 struct ath_rate_priv *rc = priv_sta;
1556 debugfs_create_file("rc_stats", S_IRUGO, dir, rc, &fops_rcstat);
1557 }
1558
1559 #endif /* CONFIG_ATH9K_DEBUGFS */
1560
1561 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1562 {
1563 return hw->priv;
1564 }
1565
1566 static void ath_rate_free(void *priv)
1567 {
1568 return;
1569 }
1570
1571 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1572 {
1573 struct ath_softc *sc = priv;
1574 struct ath_rate_priv *rate_priv;
1575
1576 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1577 if (!rate_priv) {
1578 ath_err(ath9k_hw_common(sc->sc_ah),
1579 "Unable to allocate private rc structure\n");
1580 return NULL;
1581 }
1582
1583 return rate_priv;
1584 }
1585
1586 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1587 void *priv_sta)
1588 {
1589 struct ath_rate_priv *rate_priv = priv_sta;
1590 kfree(rate_priv);
1591 }
1592
1593 static struct rate_control_ops ath_rate_ops = {
1594 .module = NULL,
1595 .name = "ath9k_rate_control",
1596 .tx_status = ath_tx_status,
1597 .get_rate = ath_get_rate,
1598 .rate_init = ath_rate_init,
1599 .rate_update = ath_rate_update,
1600 .alloc = ath_rate_alloc,
1601 .free = ath_rate_free,
1602 .alloc_sta = ath_rate_alloc_sta,
1603 .free_sta = ath_rate_free_sta,
1604 #ifdef CONFIG_ATH9K_DEBUGFS
1605 .add_sta_debugfs = ath_rate_add_sta_debugfs,
1606 #endif
1607 };
1608
1609 int ath_rate_control_register(void)
1610 {
1611 return ieee80211_rate_control_register(&ath_rate_ops);
1612 }
1613
1614 void ath_rate_control_unregister(void)
1615 {
1616 ieee80211_rate_control_unregister(&ath_rate_ops);
1617 }