Merge tag 'ep93xx-fixes-for-3.6' of git://github.com/RyanMallon/linux-ep93xx into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath5k / base.c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58
59 #include <net/ieee80211_radiotap.h>
60
61 #include <asm/unaligned.h>
62
63 #include "base.h"
64 #include "reg.h"
65 #include "debug.h"
66 #include "ani.h"
67 #include "ath5k.h"
68 #include "../regd.h"
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 bool ath5k_modparam_nohwcrypt;
74 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
76
77 static bool modparam_all_channels;
78 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
79 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
80
81 static bool modparam_fastchanswitch;
82 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
83 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
84
85 static bool ath5k_modparam_no_hw_rfkill_switch;
86 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
87 bool, S_IRUGO);
88 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
89
90
91 /* Module info */
92 MODULE_AUTHOR("Jiri Slaby");
93 MODULE_AUTHOR("Nick Kossifidis");
94 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
95 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
96 MODULE_LICENSE("Dual BSD/GPL");
97
98 static int ath5k_init(struct ieee80211_hw *hw);
99 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
100 bool skip_pcu);
101
102 /* Known SREVs */
103 static const struct ath5k_srev_name srev_names[] = {
104 #ifdef CONFIG_ATHEROS_AR231X
105 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
106 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
107 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
108 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
109 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
110 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
111 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
112 #else
113 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
114 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
115 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
116 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
117 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
118 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
119 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
120 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
121 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
122 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
123 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
124 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
125 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
126 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
127 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
128 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
129 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
130 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
131 #endif
132 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
133 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
134 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
135 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
136 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
137 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
138 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
139 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
140 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
141 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
142 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
143 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
144 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
145 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
146 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
147 #ifdef CONFIG_ATHEROS_AR231X
148 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
149 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
150 #endif
151 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
152 };
153
154 static const struct ieee80211_rate ath5k_rates[] = {
155 { .bitrate = 10,
156 .hw_value = ATH5K_RATE_CODE_1M, },
157 { .bitrate = 20,
158 .hw_value = ATH5K_RATE_CODE_2M,
159 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
160 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 { .bitrate = 55,
162 .hw_value = ATH5K_RATE_CODE_5_5M,
163 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
164 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 { .bitrate = 110,
166 .hw_value = ATH5K_RATE_CODE_11M,
167 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
168 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
169 { .bitrate = 60,
170 .hw_value = ATH5K_RATE_CODE_6M,
171 .flags = 0 },
172 { .bitrate = 90,
173 .hw_value = ATH5K_RATE_CODE_9M,
174 .flags = 0 },
175 { .bitrate = 120,
176 .hw_value = ATH5K_RATE_CODE_12M,
177 .flags = 0 },
178 { .bitrate = 180,
179 .hw_value = ATH5K_RATE_CODE_18M,
180 .flags = 0 },
181 { .bitrate = 240,
182 .hw_value = ATH5K_RATE_CODE_24M,
183 .flags = 0 },
184 { .bitrate = 360,
185 .hw_value = ATH5K_RATE_CODE_36M,
186 .flags = 0 },
187 { .bitrate = 480,
188 .hw_value = ATH5K_RATE_CODE_48M,
189 .flags = 0 },
190 { .bitrate = 540,
191 .hw_value = ATH5K_RATE_CODE_54M,
192 .flags = 0 },
193 };
194
195 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
196 {
197 u64 tsf = ath5k_hw_get_tsf64(ah);
198
199 if ((tsf & 0x7fff) < rstamp)
200 tsf -= 0x8000;
201
202 return (tsf & ~0x7fff) | rstamp;
203 }
204
205 const char *
206 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
207 {
208 const char *name = "xxxxx";
209 unsigned int i;
210
211 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
212 if (srev_names[i].sr_type != type)
213 continue;
214
215 if ((val & 0xf0) == srev_names[i].sr_val)
216 name = srev_names[i].sr_name;
217
218 if ((val & 0xff) == srev_names[i].sr_val) {
219 name = srev_names[i].sr_name;
220 break;
221 }
222 }
223
224 return name;
225 }
226 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
227 {
228 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
229 return ath5k_hw_reg_read(ah, reg_offset);
230 }
231
232 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
233 {
234 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 ath5k_hw_reg_write(ah, val, reg_offset);
236 }
237
238 static const struct ath_ops ath5k_common_ops = {
239 .read = ath5k_ioread32,
240 .write = ath5k_iowrite32,
241 };
242
243 /***********************\
244 * Driver Initialization *
245 \***********************/
246
247 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
248 {
249 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
250 struct ath5k_hw *ah = hw->priv;
251 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
252
253 return ath_reg_notifier_apply(wiphy, request, regulatory);
254 }
255
256 /********************\
257 * Channel/mode setup *
258 \********************/
259
260 /*
261 * Returns true for the channel numbers used without all_channels modparam.
262 */
263 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
264 {
265 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
266 return true;
267
268 return /* UNII 1,2 */
269 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
270 /* midband */
271 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
272 /* UNII-3 */
273 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
274 /* 802.11j 5.030-5.080 GHz (20MHz) */
275 (chan == 8 || chan == 12 || chan == 16) ||
276 /* 802.11j 4.9GHz (20MHz) */
277 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
278 }
279
280 static unsigned int
281 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
282 unsigned int mode, unsigned int max)
283 {
284 unsigned int count, size, freq, ch;
285 enum ieee80211_band band;
286
287 switch (mode) {
288 case AR5K_MODE_11A:
289 /* 1..220, but 2GHz frequencies are filtered by check_channel */
290 size = 220;
291 band = IEEE80211_BAND_5GHZ;
292 break;
293 case AR5K_MODE_11B:
294 case AR5K_MODE_11G:
295 size = 26;
296 band = IEEE80211_BAND_2GHZ;
297 break;
298 default:
299 ATH5K_WARN(ah, "bad mode, not copying channels\n");
300 return 0;
301 }
302
303 count = 0;
304 for (ch = 1; ch <= size && count < max; ch++) {
305 freq = ieee80211_channel_to_frequency(ch, band);
306
307 if (freq == 0) /* mapping failed - not a standard channel */
308 continue;
309
310 /* Write channel info, needed for ath5k_channel_ok() */
311 channels[count].center_freq = freq;
312 channels[count].band = band;
313 channels[count].hw_value = mode;
314
315 /* Check if channel is supported by the chipset */
316 if (!ath5k_channel_ok(ah, &channels[count]))
317 continue;
318
319 if (!modparam_all_channels &&
320 !ath5k_is_standard_channel(ch, band))
321 continue;
322
323 count++;
324 }
325
326 return count;
327 }
328
329 static void
330 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
331 {
332 u8 i;
333
334 for (i = 0; i < AR5K_MAX_RATES; i++)
335 ah->rate_idx[b->band][i] = -1;
336
337 for (i = 0; i < b->n_bitrates; i++) {
338 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
339 if (b->bitrates[i].hw_value_short)
340 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
341 }
342 }
343
344 static int
345 ath5k_setup_bands(struct ieee80211_hw *hw)
346 {
347 struct ath5k_hw *ah = hw->priv;
348 struct ieee80211_supported_band *sband;
349 int max_c, count_c = 0;
350 int i;
351
352 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
353 max_c = ARRAY_SIZE(ah->channels);
354
355 /* 2GHz band */
356 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
357 sband->band = IEEE80211_BAND_2GHZ;
358 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
359
360 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
361 /* G mode */
362 memcpy(sband->bitrates, &ath5k_rates[0],
363 sizeof(struct ieee80211_rate) * 12);
364 sband->n_bitrates = 12;
365
366 sband->channels = ah->channels;
367 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
368 AR5K_MODE_11G, max_c);
369
370 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
371 count_c = sband->n_channels;
372 max_c -= count_c;
373 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
374 /* B mode */
375 memcpy(sband->bitrates, &ath5k_rates[0],
376 sizeof(struct ieee80211_rate) * 4);
377 sband->n_bitrates = 4;
378
379 /* 5211 only supports B rates and uses 4bit rate codes
380 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381 * fix them up here:
382 */
383 if (ah->ah_version == AR5K_AR5211) {
384 for (i = 0; i < 4; i++) {
385 sband->bitrates[i].hw_value =
386 sband->bitrates[i].hw_value & 0xF;
387 sband->bitrates[i].hw_value_short =
388 sband->bitrates[i].hw_value_short & 0xF;
389 }
390 }
391
392 sband->channels = ah->channels;
393 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
394 AR5K_MODE_11B, max_c);
395
396 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
397 count_c = sband->n_channels;
398 max_c -= count_c;
399 }
400 ath5k_setup_rate_idx(ah, sband);
401
402 /* 5GHz band, A mode */
403 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
404 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
405 sband->band = IEEE80211_BAND_5GHZ;
406 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
407
408 memcpy(sband->bitrates, &ath5k_rates[4],
409 sizeof(struct ieee80211_rate) * 8);
410 sband->n_bitrates = 8;
411
412 sband->channels = &ah->channels[count_c];
413 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
414 AR5K_MODE_11A, max_c);
415
416 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
417 }
418 ath5k_setup_rate_idx(ah, sband);
419
420 ath5k_debug_dump_bands(ah);
421
422 return 0;
423 }
424
425 /*
426 * Set/change channels. We always reset the chip.
427 * To accomplish this we must first cleanup any pending DMA,
428 * then restart stuff after a la ath5k_init.
429 *
430 * Called with ah->lock.
431 */
432 int
433 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
434 {
435 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
436 "channel set, resetting (%u -> %u MHz)\n",
437 ah->curchan->center_freq, chan->center_freq);
438
439 /*
440 * To switch channels clear any pending DMA operations;
441 * wait long enough for the RX fifo to drain, reset the
442 * hardware at the new frequency, and then re-enable
443 * the relevant bits of the h/w.
444 */
445 return ath5k_reset(ah, chan, true);
446 }
447
448 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
449 {
450 struct ath5k_vif_iter_data *iter_data = data;
451 int i;
452 struct ath5k_vif *avf = (void *)vif->drv_priv;
453
454 if (iter_data->hw_macaddr)
455 for (i = 0; i < ETH_ALEN; i++)
456 iter_data->mask[i] &=
457 ~(iter_data->hw_macaddr[i] ^ mac[i]);
458
459 if (!iter_data->found_active) {
460 iter_data->found_active = true;
461 memcpy(iter_data->active_mac, mac, ETH_ALEN);
462 }
463
464 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
465 if (ether_addr_equal(iter_data->hw_macaddr, mac))
466 iter_data->need_set_hw_addr = false;
467
468 if (!iter_data->any_assoc) {
469 if (avf->assoc)
470 iter_data->any_assoc = true;
471 }
472
473 /* Calculate combined mode - when APs are active, operate in AP mode.
474 * Otherwise use the mode of the new interface. This can currently
475 * only deal with combinations of APs and STAs. Only one ad-hoc
476 * interfaces is allowed.
477 */
478 if (avf->opmode == NL80211_IFTYPE_AP)
479 iter_data->opmode = NL80211_IFTYPE_AP;
480 else {
481 if (avf->opmode == NL80211_IFTYPE_STATION)
482 iter_data->n_stas++;
483 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
484 iter_data->opmode = avf->opmode;
485 }
486 }
487
488 void
489 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
490 struct ieee80211_vif *vif)
491 {
492 struct ath_common *common = ath5k_hw_common(ah);
493 struct ath5k_vif_iter_data iter_data;
494 u32 rfilt;
495
496 /*
497 * Use the hardware MAC address as reference, the hardware uses it
498 * together with the BSSID mask when matching addresses.
499 */
500 iter_data.hw_macaddr = common->macaddr;
501 memset(&iter_data.mask, 0xff, ETH_ALEN);
502 iter_data.found_active = false;
503 iter_data.need_set_hw_addr = true;
504 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
505 iter_data.n_stas = 0;
506
507 if (vif)
508 ath5k_vif_iter(&iter_data, vif->addr, vif);
509
510 /* Get list of all active MAC addresses */
511 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
512 &iter_data);
513 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
514
515 ah->opmode = iter_data.opmode;
516 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
517 /* Nothing active, default to station mode */
518 ah->opmode = NL80211_IFTYPE_STATION;
519
520 ath5k_hw_set_opmode(ah, ah->opmode);
521 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
522 ah->opmode, ath_opmode_to_string(ah->opmode));
523
524 if (iter_data.need_set_hw_addr && iter_data.found_active)
525 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
526
527 if (ath5k_hw_hasbssidmask(ah))
528 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
529
530 /* Set up RX Filter */
531 if (iter_data.n_stas > 1) {
532 /* If you have multiple STA interfaces connected to
533 * different APs, ARPs are not received (most of the time?)
534 * Enabling PROMISC appears to fix that problem.
535 */
536 ah->filter_flags |= AR5K_RX_FILTER_PROM;
537 }
538
539 rfilt = ah->filter_flags;
540 ath5k_hw_set_rx_filter(ah, rfilt);
541 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
542 }
543
544 static inline int
545 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
546 {
547 int rix;
548
549 /* return base rate on errors */
550 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
551 "hw_rix out of bounds: %x\n", hw_rix))
552 return 0;
553
554 rix = ah->rate_idx[ah->curchan->band][hw_rix];
555 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
556 rix = 0;
557
558 return rix;
559 }
560
561 /***************\
562 * Buffers setup *
563 \***************/
564
565 static
566 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
567 {
568 struct ath_common *common = ath5k_hw_common(ah);
569 struct sk_buff *skb;
570
571 /*
572 * Allocate buffer with headroom_needed space for the
573 * fake physical layer header at the start.
574 */
575 skb = ath_rxbuf_alloc(common,
576 common->rx_bufsize,
577 GFP_ATOMIC);
578
579 if (!skb) {
580 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
581 common->rx_bufsize);
582 return NULL;
583 }
584
585 *skb_addr = dma_map_single(ah->dev,
586 skb->data, common->rx_bufsize,
587 DMA_FROM_DEVICE);
588
589 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
590 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
591 dev_kfree_skb(skb);
592 return NULL;
593 }
594 return skb;
595 }
596
597 static int
598 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
599 {
600 struct sk_buff *skb = bf->skb;
601 struct ath5k_desc *ds;
602 int ret;
603
604 if (!skb) {
605 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
606 if (!skb)
607 return -ENOMEM;
608 bf->skb = skb;
609 }
610
611 /*
612 * Setup descriptors. For receive we always terminate
613 * the descriptor list with a self-linked entry so we'll
614 * not get overrun under high load (as can happen with a
615 * 5212 when ANI processing enables PHY error frames).
616 *
617 * To ensure the last descriptor is self-linked we create
618 * each descriptor as self-linked and add it to the end. As
619 * each additional descriptor is added the previous self-linked
620 * entry is "fixed" naturally. This should be safe even
621 * if DMA is happening. When processing RX interrupts we
622 * never remove/process the last, self-linked, entry on the
623 * descriptor list. This ensures the hardware always has
624 * someplace to write a new frame.
625 */
626 ds = bf->desc;
627 ds->ds_link = bf->daddr; /* link to self */
628 ds->ds_data = bf->skbaddr;
629 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
630 if (ret) {
631 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
632 return ret;
633 }
634
635 if (ah->rxlink != NULL)
636 *ah->rxlink = bf->daddr;
637 ah->rxlink = &ds->ds_link;
638 return 0;
639 }
640
641 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
642 {
643 struct ieee80211_hdr *hdr;
644 enum ath5k_pkt_type htype;
645 __le16 fc;
646
647 hdr = (struct ieee80211_hdr *)skb->data;
648 fc = hdr->frame_control;
649
650 if (ieee80211_is_beacon(fc))
651 htype = AR5K_PKT_TYPE_BEACON;
652 else if (ieee80211_is_probe_resp(fc))
653 htype = AR5K_PKT_TYPE_PROBE_RESP;
654 else if (ieee80211_is_atim(fc))
655 htype = AR5K_PKT_TYPE_ATIM;
656 else if (ieee80211_is_pspoll(fc))
657 htype = AR5K_PKT_TYPE_PSPOLL;
658 else
659 htype = AR5K_PKT_TYPE_NORMAL;
660
661 return htype;
662 }
663
664 static int
665 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
666 struct ath5k_txq *txq, int padsize)
667 {
668 struct ath5k_desc *ds = bf->desc;
669 struct sk_buff *skb = bf->skb;
670 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
671 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
672 struct ieee80211_rate *rate;
673 unsigned int mrr_rate[3], mrr_tries[3];
674 int i, ret;
675 u16 hw_rate;
676 u16 cts_rate = 0;
677 u16 duration = 0;
678 u8 rc_flags;
679
680 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
681
682 /* XXX endianness */
683 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
684 DMA_TO_DEVICE);
685
686 rate = ieee80211_get_tx_rate(ah->hw, info);
687 if (!rate) {
688 ret = -EINVAL;
689 goto err_unmap;
690 }
691
692 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
693 flags |= AR5K_TXDESC_NOACK;
694
695 rc_flags = info->control.rates[0].flags;
696 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
697 rate->hw_value_short : rate->hw_value;
698
699 pktlen = skb->len;
700
701 /* FIXME: If we are in g mode and rate is a CCK rate
702 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
703 * from tx power (value is in dB units already) */
704 if (info->control.hw_key) {
705 keyidx = info->control.hw_key->hw_key_idx;
706 pktlen += info->control.hw_key->icv_len;
707 }
708 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
709 flags |= AR5K_TXDESC_RTSENA;
710 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
711 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
712 info->control.vif, pktlen, info));
713 }
714 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
715 flags |= AR5K_TXDESC_CTSENA;
716 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
717 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
718 info->control.vif, pktlen, info));
719 }
720 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
721 ieee80211_get_hdrlen_from_skb(skb), padsize,
722 get_hw_packet_type(skb),
723 (ah->power_level * 2),
724 hw_rate,
725 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
726 cts_rate, duration);
727 if (ret)
728 goto err_unmap;
729
730 /* Set up MRR descriptor */
731 if (ah->ah_capabilities.cap_has_mrr_support) {
732 memset(mrr_rate, 0, sizeof(mrr_rate));
733 memset(mrr_tries, 0, sizeof(mrr_tries));
734 for (i = 0; i < 3; i++) {
735 rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
736 if (!rate)
737 break;
738
739 mrr_rate[i] = rate->hw_value;
740 mrr_tries[i] = info->control.rates[i + 1].count;
741 }
742
743 ath5k_hw_setup_mrr_tx_desc(ah, ds,
744 mrr_rate[0], mrr_tries[0],
745 mrr_rate[1], mrr_tries[1],
746 mrr_rate[2], mrr_tries[2]);
747 }
748
749 ds->ds_link = 0;
750 ds->ds_data = bf->skbaddr;
751
752 spin_lock_bh(&txq->lock);
753 list_add_tail(&bf->list, &txq->q);
754 txq->txq_len++;
755 if (txq->link == NULL) /* is this first packet? */
756 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
757 else /* no, so only link it */
758 *txq->link = bf->daddr;
759
760 txq->link = &ds->ds_link;
761 ath5k_hw_start_tx_dma(ah, txq->qnum);
762 mmiowb();
763 spin_unlock_bh(&txq->lock);
764
765 return 0;
766 err_unmap:
767 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
768 return ret;
769 }
770
771 /*******************\
772 * Descriptors setup *
773 \*******************/
774
775 static int
776 ath5k_desc_alloc(struct ath5k_hw *ah)
777 {
778 struct ath5k_desc *ds;
779 struct ath5k_buf *bf;
780 dma_addr_t da;
781 unsigned int i;
782 int ret;
783
784 /* allocate descriptors */
785 ah->desc_len = sizeof(struct ath5k_desc) *
786 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
787
788 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
789 &ah->desc_daddr, GFP_KERNEL);
790 if (ah->desc == NULL) {
791 ATH5K_ERR(ah, "can't allocate descriptors\n");
792 ret = -ENOMEM;
793 goto err;
794 }
795 ds = ah->desc;
796 da = ah->desc_daddr;
797 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
798 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
799
800 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
801 sizeof(struct ath5k_buf), GFP_KERNEL);
802 if (bf == NULL) {
803 ATH5K_ERR(ah, "can't allocate bufptr\n");
804 ret = -ENOMEM;
805 goto err_free;
806 }
807 ah->bufptr = bf;
808
809 INIT_LIST_HEAD(&ah->rxbuf);
810 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
811 bf->desc = ds;
812 bf->daddr = da;
813 list_add_tail(&bf->list, &ah->rxbuf);
814 }
815
816 INIT_LIST_HEAD(&ah->txbuf);
817 ah->txbuf_len = ATH_TXBUF;
818 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
819 bf->desc = ds;
820 bf->daddr = da;
821 list_add_tail(&bf->list, &ah->txbuf);
822 }
823
824 /* beacon buffers */
825 INIT_LIST_HEAD(&ah->bcbuf);
826 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
827 bf->desc = ds;
828 bf->daddr = da;
829 list_add_tail(&bf->list, &ah->bcbuf);
830 }
831
832 return 0;
833 err_free:
834 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
835 err:
836 ah->desc = NULL;
837 return ret;
838 }
839
840 void
841 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
842 {
843 BUG_ON(!bf);
844 if (!bf->skb)
845 return;
846 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
847 DMA_TO_DEVICE);
848 dev_kfree_skb_any(bf->skb);
849 bf->skb = NULL;
850 bf->skbaddr = 0;
851 bf->desc->ds_data = 0;
852 }
853
854 void
855 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
856 {
857 struct ath_common *common = ath5k_hw_common(ah);
858
859 BUG_ON(!bf);
860 if (!bf->skb)
861 return;
862 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
863 DMA_FROM_DEVICE);
864 dev_kfree_skb_any(bf->skb);
865 bf->skb = NULL;
866 bf->skbaddr = 0;
867 bf->desc->ds_data = 0;
868 }
869
870 static void
871 ath5k_desc_free(struct ath5k_hw *ah)
872 {
873 struct ath5k_buf *bf;
874
875 list_for_each_entry(bf, &ah->txbuf, list)
876 ath5k_txbuf_free_skb(ah, bf);
877 list_for_each_entry(bf, &ah->rxbuf, list)
878 ath5k_rxbuf_free_skb(ah, bf);
879 list_for_each_entry(bf, &ah->bcbuf, list)
880 ath5k_txbuf_free_skb(ah, bf);
881
882 /* Free memory associated with all descriptors */
883 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
884 ah->desc = NULL;
885 ah->desc_daddr = 0;
886
887 kfree(ah->bufptr);
888 ah->bufptr = NULL;
889 }
890
891
892 /**************\
893 * Queues setup *
894 \**************/
895
896 static struct ath5k_txq *
897 ath5k_txq_setup(struct ath5k_hw *ah,
898 int qtype, int subtype)
899 {
900 struct ath5k_txq *txq;
901 struct ath5k_txq_info qi = {
902 .tqi_subtype = subtype,
903 /* XXX: default values not correct for B and XR channels,
904 * but who cares? */
905 .tqi_aifs = AR5K_TUNE_AIFS,
906 .tqi_cw_min = AR5K_TUNE_CWMIN,
907 .tqi_cw_max = AR5K_TUNE_CWMAX
908 };
909 int qnum;
910
911 /*
912 * Enable interrupts only for EOL and DESC conditions.
913 * We mark tx descriptors to receive a DESC interrupt
914 * when a tx queue gets deep; otherwise we wait for the
915 * EOL to reap descriptors. Note that this is done to
916 * reduce interrupt load and this only defers reaping
917 * descriptors, never transmitting frames. Aside from
918 * reducing interrupts this also permits more concurrency.
919 * The only potential downside is if the tx queue backs
920 * up in which case the top half of the kernel may backup
921 * due to a lack of tx descriptors.
922 */
923 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
924 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
925 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
926 if (qnum < 0) {
927 /*
928 * NB: don't print a message, this happens
929 * normally on parts with too few tx queues
930 */
931 return ERR_PTR(qnum);
932 }
933 txq = &ah->txqs[qnum];
934 if (!txq->setup) {
935 txq->qnum = qnum;
936 txq->link = NULL;
937 INIT_LIST_HEAD(&txq->q);
938 spin_lock_init(&txq->lock);
939 txq->setup = true;
940 txq->txq_len = 0;
941 txq->txq_max = ATH5K_TXQ_LEN_MAX;
942 txq->txq_poll_mark = false;
943 txq->txq_stuck = 0;
944 }
945 return &ah->txqs[qnum];
946 }
947
948 static int
949 ath5k_beaconq_setup(struct ath5k_hw *ah)
950 {
951 struct ath5k_txq_info qi = {
952 /* XXX: default values not correct for B and XR channels,
953 * but who cares? */
954 .tqi_aifs = AR5K_TUNE_AIFS,
955 .tqi_cw_min = AR5K_TUNE_CWMIN,
956 .tqi_cw_max = AR5K_TUNE_CWMAX,
957 /* NB: for dynamic turbo, don't enable any other interrupts */
958 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
959 };
960
961 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
962 }
963
964 static int
965 ath5k_beaconq_config(struct ath5k_hw *ah)
966 {
967 struct ath5k_txq_info qi;
968 int ret;
969
970 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
971 if (ret)
972 goto err;
973
974 if (ah->opmode == NL80211_IFTYPE_AP ||
975 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
976 /*
977 * Always burst out beacon and CAB traffic
978 * (aifs = cwmin = cwmax = 0)
979 */
980 qi.tqi_aifs = 0;
981 qi.tqi_cw_min = 0;
982 qi.tqi_cw_max = 0;
983 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
984 /*
985 * Adhoc mode; backoff between 0 and (2 * cw_min).
986 */
987 qi.tqi_aifs = 0;
988 qi.tqi_cw_min = 0;
989 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
990 }
991
992 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
993 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
994 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
995
996 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
997 if (ret) {
998 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
999 "hardware queue!\n", __func__);
1000 goto err;
1001 }
1002 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1003 if (ret)
1004 goto err;
1005
1006 /* reconfigure cabq with ready time to 80% of beacon_interval */
1007 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1008 if (ret)
1009 goto err;
1010
1011 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1012 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1013 if (ret)
1014 goto err;
1015
1016 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1017 err:
1018 return ret;
1019 }
1020
1021 /**
1022 * ath5k_drain_tx_buffs - Empty tx buffers
1023 *
1024 * @ah The &struct ath5k_hw
1025 *
1026 * Empty tx buffers from all queues in preparation
1027 * of a reset or during shutdown.
1028 *
1029 * NB: this assumes output has been stopped and
1030 * we do not need to block ath5k_tx_tasklet
1031 */
1032 static void
1033 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1034 {
1035 struct ath5k_txq *txq;
1036 struct ath5k_buf *bf, *bf0;
1037 int i;
1038
1039 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1040 if (ah->txqs[i].setup) {
1041 txq = &ah->txqs[i];
1042 spin_lock_bh(&txq->lock);
1043 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1044 ath5k_debug_printtxbuf(ah, bf);
1045
1046 ath5k_txbuf_free_skb(ah, bf);
1047
1048 spin_lock(&ah->txbuflock);
1049 list_move_tail(&bf->list, &ah->txbuf);
1050 ah->txbuf_len++;
1051 txq->txq_len--;
1052 spin_unlock(&ah->txbuflock);
1053 }
1054 txq->link = NULL;
1055 txq->txq_poll_mark = false;
1056 spin_unlock_bh(&txq->lock);
1057 }
1058 }
1059 }
1060
1061 static void
1062 ath5k_txq_release(struct ath5k_hw *ah)
1063 {
1064 struct ath5k_txq *txq = ah->txqs;
1065 unsigned int i;
1066
1067 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1068 if (txq->setup) {
1069 ath5k_hw_release_tx_queue(ah, txq->qnum);
1070 txq->setup = false;
1071 }
1072 }
1073
1074
1075 /*************\
1076 * RX Handling *
1077 \*************/
1078
1079 /*
1080 * Enable the receive h/w following a reset.
1081 */
1082 static int
1083 ath5k_rx_start(struct ath5k_hw *ah)
1084 {
1085 struct ath_common *common = ath5k_hw_common(ah);
1086 struct ath5k_buf *bf;
1087 int ret;
1088
1089 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1090
1091 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1092 common->cachelsz, common->rx_bufsize);
1093
1094 spin_lock_bh(&ah->rxbuflock);
1095 ah->rxlink = NULL;
1096 list_for_each_entry(bf, &ah->rxbuf, list) {
1097 ret = ath5k_rxbuf_setup(ah, bf);
1098 if (ret != 0) {
1099 spin_unlock_bh(&ah->rxbuflock);
1100 goto err;
1101 }
1102 }
1103 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1104 ath5k_hw_set_rxdp(ah, bf->daddr);
1105 spin_unlock_bh(&ah->rxbuflock);
1106
1107 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1108 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1109 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1110
1111 return 0;
1112 err:
1113 return ret;
1114 }
1115
1116 /*
1117 * Disable the receive logic on PCU (DRU)
1118 * In preparation for a shutdown.
1119 *
1120 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1121 * does.
1122 */
1123 static void
1124 ath5k_rx_stop(struct ath5k_hw *ah)
1125 {
1126
1127 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1128 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1129
1130 ath5k_debug_printrxbuffs(ah);
1131 }
1132
1133 static unsigned int
1134 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1135 struct ath5k_rx_status *rs)
1136 {
1137 struct ath_common *common = ath5k_hw_common(ah);
1138 struct ieee80211_hdr *hdr = (void *)skb->data;
1139 unsigned int keyix, hlen;
1140
1141 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1142 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1143 return RX_FLAG_DECRYPTED;
1144
1145 /* Apparently when a default key is used to decrypt the packet
1146 the hw does not set the index used to decrypt. In such cases
1147 get the index from the packet. */
1148 hlen = ieee80211_hdrlen(hdr->frame_control);
1149 if (ieee80211_has_protected(hdr->frame_control) &&
1150 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1151 skb->len >= hlen + 4) {
1152 keyix = skb->data[hlen + 3] >> 6;
1153
1154 if (test_bit(keyix, common->keymap))
1155 return RX_FLAG_DECRYPTED;
1156 }
1157
1158 return 0;
1159 }
1160
1161
1162 static void
1163 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1164 struct ieee80211_rx_status *rxs)
1165 {
1166 struct ath_common *common = ath5k_hw_common(ah);
1167 u64 tsf, bc_tstamp;
1168 u32 hw_tu;
1169 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1170
1171 if (ieee80211_is_beacon(mgmt->frame_control) &&
1172 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1173 ether_addr_equal(mgmt->bssid, common->curbssid)) {
1174 /*
1175 * Received an IBSS beacon with the same BSSID. Hardware *must*
1176 * have updated the local TSF. We have to work around various
1177 * hardware bugs, though...
1178 */
1179 tsf = ath5k_hw_get_tsf64(ah);
1180 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1181 hw_tu = TSF_TO_TU(tsf);
1182
1183 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1184 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1185 (unsigned long long)bc_tstamp,
1186 (unsigned long long)rxs->mactime,
1187 (unsigned long long)(rxs->mactime - bc_tstamp),
1188 (unsigned long long)tsf);
1189
1190 /*
1191 * Sometimes the HW will give us a wrong tstamp in the rx
1192 * status, causing the timestamp extension to go wrong.
1193 * (This seems to happen especially with beacon frames bigger
1194 * than 78 byte (incl. FCS))
1195 * But we know that the receive timestamp must be later than the
1196 * timestamp of the beacon since HW must have synced to that.
1197 *
1198 * NOTE: here we assume mactime to be after the frame was
1199 * received, not like mac80211 which defines it at the start.
1200 */
1201 if (bc_tstamp > rxs->mactime) {
1202 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1203 "fixing mactime from %llx to %llx\n",
1204 (unsigned long long)rxs->mactime,
1205 (unsigned long long)tsf);
1206 rxs->mactime = tsf;
1207 }
1208
1209 /*
1210 * Local TSF might have moved higher than our beacon timers,
1211 * in that case we have to update them to continue sending
1212 * beacons. This also takes care of synchronizing beacon sending
1213 * times with other stations.
1214 */
1215 if (hw_tu >= ah->nexttbtt)
1216 ath5k_beacon_update_timers(ah, bc_tstamp);
1217
1218 /* Check if the beacon timers are still correct, because a TSF
1219 * update might have created a window between them - for a
1220 * longer description see the comment of this function: */
1221 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1222 ath5k_beacon_update_timers(ah, bc_tstamp);
1223 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1224 "fixed beacon timers after beacon receive\n");
1225 }
1226 }
1227 }
1228
1229 static void
1230 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1231 {
1232 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1233 struct ath_common *common = ath5k_hw_common(ah);
1234
1235 /* only beacons from our BSSID */
1236 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1237 !ether_addr_equal(mgmt->bssid, common->curbssid))
1238 return;
1239
1240 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1241
1242 /* in IBSS mode we should keep RSSI statistics per neighbour */
1243 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1244 }
1245
1246 /*
1247 * Compute padding position. skb must contain an IEEE 802.11 frame
1248 */
1249 static int ath5k_common_padpos(struct sk_buff *skb)
1250 {
1251 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1252 __le16 frame_control = hdr->frame_control;
1253 int padpos = 24;
1254
1255 if (ieee80211_has_a4(frame_control))
1256 padpos += ETH_ALEN;
1257
1258 if (ieee80211_is_data_qos(frame_control))
1259 padpos += IEEE80211_QOS_CTL_LEN;
1260
1261 return padpos;
1262 }
1263
1264 /*
1265 * This function expects an 802.11 frame and returns the number of
1266 * bytes added, or -1 if we don't have enough header room.
1267 */
1268 static int ath5k_add_padding(struct sk_buff *skb)
1269 {
1270 int padpos = ath5k_common_padpos(skb);
1271 int padsize = padpos & 3;
1272
1273 if (padsize && skb->len > padpos) {
1274
1275 if (skb_headroom(skb) < padsize)
1276 return -1;
1277
1278 skb_push(skb, padsize);
1279 memmove(skb->data, skb->data + padsize, padpos);
1280 return padsize;
1281 }
1282
1283 return 0;
1284 }
1285
1286 /*
1287 * The MAC header is padded to have 32-bit boundary if the
1288 * packet payload is non-zero. The general calculation for
1289 * padsize would take into account odd header lengths:
1290 * padsize = 4 - (hdrlen & 3); however, since only
1291 * even-length headers are used, padding can only be 0 or 2
1292 * bytes and we can optimize this a bit. We must not try to
1293 * remove padding from short control frames that do not have a
1294 * payload.
1295 *
1296 * This function expects an 802.11 frame and returns the number of
1297 * bytes removed.
1298 */
1299 static int ath5k_remove_padding(struct sk_buff *skb)
1300 {
1301 int padpos = ath5k_common_padpos(skb);
1302 int padsize = padpos & 3;
1303
1304 if (padsize && skb->len >= padpos + padsize) {
1305 memmove(skb->data + padsize, skb->data, padpos);
1306 skb_pull(skb, padsize);
1307 return padsize;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static void
1314 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1315 struct ath5k_rx_status *rs)
1316 {
1317 struct ieee80211_rx_status *rxs;
1318
1319 ath5k_remove_padding(skb);
1320
1321 rxs = IEEE80211_SKB_RXCB(skb);
1322
1323 rxs->flag = 0;
1324 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1325 rxs->flag |= RX_FLAG_MMIC_ERROR;
1326
1327 /*
1328 * always extend the mac timestamp, since this information is
1329 * also needed for proper IBSS merging.
1330 *
1331 * XXX: it might be too late to do it here, since rs_tstamp is
1332 * 15bit only. that means TSF extension has to be done within
1333 * 32768usec (about 32ms). it might be necessary to move this to
1334 * the interrupt handler, like it is done in madwifi.
1335 *
1336 * Unfortunately we don't know when the hardware takes the rx
1337 * timestamp (beginning of phy frame, data frame, end of rx?).
1338 * The only thing we know is that it is hardware specific...
1339 * On AR5213 it seems the rx timestamp is at the end of the
1340 * frame, but I'm not sure.
1341 *
1342 * NOTE: mac80211 defines mactime at the beginning of the first
1343 * data symbol. Since we don't have any time references it's
1344 * impossible to comply to that. This affects IBSS merge only
1345 * right now, so it's not too bad...
1346 */
1347 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1348 rxs->flag |= RX_FLAG_MACTIME_MPDU;
1349
1350 rxs->freq = ah->curchan->center_freq;
1351 rxs->band = ah->curchan->band;
1352
1353 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1354
1355 rxs->antenna = rs->rs_antenna;
1356
1357 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1358 ah->stats.antenna_rx[rs->rs_antenna]++;
1359 else
1360 ah->stats.antenna_rx[0]++; /* invalid */
1361
1362 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1363 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1364
1365 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1366 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1367 rxs->flag |= RX_FLAG_SHORTPRE;
1368
1369 trace_ath5k_rx(ah, skb);
1370
1371 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1372
1373 /* check beacons in IBSS mode */
1374 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1375 ath5k_check_ibss_tsf(ah, skb, rxs);
1376
1377 ieee80211_rx(ah->hw, skb);
1378 }
1379
1380 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1381 *
1382 * Check if we want to further process this frame or not. Also update
1383 * statistics. Return true if we want this frame, false if not.
1384 */
1385 static bool
1386 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1387 {
1388 ah->stats.rx_all_count++;
1389 ah->stats.rx_bytes_count += rs->rs_datalen;
1390
1391 if (unlikely(rs->rs_status)) {
1392 if (rs->rs_status & AR5K_RXERR_CRC)
1393 ah->stats.rxerr_crc++;
1394 if (rs->rs_status & AR5K_RXERR_FIFO)
1395 ah->stats.rxerr_fifo++;
1396 if (rs->rs_status & AR5K_RXERR_PHY) {
1397 ah->stats.rxerr_phy++;
1398 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1399 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1400 return false;
1401 }
1402 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1403 /*
1404 * Decrypt error. If the error occurred
1405 * because there was no hardware key, then
1406 * let the frame through so the upper layers
1407 * can process it. This is necessary for 5210
1408 * parts which have no way to setup a ``clear''
1409 * key cache entry.
1410 *
1411 * XXX do key cache faulting
1412 */
1413 ah->stats.rxerr_decrypt++;
1414 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1415 !(rs->rs_status & AR5K_RXERR_CRC))
1416 return true;
1417 }
1418 if (rs->rs_status & AR5K_RXERR_MIC) {
1419 ah->stats.rxerr_mic++;
1420 return true;
1421 }
1422
1423 /* reject any frames with non-crypto errors */
1424 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1425 return false;
1426 }
1427
1428 if (unlikely(rs->rs_more)) {
1429 ah->stats.rxerr_jumbo++;
1430 return false;
1431 }
1432 return true;
1433 }
1434
1435 static void
1436 ath5k_set_current_imask(struct ath5k_hw *ah)
1437 {
1438 enum ath5k_int imask;
1439 unsigned long flags;
1440
1441 spin_lock_irqsave(&ah->irqlock, flags);
1442 imask = ah->imask;
1443 if (ah->rx_pending)
1444 imask &= ~AR5K_INT_RX_ALL;
1445 if (ah->tx_pending)
1446 imask &= ~AR5K_INT_TX_ALL;
1447 ath5k_hw_set_imr(ah, imask);
1448 spin_unlock_irqrestore(&ah->irqlock, flags);
1449 }
1450
1451 static void
1452 ath5k_tasklet_rx(unsigned long data)
1453 {
1454 struct ath5k_rx_status rs = {};
1455 struct sk_buff *skb, *next_skb;
1456 dma_addr_t next_skb_addr;
1457 struct ath5k_hw *ah = (void *)data;
1458 struct ath_common *common = ath5k_hw_common(ah);
1459 struct ath5k_buf *bf;
1460 struct ath5k_desc *ds;
1461 int ret;
1462
1463 spin_lock(&ah->rxbuflock);
1464 if (list_empty(&ah->rxbuf)) {
1465 ATH5K_WARN(ah, "empty rx buf pool\n");
1466 goto unlock;
1467 }
1468 do {
1469 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1470 BUG_ON(bf->skb == NULL);
1471 skb = bf->skb;
1472 ds = bf->desc;
1473
1474 /* bail if HW is still using self-linked descriptor */
1475 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1476 break;
1477
1478 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1479 if (unlikely(ret == -EINPROGRESS))
1480 break;
1481 else if (unlikely(ret)) {
1482 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1483 ah->stats.rxerr_proc++;
1484 break;
1485 }
1486
1487 if (ath5k_receive_frame_ok(ah, &rs)) {
1488 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1489
1490 /*
1491 * If we can't replace bf->skb with a new skb under
1492 * memory pressure, just skip this packet
1493 */
1494 if (!next_skb)
1495 goto next;
1496
1497 dma_unmap_single(ah->dev, bf->skbaddr,
1498 common->rx_bufsize,
1499 DMA_FROM_DEVICE);
1500
1501 skb_put(skb, rs.rs_datalen);
1502
1503 ath5k_receive_frame(ah, skb, &rs);
1504
1505 bf->skb = next_skb;
1506 bf->skbaddr = next_skb_addr;
1507 }
1508 next:
1509 list_move_tail(&bf->list, &ah->rxbuf);
1510 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1511 unlock:
1512 spin_unlock(&ah->rxbuflock);
1513 ah->rx_pending = false;
1514 ath5k_set_current_imask(ah);
1515 }
1516
1517
1518 /*************\
1519 * TX Handling *
1520 \*************/
1521
1522 void
1523 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1524 struct ath5k_txq *txq)
1525 {
1526 struct ath5k_hw *ah = hw->priv;
1527 struct ath5k_buf *bf;
1528 unsigned long flags;
1529 int padsize;
1530
1531 trace_ath5k_tx(ah, skb, txq);
1532
1533 /*
1534 * The hardware expects the header padded to 4 byte boundaries.
1535 * If this is not the case, we add the padding after the header.
1536 */
1537 padsize = ath5k_add_padding(skb);
1538 if (padsize < 0) {
1539 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1540 " headroom to pad");
1541 goto drop_packet;
1542 }
1543
1544 if (txq->txq_len >= txq->txq_max &&
1545 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1546 ieee80211_stop_queue(hw, txq->qnum);
1547
1548 spin_lock_irqsave(&ah->txbuflock, flags);
1549 if (list_empty(&ah->txbuf)) {
1550 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1551 spin_unlock_irqrestore(&ah->txbuflock, flags);
1552 ieee80211_stop_queues(hw);
1553 goto drop_packet;
1554 }
1555 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1556 list_del(&bf->list);
1557 ah->txbuf_len--;
1558 if (list_empty(&ah->txbuf))
1559 ieee80211_stop_queues(hw);
1560 spin_unlock_irqrestore(&ah->txbuflock, flags);
1561
1562 bf->skb = skb;
1563
1564 if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1565 bf->skb = NULL;
1566 spin_lock_irqsave(&ah->txbuflock, flags);
1567 list_add_tail(&bf->list, &ah->txbuf);
1568 ah->txbuf_len++;
1569 spin_unlock_irqrestore(&ah->txbuflock, flags);
1570 goto drop_packet;
1571 }
1572 return;
1573
1574 drop_packet:
1575 dev_kfree_skb_any(skb);
1576 }
1577
1578 static void
1579 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1580 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1581 {
1582 struct ieee80211_tx_info *info;
1583 u8 tries[3];
1584 int i;
1585
1586 ah->stats.tx_all_count++;
1587 ah->stats.tx_bytes_count += skb->len;
1588 info = IEEE80211_SKB_CB(skb);
1589
1590 tries[0] = info->status.rates[0].count;
1591 tries[1] = info->status.rates[1].count;
1592 tries[2] = info->status.rates[2].count;
1593
1594 ieee80211_tx_info_clear_status(info);
1595
1596 for (i = 0; i < ts->ts_final_idx; i++) {
1597 struct ieee80211_tx_rate *r =
1598 &info->status.rates[i];
1599
1600 r->count = tries[i];
1601 }
1602
1603 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1604 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1605
1606 if (unlikely(ts->ts_status)) {
1607 ah->stats.ack_fail++;
1608 if (ts->ts_status & AR5K_TXERR_FILT) {
1609 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1610 ah->stats.txerr_filt++;
1611 }
1612 if (ts->ts_status & AR5K_TXERR_XRETRY)
1613 ah->stats.txerr_retry++;
1614 if (ts->ts_status & AR5K_TXERR_FIFO)
1615 ah->stats.txerr_fifo++;
1616 } else {
1617 info->flags |= IEEE80211_TX_STAT_ACK;
1618 info->status.ack_signal = ts->ts_rssi;
1619
1620 /* count the successful attempt as well */
1621 info->status.rates[ts->ts_final_idx].count++;
1622 }
1623
1624 /*
1625 * Remove MAC header padding before giving the frame
1626 * back to mac80211.
1627 */
1628 ath5k_remove_padding(skb);
1629
1630 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1631 ah->stats.antenna_tx[ts->ts_antenna]++;
1632 else
1633 ah->stats.antenna_tx[0]++; /* invalid */
1634
1635 trace_ath5k_tx_complete(ah, skb, txq, ts);
1636 ieee80211_tx_status(ah->hw, skb);
1637 }
1638
1639 static void
1640 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1641 {
1642 struct ath5k_tx_status ts = {};
1643 struct ath5k_buf *bf, *bf0;
1644 struct ath5k_desc *ds;
1645 struct sk_buff *skb;
1646 int ret;
1647
1648 spin_lock(&txq->lock);
1649 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1650
1651 txq->txq_poll_mark = false;
1652
1653 /* skb might already have been processed last time. */
1654 if (bf->skb != NULL) {
1655 ds = bf->desc;
1656
1657 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1658 if (unlikely(ret == -EINPROGRESS))
1659 break;
1660 else if (unlikely(ret)) {
1661 ATH5K_ERR(ah,
1662 "error %d while processing "
1663 "queue %u\n", ret, txq->qnum);
1664 break;
1665 }
1666
1667 skb = bf->skb;
1668 bf->skb = NULL;
1669
1670 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1671 DMA_TO_DEVICE);
1672 ath5k_tx_frame_completed(ah, skb, txq, &ts);
1673 }
1674
1675 /*
1676 * It's possible that the hardware can say the buffer is
1677 * completed when it hasn't yet loaded the ds_link from
1678 * host memory and moved on.
1679 * Always keep the last descriptor to avoid HW races...
1680 */
1681 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1682 spin_lock(&ah->txbuflock);
1683 list_move_tail(&bf->list, &ah->txbuf);
1684 ah->txbuf_len++;
1685 txq->txq_len--;
1686 spin_unlock(&ah->txbuflock);
1687 }
1688 }
1689 spin_unlock(&txq->lock);
1690 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1691 ieee80211_wake_queue(ah->hw, txq->qnum);
1692 }
1693
1694 static void
1695 ath5k_tasklet_tx(unsigned long data)
1696 {
1697 int i;
1698 struct ath5k_hw *ah = (void *)data;
1699
1700 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1701 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1702 ath5k_tx_processq(ah, &ah->txqs[i]);
1703
1704 ah->tx_pending = false;
1705 ath5k_set_current_imask(ah);
1706 }
1707
1708
1709 /*****************\
1710 * Beacon handling *
1711 \*****************/
1712
1713 /*
1714 * Setup the beacon frame for transmit.
1715 */
1716 static int
1717 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1718 {
1719 struct sk_buff *skb = bf->skb;
1720 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1721 struct ath5k_desc *ds;
1722 int ret = 0;
1723 u8 antenna;
1724 u32 flags;
1725 const int padsize = 0;
1726
1727 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1728 DMA_TO_DEVICE);
1729 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1730 "skbaddr %llx\n", skb, skb->data, skb->len,
1731 (unsigned long long)bf->skbaddr);
1732
1733 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1734 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1735 dev_kfree_skb_any(skb);
1736 bf->skb = NULL;
1737 return -EIO;
1738 }
1739
1740 ds = bf->desc;
1741 antenna = ah->ah_tx_ant;
1742
1743 flags = AR5K_TXDESC_NOACK;
1744 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1745 ds->ds_link = bf->daddr; /* self-linked */
1746 flags |= AR5K_TXDESC_VEOL;
1747 } else
1748 ds->ds_link = 0;
1749
1750 /*
1751 * If we use multiple antennas on AP and use
1752 * the Sectored AP scenario, switch antenna every
1753 * 4 beacons to make sure everybody hears our AP.
1754 * When a client tries to associate, hw will keep
1755 * track of the tx antenna to be used for this client
1756 * automatically, based on ACKed packets.
1757 *
1758 * Note: AP still listens and transmits RTS on the
1759 * default antenna which is supposed to be an omni.
1760 *
1761 * Note2: On sectored scenarios it's possible to have
1762 * multiple antennas (1 omni -- the default -- and 14
1763 * sectors), so if we choose to actually support this
1764 * mode, we need to allow the user to set how many antennas
1765 * we have and tweak the code below to send beacons
1766 * on all of them.
1767 */
1768 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1769 antenna = ah->bsent & 4 ? 2 : 1;
1770
1771
1772 /* FIXME: If we are in g mode and rate is a CCK rate
1773 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1774 * from tx power (value is in dB units already) */
1775 ds->ds_data = bf->skbaddr;
1776 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1777 ieee80211_get_hdrlen_from_skb(skb), padsize,
1778 AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1779 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1780 1, AR5K_TXKEYIX_INVALID,
1781 antenna, flags, 0, 0);
1782 if (ret)
1783 goto err_unmap;
1784
1785 return 0;
1786 err_unmap:
1787 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1788 return ret;
1789 }
1790
1791 /*
1792 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1793 * this is called only once at config_bss time, for AP we do it every
1794 * SWBA interrupt so that the TIM will reflect buffered frames.
1795 *
1796 * Called with the beacon lock.
1797 */
1798 int
1799 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1800 {
1801 int ret;
1802 struct ath5k_hw *ah = hw->priv;
1803 struct ath5k_vif *avf = (void *)vif->drv_priv;
1804 struct sk_buff *skb;
1805
1806 if (WARN_ON(!vif)) {
1807 ret = -EINVAL;
1808 goto out;
1809 }
1810
1811 skb = ieee80211_beacon_get(hw, vif);
1812
1813 if (!skb) {
1814 ret = -ENOMEM;
1815 goto out;
1816 }
1817
1818 ath5k_txbuf_free_skb(ah, avf->bbuf);
1819 avf->bbuf->skb = skb;
1820 ret = ath5k_beacon_setup(ah, avf->bbuf);
1821 out:
1822 return ret;
1823 }
1824
1825 /*
1826 * Transmit a beacon frame at SWBA. Dynamic updates to the
1827 * frame contents are done as needed and the slot time is
1828 * also adjusted based on current state.
1829 *
1830 * This is called from software irq context (beacontq tasklets)
1831 * or user context from ath5k_beacon_config.
1832 */
1833 static void
1834 ath5k_beacon_send(struct ath5k_hw *ah)
1835 {
1836 struct ieee80211_vif *vif;
1837 struct ath5k_vif *avf;
1838 struct ath5k_buf *bf;
1839 struct sk_buff *skb;
1840 int err;
1841
1842 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1843
1844 /*
1845 * Check if the previous beacon has gone out. If
1846 * not, don't don't try to post another: skip this
1847 * period and wait for the next. Missed beacons
1848 * indicate a problem and should not occur. If we
1849 * miss too many consecutive beacons reset the device.
1850 */
1851 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1852 ah->bmisscount++;
1853 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1854 "missed %u consecutive beacons\n", ah->bmisscount);
1855 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1856 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1857 "stuck beacon time (%u missed)\n",
1858 ah->bmisscount);
1859 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1860 "stuck beacon, resetting\n");
1861 ieee80211_queue_work(ah->hw, &ah->reset_work);
1862 }
1863 return;
1864 }
1865 if (unlikely(ah->bmisscount != 0)) {
1866 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1867 "resume beacon xmit after %u misses\n",
1868 ah->bmisscount);
1869 ah->bmisscount = 0;
1870 }
1871
1872 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1873 ah->num_mesh_vifs > 1) ||
1874 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1875 u64 tsf = ath5k_hw_get_tsf64(ah);
1876 u32 tsftu = TSF_TO_TU(tsf);
1877 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1878 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1879 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1880 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1881 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1882 } else /* only one interface */
1883 vif = ah->bslot[0];
1884
1885 if (!vif)
1886 return;
1887
1888 avf = (void *)vif->drv_priv;
1889 bf = avf->bbuf;
1890
1891 /*
1892 * Stop any current dma and put the new frame on the queue.
1893 * This should never fail since we check above that no frames
1894 * are still pending on the queue.
1895 */
1896 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1897 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1898 /* NB: hw still stops DMA, so proceed */
1899 }
1900
1901 /* refresh the beacon for AP or MESH mode */
1902 if (ah->opmode == NL80211_IFTYPE_AP ||
1903 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1904 err = ath5k_beacon_update(ah->hw, vif);
1905 if (err)
1906 return;
1907 }
1908
1909 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1910 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1911 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1912 return;
1913 }
1914
1915 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1916
1917 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1918 ath5k_hw_start_tx_dma(ah, ah->bhalq);
1919 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1920 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1921
1922 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1923 while (skb) {
1924 ath5k_tx_queue(ah->hw, skb, ah->cabq);
1925
1926 if (ah->cabq->txq_len >= ah->cabq->txq_max)
1927 break;
1928
1929 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1930 }
1931
1932 ah->bsent++;
1933 }
1934
1935 /**
1936 * ath5k_beacon_update_timers - update beacon timers
1937 *
1938 * @ah: struct ath5k_hw pointer we are operating on
1939 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1940 * beacon timer update based on the current HW TSF.
1941 *
1942 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1943 * of a received beacon or the current local hardware TSF and write it to the
1944 * beacon timer registers.
1945 *
1946 * This is called in a variety of situations, e.g. when a beacon is received,
1947 * when a TSF update has been detected, but also when an new IBSS is created or
1948 * when we otherwise know we have to update the timers, but we keep it in this
1949 * function to have it all together in one place.
1950 */
1951 void
1952 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1953 {
1954 u32 nexttbtt, intval, hw_tu, bc_tu;
1955 u64 hw_tsf;
1956
1957 intval = ah->bintval & AR5K_BEACON_PERIOD;
1958 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1959 + ah->num_mesh_vifs > 1) {
1960 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1961 if (intval < 15)
1962 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1963 intval);
1964 }
1965 if (WARN_ON(!intval))
1966 return;
1967
1968 /* beacon TSF converted to TU */
1969 bc_tu = TSF_TO_TU(bc_tsf);
1970
1971 /* current TSF converted to TU */
1972 hw_tsf = ath5k_hw_get_tsf64(ah);
1973 hw_tu = TSF_TO_TU(hw_tsf);
1974
1975 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1976 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1977 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1978 * configuration we need to make sure it is bigger than that. */
1979
1980 if (bc_tsf == -1) {
1981 /*
1982 * no beacons received, called internally.
1983 * just need to refresh timers based on HW TSF.
1984 */
1985 nexttbtt = roundup(hw_tu + FUDGE, intval);
1986 } else if (bc_tsf == 0) {
1987 /*
1988 * no beacon received, probably called by ath5k_reset_tsf().
1989 * reset TSF to start with 0.
1990 */
1991 nexttbtt = intval;
1992 intval |= AR5K_BEACON_RESET_TSF;
1993 } else if (bc_tsf > hw_tsf) {
1994 /*
1995 * beacon received, SW merge happened but HW TSF not yet updated.
1996 * not possible to reconfigure timers yet, but next time we
1997 * receive a beacon with the same BSSID, the hardware will
1998 * automatically update the TSF and then we need to reconfigure
1999 * the timers.
2000 */
2001 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2002 "need to wait for HW TSF sync\n");
2003 return;
2004 } else {
2005 /*
2006 * most important case for beacon synchronization between STA.
2007 *
2008 * beacon received and HW TSF has been already updated by HW.
2009 * update next TBTT based on the TSF of the beacon, but make
2010 * sure it is ahead of our local TSF timer.
2011 */
2012 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2013 }
2014 #undef FUDGE
2015
2016 ah->nexttbtt = nexttbtt;
2017
2018 intval |= AR5K_BEACON_ENA;
2019 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2020
2021 /*
2022 * debugging output last in order to preserve the time critical aspect
2023 * of this function
2024 */
2025 if (bc_tsf == -1)
2026 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2027 "reconfigured timers based on HW TSF\n");
2028 else if (bc_tsf == 0)
2029 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2030 "reset HW TSF and timers\n");
2031 else
2032 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2033 "updated timers based on beacon TSF\n");
2034
2035 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2036 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2037 (unsigned long long) bc_tsf,
2038 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2039 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2040 intval & AR5K_BEACON_PERIOD,
2041 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2042 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2043 }
2044
2045 /**
2046 * ath5k_beacon_config - Configure the beacon queues and interrupts
2047 *
2048 * @ah: struct ath5k_hw pointer we are operating on
2049 *
2050 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2051 * interrupts to detect TSF updates only.
2052 */
2053 void
2054 ath5k_beacon_config(struct ath5k_hw *ah)
2055 {
2056 unsigned long flags;
2057
2058 spin_lock_irqsave(&ah->block, flags);
2059 ah->bmisscount = 0;
2060 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2061
2062 if (ah->enable_beacon) {
2063 /*
2064 * In IBSS mode we use a self-linked tx descriptor and let the
2065 * hardware send the beacons automatically. We have to load it
2066 * only once here.
2067 * We use the SWBA interrupt only to keep track of the beacon
2068 * timers in order to detect automatic TSF updates.
2069 */
2070 ath5k_beaconq_config(ah);
2071
2072 ah->imask |= AR5K_INT_SWBA;
2073
2074 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2075 if (ath5k_hw_hasveol(ah))
2076 ath5k_beacon_send(ah);
2077 } else
2078 ath5k_beacon_update_timers(ah, -1);
2079 } else {
2080 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2081 }
2082
2083 ath5k_hw_set_imr(ah, ah->imask);
2084 mmiowb();
2085 spin_unlock_irqrestore(&ah->block, flags);
2086 }
2087
2088 static void ath5k_tasklet_beacon(unsigned long data)
2089 {
2090 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2091
2092 /*
2093 * Software beacon alert--time to send a beacon.
2094 *
2095 * In IBSS mode we use this interrupt just to
2096 * keep track of the next TBTT (target beacon
2097 * transmission time) in order to detect whether
2098 * automatic TSF updates happened.
2099 */
2100 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2101 /* XXX: only if VEOL supported */
2102 u64 tsf = ath5k_hw_get_tsf64(ah);
2103 ah->nexttbtt += ah->bintval;
2104 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2105 "SWBA nexttbtt: %x hw_tu: %x "
2106 "TSF: %llx\n",
2107 ah->nexttbtt,
2108 TSF_TO_TU(tsf),
2109 (unsigned long long) tsf);
2110 } else {
2111 spin_lock(&ah->block);
2112 ath5k_beacon_send(ah);
2113 spin_unlock(&ah->block);
2114 }
2115 }
2116
2117
2118 /********************\
2119 * Interrupt handling *
2120 \********************/
2121
2122 static void
2123 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2124 {
2125 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2126 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2127 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2128
2129 /* Run ANI only when calibration is not active */
2130
2131 ah->ah_cal_next_ani = jiffies +
2132 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2133 tasklet_schedule(&ah->ani_tasklet);
2134
2135 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2136 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2137 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2138
2139 /* Run calibration only when another calibration
2140 * is not running.
2141 *
2142 * Note: This is for both full/short calibration,
2143 * if it's time for a full one, ath5k_calibrate_work will deal
2144 * with it. */
2145
2146 ah->ah_cal_next_short = jiffies +
2147 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2148 ieee80211_queue_work(ah->hw, &ah->calib_work);
2149 }
2150 /* we could use SWI to generate enough interrupts to meet our
2151 * calibration interval requirements, if necessary:
2152 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2153 }
2154
2155 static void
2156 ath5k_schedule_rx(struct ath5k_hw *ah)
2157 {
2158 ah->rx_pending = true;
2159 tasklet_schedule(&ah->rxtq);
2160 }
2161
2162 static void
2163 ath5k_schedule_tx(struct ath5k_hw *ah)
2164 {
2165 ah->tx_pending = true;
2166 tasklet_schedule(&ah->txtq);
2167 }
2168
2169 static irqreturn_t
2170 ath5k_intr(int irq, void *dev_id)
2171 {
2172 struct ath5k_hw *ah = dev_id;
2173 enum ath5k_int status;
2174 unsigned int counter = 1000;
2175
2176
2177 /*
2178 * If hw is not ready (or detached) and we get an
2179 * interrupt, or if we have no interrupts pending
2180 * (that means it's not for us) skip it.
2181 *
2182 * NOTE: Group 0/1 PCI interface registers are not
2183 * supported on WiSOCs, so we can't check for pending
2184 * interrupts (ISR belongs to another register group
2185 * so we are ok).
2186 */
2187 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2188 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2189 !ath5k_hw_is_intr_pending(ah))))
2190 return IRQ_NONE;
2191
2192 /** Main loop **/
2193 do {
2194 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2195
2196 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2197 status, ah->imask);
2198
2199 /*
2200 * Fatal hw error -> Log and reset
2201 *
2202 * Fatal errors are unrecoverable so we have to
2203 * reset the card. These errors include bus and
2204 * dma errors.
2205 */
2206 if (unlikely(status & AR5K_INT_FATAL)) {
2207
2208 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2209 "fatal int, resetting\n");
2210 ieee80211_queue_work(ah->hw, &ah->reset_work);
2211
2212 /*
2213 * RX Overrun -> Count and reset if needed
2214 *
2215 * Receive buffers are full. Either the bus is busy or
2216 * the CPU is not fast enough to process all received
2217 * frames.
2218 */
2219 } else if (unlikely(status & AR5K_INT_RXORN)) {
2220
2221 /*
2222 * Older chipsets need a reset to come out of this
2223 * condition, but we treat it as RX for newer chips.
2224 * We don't know exactly which versions need a reset
2225 * this guess is copied from the HAL.
2226 */
2227 ah->stats.rxorn_intr++;
2228
2229 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2230 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2231 "rx overrun, resetting\n");
2232 ieee80211_queue_work(ah->hw, &ah->reset_work);
2233 } else
2234 ath5k_schedule_rx(ah);
2235
2236 } else {
2237
2238 /* Software Beacon Alert -> Schedule beacon tasklet */
2239 if (status & AR5K_INT_SWBA)
2240 tasklet_hi_schedule(&ah->beacontq);
2241
2242 /*
2243 * No more RX descriptors -> Just count
2244 *
2245 * NB: the hardware should re-read the link when
2246 * RXE bit is written, but it doesn't work at
2247 * least on older hardware revs.
2248 */
2249 if (status & AR5K_INT_RXEOL)
2250 ah->stats.rxeol_intr++;
2251
2252
2253 /* TX Underrun -> Bump tx trigger level */
2254 if (status & AR5K_INT_TXURN)
2255 ath5k_hw_update_tx_triglevel(ah, true);
2256
2257 /* RX -> Schedule rx tasklet */
2258 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2259 ath5k_schedule_rx(ah);
2260
2261 /* TX -> Schedule tx tasklet */
2262 if (status & (AR5K_INT_TXOK
2263 | AR5K_INT_TXDESC
2264 | AR5K_INT_TXERR
2265 | AR5K_INT_TXEOL))
2266 ath5k_schedule_tx(ah);
2267
2268 /* Missed beacon -> TODO
2269 if (status & AR5K_INT_BMISS)
2270 */
2271
2272 /* MIB event -> Update counters and notify ANI */
2273 if (status & AR5K_INT_MIB) {
2274 ah->stats.mib_intr++;
2275 ath5k_hw_update_mib_counters(ah);
2276 ath5k_ani_mib_intr(ah);
2277 }
2278
2279 /* GPIO -> Notify RFKill layer */
2280 if (status & AR5K_INT_GPIO)
2281 tasklet_schedule(&ah->rf_kill.toggleq);
2282
2283 }
2284
2285 if (ath5k_get_bus_type(ah) == ATH_AHB)
2286 break;
2287
2288 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2289
2290 /*
2291 * Until we handle rx/tx interrupts mask them on IMR
2292 *
2293 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2294 * and unset after we 've handled the interrupts.
2295 */
2296 if (ah->rx_pending || ah->tx_pending)
2297 ath5k_set_current_imask(ah);
2298
2299 if (unlikely(!counter))
2300 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2301
2302 /* Fire up calibration poll */
2303 ath5k_intr_calibration_poll(ah);
2304
2305 return IRQ_HANDLED;
2306 }
2307
2308 /*
2309 * Periodically recalibrate the PHY to account
2310 * for temperature/environment changes.
2311 */
2312 static void
2313 ath5k_calibrate_work(struct work_struct *work)
2314 {
2315 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2316 calib_work);
2317
2318 /* Should we run a full calibration ? */
2319 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2320
2321 ah->ah_cal_next_full = jiffies +
2322 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2323 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2324
2325 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2326 "running full calibration\n");
2327
2328 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2329 /*
2330 * Rfgain is out of bounds, reset the chip
2331 * to load new gain values.
2332 */
2333 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2334 "got new rfgain, resetting\n");
2335 ieee80211_queue_work(ah->hw, &ah->reset_work);
2336 }
2337 } else
2338 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2339
2340
2341 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2342 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2343 ah->curchan->hw_value);
2344
2345 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2346 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2347 ieee80211_frequency_to_channel(
2348 ah->curchan->center_freq));
2349
2350 /* Clear calibration flags */
2351 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2352 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2353 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2354 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2355 }
2356
2357
2358 static void
2359 ath5k_tasklet_ani(unsigned long data)
2360 {
2361 struct ath5k_hw *ah = (void *)data;
2362
2363 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2364 ath5k_ani_calibration(ah);
2365 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2366 }
2367
2368
2369 static void
2370 ath5k_tx_complete_poll_work(struct work_struct *work)
2371 {
2372 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2373 tx_complete_work.work);
2374 struct ath5k_txq *txq;
2375 int i;
2376 bool needreset = false;
2377
2378 mutex_lock(&ah->lock);
2379
2380 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2381 if (ah->txqs[i].setup) {
2382 txq = &ah->txqs[i];
2383 spin_lock_bh(&txq->lock);
2384 if (txq->txq_len > 1) {
2385 if (txq->txq_poll_mark) {
2386 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2387 "TX queue stuck %d\n",
2388 txq->qnum);
2389 needreset = true;
2390 txq->txq_stuck++;
2391 spin_unlock_bh(&txq->lock);
2392 break;
2393 } else {
2394 txq->txq_poll_mark = true;
2395 }
2396 }
2397 spin_unlock_bh(&txq->lock);
2398 }
2399 }
2400
2401 if (needreset) {
2402 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2403 "TX queues stuck, resetting\n");
2404 ath5k_reset(ah, NULL, true);
2405 }
2406
2407 mutex_unlock(&ah->lock);
2408
2409 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2410 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2411 }
2412
2413
2414 /*************************\
2415 * Initialization routines *
2416 \*************************/
2417
2418 static const struct ieee80211_iface_limit if_limits[] = {
2419 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2420 { .max = 4, .types =
2421 #ifdef CONFIG_MAC80211_MESH
2422 BIT(NL80211_IFTYPE_MESH_POINT) |
2423 #endif
2424 BIT(NL80211_IFTYPE_AP) },
2425 };
2426
2427 static const struct ieee80211_iface_combination if_comb = {
2428 .limits = if_limits,
2429 .n_limits = ARRAY_SIZE(if_limits),
2430 .max_interfaces = 2048,
2431 .num_different_channels = 1,
2432 };
2433
2434 int __devinit
2435 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2436 {
2437 struct ieee80211_hw *hw = ah->hw;
2438 struct ath_common *common;
2439 int ret;
2440 int csz;
2441
2442 /* Initialize driver private data */
2443 SET_IEEE80211_DEV(hw, ah->dev);
2444 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2445 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2446 IEEE80211_HW_SIGNAL_DBM |
2447 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2448
2449 hw->wiphy->interface_modes =
2450 BIT(NL80211_IFTYPE_AP) |
2451 BIT(NL80211_IFTYPE_STATION) |
2452 BIT(NL80211_IFTYPE_ADHOC) |
2453 BIT(NL80211_IFTYPE_MESH_POINT);
2454
2455 hw->wiphy->iface_combinations = &if_comb;
2456 hw->wiphy->n_iface_combinations = 1;
2457
2458 /* SW support for IBSS_RSN is provided by mac80211 */
2459 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2460
2461 /* both antennas can be configured as RX or TX */
2462 hw->wiphy->available_antennas_tx = 0x3;
2463 hw->wiphy->available_antennas_rx = 0x3;
2464
2465 hw->extra_tx_headroom = 2;
2466 hw->channel_change_time = 5000;
2467
2468 /*
2469 * Mark the device as detached to avoid processing
2470 * interrupts until setup is complete.
2471 */
2472 __set_bit(ATH_STAT_INVALID, ah->status);
2473
2474 ah->opmode = NL80211_IFTYPE_STATION;
2475 ah->bintval = 1000;
2476 mutex_init(&ah->lock);
2477 spin_lock_init(&ah->rxbuflock);
2478 spin_lock_init(&ah->txbuflock);
2479 spin_lock_init(&ah->block);
2480 spin_lock_init(&ah->irqlock);
2481
2482 /* Setup interrupt handler */
2483 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2484 if (ret) {
2485 ATH5K_ERR(ah, "request_irq failed\n");
2486 goto err;
2487 }
2488
2489 common = ath5k_hw_common(ah);
2490 common->ops = &ath5k_common_ops;
2491 common->bus_ops = bus_ops;
2492 common->ah = ah;
2493 common->hw = hw;
2494 common->priv = ah;
2495 common->clockrate = 40;
2496
2497 /*
2498 * Cache line size is used to size and align various
2499 * structures used to communicate with the hardware.
2500 */
2501 ath5k_read_cachesize(common, &csz);
2502 common->cachelsz = csz << 2; /* convert to bytes */
2503
2504 spin_lock_init(&common->cc_lock);
2505
2506 /* Initialize device */
2507 ret = ath5k_hw_init(ah);
2508 if (ret)
2509 goto err_irq;
2510
2511 /* Set up multi-rate retry capabilities */
2512 if (ah->ah_capabilities.cap_has_mrr_support) {
2513 hw->max_rates = 4;
2514 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2515 AR5K_INIT_RETRY_LONG);
2516 }
2517
2518 hw->vif_data_size = sizeof(struct ath5k_vif);
2519
2520 /* Finish private driver data initialization */
2521 ret = ath5k_init(hw);
2522 if (ret)
2523 goto err_ah;
2524
2525 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2526 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2527 ah->ah_mac_srev,
2528 ah->ah_phy_revision);
2529
2530 if (!ah->ah_single_chip) {
2531 /* Single chip radio (!RF5111) */
2532 if (ah->ah_radio_5ghz_revision &&
2533 !ah->ah_radio_2ghz_revision) {
2534 /* No 5GHz support -> report 2GHz radio */
2535 if (!test_bit(AR5K_MODE_11A,
2536 ah->ah_capabilities.cap_mode)) {
2537 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2538 ath5k_chip_name(AR5K_VERSION_RAD,
2539 ah->ah_radio_5ghz_revision),
2540 ah->ah_radio_5ghz_revision);
2541 /* No 2GHz support (5110 and some
2542 * 5GHz only cards) -> report 5GHz radio */
2543 } else if (!test_bit(AR5K_MODE_11B,
2544 ah->ah_capabilities.cap_mode)) {
2545 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2546 ath5k_chip_name(AR5K_VERSION_RAD,
2547 ah->ah_radio_5ghz_revision),
2548 ah->ah_radio_5ghz_revision);
2549 /* Multiband radio */
2550 } else {
2551 ATH5K_INFO(ah, "RF%s multiband radio found"
2552 " (0x%x)\n",
2553 ath5k_chip_name(AR5K_VERSION_RAD,
2554 ah->ah_radio_5ghz_revision),
2555 ah->ah_radio_5ghz_revision);
2556 }
2557 }
2558 /* Multi chip radio (RF5111 - RF2111) ->
2559 * report both 2GHz/5GHz radios */
2560 else if (ah->ah_radio_5ghz_revision &&
2561 ah->ah_radio_2ghz_revision) {
2562 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2563 ath5k_chip_name(AR5K_VERSION_RAD,
2564 ah->ah_radio_5ghz_revision),
2565 ah->ah_radio_5ghz_revision);
2566 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2567 ath5k_chip_name(AR5K_VERSION_RAD,
2568 ah->ah_radio_2ghz_revision),
2569 ah->ah_radio_2ghz_revision);
2570 }
2571 }
2572
2573 ath5k_debug_init_device(ah);
2574
2575 /* ready to process interrupts */
2576 __clear_bit(ATH_STAT_INVALID, ah->status);
2577
2578 return 0;
2579 err_ah:
2580 ath5k_hw_deinit(ah);
2581 err_irq:
2582 free_irq(ah->irq, ah);
2583 err:
2584 return ret;
2585 }
2586
2587 static int
2588 ath5k_stop_locked(struct ath5k_hw *ah)
2589 {
2590
2591 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2592 test_bit(ATH_STAT_INVALID, ah->status));
2593
2594 /*
2595 * Shutdown the hardware and driver:
2596 * stop output from above
2597 * disable interrupts
2598 * turn off timers
2599 * turn off the radio
2600 * clear transmit machinery
2601 * clear receive machinery
2602 * drain and release tx queues
2603 * reclaim beacon resources
2604 * power down hardware
2605 *
2606 * Note that some of this work is not possible if the
2607 * hardware is gone (invalid).
2608 */
2609 ieee80211_stop_queues(ah->hw);
2610
2611 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2612 ath5k_led_off(ah);
2613 ath5k_hw_set_imr(ah, 0);
2614 synchronize_irq(ah->irq);
2615 ath5k_rx_stop(ah);
2616 ath5k_hw_dma_stop(ah);
2617 ath5k_drain_tx_buffs(ah);
2618 ath5k_hw_phy_disable(ah);
2619 }
2620
2621 return 0;
2622 }
2623
2624 int ath5k_start(struct ieee80211_hw *hw)
2625 {
2626 struct ath5k_hw *ah = hw->priv;
2627 struct ath_common *common = ath5k_hw_common(ah);
2628 int ret, i;
2629
2630 mutex_lock(&ah->lock);
2631
2632 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2633
2634 /*
2635 * Stop anything previously setup. This is safe
2636 * no matter this is the first time through or not.
2637 */
2638 ath5k_stop_locked(ah);
2639
2640 /*
2641 * The basic interface to setting the hardware in a good
2642 * state is ``reset''. On return the hardware is known to
2643 * be powered up and with interrupts disabled. This must
2644 * be followed by initialization of the appropriate bits
2645 * and then setup of the interrupt mask.
2646 */
2647 ah->curchan = ah->hw->conf.channel;
2648 ah->imask = AR5K_INT_RXOK
2649 | AR5K_INT_RXERR
2650 | AR5K_INT_RXEOL
2651 | AR5K_INT_RXORN
2652 | AR5K_INT_TXDESC
2653 | AR5K_INT_TXEOL
2654 | AR5K_INT_FATAL
2655 | AR5K_INT_GLOBAL
2656 | AR5K_INT_MIB;
2657
2658 ret = ath5k_reset(ah, NULL, false);
2659 if (ret)
2660 goto done;
2661
2662 if (!ath5k_modparam_no_hw_rfkill_switch)
2663 ath5k_rfkill_hw_start(ah);
2664
2665 /*
2666 * Reset the key cache since some parts do not reset the
2667 * contents on initial power up or resume from suspend.
2668 */
2669 for (i = 0; i < common->keymax; i++)
2670 ath_hw_keyreset(common, (u16) i);
2671
2672 /* Use higher rates for acks instead of base
2673 * rate */
2674 ah->ah_ack_bitrate_high = true;
2675
2676 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2677 ah->bslot[i] = NULL;
2678
2679 ret = 0;
2680 done:
2681 mmiowb();
2682 mutex_unlock(&ah->lock);
2683
2684 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2685 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2686
2687 return ret;
2688 }
2689
2690 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2691 {
2692 ah->rx_pending = false;
2693 ah->tx_pending = false;
2694 tasklet_kill(&ah->rxtq);
2695 tasklet_kill(&ah->txtq);
2696 tasklet_kill(&ah->beacontq);
2697 tasklet_kill(&ah->ani_tasklet);
2698 }
2699
2700 /*
2701 * Stop the device, grabbing the top-level lock to protect
2702 * against concurrent entry through ath5k_init (which can happen
2703 * if another thread does a system call and the thread doing the
2704 * stop is preempted).
2705 */
2706 void ath5k_stop(struct ieee80211_hw *hw)
2707 {
2708 struct ath5k_hw *ah = hw->priv;
2709 int ret;
2710
2711 mutex_lock(&ah->lock);
2712 ret = ath5k_stop_locked(ah);
2713 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2714 /*
2715 * Don't set the card in full sleep mode!
2716 *
2717 * a) When the device is in this state it must be carefully
2718 * woken up or references to registers in the PCI clock
2719 * domain may freeze the bus (and system). This varies
2720 * by chip and is mostly an issue with newer parts
2721 * (madwifi sources mentioned srev >= 0x78) that go to
2722 * sleep more quickly.
2723 *
2724 * b) On older chips full sleep results a weird behaviour
2725 * during wakeup. I tested various cards with srev < 0x78
2726 * and they don't wake up after module reload, a second
2727 * module reload is needed to bring the card up again.
2728 *
2729 * Until we figure out what's going on don't enable
2730 * full chip reset on any chip (this is what Legacy HAL
2731 * and Sam's HAL do anyway). Instead Perform a full reset
2732 * on the device (same as initial state after attach) and
2733 * leave it idle (keep MAC/BB on warm reset) */
2734 ret = ath5k_hw_on_hold(ah);
2735
2736 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2737 "putting device to sleep\n");
2738 }
2739
2740 mmiowb();
2741 mutex_unlock(&ah->lock);
2742
2743 ath5k_stop_tasklets(ah);
2744
2745 cancel_delayed_work_sync(&ah->tx_complete_work);
2746
2747 if (!ath5k_modparam_no_hw_rfkill_switch)
2748 ath5k_rfkill_hw_stop(ah);
2749 }
2750
2751 /*
2752 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2753 * and change to the given channel.
2754 *
2755 * This should be called with ah->lock.
2756 */
2757 static int
2758 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2759 bool skip_pcu)
2760 {
2761 struct ath_common *common = ath5k_hw_common(ah);
2762 int ret, ani_mode;
2763 bool fast;
2764
2765 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2766
2767 ath5k_hw_set_imr(ah, 0);
2768 synchronize_irq(ah->irq);
2769 ath5k_stop_tasklets(ah);
2770
2771 /* Save ani mode and disable ANI during
2772 * reset. If we don't we might get false
2773 * PHY error interrupts. */
2774 ani_mode = ah->ani_state.ani_mode;
2775 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2776
2777 /* We are going to empty hw queues
2778 * so we should also free any remaining
2779 * tx buffers */
2780 ath5k_drain_tx_buffs(ah);
2781 if (chan)
2782 ah->curchan = chan;
2783
2784 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2785
2786 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2787 if (ret) {
2788 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2789 goto err;
2790 }
2791
2792 ret = ath5k_rx_start(ah);
2793 if (ret) {
2794 ATH5K_ERR(ah, "can't start recv logic\n");
2795 goto err;
2796 }
2797
2798 ath5k_ani_init(ah, ani_mode);
2799
2800 /*
2801 * Set calibration intervals
2802 *
2803 * Note: We don't need to run calibration imediately
2804 * since some initial calibration is done on reset
2805 * even for fast channel switching. Also on scanning
2806 * this will get set again and again and it won't get
2807 * executed unless we connect somewhere and spend some
2808 * time on the channel (that's what calibration needs
2809 * anyway to be accurate).
2810 */
2811 ah->ah_cal_next_full = jiffies +
2812 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2813 ah->ah_cal_next_ani = jiffies +
2814 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2815 ah->ah_cal_next_short = jiffies +
2816 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2817
2818 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2819
2820 /* clear survey data and cycle counters */
2821 memset(&ah->survey, 0, sizeof(ah->survey));
2822 spin_lock_bh(&common->cc_lock);
2823 ath_hw_cycle_counters_update(common);
2824 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2825 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2826 spin_unlock_bh(&common->cc_lock);
2827
2828 /*
2829 * Change channels and update the h/w rate map if we're switching;
2830 * e.g. 11a to 11b/g.
2831 *
2832 * We may be doing a reset in response to an ioctl that changes the
2833 * channel so update any state that might change as a result.
2834 *
2835 * XXX needed?
2836 */
2837 /* ath5k_chan_change(ah, c); */
2838
2839 ath5k_beacon_config(ah);
2840 /* intrs are enabled by ath5k_beacon_config */
2841
2842 ieee80211_wake_queues(ah->hw);
2843
2844 return 0;
2845 err:
2846 return ret;
2847 }
2848
2849 static void ath5k_reset_work(struct work_struct *work)
2850 {
2851 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2852 reset_work);
2853
2854 mutex_lock(&ah->lock);
2855 ath5k_reset(ah, NULL, true);
2856 mutex_unlock(&ah->lock);
2857 }
2858
2859 static int __devinit
2860 ath5k_init(struct ieee80211_hw *hw)
2861 {
2862
2863 struct ath5k_hw *ah = hw->priv;
2864 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2865 struct ath5k_txq *txq;
2866 u8 mac[ETH_ALEN] = {};
2867 int ret;
2868
2869
2870 /*
2871 * Collect the channel list. The 802.11 layer
2872 * is responsible for filtering this list based
2873 * on settings like the phy mode and regulatory
2874 * domain restrictions.
2875 */
2876 ret = ath5k_setup_bands(hw);
2877 if (ret) {
2878 ATH5K_ERR(ah, "can't get channels\n");
2879 goto err;
2880 }
2881
2882 /*
2883 * Allocate tx+rx descriptors and populate the lists.
2884 */
2885 ret = ath5k_desc_alloc(ah);
2886 if (ret) {
2887 ATH5K_ERR(ah, "can't allocate descriptors\n");
2888 goto err;
2889 }
2890
2891 /*
2892 * Allocate hardware transmit queues: one queue for
2893 * beacon frames and one data queue for each QoS
2894 * priority. Note that hw functions handle resetting
2895 * these queues at the needed time.
2896 */
2897 ret = ath5k_beaconq_setup(ah);
2898 if (ret < 0) {
2899 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2900 goto err_desc;
2901 }
2902 ah->bhalq = ret;
2903 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2904 if (IS_ERR(ah->cabq)) {
2905 ATH5K_ERR(ah, "can't setup cab queue\n");
2906 ret = PTR_ERR(ah->cabq);
2907 goto err_bhal;
2908 }
2909
2910 /* 5211 and 5212 usually support 10 queues but we better rely on the
2911 * capability information */
2912 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2913 /* This order matches mac80211's queue priority, so we can
2914 * directly use the mac80211 queue number without any mapping */
2915 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2916 if (IS_ERR(txq)) {
2917 ATH5K_ERR(ah, "can't setup xmit queue\n");
2918 ret = PTR_ERR(txq);
2919 goto err_queues;
2920 }
2921 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2922 if (IS_ERR(txq)) {
2923 ATH5K_ERR(ah, "can't setup xmit queue\n");
2924 ret = PTR_ERR(txq);
2925 goto err_queues;
2926 }
2927 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2928 if (IS_ERR(txq)) {
2929 ATH5K_ERR(ah, "can't setup xmit queue\n");
2930 ret = PTR_ERR(txq);
2931 goto err_queues;
2932 }
2933 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2934 if (IS_ERR(txq)) {
2935 ATH5K_ERR(ah, "can't setup xmit queue\n");
2936 ret = PTR_ERR(txq);
2937 goto err_queues;
2938 }
2939 hw->queues = 4;
2940 } else {
2941 /* older hardware (5210) can only support one data queue */
2942 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2943 if (IS_ERR(txq)) {
2944 ATH5K_ERR(ah, "can't setup xmit queue\n");
2945 ret = PTR_ERR(txq);
2946 goto err_queues;
2947 }
2948 hw->queues = 1;
2949 }
2950
2951 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2952 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2953 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2954 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2955
2956 INIT_WORK(&ah->reset_work, ath5k_reset_work);
2957 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2958 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2959
2960 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2961 if (ret) {
2962 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2963 goto err_queues;
2964 }
2965
2966 SET_IEEE80211_PERM_ADDR(hw, mac);
2967 /* All MAC address bits matter for ACKs */
2968 ath5k_update_bssid_mask_and_opmode(ah, NULL);
2969
2970 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2971 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2972 if (ret) {
2973 ATH5K_ERR(ah, "can't initialize regulatory system\n");
2974 goto err_queues;
2975 }
2976
2977 ret = ieee80211_register_hw(hw);
2978 if (ret) {
2979 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2980 goto err_queues;
2981 }
2982
2983 if (!ath_is_world_regd(regulatory))
2984 regulatory_hint(hw->wiphy, regulatory->alpha2);
2985
2986 ath5k_init_leds(ah);
2987
2988 ath5k_sysfs_register(ah);
2989
2990 return 0;
2991 err_queues:
2992 ath5k_txq_release(ah);
2993 err_bhal:
2994 ath5k_hw_release_tx_queue(ah, ah->bhalq);
2995 err_desc:
2996 ath5k_desc_free(ah);
2997 err:
2998 return ret;
2999 }
3000
3001 void
3002 ath5k_deinit_ah(struct ath5k_hw *ah)
3003 {
3004 struct ieee80211_hw *hw = ah->hw;
3005
3006 /*
3007 * NB: the order of these is important:
3008 * o call the 802.11 layer before detaching ath5k_hw to
3009 * ensure callbacks into the driver to delete global
3010 * key cache entries can be handled
3011 * o reclaim the tx queue data structures after calling
3012 * the 802.11 layer as we'll get called back to reclaim
3013 * node state and potentially want to use them
3014 * o to cleanup the tx queues the hal is called, so detach
3015 * it last
3016 * XXX: ??? detach ath5k_hw ???
3017 * Other than that, it's straightforward...
3018 */
3019 ieee80211_unregister_hw(hw);
3020 ath5k_desc_free(ah);
3021 ath5k_txq_release(ah);
3022 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3023 ath5k_unregister_leds(ah);
3024
3025 ath5k_sysfs_unregister(ah);
3026 /*
3027 * NB: can't reclaim these until after ieee80211_ifdetach
3028 * returns because we'll get called back to reclaim node
3029 * state and potentially want to use them.
3030 */
3031 ath5k_hw_deinit(ah);
3032 free_irq(ah->irq, ah);
3033 }
3034
3035 bool
3036 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3037 {
3038 struct ath5k_vif_iter_data iter_data;
3039 iter_data.hw_macaddr = NULL;
3040 iter_data.any_assoc = false;
3041 iter_data.need_set_hw_addr = false;
3042 iter_data.found_active = true;
3043
3044 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
3045 &iter_data);
3046 return iter_data.any_assoc;
3047 }
3048
3049 void
3050 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3051 {
3052 struct ath5k_hw *ah = hw->priv;
3053 u32 rfilt;
3054 rfilt = ath5k_hw_get_rx_filter(ah);
3055 if (enable)
3056 rfilt |= AR5K_RX_FILTER_BEACON;
3057 else
3058 rfilt &= ~AR5K_RX_FILTER_BEACON;
3059 ath5k_hw_set_rx_filter(ah, rfilt);
3060 ah->filter_flags = rfilt;
3061 }
3062
3063 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3064 const char *fmt, ...)
3065 {
3066 struct va_format vaf;
3067 va_list args;
3068
3069 va_start(args, fmt);
3070
3071 vaf.fmt = fmt;
3072 vaf.va = &args;
3073
3074 if (ah && ah->hw)
3075 printk("%s" pr_fmt("%s: %pV"),
3076 level, wiphy_name(ah->hw->wiphy), &vaf);
3077 else
3078 printk("%s" pr_fmt("%pV"), level, &vaf);
3079
3080 va_end(args);
3081 }