Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/config.h>
51 #include <linux/init.h>
52 #include <linux/mm.h>
53 #include <linux/errno.h>
54 #include <linux/ioport.h>
55 #include <linux/pci.h>
56 #include <linux/kernel.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
61 #include <linux/timer.h>
62 #include <linux/slab.h>
63 #include <linux/interrupt.h>
64 #include <linux/version.h>
65 #include <linux/string.h>
66 #include <linux/wait.h>
67 #include <asm/io.h>
68 #include <linux/if.h>
69 #include <linux/config.h>
70 #include <asm/uaccess.h>
71 #include <linux/proc_fs.h>
72 #include <linux/inetdevice.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/udp.h>
81 #include <linux/crc-ccitt.h>
82 #include <linux/crc32.h>
83
84 #include "via-velocity.h"
85
86
87 static int velocity_nics = 0;
88 static int msglevel = MSG_LEVEL_INFO;
89
90
91 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
92 static struct ethtool_ops velocity_ethtool_ops;
93
94 /*
95 Define module options
96 */
97
98 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
99 MODULE_LICENSE("GPL");
100 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
101
102 #define VELOCITY_PARAM(N,D) \
103 static int N[MAX_UNITS]=OPTION_DEFAULT;\
104 module_param_array(N, int, NULL, 0); \
105 MODULE_PARM_DESC(N, D);
106
107 #define RX_DESC_MIN 64
108 #define RX_DESC_MAX 255
109 #define RX_DESC_DEF 64
110 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
111
112 #define TX_DESC_MIN 16
113 #define TX_DESC_MAX 256
114 #define TX_DESC_DEF 64
115 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
116
117 #define VLAN_ID_MIN 0
118 #define VLAN_ID_MAX 4095
119 #define VLAN_ID_DEF 0
120 /* VID_setting[] is used for setting the VID of NIC.
121 0: default VID.
122 1-4094: other VIDs.
123 */
124 VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
125
126 #define RX_THRESH_MIN 0
127 #define RX_THRESH_MAX 3
128 #define RX_THRESH_DEF 0
129 /* rx_thresh[] is used for controlling the receive fifo threshold.
130 0: indicate the rxfifo threshold is 128 bytes.
131 1: indicate the rxfifo threshold is 512 bytes.
132 2: indicate the rxfifo threshold is 1024 bytes.
133 3: indicate the rxfifo threshold is store & forward.
134 */
135 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
136
137 #define DMA_LENGTH_MIN 0
138 #define DMA_LENGTH_MAX 7
139 #define DMA_LENGTH_DEF 0
140
141 /* DMA_length[] is used for controlling the DMA length
142 0: 8 DWORDs
143 1: 16 DWORDs
144 2: 32 DWORDs
145 3: 64 DWORDs
146 4: 128 DWORDs
147 5: 256 DWORDs
148 6: SF(flush till emply)
149 7: SF(flush till emply)
150 */
151 VELOCITY_PARAM(DMA_length, "DMA length");
152
153 #define TAGGING_DEF 0
154 /* enable_tagging[] is used for enabling 802.1Q VID tagging.
155 0: disable VID seeting(default).
156 1: enable VID setting.
157 */
158 VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
159
160 #define IP_ALIG_DEF 0
161 /* IP_byte_align[] is used for IP header DWORD byte aligned
162 0: indicate the IP header won't be DWORD byte aligned.(Default) .
163 1: indicate the IP header will be DWORD byte aligned.
164 In some enviroment, the IP header should be DWORD byte aligned,
165 or the packet will be droped when we receive it. (eg: IPVS)
166 */
167 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
168
169 #define TX_CSUM_DEF 1
170 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
171 (We only support RX checksum offload now)
172 0: disable csum_offload[checksum offload
173 1: enable checksum offload. (Default)
174 */
175 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
176
177 #define FLOW_CNTL_DEF 1
178 #define FLOW_CNTL_MIN 1
179 #define FLOW_CNTL_MAX 5
180
181 /* flow_control[] is used for setting the flow control ability of NIC.
182 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
183 2: enable TX flow control.
184 3: enable RX flow control.
185 4: enable RX/TX flow control.
186 5: disable
187 */
188 VELOCITY_PARAM(flow_control, "Enable flow control ability");
189
190 #define MED_LNK_DEF 0
191 #define MED_LNK_MIN 0
192 #define MED_LNK_MAX 4
193 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
194 0: indicate autonegotiation for both speed and duplex mode
195 1: indicate 100Mbps half duplex mode
196 2: indicate 100Mbps full duplex mode
197 3: indicate 10Mbps half duplex mode
198 4: indicate 10Mbps full duplex mode
199
200 Note:
201 if EEPROM have been set to the force mode, this option is ignored
202 by driver.
203 */
204 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
205
206 #define VAL_PKT_LEN_DEF 0
207 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
208 0: Receive frame with invalid layer 2 length (Default)
209 1: Drop frame with invalid layer 2 length
210 */
211 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
212
213 #define WOL_OPT_DEF 0
214 #define WOL_OPT_MIN 0
215 #define WOL_OPT_MAX 7
216 /* wol_opts[] is used for controlling wake on lan behavior.
217 0: Wake up if recevied a magic packet. (Default)
218 1: Wake up if link status is on/off.
219 2: Wake up if recevied an arp packet.
220 4: Wake up if recevied any unicast packet.
221 Those value can be sumed up to support more than one option.
222 */
223 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
224
225 #define INT_WORKS_DEF 20
226 #define INT_WORKS_MIN 10
227 #define INT_WORKS_MAX 64
228
229 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
230
231 static int rx_copybreak = 200;
232 module_param(rx_copybreak, int, 0644);
233 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
234
235 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info);
236 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
237 static void velocity_print_info(struct velocity_info *vptr);
238 static int velocity_open(struct net_device *dev);
239 static int velocity_change_mtu(struct net_device *dev, int mtu);
240 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
241 static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
242 static void velocity_set_multi(struct net_device *dev);
243 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
244 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
245 static int velocity_close(struct net_device *dev);
246 static int velocity_receive_frame(struct velocity_info *, int idx);
247 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
248 static void velocity_free_rd_ring(struct velocity_info *vptr);
249 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
250 static int velocity_soft_reset(struct velocity_info *vptr);
251 static void mii_init(struct velocity_info *vptr, u32 mii_status);
252 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
253 static void velocity_print_link_status(struct velocity_info *vptr);
254 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
255 static void velocity_shutdown(struct velocity_info *vptr);
256 static void enable_flow_control_ability(struct velocity_info *vptr);
257 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
258 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
259 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
260 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
261 static u32 check_connection_type(struct mac_regs __iomem * regs);
262 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
263
264 #ifdef CONFIG_PM
265
266 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
267 static int velocity_resume(struct pci_dev *pdev);
268
269 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
270
271 static struct notifier_block velocity_inetaddr_notifier = {
272 .notifier_call = velocity_netdev_event,
273 };
274
275 static DEFINE_SPINLOCK(velocity_dev_list_lock);
276 static LIST_HEAD(velocity_dev_list);
277
278 static void velocity_register_notifier(void)
279 {
280 register_inetaddr_notifier(&velocity_inetaddr_notifier);
281 }
282
283 static void velocity_unregister_notifier(void)
284 {
285 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
286 }
287
288 #else /* CONFIG_PM */
289
290 #define velocity_register_notifier() do {} while (0)
291 #define velocity_unregister_notifier() do {} while (0)
292
293 #endif /* !CONFIG_PM */
294
295 /*
296 * Internal board variants. At the moment we have only one
297 */
298
299 static struct velocity_info_tbl chip_info_table[] = {
300 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 256, 1, 0x00FFFFFFUL},
301 {0, NULL}
302 };
303
304 /*
305 * Describe the PCI device identifiers that we support in this
306 * device driver. Used for hotplug autoloading.
307 */
308
309 static struct pci_device_id velocity_id_table[] __devinitdata = {
310 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X,
311 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) chip_info_table},
312 {0, }
313 };
314
315 MODULE_DEVICE_TABLE(pci, velocity_id_table);
316
317 /**
318 * get_chip_name - identifier to name
319 * @id: chip identifier
320 *
321 * Given a chip identifier return a suitable description. Returns
322 * a pointer a static string valid while the driver is loaded.
323 */
324
325 static char __devinit *get_chip_name(enum chip_type chip_id)
326 {
327 int i;
328 for (i = 0; chip_info_table[i].name != NULL; i++)
329 if (chip_info_table[i].chip_id == chip_id)
330 break;
331 return chip_info_table[i].name;
332 }
333
334 /**
335 * velocity_remove1 - device unplug
336 * @pdev: PCI device being removed
337 *
338 * Device unload callback. Called on an unplug or on module
339 * unload for each active device that is present. Disconnects
340 * the device from the network layer and frees all the resources
341 */
342
343 static void __devexit velocity_remove1(struct pci_dev *pdev)
344 {
345 struct net_device *dev = pci_get_drvdata(pdev);
346 struct velocity_info *vptr = dev->priv;
347
348 #ifdef CONFIG_PM
349 unsigned long flags;
350
351 spin_lock_irqsave(&velocity_dev_list_lock, flags);
352 if (!list_empty(&velocity_dev_list))
353 list_del(&vptr->list);
354 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
355 #endif
356 unregister_netdev(dev);
357 iounmap(vptr->mac_regs);
358 pci_release_regions(pdev);
359 pci_disable_device(pdev);
360 pci_set_drvdata(pdev, NULL);
361 free_netdev(dev);
362
363 velocity_nics--;
364 }
365
366 /**
367 * velocity_set_int_opt - parser for integer options
368 * @opt: pointer to option value
369 * @val: value the user requested (or -1 for default)
370 * @min: lowest value allowed
371 * @max: highest value allowed
372 * @def: default value
373 * @name: property name
374 * @dev: device name
375 *
376 * Set an integer property in the module options. This function does
377 * all the verification and checking as well as reporting so that
378 * we don't duplicate code for each option.
379 */
380
381 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
382 {
383 if (val == -1)
384 *opt = def;
385 else if (val < min || val > max) {
386 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
387 devname, name, min, max);
388 *opt = def;
389 } else {
390 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
391 devname, name, val);
392 *opt = val;
393 }
394 }
395
396 /**
397 * velocity_set_bool_opt - parser for boolean options
398 * @opt: pointer to option value
399 * @val: value the user requested (or -1 for default)
400 * @def: default value (yes/no)
401 * @flag: numeric value to set for true.
402 * @name: property name
403 * @dev: device name
404 *
405 * Set a boolean property in the module options. This function does
406 * all the verification and checking as well as reporting so that
407 * we don't duplicate code for each option.
408 */
409
410 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
411 {
412 (*opt) &= (~flag);
413 if (val == -1)
414 *opt |= (def ? flag : 0);
415 else if (val < 0 || val > 1) {
416 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
417 devname, name);
418 *opt |= (def ? flag : 0);
419 } else {
420 printk(KERN_INFO "%s: set parameter %s to %s\n",
421 devname, name, val ? "TRUE" : "FALSE");
422 *opt |= (val ? flag : 0);
423 }
424 }
425
426 /**
427 * velocity_get_options - set options on device
428 * @opts: option structure for the device
429 * @index: index of option to use in module options array
430 * @devname: device name
431 *
432 * Turn the module and command options into a single structure
433 * for the current device
434 */
435
436 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
437 {
438
439 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
440 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
441 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
442 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
443 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
444 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
445 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
446 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
447 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
448 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
449 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
450 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
451 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
452 opts->numrx = (opts->numrx & ~3);
453 }
454
455 /**
456 * velocity_init_cam_filter - initialise CAM
457 * @vptr: velocity to program
458 *
459 * Initialize the content addressable memory used for filters. Load
460 * appropriately according to the presence of VLAN
461 */
462
463 static void velocity_init_cam_filter(struct velocity_info *vptr)
464 {
465 struct mac_regs __iomem * regs = vptr->mac_regs;
466
467 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
468 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
469 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
470
471 /* Disable all CAMs */
472 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
473 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
474 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
475 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
476
477 /* Enable first VCAM */
478 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
479 /* If Tagging option is enabled and VLAN ID is not zero, then
480 turn on MCFG_RTGOPT also */
481 if (vptr->options.vid != 0)
482 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
483
484 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
485 vptr->vCAMmask[0] |= 1;
486 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
487 } else {
488 u16 temp = 0;
489 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
490 temp = 1;
491 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
492 }
493 }
494
495 /**
496 * velocity_rx_reset - handle a receive reset
497 * @vptr: velocity we are resetting
498 *
499 * Reset the ownership and status for the receive ring side.
500 * Hand all the receive queue to the NIC.
501 */
502
503 static void velocity_rx_reset(struct velocity_info *vptr)
504 {
505
506 struct mac_regs __iomem * regs = vptr->mac_regs;
507 int i;
508
509 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
510
511 /*
512 * Init state, all RD entries belong to the NIC
513 */
514 for (i = 0; i < vptr->options.numrx; ++i)
515 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
516
517 writew(vptr->options.numrx, &regs->RBRDU);
518 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
519 writew(0, &regs->RDIdx);
520 writew(vptr->options.numrx - 1, &regs->RDCSize);
521 }
522
523 /**
524 * velocity_init_registers - initialise MAC registers
525 * @vptr: velocity to init
526 * @type: type of initialisation (hot or cold)
527 *
528 * Initialise the MAC on a reset or on first set up on the
529 * hardware.
530 */
531
532 static void velocity_init_registers(struct velocity_info *vptr,
533 enum velocity_init_type type)
534 {
535 struct mac_regs __iomem * regs = vptr->mac_regs;
536 int i, mii_status;
537
538 mac_wol_reset(regs);
539
540 switch (type) {
541 case VELOCITY_INIT_RESET:
542 case VELOCITY_INIT_WOL:
543
544 netif_stop_queue(vptr->dev);
545
546 /*
547 * Reset RX to prevent RX pointer not on the 4X location
548 */
549 velocity_rx_reset(vptr);
550 mac_rx_queue_run(regs);
551 mac_rx_queue_wake(regs);
552
553 mii_status = velocity_get_opt_media_mode(vptr);
554 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
555 velocity_print_link_status(vptr);
556 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
557 netif_wake_queue(vptr->dev);
558 }
559
560 enable_flow_control_ability(vptr);
561
562 mac_clear_isr(regs);
563 writel(CR0_STOP, &regs->CR0Clr);
564 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
565 &regs->CR0Set);
566
567 break;
568
569 case VELOCITY_INIT_COLD:
570 default:
571 /*
572 * Do reset
573 */
574 velocity_soft_reset(vptr);
575 mdelay(5);
576
577 mac_eeprom_reload(regs);
578 for (i = 0; i < 6; i++) {
579 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
580 }
581 /*
582 * clear Pre_ACPI bit.
583 */
584 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
585 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
586 mac_set_dma_length(regs, vptr->options.DMA_length);
587
588 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
589 /*
590 * Back off algorithm use original IEEE standard
591 */
592 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
593
594 /*
595 * Init CAM filter
596 */
597 velocity_init_cam_filter(vptr);
598
599 /*
600 * Set packet filter: Receive directed and broadcast address
601 */
602 velocity_set_multi(vptr->dev);
603
604 /*
605 * Enable MII auto-polling
606 */
607 enable_mii_autopoll(regs);
608
609 vptr->int_mask = INT_MASK_DEF;
610
611 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
612 writew(vptr->options.numrx - 1, &regs->RDCSize);
613 mac_rx_queue_run(regs);
614 mac_rx_queue_wake(regs);
615
616 writew(vptr->options.numtx - 1, &regs->TDCSize);
617
618 for (i = 0; i < vptr->num_txq; i++) {
619 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
620 mac_tx_queue_run(regs, i);
621 }
622
623 init_flow_control_register(vptr);
624
625 writel(CR0_STOP, &regs->CR0Clr);
626 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
627
628 mii_status = velocity_get_opt_media_mode(vptr);
629 netif_stop_queue(vptr->dev);
630
631 mii_init(vptr, mii_status);
632
633 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
634 velocity_print_link_status(vptr);
635 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
636 netif_wake_queue(vptr->dev);
637 }
638
639 enable_flow_control_ability(vptr);
640 mac_hw_mibs_init(regs);
641 mac_write_int_mask(vptr->int_mask, regs);
642 mac_clear_isr(regs);
643
644 }
645 }
646
647 /**
648 * velocity_soft_reset - soft reset
649 * @vptr: velocity to reset
650 *
651 * Kick off a soft reset of the velocity adapter and then poll
652 * until the reset sequence has completed before returning.
653 */
654
655 static int velocity_soft_reset(struct velocity_info *vptr)
656 {
657 struct mac_regs __iomem * regs = vptr->mac_regs;
658 int i = 0;
659
660 writel(CR0_SFRST, &regs->CR0Set);
661
662 for (i = 0; i < W_MAX_TIMEOUT; i++) {
663 udelay(5);
664 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
665 break;
666 }
667
668 if (i == W_MAX_TIMEOUT) {
669 writel(CR0_FORSRST, &regs->CR0Set);
670 /* FIXME: PCI POSTING */
671 /* delay 2ms */
672 mdelay(2);
673 }
674 return 0;
675 }
676
677 /**
678 * velocity_found1 - set up discovered velocity card
679 * @pdev: PCI device
680 * @ent: PCI device table entry that matched
681 *
682 * Configure a discovered adapter from scratch. Return a negative
683 * errno error code on failure paths.
684 */
685
686 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
687 {
688 static int first = 1;
689 struct net_device *dev;
690 int i;
691 struct velocity_info_tbl *info = (struct velocity_info_tbl *) ent->driver_data;
692 struct velocity_info *vptr;
693 struct mac_regs __iomem * regs;
694 int ret = -ENOMEM;
695
696 if (velocity_nics >= MAX_UNITS) {
697 printk(KERN_NOTICE VELOCITY_NAME ": already found %d NICs.\n",
698 velocity_nics);
699 return -ENODEV;
700 }
701
702 dev = alloc_etherdev(sizeof(struct velocity_info));
703
704 if (dev == NULL) {
705 printk(KERN_ERR VELOCITY_NAME ": allocate net device failed.\n");
706 goto out;
707 }
708
709 /* Chain it all together */
710
711 SET_MODULE_OWNER(dev);
712 SET_NETDEV_DEV(dev, &pdev->dev);
713 vptr = dev->priv;
714
715
716 if (first) {
717 printk(KERN_INFO "%s Ver. %s\n",
718 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
719 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
720 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
721 first = 0;
722 }
723
724 velocity_init_info(pdev, vptr, info);
725
726 vptr->dev = dev;
727
728 dev->irq = pdev->irq;
729
730 ret = pci_enable_device(pdev);
731 if (ret < 0)
732 goto err_free_dev;
733
734 ret = velocity_get_pci_info(vptr, pdev);
735 if (ret < 0) {
736 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
737 goto err_disable;
738 }
739
740 ret = pci_request_regions(pdev, VELOCITY_NAME);
741 if (ret < 0) {
742 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
743 goto err_disable;
744 }
745
746 regs = ioremap(vptr->memaddr, vptr->io_size);
747 if (regs == NULL) {
748 ret = -EIO;
749 goto err_release_res;
750 }
751
752 vptr->mac_regs = regs;
753
754 mac_wol_reset(regs);
755
756 dev->base_addr = vptr->ioaddr;
757
758 for (i = 0; i < 6; i++)
759 dev->dev_addr[i] = readb(&regs->PAR[i]);
760
761
762 velocity_get_options(&vptr->options, velocity_nics, dev->name);
763
764 /*
765 * Mask out the options cannot be set to the chip
766 */
767
768 vptr->options.flags &= info->flags;
769
770 /*
771 * Enable the chip specified capbilities
772 */
773
774 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
775
776 vptr->wol_opts = vptr->options.wol_opts;
777 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
778
779 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
780
781 dev->irq = pdev->irq;
782 dev->open = velocity_open;
783 dev->hard_start_xmit = velocity_xmit;
784 dev->stop = velocity_close;
785 dev->get_stats = velocity_get_stats;
786 dev->set_multicast_list = velocity_set_multi;
787 dev->do_ioctl = velocity_ioctl;
788 dev->ethtool_ops = &velocity_ethtool_ops;
789 dev->change_mtu = velocity_change_mtu;
790 #ifdef VELOCITY_ZERO_COPY_SUPPORT
791 dev->features |= NETIF_F_SG;
792 #endif
793
794 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
795 dev->features |= NETIF_F_HW_CSUM;
796 }
797
798 ret = register_netdev(dev);
799 if (ret < 0)
800 goto err_iounmap;
801
802 velocity_print_info(vptr);
803 pci_set_drvdata(pdev, dev);
804
805 /* and leave the chip powered down */
806
807 pci_set_power_state(pdev, PCI_D3hot);
808 #ifdef CONFIG_PM
809 {
810 unsigned long flags;
811
812 spin_lock_irqsave(&velocity_dev_list_lock, flags);
813 list_add(&vptr->list, &velocity_dev_list);
814 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
815 }
816 #endif
817 velocity_nics++;
818 out:
819 return ret;
820
821 err_iounmap:
822 iounmap(regs);
823 err_release_res:
824 pci_release_regions(pdev);
825 err_disable:
826 pci_disable_device(pdev);
827 err_free_dev:
828 free_netdev(dev);
829 goto out;
830 }
831
832 /**
833 * velocity_print_info - per driver data
834 * @vptr: velocity
835 *
836 * Print per driver data as the kernel driver finds Velocity
837 * hardware
838 */
839
840 static void __devinit velocity_print_info(struct velocity_info *vptr)
841 {
842 struct net_device *dev = vptr->dev;
843
844 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
845 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
846 dev->name,
847 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
848 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
849 }
850
851 /**
852 * velocity_init_info - init private data
853 * @pdev: PCI device
854 * @vptr: Velocity info
855 * @info: Board type
856 *
857 * Set up the initial velocity_info struct for the device that has been
858 * discovered.
859 */
860
861 static void __devinit velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info)
862 {
863 memset(vptr, 0, sizeof(struct velocity_info));
864
865 vptr->pdev = pdev;
866 vptr->chip_id = info->chip_id;
867 vptr->io_size = info->io_size;
868 vptr->num_txq = info->txqueue;
869 vptr->multicast_limit = MCAM_SIZE;
870 spin_lock_init(&vptr->lock);
871 INIT_LIST_HEAD(&vptr->list);
872 }
873
874 /**
875 * velocity_get_pci_info - retrieve PCI info for device
876 * @vptr: velocity device
877 * @pdev: PCI device it matches
878 *
879 * Retrieve the PCI configuration space data that interests us from
880 * the kernel PCI layer
881 */
882
883 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
884 {
885
886 if(pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
887 return -EIO;
888
889 pci_set_master(pdev);
890
891 vptr->ioaddr = pci_resource_start(pdev, 0);
892 vptr->memaddr = pci_resource_start(pdev, 1);
893
894 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_IO))
895 {
896 printk(KERN_ERR "%s: region #0 is not an I/O resource, aborting.\n",
897 pci_name(pdev));
898 return -EINVAL;
899 }
900
901 if((pci_resource_flags(pdev, 1) & IORESOURCE_IO))
902 {
903 printk(KERN_ERR "%s: region #1 is an I/O resource, aborting.\n",
904 pci_name(pdev));
905 return -EINVAL;
906 }
907
908 if(pci_resource_len(pdev, 1) < 256)
909 {
910 printk(KERN_ERR "%s: region #1 is too small.\n",
911 pci_name(pdev));
912 return -EINVAL;
913 }
914 vptr->pdev = pdev;
915
916 return 0;
917 }
918
919 /**
920 * velocity_init_rings - set up DMA rings
921 * @vptr: Velocity to set up
922 *
923 * Allocate PCI mapped DMA rings for the receive and transmit layer
924 * to use.
925 */
926
927 static int velocity_init_rings(struct velocity_info *vptr)
928 {
929 int i;
930 unsigned int psize;
931 unsigned int tsize;
932 dma_addr_t pool_dma;
933 u8 *pool;
934
935 /*
936 * Allocate all RD/TD rings a single pool
937 */
938
939 psize = vptr->options.numrx * sizeof(struct rx_desc) +
940 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
941
942 /*
943 * pci_alloc_consistent() fulfills the requirement for 64 bytes
944 * alignment
945 */
946 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
947
948 if (pool == NULL) {
949 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
950 vptr->dev->name);
951 return -ENOMEM;
952 }
953
954 memset(pool, 0, psize);
955
956 vptr->rd_ring = (struct rx_desc *) pool;
957
958 vptr->rd_pool_dma = pool_dma;
959
960 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
961 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
962 &vptr->tx_bufs_dma);
963
964 if (vptr->tx_bufs == NULL) {
965 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
966 vptr->dev->name);
967 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
968 return -ENOMEM;
969 }
970
971 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
972
973 i = vptr->options.numrx * sizeof(struct rx_desc);
974 pool += i;
975 pool_dma += i;
976 for (i = 0; i < vptr->num_txq; i++) {
977 int offset = vptr->options.numtx * sizeof(struct tx_desc);
978
979 vptr->td_pool_dma[i] = pool_dma;
980 vptr->td_rings[i] = (struct tx_desc *) pool;
981 pool += offset;
982 pool_dma += offset;
983 }
984 return 0;
985 }
986
987 /**
988 * velocity_free_rings - free PCI ring pointers
989 * @vptr: Velocity to free from
990 *
991 * Clean up the PCI ring buffers allocated to this velocity.
992 */
993
994 static void velocity_free_rings(struct velocity_info *vptr)
995 {
996 int size;
997
998 size = vptr->options.numrx * sizeof(struct rx_desc) +
999 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1000
1001 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1002
1003 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1004
1005 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1006 }
1007
1008 static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1009 {
1010 struct mac_regs __iomem *regs = vptr->mac_regs;
1011 int avail, dirty, unusable;
1012
1013 /*
1014 * RD number must be equal to 4X per hardware spec
1015 * (programming guide rev 1.20, p.13)
1016 */
1017 if (vptr->rd_filled < 4)
1018 return;
1019
1020 wmb();
1021
1022 unusable = vptr->rd_filled & 0x0003;
1023 dirty = vptr->rd_dirty - unusable;
1024 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1025 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1026 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1027 }
1028
1029 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1030 vptr->rd_filled = unusable;
1031 }
1032
1033 static int velocity_rx_refill(struct velocity_info *vptr)
1034 {
1035 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1036
1037 do {
1038 struct rx_desc *rd = vptr->rd_ring + dirty;
1039
1040 /* Fine for an all zero Rx desc at init time as well */
1041 if (rd->rdesc0.owner == OWNED_BY_NIC)
1042 break;
1043
1044 if (!vptr->rd_info[dirty].skb) {
1045 ret = velocity_alloc_rx_buf(vptr, dirty);
1046 if (ret < 0)
1047 break;
1048 }
1049 done++;
1050 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1051 } while (dirty != vptr->rd_curr);
1052
1053 if (done) {
1054 vptr->rd_dirty = dirty;
1055 vptr->rd_filled += done;
1056 velocity_give_many_rx_descs(vptr);
1057 }
1058
1059 return ret;
1060 }
1061
1062 /**
1063 * velocity_init_rd_ring - set up receive ring
1064 * @vptr: velocity to configure
1065 *
1066 * Allocate and set up the receive buffers for each ring slot and
1067 * assign them to the network adapter.
1068 */
1069
1070 static int velocity_init_rd_ring(struct velocity_info *vptr)
1071 {
1072 int ret = -ENOMEM;
1073 unsigned int rsize = sizeof(struct velocity_rd_info) *
1074 vptr->options.numrx;
1075
1076 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1077 if(vptr->rd_info == NULL)
1078 goto out;
1079 memset(vptr->rd_info, 0, rsize);
1080
1081 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1082
1083 ret = velocity_rx_refill(vptr);
1084 if (ret < 0) {
1085 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1086 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1087 velocity_free_rd_ring(vptr);
1088 }
1089 out:
1090 return ret;
1091 }
1092
1093 /**
1094 * velocity_free_rd_ring - free receive ring
1095 * @vptr: velocity to clean up
1096 *
1097 * Free the receive buffers for each ring slot and any
1098 * attached socket buffers that need to go away.
1099 */
1100
1101 static void velocity_free_rd_ring(struct velocity_info *vptr)
1102 {
1103 int i;
1104
1105 if (vptr->rd_info == NULL)
1106 return;
1107
1108 for (i = 0; i < vptr->options.numrx; i++) {
1109 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1110
1111 if (!rd_info->skb)
1112 continue;
1113 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1114 PCI_DMA_FROMDEVICE);
1115 rd_info->skb_dma = (dma_addr_t) NULL;
1116
1117 dev_kfree_skb(rd_info->skb);
1118 rd_info->skb = NULL;
1119 }
1120
1121 kfree(vptr->rd_info);
1122 vptr->rd_info = NULL;
1123 }
1124
1125 /**
1126 * velocity_init_td_ring - set up transmit ring
1127 * @vptr: velocity
1128 *
1129 * Set up the transmit ring and chain the ring pointers together.
1130 * Returns zero on success or a negative posix errno code for
1131 * failure.
1132 */
1133
1134 static int velocity_init_td_ring(struct velocity_info *vptr)
1135 {
1136 int i, j;
1137 dma_addr_t curr;
1138 struct tx_desc *td;
1139 struct velocity_td_info *td_info;
1140 unsigned int tsize = sizeof(struct velocity_td_info) *
1141 vptr->options.numtx;
1142
1143 /* Init the TD ring entries */
1144 for (j = 0; j < vptr->num_txq; j++) {
1145 curr = vptr->td_pool_dma[j];
1146
1147 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1148 if(vptr->td_infos[j] == NULL)
1149 {
1150 while(--j >= 0)
1151 kfree(vptr->td_infos[j]);
1152 return -ENOMEM;
1153 }
1154 memset(vptr->td_infos[j], 0, tsize);
1155
1156 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1157 td = &(vptr->td_rings[j][i]);
1158 td_info = &(vptr->td_infos[j][i]);
1159 td_info->buf = vptr->tx_bufs +
1160 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1161 td_info->buf_dma = vptr->tx_bufs_dma +
1162 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1163 }
1164 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1165 }
1166 return 0;
1167 }
1168
1169 /*
1170 * FIXME: could we merge this with velocity_free_tx_buf ?
1171 */
1172
1173 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1174 int q, int n)
1175 {
1176 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1177 int i;
1178
1179 if (td_info == NULL)
1180 return;
1181
1182 if (td_info->skb) {
1183 for (i = 0; i < td_info->nskb_dma; i++)
1184 {
1185 if (td_info->skb_dma[i]) {
1186 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1187 td_info->skb->len, PCI_DMA_TODEVICE);
1188 td_info->skb_dma[i] = (dma_addr_t) NULL;
1189 }
1190 }
1191 dev_kfree_skb(td_info->skb);
1192 td_info->skb = NULL;
1193 }
1194 }
1195
1196 /**
1197 * velocity_free_td_ring - free td ring
1198 * @vptr: velocity
1199 *
1200 * Free up the transmit ring for this particular velocity adapter.
1201 * We free the ring contents but not the ring itself.
1202 */
1203
1204 static void velocity_free_td_ring(struct velocity_info *vptr)
1205 {
1206 int i, j;
1207
1208 for (j = 0; j < vptr->num_txq; j++) {
1209 if (vptr->td_infos[j] == NULL)
1210 continue;
1211 for (i = 0; i < vptr->options.numtx; i++) {
1212 velocity_free_td_ring_entry(vptr, j, i);
1213
1214 }
1215 if (vptr->td_infos[j]) {
1216 kfree(vptr->td_infos[j]);
1217 vptr->td_infos[j] = NULL;
1218 }
1219 }
1220 }
1221
1222 /**
1223 * velocity_rx_srv - service RX interrupt
1224 * @vptr: velocity
1225 * @status: adapter status (unused)
1226 *
1227 * Walk the receive ring of the velocity adapter and remove
1228 * any received packets from the receive queue. Hand the ring
1229 * slots back to the adapter for reuse.
1230 */
1231
1232 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1233 {
1234 struct net_device_stats *stats = &vptr->stats;
1235 int rd_curr = vptr->rd_curr;
1236 int works = 0;
1237
1238 do {
1239 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1240
1241 if (!vptr->rd_info[rd_curr].skb)
1242 break;
1243
1244 if (rd->rdesc0.owner == OWNED_BY_NIC)
1245 break;
1246
1247 rmb();
1248
1249 /*
1250 * Don't drop CE or RL error frame although RXOK is off
1251 */
1252 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1253 if (velocity_receive_frame(vptr, rd_curr) < 0)
1254 stats->rx_dropped++;
1255 } else {
1256 if (rd->rdesc0.RSR & RSR_CRC)
1257 stats->rx_crc_errors++;
1258 if (rd->rdesc0.RSR & RSR_FAE)
1259 stats->rx_frame_errors++;
1260
1261 stats->rx_dropped++;
1262 }
1263
1264 rd->inten = 1;
1265
1266 vptr->dev->last_rx = jiffies;
1267
1268 rd_curr++;
1269 if (rd_curr >= vptr->options.numrx)
1270 rd_curr = 0;
1271 } while (++works <= 15);
1272
1273 vptr->rd_curr = rd_curr;
1274
1275 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1276 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1277 "%s: rx buf allocation failure\n", vptr->dev->name);
1278 }
1279
1280 VAR_USED(stats);
1281 return works;
1282 }
1283
1284 /**
1285 * velocity_rx_csum - checksum process
1286 * @rd: receive packet descriptor
1287 * @skb: network layer packet buffer
1288 *
1289 * Process the status bits for the received packet and determine
1290 * if the checksum was computed and verified by the hardware
1291 */
1292
1293 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1294 {
1295 skb->ip_summed = CHECKSUM_NONE;
1296
1297 if (rd->rdesc1.CSM & CSM_IPKT) {
1298 if (rd->rdesc1.CSM & CSM_IPOK) {
1299 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1300 (rd->rdesc1.CSM & CSM_UDPKT)) {
1301 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1302 return;
1303 }
1304 }
1305 skb->ip_summed = CHECKSUM_UNNECESSARY;
1306 }
1307 }
1308 }
1309
1310 /**
1311 * velocity_rx_copy - in place Rx copy for small packets
1312 * @rx_skb: network layer packet buffer candidate
1313 * @pkt_size: received data size
1314 * @rd: receive packet descriptor
1315 * @dev: network device
1316 *
1317 * Replace the current skb that is scheduled for Rx processing by a
1318 * shorter, immediatly allocated skb, if the received packet is small
1319 * enough. This function returns a negative value if the received
1320 * packet is too big or if memory is exhausted.
1321 */
1322 static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1323 struct velocity_info *vptr)
1324 {
1325 int ret = -1;
1326
1327 if (pkt_size < rx_copybreak) {
1328 struct sk_buff *new_skb;
1329
1330 new_skb = dev_alloc_skb(pkt_size + 2);
1331 if (new_skb) {
1332 new_skb->dev = vptr->dev;
1333 new_skb->ip_summed = rx_skb[0]->ip_summed;
1334
1335 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1336 skb_reserve(new_skb, 2);
1337
1338 memcpy(new_skb->data, rx_skb[0]->tail, pkt_size);
1339 *rx_skb = new_skb;
1340 ret = 0;
1341 }
1342
1343 }
1344 return ret;
1345 }
1346
1347 /**
1348 * velocity_iph_realign - IP header alignment
1349 * @vptr: velocity we are handling
1350 * @skb: network layer packet buffer
1351 * @pkt_size: received data size
1352 *
1353 * Align IP header on a 2 bytes boundary. This behavior can be
1354 * configured by the user.
1355 */
1356 static inline void velocity_iph_realign(struct velocity_info *vptr,
1357 struct sk_buff *skb, int pkt_size)
1358 {
1359 /* FIXME - memmove ? */
1360 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1361 int i;
1362
1363 for (i = pkt_size; i >= 0; i--)
1364 *(skb->data + i + 2) = *(skb->data + i);
1365 skb_reserve(skb, 2);
1366 }
1367 }
1368
1369 /**
1370 * velocity_receive_frame - received packet processor
1371 * @vptr: velocity we are handling
1372 * @idx: ring index
1373 *
1374 * A packet has arrived. We process the packet and if appropriate
1375 * pass the frame up the network stack
1376 */
1377
1378 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1379 {
1380 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1381 struct net_device_stats *stats = &vptr->stats;
1382 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1383 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1384 int pkt_len = rd->rdesc0.len;
1385 struct sk_buff *skb;
1386
1387 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1388 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1389 stats->rx_length_errors++;
1390 return -EINVAL;
1391 }
1392
1393 if (rd->rdesc0.RSR & RSR_MAR)
1394 vptr->stats.multicast++;
1395
1396 skb = rd_info->skb;
1397 skb->dev = vptr->dev;
1398
1399 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1400 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1401
1402 /*
1403 * Drop frame not meeting IEEE 802.3
1404 */
1405
1406 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1407 if (rd->rdesc0.RSR & RSR_RL) {
1408 stats->rx_length_errors++;
1409 return -EINVAL;
1410 }
1411 }
1412
1413 pci_action = pci_dma_sync_single_for_device;
1414
1415 velocity_rx_csum(rd, skb);
1416
1417 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1418 velocity_iph_realign(vptr, skb, pkt_len);
1419 pci_action = pci_unmap_single;
1420 rd_info->skb = NULL;
1421 }
1422
1423 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1424 PCI_DMA_FROMDEVICE);
1425
1426 skb_put(skb, pkt_len - 4);
1427 skb->protocol = eth_type_trans(skb, skb->dev);
1428
1429 stats->rx_bytes += pkt_len;
1430 netif_rx(skb);
1431
1432 return 0;
1433 }
1434
1435 /**
1436 * velocity_alloc_rx_buf - allocate aligned receive buffer
1437 * @vptr: velocity
1438 * @idx: ring index
1439 *
1440 * Allocate a new full sized buffer for the reception of a frame and
1441 * map it into PCI space for the hardware to use. The hardware
1442 * requires *64* byte alignment of the buffer which makes life
1443 * less fun than would be ideal.
1444 */
1445
1446 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1447 {
1448 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1449 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1450
1451 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1452 if (rd_info->skb == NULL)
1453 return -ENOMEM;
1454
1455 /*
1456 * Do the gymnastics to get the buffer head for data at
1457 * 64byte alignment.
1458 */
1459 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->tail & 63);
1460 rd_info->skb->dev = vptr->dev;
1461 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->tail, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1462
1463 /*
1464 * Fill in the descriptor to match
1465 */
1466
1467 *((u32 *) & (rd->rdesc0)) = 0;
1468 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1469 rd->inten = 1;
1470 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1471 rd->pa_high = 0;
1472 return 0;
1473 }
1474
1475 /**
1476 * tx_srv - transmit interrupt service
1477 * @vptr; Velocity
1478 * @status:
1479 *
1480 * Scan the queues looking for transmitted packets that
1481 * we can complete and clean up. Update any statistics as
1482 * neccessary/
1483 */
1484
1485 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1486 {
1487 struct tx_desc *td;
1488 int qnum;
1489 int full = 0;
1490 int idx;
1491 int works = 0;
1492 struct velocity_td_info *tdinfo;
1493 struct net_device_stats *stats = &vptr->stats;
1494
1495 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1496 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1497 idx = (idx + 1) % vptr->options.numtx) {
1498
1499 /*
1500 * Get Tx Descriptor
1501 */
1502 td = &(vptr->td_rings[qnum][idx]);
1503 tdinfo = &(vptr->td_infos[qnum][idx]);
1504
1505 if (td->tdesc0.owner == OWNED_BY_NIC)
1506 break;
1507
1508 if ((works++ > 15))
1509 break;
1510
1511 if (td->tdesc0.TSR & TSR0_TERR) {
1512 stats->tx_errors++;
1513 stats->tx_dropped++;
1514 if (td->tdesc0.TSR & TSR0_CDH)
1515 stats->tx_heartbeat_errors++;
1516 if (td->tdesc0.TSR & TSR0_CRS)
1517 stats->tx_carrier_errors++;
1518 if (td->tdesc0.TSR & TSR0_ABT)
1519 stats->tx_aborted_errors++;
1520 if (td->tdesc0.TSR & TSR0_OWC)
1521 stats->tx_window_errors++;
1522 } else {
1523 stats->tx_packets++;
1524 stats->tx_bytes += tdinfo->skb->len;
1525 }
1526 velocity_free_tx_buf(vptr, tdinfo);
1527 vptr->td_used[qnum]--;
1528 }
1529 vptr->td_tail[qnum] = idx;
1530
1531 if (AVAIL_TD(vptr, qnum) < 1) {
1532 full = 1;
1533 }
1534 }
1535 /*
1536 * Look to see if we should kick the transmit network
1537 * layer for more work.
1538 */
1539 if (netif_queue_stopped(vptr->dev) && (full == 0)
1540 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1541 netif_wake_queue(vptr->dev);
1542 }
1543 return works;
1544 }
1545
1546 /**
1547 * velocity_print_link_status - link status reporting
1548 * @vptr: velocity to report on
1549 *
1550 * Turn the link status of the velocity card into a kernel log
1551 * description of the new link state, detailing speed and duplex
1552 * status
1553 */
1554
1555 static void velocity_print_link_status(struct velocity_info *vptr)
1556 {
1557
1558 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1559 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1560 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1561 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1562
1563 if (vptr->mii_status & VELOCITY_SPEED_1000)
1564 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1565 else if (vptr->mii_status & VELOCITY_SPEED_100)
1566 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1567 else
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1569
1570 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1571 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1572 else
1573 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1574 } else {
1575 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1576 switch (vptr->options.spd_dpx) {
1577 case SPD_DPX_100_HALF:
1578 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1579 break;
1580 case SPD_DPX_100_FULL:
1581 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1582 break;
1583 case SPD_DPX_10_HALF:
1584 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1585 break;
1586 case SPD_DPX_10_FULL:
1587 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1588 break;
1589 default:
1590 break;
1591 }
1592 }
1593 }
1594
1595 /**
1596 * velocity_error - handle error from controller
1597 * @vptr: velocity
1598 * @status: card status
1599 *
1600 * Process an error report from the hardware and attempt to recover
1601 * the card itself. At the moment we cannot recover from some
1602 * theoretically impossible errors but this could be fixed using
1603 * the pci_device_failed logic to bounce the hardware
1604 *
1605 */
1606
1607 static void velocity_error(struct velocity_info *vptr, int status)
1608 {
1609
1610 if (status & ISR_TXSTLI) {
1611 struct mac_regs __iomem * regs = vptr->mac_regs;
1612
1613 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1614 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1615 writew(TRDCSR_RUN, &regs->TDCSRClr);
1616 netif_stop_queue(vptr->dev);
1617
1618 /* FIXME: port over the pci_device_failed code and use it
1619 here */
1620 }
1621
1622 if (status & ISR_SRCI) {
1623 struct mac_regs __iomem * regs = vptr->mac_regs;
1624 int linked;
1625
1626 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1627 vptr->mii_status = check_connection_type(regs);
1628
1629 /*
1630 * If it is a 3119, disable frame bursting in
1631 * halfduplex mode and enable it in fullduplex
1632 * mode
1633 */
1634 if (vptr->rev_id < REV_ID_VT3216_A0) {
1635 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1636 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1637 else
1638 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1639 }
1640 /*
1641 * Only enable CD heart beat counter in 10HD mode
1642 */
1643 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1644 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1645 } else {
1646 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1647 }
1648 }
1649 /*
1650 * Get link status from PHYSR0
1651 */
1652 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1653
1654 if (linked) {
1655 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1656 } else {
1657 vptr->mii_status |= VELOCITY_LINK_FAIL;
1658 }
1659
1660 velocity_print_link_status(vptr);
1661 enable_flow_control_ability(vptr);
1662
1663 /*
1664 * Re-enable auto-polling because SRCI will disable
1665 * auto-polling
1666 */
1667
1668 enable_mii_autopoll(regs);
1669
1670 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1671 netif_stop_queue(vptr->dev);
1672 else
1673 netif_wake_queue(vptr->dev);
1674
1675 };
1676 if (status & ISR_MIBFI)
1677 velocity_update_hw_mibs(vptr);
1678 if (status & ISR_LSTEI)
1679 mac_rx_queue_wake(vptr->mac_regs);
1680 }
1681
1682 /**
1683 * velocity_free_tx_buf - free transmit buffer
1684 * @vptr: velocity
1685 * @tdinfo: buffer
1686 *
1687 * Release an transmit buffer. If the buffer was preallocated then
1688 * recycle it, if not then unmap the buffer.
1689 */
1690
1691 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1692 {
1693 struct sk_buff *skb = tdinfo->skb;
1694 int i;
1695
1696 /*
1697 * Don't unmap the pre-allocated tx_bufs
1698 */
1699 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1700
1701 for (i = 0; i < tdinfo->nskb_dma; i++) {
1702 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1703 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1704 #else
1705 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1706 #endif
1707 tdinfo->skb_dma[i] = 0;
1708 }
1709 }
1710 dev_kfree_skb_irq(skb);
1711 tdinfo->skb = NULL;
1712 }
1713
1714 /**
1715 * velocity_open - interface activation callback
1716 * @dev: network layer device to open
1717 *
1718 * Called when the network layer brings the interface up. Returns
1719 * a negative posix error code on failure, or zero on success.
1720 *
1721 * All the ring allocation and set up is done on open for this
1722 * adapter to minimise memory usage when inactive
1723 */
1724
1725 static int velocity_open(struct net_device *dev)
1726 {
1727 struct velocity_info *vptr = dev->priv;
1728 int ret;
1729
1730 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1731
1732 ret = velocity_init_rings(vptr);
1733 if (ret < 0)
1734 goto out;
1735
1736 ret = velocity_init_rd_ring(vptr);
1737 if (ret < 0)
1738 goto err_free_desc_rings;
1739
1740 ret = velocity_init_td_ring(vptr);
1741 if (ret < 0)
1742 goto err_free_rd_ring;
1743
1744 /* Ensure chip is running */
1745 pci_set_power_state(vptr->pdev, PCI_D0);
1746
1747 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1748
1749 ret = request_irq(vptr->pdev->irq, &velocity_intr, SA_SHIRQ,
1750 dev->name, dev);
1751 if (ret < 0) {
1752 /* Power down the chip */
1753 pci_set_power_state(vptr->pdev, PCI_D3hot);
1754 goto err_free_td_ring;
1755 }
1756
1757 mac_enable_int(vptr->mac_regs);
1758 netif_start_queue(dev);
1759 vptr->flags |= VELOCITY_FLAGS_OPENED;
1760 out:
1761 return ret;
1762
1763 err_free_td_ring:
1764 velocity_free_td_ring(vptr);
1765 err_free_rd_ring:
1766 velocity_free_rd_ring(vptr);
1767 err_free_desc_rings:
1768 velocity_free_rings(vptr);
1769 goto out;
1770 }
1771
1772 /**
1773 * velocity_change_mtu - MTU change callback
1774 * @dev: network device
1775 * @new_mtu: desired MTU
1776 *
1777 * Handle requests from the networking layer for MTU change on
1778 * this interface. It gets called on a change by the network layer.
1779 * Return zero for success or negative posix error code.
1780 */
1781
1782 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1783 {
1784 struct velocity_info *vptr = dev->priv;
1785 unsigned long flags;
1786 int oldmtu = dev->mtu;
1787 int ret = 0;
1788
1789 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1790 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1791 vptr->dev->name);
1792 return -EINVAL;
1793 }
1794
1795 if (new_mtu != oldmtu) {
1796 spin_lock_irqsave(&vptr->lock, flags);
1797
1798 netif_stop_queue(dev);
1799 velocity_shutdown(vptr);
1800
1801 velocity_free_td_ring(vptr);
1802 velocity_free_rd_ring(vptr);
1803
1804 dev->mtu = new_mtu;
1805 if (new_mtu > 8192)
1806 vptr->rx_buf_sz = 9 * 1024;
1807 else if (new_mtu > 4096)
1808 vptr->rx_buf_sz = 8192;
1809 else
1810 vptr->rx_buf_sz = 4 * 1024;
1811
1812 ret = velocity_init_rd_ring(vptr);
1813 if (ret < 0)
1814 goto out_unlock;
1815
1816 ret = velocity_init_td_ring(vptr);
1817 if (ret < 0)
1818 goto out_unlock;
1819
1820 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1821
1822 mac_enable_int(vptr->mac_regs);
1823 netif_start_queue(dev);
1824 out_unlock:
1825 spin_unlock_irqrestore(&vptr->lock, flags);
1826 }
1827
1828 return ret;
1829 }
1830
1831 /**
1832 * velocity_shutdown - shut down the chip
1833 * @vptr: velocity to deactivate
1834 *
1835 * Shuts down the internal operations of the velocity and
1836 * disables interrupts, autopolling, transmit and receive
1837 */
1838
1839 static void velocity_shutdown(struct velocity_info *vptr)
1840 {
1841 struct mac_regs __iomem * regs = vptr->mac_regs;
1842 mac_disable_int(regs);
1843 writel(CR0_STOP, &regs->CR0Set);
1844 writew(0xFFFF, &regs->TDCSRClr);
1845 writeb(0xFF, &regs->RDCSRClr);
1846 safe_disable_mii_autopoll(regs);
1847 mac_clear_isr(regs);
1848 }
1849
1850 /**
1851 * velocity_close - close adapter callback
1852 * @dev: network device
1853 *
1854 * Callback from the network layer when the velocity is being
1855 * deactivated by the network layer
1856 */
1857
1858 static int velocity_close(struct net_device *dev)
1859 {
1860 struct velocity_info *vptr = dev->priv;
1861
1862 netif_stop_queue(dev);
1863 velocity_shutdown(vptr);
1864
1865 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1866 velocity_get_ip(vptr);
1867 if (dev->irq != 0)
1868 free_irq(dev->irq, dev);
1869
1870 /* Power down the chip */
1871 pci_set_power_state(vptr->pdev, PCI_D3hot);
1872
1873 /* Free the resources */
1874 velocity_free_td_ring(vptr);
1875 velocity_free_rd_ring(vptr);
1876 velocity_free_rings(vptr);
1877
1878 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1879 return 0;
1880 }
1881
1882 /**
1883 * velocity_xmit - transmit packet callback
1884 * @skb: buffer to transmit
1885 * @dev: network device
1886 *
1887 * Called by the networ layer to request a packet is queued to
1888 * the velocity. Returns zero on success.
1889 */
1890
1891 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1892 {
1893 struct velocity_info *vptr = dev->priv;
1894 int qnum = 0;
1895 struct tx_desc *td_ptr;
1896 struct velocity_td_info *tdinfo;
1897 unsigned long flags;
1898 int index;
1899
1900 int pktlen = skb->len;
1901
1902 spin_lock_irqsave(&vptr->lock, flags);
1903
1904 index = vptr->td_curr[qnum];
1905 td_ptr = &(vptr->td_rings[qnum][index]);
1906 tdinfo = &(vptr->td_infos[qnum][index]);
1907
1908 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1909 td_ptr->tdesc1.TCR = TCR0_TIC;
1910 td_ptr->td_buf[0].queue = 0;
1911
1912 /*
1913 * Pad short frames.
1914 */
1915 if (pktlen < ETH_ZLEN) {
1916 /* Cannot occur until ZC support */
1917 if(skb_linearize(skb, GFP_ATOMIC))
1918 return 0;
1919 pktlen = ETH_ZLEN;
1920 memcpy(tdinfo->buf, skb->data, skb->len);
1921 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1922 tdinfo->skb = skb;
1923 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1924 td_ptr->tdesc0.pktsize = pktlen;
1925 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1926 td_ptr->td_buf[0].pa_high = 0;
1927 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1928 tdinfo->nskb_dma = 1;
1929 td_ptr->tdesc1.CMDZ = 2;
1930 } else
1931 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1932 if (skb_shinfo(skb)->nr_frags > 0) {
1933 int nfrags = skb_shinfo(skb)->nr_frags;
1934 tdinfo->skb = skb;
1935 if (nfrags > 6) {
1936 skb_linearize(skb, GFP_ATOMIC);
1937 memcpy(tdinfo->buf, skb->data, skb->len);
1938 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1939 td_ptr->tdesc0.pktsize =
1940 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1941 td_ptr->td_buf[0].pa_high = 0;
1942 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1943 tdinfo->nskb_dma = 1;
1944 td_ptr->tdesc1.CMDZ = 2;
1945 } else {
1946 int i = 0;
1947 tdinfo->nskb_dma = 0;
1948 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1949
1950 td_ptr->tdesc0.pktsize = pktlen;
1951
1952 /* FIXME: support 48bit DMA later */
1953 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1954 td_ptr->td_buf[i].pa_high = 0;
1955 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1956
1957 for (i = 0; i < nfrags; i++) {
1958 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1959 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1960
1961 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1962
1963 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1964 td_ptr->td_buf[i + 1].pa_high = 0;
1965 td_ptr->td_buf[i + 1].bufsize = frag->size;
1966 }
1967 tdinfo->nskb_dma = i - 1;
1968 td_ptr->tdesc1.CMDZ = i;
1969 }
1970
1971 } else
1972 #endif
1973 {
1974 /*
1975 * Map the linear network buffer into PCI space and
1976 * add it to the transmit ring.
1977 */
1978 tdinfo->skb = skb;
1979 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1980 td_ptr->tdesc0.pktsize = pktlen;
1981 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1982 td_ptr->td_buf[0].pa_high = 0;
1983 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1984 tdinfo->nskb_dma = 1;
1985 td_ptr->tdesc1.CMDZ = 2;
1986 }
1987
1988 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1989 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
1990 td_ptr->tdesc1.pqinf.priority = 0;
1991 td_ptr->tdesc1.pqinf.CFI = 0;
1992 td_ptr->tdesc1.TCR |= TCR0_VETAG;
1993 }
1994
1995 /*
1996 * Handle hardware checksum
1997 */
1998 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
1999 && (skb->ip_summed == CHECKSUM_HW)) {
2000 struct iphdr *ip = skb->nh.iph;
2001 if (ip->protocol == IPPROTO_TCP)
2002 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2003 else if (ip->protocol == IPPROTO_UDP)
2004 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2005 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2006 }
2007 {
2008
2009 int prev = index - 1;
2010
2011 if (prev < 0)
2012 prev = vptr->options.numtx - 1;
2013 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2014 vptr->td_used[qnum]++;
2015 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2016
2017 if (AVAIL_TD(vptr, qnum) < 1)
2018 netif_stop_queue(dev);
2019
2020 td_ptr = &(vptr->td_rings[qnum][prev]);
2021 td_ptr->td_buf[0].queue = 1;
2022 mac_tx_queue_wake(vptr->mac_regs, qnum);
2023 }
2024 dev->trans_start = jiffies;
2025 spin_unlock_irqrestore(&vptr->lock, flags);
2026 return 0;
2027 }
2028
2029 /**
2030 * velocity_intr - interrupt callback
2031 * @irq: interrupt number
2032 * @dev_instance: interrupting device
2033 * @pt_regs: CPU register state at interrupt
2034 *
2035 * Called whenever an interrupt is generated by the velocity
2036 * adapter IRQ line. We may not be the source of the interrupt
2037 * and need to identify initially if we are, and if not exit as
2038 * efficiently as possible.
2039 */
2040
2041 static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2042 {
2043 struct net_device *dev = dev_instance;
2044 struct velocity_info *vptr = dev->priv;
2045 u32 isr_status;
2046 int max_count = 0;
2047
2048
2049 spin_lock(&vptr->lock);
2050 isr_status = mac_read_isr(vptr->mac_regs);
2051
2052 /* Not us ? */
2053 if (isr_status == 0) {
2054 spin_unlock(&vptr->lock);
2055 return IRQ_NONE;
2056 }
2057
2058 mac_disable_int(vptr->mac_regs);
2059
2060 /*
2061 * Keep processing the ISR until we have completed
2062 * processing and the isr_status becomes zero
2063 */
2064
2065 while (isr_status != 0) {
2066 mac_write_isr(vptr->mac_regs, isr_status);
2067 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2068 velocity_error(vptr, isr_status);
2069 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2070 max_count += velocity_rx_srv(vptr, isr_status);
2071 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2072 max_count += velocity_tx_srv(vptr, isr_status);
2073 isr_status = mac_read_isr(vptr->mac_regs);
2074 if (max_count > vptr->options.int_works)
2075 {
2076 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2077 dev->name);
2078 max_count = 0;
2079 }
2080 }
2081 spin_unlock(&vptr->lock);
2082 mac_enable_int(vptr->mac_regs);
2083 return IRQ_HANDLED;
2084
2085 }
2086
2087
2088 /**
2089 * velocity_set_multi - filter list change callback
2090 * @dev: network device
2091 *
2092 * Called by the network layer when the filter lists need to change
2093 * for a velocity adapter. Reload the CAMs with the new address
2094 * filter ruleset.
2095 */
2096
2097 static void velocity_set_multi(struct net_device *dev)
2098 {
2099 struct velocity_info *vptr = dev->priv;
2100 struct mac_regs __iomem * regs = vptr->mac_regs;
2101 u8 rx_mode;
2102 int i;
2103 struct dev_mc_list *mclist;
2104
2105 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2106 /* Unconditionally log net taps. */
2107 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2108 writel(0xffffffff, &regs->MARCAM[0]);
2109 writel(0xffffffff, &regs->MARCAM[4]);
2110 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2111 } else if ((dev->mc_count > vptr->multicast_limit)
2112 || (dev->flags & IFF_ALLMULTI)) {
2113 writel(0xffffffff, &regs->MARCAM[0]);
2114 writel(0xffffffff, &regs->MARCAM[4]);
2115 rx_mode = (RCR_AM | RCR_AB);
2116 } else {
2117 int offset = MCAM_SIZE - vptr->multicast_limit;
2118 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2119
2120 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2121 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2122 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2123 }
2124
2125 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2126 rx_mode = (RCR_AM | RCR_AB);
2127 }
2128 if (dev->mtu > 1500)
2129 rx_mode |= RCR_AL;
2130
2131 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2132
2133 }
2134
2135 /**
2136 * velocity_get_status - statistics callback
2137 * @dev: network device
2138 *
2139 * Callback from the network layer to allow driver statistics
2140 * to be resynchronized with hardware collected state. In the
2141 * case of the velocity we need to pull the MIB counters from
2142 * the hardware into the counters before letting the network
2143 * layer display them.
2144 */
2145
2146 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2147 {
2148 struct velocity_info *vptr = dev->priv;
2149
2150 /* If the hardware is down, don't touch MII */
2151 if(!netif_running(dev))
2152 return &vptr->stats;
2153
2154 spin_lock_irq(&vptr->lock);
2155 velocity_update_hw_mibs(vptr);
2156 spin_unlock_irq(&vptr->lock);
2157
2158 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2159 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2160 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2161
2162 // unsigned long rx_dropped; /* no space in linux buffers */
2163 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2164 /* detailed rx_errors: */
2165 // unsigned long rx_length_errors;
2166 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2167 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2168 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2169 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2170 // unsigned long rx_missed_errors; /* receiver missed packet */
2171
2172 /* detailed tx_errors */
2173 // unsigned long tx_fifo_errors;
2174
2175 return &vptr->stats;
2176 }
2177
2178
2179 /**
2180 * velocity_ioctl - ioctl entry point
2181 * @dev: network device
2182 * @rq: interface request ioctl
2183 * @cmd: command code
2184 *
2185 * Called when the user issues an ioctl request to the network
2186 * device in question. The velocity interface supports MII.
2187 */
2188
2189 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2190 {
2191 struct velocity_info *vptr = dev->priv;
2192 int ret;
2193
2194 /* If we are asked for information and the device is power
2195 saving then we need to bring the device back up to talk to it */
2196
2197 if (!netif_running(dev))
2198 pci_set_power_state(vptr->pdev, PCI_D0);
2199
2200 switch (cmd) {
2201 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2202 case SIOCGMIIREG: /* Read MII PHY register. */
2203 case SIOCSMIIREG: /* Write to MII PHY register. */
2204 ret = velocity_mii_ioctl(dev, rq, cmd);
2205 break;
2206
2207 default:
2208 ret = -EOPNOTSUPP;
2209 }
2210 if (!netif_running(dev))
2211 pci_set_power_state(vptr->pdev, PCI_D3hot);
2212
2213
2214 return ret;
2215 }
2216
2217 /*
2218 * Definition for our device driver. The PCI layer interface
2219 * uses this to handle all our card discover and plugging
2220 */
2221
2222 static struct pci_driver velocity_driver = {
2223 .name = VELOCITY_NAME,
2224 .id_table = velocity_id_table,
2225 .probe = velocity_found1,
2226 .remove = __devexit_p(velocity_remove1),
2227 #ifdef CONFIG_PM
2228 .suspend = velocity_suspend,
2229 .resume = velocity_resume,
2230 #endif
2231 };
2232
2233 /**
2234 * velocity_init_module - load time function
2235 *
2236 * Called when the velocity module is loaded. The PCI driver
2237 * is registered with the PCI layer, and in turn will call
2238 * the probe functions for each velocity adapter installed
2239 * in the system.
2240 */
2241
2242 static int __init velocity_init_module(void)
2243 {
2244 int ret;
2245
2246 velocity_register_notifier();
2247 ret = pci_module_init(&velocity_driver);
2248 if (ret < 0)
2249 velocity_unregister_notifier();
2250 return ret;
2251 }
2252
2253 /**
2254 * velocity_cleanup - module unload
2255 *
2256 * When the velocity hardware is unloaded this function is called.
2257 * It will clean up the notifiers and the unregister the PCI
2258 * driver interface for this hardware. This in turn cleans up
2259 * all discovered interfaces before returning from the function
2260 */
2261
2262 static void __exit velocity_cleanup_module(void)
2263 {
2264 velocity_unregister_notifier();
2265 pci_unregister_driver(&velocity_driver);
2266 }
2267
2268 module_init(velocity_init_module);
2269 module_exit(velocity_cleanup_module);
2270
2271
2272 /*
2273 * MII access , media link mode setting functions
2274 */
2275
2276
2277 /**
2278 * mii_init - set up MII
2279 * @vptr: velocity adapter
2280 * @mii_status: links tatus
2281 *
2282 * Set up the PHY for the current link state.
2283 */
2284
2285 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2286 {
2287 u16 BMCR;
2288
2289 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2290 case PHYID_CICADA_CS8201:
2291 /*
2292 * Reset to hardware default
2293 */
2294 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2295 /*
2296 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2297 * off it in NWay-forced half mode for NWay-forced v.s.
2298 * legacy-forced issue.
2299 */
2300 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2301 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2302 else
2303 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2304 /*
2305 * Turn on Link/Activity LED enable bit for CIS8201
2306 */
2307 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2308 break;
2309 case PHYID_VT3216_32BIT:
2310 case PHYID_VT3216_64BIT:
2311 /*
2312 * Reset to hardware default
2313 */
2314 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2315 /*
2316 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2317 * off it in NWay-forced half mode for NWay-forced v.s.
2318 * legacy-forced issue
2319 */
2320 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2321 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2322 else
2323 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2324 break;
2325
2326 case PHYID_MARVELL_1000:
2327 case PHYID_MARVELL_1000S:
2328 /*
2329 * Assert CRS on Transmit
2330 */
2331 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2332 /*
2333 * Reset to hardware default
2334 */
2335 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2336 break;
2337 default:
2338 ;
2339 }
2340 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2341 if (BMCR & BMCR_ISO) {
2342 BMCR &= ~BMCR_ISO;
2343 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2344 }
2345 }
2346
2347 /**
2348 * safe_disable_mii_autopoll - autopoll off
2349 * @regs: velocity registers
2350 *
2351 * Turn off the autopoll and wait for it to disable on the chip
2352 */
2353
2354 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2355 {
2356 u16 ww;
2357
2358 /* turn off MAUTO */
2359 writeb(0, &regs->MIICR);
2360 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2361 udelay(1);
2362 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2363 break;
2364 }
2365 }
2366
2367 /**
2368 * enable_mii_autopoll - turn on autopolling
2369 * @regs: velocity registers
2370 *
2371 * Enable the MII link status autopoll feature on the Velocity
2372 * hardware. Wait for it to enable.
2373 */
2374
2375 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2376 {
2377 int ii;
2378
2379 writeb(0, &(regs->MIICR));
2380 writeb(MIIADR_SWMPL, &regs->MIIADR);
2381
2382 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2383 udelay(1);
2384 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2385 break;
2386 }
2387
2388 writeb(MIICR_MAUTO, &regs->MIICR);
2389
2390 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2391 udelay(1);
2392 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2393 break;
2394 }
2395
2396 }
2397
2398 /**
2399 * velocity_mii_read - read MII data
2400 * @regs: velocity registers
2401 * @index: MII register index
2402 * @data: buffer for received data
2403 *
2404 * Perform a single read of an MII 16bit register. Returns zero
2405 * on success or -ETIMEDOUT if the PHY did not respond.
2406 */
2407
2408 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2409 {
2410 u16 ww;
2411
2412 /*
2413 * Disable MIICR_MAUTO, so that mii addr can be set normally
2414 */
2415 safe_disable_mii_autopoll(regs);
2416
2417 writeb(index, &regs->MIIADR);
2418
2419 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2420
2421 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2422 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2423 break;
2424 }
2425
2426 *data = readw(&regs->MIIDATA);
2427
2428 enable_mii_autopoll(regs);
2429 if (ww == W_MAX_TIMEOUT)
2430 return -ETIMEDOUT;
2431 return 0;
2432 }
2433
2434 /**
2435 * velocity_mii_write - write MII data
2436 * @regs: velocity registers
2437 * @index: MII register index
2438 * @data: 16bit data for the MII register
2439 *
2440 * Perform a single write to an MII 16bit register. Returns zero
2441 * on success or -ETIMEDOUT if the PHY did not respond.
2442 */
2443
2444 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2445 {
2446 u16 ww;
2447
2448 /*
2449 * Disable MIICR_MAUTO, so that mii addr can be set normally
2450 */
2451 safe_disable_mii_autopoll(regs);
2452
2453 /* MII reg offset */
2454 writeb(mii_addr, &regs->MIIADR);
2455 /* set MII data */
2456 writew(data, &regs->MIIDATA);
2457
2458 /* turn on MIICR_WCMD */
2459 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2460
2461 /* W_MAX_TIMEOUT is the timeout period */
2462 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2463 udelay(5);
2464 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2465 break;
2466 }
2467 enable_mii_autopoll(regs);
2468
2469 if (ww == W_MAX_TIMEOUT)
2470 return -ETIMEDOUT;
2471 return 0;
2472 }
2473
2474 /**
2475 * velocity_get_opt_media_mode - get media selection
2476 * @vptr: velocity adapter
2477 *
2478 * Get the media mode stored in EEPROM or module options and load
2479 * mii_status accordingly. The requested link state information
2480 * is also returned.
2481 */
2482
2483 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2484 {
2485 u32 status = 0;
2486
2487 switch (vptr->options.spd_dpx) {
2488 case SPD_DPX_AUTO:
2489 status = VELOCITY_AUTONEG_ENABLE;
2490 break;
2491 case SPD_DPX_100_FULL:
2492 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2493 break;
2494 case SPD_DPX_10_FULL:
2495 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2496 break;
2497 case SPD_DPX_100_HALF:
2498 status = VELOCITY_SPEED_100;
2499 break;
2500 case SPD_DPX_10_HALF:
2501 status = VELOCITY_SPEED_10;
2502 break;
2503 }
2504 vptr->mii_status = status;
2505 return status;
2506 }
2507
2508 /**
2509 * mii_set_auto_on - autonegotiate on
2510 * @vptr: velocity
2511 *
2512 * Enable autonegotation on this interface
2513 */
2514
2515 static void mii_set_auto_on(struct velocity_info *vptr)
2516 {
2517 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2518 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2519 else
2520 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2521 }
2522
2523
2524 /*
2525 static void mii_set_auto_off(struct velocity_info * vptr)
2526 {
2527 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2528 }
2529 */
2530
2531 /**
2532 * set_mii_flow_control - flow control setup
2533 * @vptr: velocity interface
2534 *
2535 * Set up the flow control on this interface according to
2536 * the supplied user/eeprom options.
2537 */
2538
2539 static void set_mii_flow_control(struct velocity_info *vptr)
2540 {
2541 /*Enable or Disable PAUSE in ANAR */
2542 switch (vptr->options.flow_cntl) {
2543 case FLOW_CNTL_TX:
2544 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2545 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2546 break;
2547
2548 case FLOW_CNTL_RX:
2549 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2550 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2551 break;
2552
2553 case FLOW_CNTL_TX_RX:
2554 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2555 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2556 break;
2557
2558 case FLOW_CNTL_DISABLE:
2559 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2560 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2561 break;
2562 default:
2563 break;
2564 }
2565 }
2566
2567 /**
2568 * velocity_set_media_mode - set media mode
2569 * @mii_status: old MII link state
2570 *
2571 * Check the media link state and configure the flow control
2572 * PHY and also velocity hardware setup accordingly. In particular
2573 * we need to set up CD polling and frame bursting.
2574 */
2575
2576 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2577 {
2578 u32 curr_status;
2579 struct mac_regs __iomem * regs = vptr->mac_regs;
2580
2581 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2582 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2583
2584 /* Set mii link status */
2585 set_mii_flow_control(vptr);
2586
2587 /*
2588 Check if new status is consisent with current status
2589 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2590 || (mii_status==curr_status)) {
2591 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2592 vptr->mii_status=check_connection_type(vptr->mac_regs);
2593 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2594 return 0;
2595 }
2596 */
2597
2598 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2599 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2600 }
2601
2602 /*
2603 * If connection type is AUTO
2604 */
2605 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2606 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2607 /* clear force MAC mode bit */
2608 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2609 /* set duplex mode of MAC according to duplex mode of MII */
2610 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2611 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2612 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2613
2614 /* enable AUTO-NEGO mode */
2615 mii_set_auto_on(vptr);
2616 } else {
2617 u16 ANAR;
2618 u8 CHIPGCR;
2619
2620 /*
2621 * 1. if it's 3119, disable frame bursting in halfduplex mode
2622 * and enable it in fullduplex mode
2623 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2624 * 3. only enable CD heart beat counter in 10HD mode
2625 */
2626
2627 /* set force MAC mode bit */
2628 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2629
2630 CHIPGCR = readb(&regs->CHIPGCR);
2631 CHIPGCR &= ~CHIPGCR_FCGMII;
2632
2633 if (mii_status & VELOCITY_DUPLEX_FULL) {
2634 CHIPGCR |= CHIPGCR_FCFDX;
2635 writeb(CHIPGCR, &regs->CHIPGCR);
2636 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2637 if (vptr->rev_id < REV_ID_VT3216_A0)
2638 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2639 } else {
2640 CHIPGCR &= ~CHIPGCR_FCFDX;
2641 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2642 writeb(CHIPGCR, &regs->CHIPGCR);
2643 if (vptr->rev_id < REV_ID_VT3216_A0)
2644 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2645 }
2646
2647 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2648
2649 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2650 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2651 } else {
2652 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2653 }
2654 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2655 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2656 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2657 if (mii_status & VELOCITY_SPEED_100) {
2658 if (mii_status & VELOCITY_DUPLEX_FULL)
2659 ANAR |= ANAR_TXFD;
2660 else
2661 ANAR |= ANAR_TX;
2662 } else {
2663 if (mii_status & VELOCITY_DUPLEX_FULL)
2664 ANAR |= ANAR_10FD;
2665 else
2666 ANAR |= ANAR_10;
2667 }
2668 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2669 /* enable AUTO-NEGO mode */
2670 mii_set_auto_on(vptr);
2671 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2672 }
2673 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2674 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2675 return VELOCITY_LINK_CHANGE;
2676 }
2677
2678 /**
2679 * mii_check_media_mode - check media state
2680 * @regs: velocity registers
2681 *
2682 * Check the current MII status and determine the link status
2683 * accordingly
2684 */
2685
2686 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2687 {
2688 u32 status = 0;
2689 u16 ANAR;
2690
2691 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2692 status |= VELOCITY_LINK_FAIL;
2693
2694 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2695 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2696 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2697 status |= (VELOCITY_SPEED_1000);
2698 else {
2699 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2700 if (ANAR & ANAR_TXFD)
2701 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2702 else if (ANAR & ANAR_TX)
2703 status |= VELOCITY_SPEED_100;
2704 else if (ANAR & ANAR_10FD)
2705 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2706 else
2707 status |= (VELOCITY_SPEED_10);
2708 }
2709
2710 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2711 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2712 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2713 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2714 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2715 status |= VELOCITY_AUTONEG_ENABLE;
2716 }
2717 }
2718
2719 return status;
2720 }
2721
2722 static u32 check_connection_type(struct mac_regs __iomem * regs)
2723 {
2724 u32 status = 0;
2725 u8 PHYSR0;
2726 u16 ANAR;
2727 PHYSR0 = readb(&regs->PHYSR0);
2728
2729 /*
2730 if (!(PHYSR0 & PHYSR0_LINKGD))
2731 status|=VELOCITY_LINK_FAIL;
2732 */
2733
2734 if (PHYSR0 & PHYSR0_FDPX)
2735 status |= VELOCITY_DUPLEX_FULL;
2736
2737 if (PHYSR0 & PHYSR0_SPDG)
2738 status |= VELOCITY_SPEED_1000;
2739 if (PHYSR0 & PHYSR0_SPD10)
2740 status |= VELOCITY_SPEED_10;
2741 else
2742 status |= VELOCITY_SPEED_100;
2743
2744 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2745 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2746 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2747 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2748 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2749 status |= VELOCITY_AUTONEG_ENABLE;
2750 }
2751 }
2752
2753 return status;
2754 }
2755
2756 /**
2757 * enable_flow_control_ability - flow control
2758 * @vptr: veloity to configure
2759 *
2760 * Set up flow control according to the flow control options
2761 * determined by the eeprom/configuration.
2762 */
2763
2764 static void enable_flow_control_ability(struct velocity_info *vptr)
2765 {
2766
2767 struct mac_regs __iomem * regs = vptr->mac_regs;
2768
2769 switch (vptr->options.flow_cntl) {
2770
2771 case FLOW_CNTL_DEFAULT:
2772 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2773 writel(CR0_FDXRFCEN, &regs->CR0Set);
2774 else
2775 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2776
2777 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2778 writel(CR0_FDXTFCEN, &regs->CR0Set);
2779 else
2780 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2781 break;
2782
2783 case FLOW_CNTL_TX:
2784 writel(CR0_FDXTFCEN, &regs->CR0Set);
2785 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2786 break;
2787
2788 case FLOW_CNTL_RX:
2789 writel(CR0_FDXRFCEN, &regs->CR0Set);
2790 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2791 break;
2792
2793 case FLOW_CNTL_TX_RX:
2794 writel(CR0_FDXTFCEN, &regs->CR0Set);
2795 writel(CR0_FDXRFCEN, &regs->CR0Set);
2796 break;
2797
2798 case FLOW_CNTL_DISABLE:
2799 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2800 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2801 break;
2802
2803 default:
2804 break;
2805 }
2806
2807 }
2808
2809
2810 /**
2811 * velocity_ethtool_up - pre hook for ethtool
2812 * @dev: network device
2813 *
2814 * Called before an ethtool operation. We need to make sure the
2815 * chip is out of D3 state before we poke at it.
2816 */
2817
2818 static int velocity_ethtool_up(struct net_device *dev)
2819 {
2820 struct velocity_info *vptr = dev->priv;
2821 if (!netif_running(dev))
2822 pci_set_power_state(vptr->pdev, PCI_D0);
2823 return 0;
2824 }
2825
2826 /**
2827 * velocity_ethtool_down - post hook for ethtool
2828 * @dev: network device
2829 *
2830 * Called after an ethtool operation. Restore the chip back to D3
2831 * state if it isn't running.
2832 */
2833
2834 static void velocity_ethtool_down(struct net_device *dev)
2835 {
2836 struct velocity_info *vptr = dev->priv;
2837 if (!netif_running(dev))
2838 pci_set_power_state(vptr->pdev, PCI_D3hot);
2839 }
2840
2841 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2842 {
2843 struct velocity_info *vptr = dev->priv;
2844 struct mac_regs __iomem * regs = vptr->mac_regs;
2845 u32 status;
2846 status = check_connection_type(vptr->mac_regs);
2847
2848 cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
2849 if (status & VELOCITY_SPEED_100)
2850 cmd->speed = SPEED_100;
2851 else
2852 cmd->speed = SPEED_10;
2853 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2854 cmd->port = PORT_TP;
2855 cmd->transceiver = XCVR_INTERNAL;
2856 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2857
2858 if (status & VELOCITY_DUPLEX_FULL)
2859 cmd->duplex = DUPLEX_FULL;
2860 else
2861 cmd->duplex = DUPLEX_HALF;
2862
2863 return 0;
2864 }
2865
2866 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2867 {
2868 struct velocity_info *vptr = dev->priv;
2869 u32 curr_status;
2870 u32 new_status = 0;
2871 int ret = 0;
2872
2873 curr_status = check_connection_type(vptr->mac_regs);
2874 curr_status &= (~VELOCITY_LINK_FAIL);
2875
2876 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2877 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2878 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2879 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2880
2881 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2882 ret = -EINVAL;
2883 else
2884 velocity_set_media_mode(vptr, new_status);
2885
2886 return ret;
2887 }
2888
2889 static u32 velocity_get_link(struct net_device *dev)
2890 {
2891 struct velocity_info *vptr = dev->priv;
2892 struct mac_regs __iomem * regs = vptr->mac_regs;
2893 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
2894 }
2895
2896 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2897 {
2898 struct velocity_info *vptr = dev->priv;
2899 strcpy(info->driver, VELOCITY_NAME);
2900 strcpy(info->version, VELOCITY_VERSION);
2901 strcpy(info->bus_info, pci_name(vptr->pdev));
2902 }
2903
2904 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2905 {
2906 struct velocity_info *vptr = dev->priv;
2907 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2908 wol->wolopts |= WAKE_MAGIC;
2909 /*
2910 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2911 wol.wolopts|=WAKE_PHY;
2912 */
2913 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2914 wol->wolopts |= WAKE_UCAST;
2915 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2916 wol->wolopts |= WAKE_ARP;
2917 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2918 }
2919
2920 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2921 {
2922 struct velocity_info *vptr = dev->priv;
2923
2924 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2925 return -EFAULT;
2926 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2927
2928 /*
2929 if (wol.wolopts & WAKE_PHY) {
2930 vptr->wol_opts|=VELOCITY_WOL_PHY;
2931 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2932 }
2933 */
2934
2935 if (wol->wolopts & WAKE_MAGIC) {
2936 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2937 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2938 }
2939 if (wol->wolopts & WAKE_UCAST) {
2940 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2941 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2942 }
2943 if (wol->wolopts & WAKE_ARP) {
2944 vptr->wol_opts |= VELOCITY_WOL_ARP;
2945 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2946 }
2947 memcpy(vptr->wol_passwd, wol->sopass, 6);
2948 return 0;
2949 }
2950
2951 static u32 velocity_get_msglevel(struct net_device *dev)
2952 {
2953 return msglevel;
2954 }
2955
2956 static void velocity_set_msglevel(struct net_device *dev, u32 value)
2957 {
2958 msglevel = value;
2959 }
2960
2961 static struct ethtool_ops velocity_ethtool_ops = {
2962 .get_settings = velocity_get_settings,
2963 .set_settings = velocity_set_settings,
2964 .get_drvinfo = velocity_get_drvinfo,
2965 .get_wol = velocity_ethtool_get_wol,
2966 .set_wol = velocity_ethtool_set_wol,
2967 .get_msglevel = velocity_get_msglevel,
2968 .set_msglevel = velocity_set_msglevel,
2969 .get_link = velocity_get_link,
2970 .begin = velocity_ethtool_up,
2971 .complete = velocity_ethtool_down
2972 };
2973
2974 /**
2975 * velocity_mii_ioctl - MII ioctl handler
2976 * @dev: network device
2977 * @ifr: the ifreq block for the ioctl
2978 * @cmd: the command
2979 *
2980 * Process MII requests made via ioctl from the network layer. These
2981 * are used by tools like kudzu to interrogate the link state of the
2982 * hardware
2983 */
2984
2985 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2986 {
2987 struct velocity_info *vptr = dev->priv;
2988 struct mac_regs __iomem * regs = vptr->mac_regs;
2989 unsigned long flags;
2990 struct mii_ioctl_data *miidata = if_mii(ifr);
2991 int err;
2992
2993 switch (cmd) {
2994 case SIOCGMIIPHY:
2995 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2996 break;
2997 case SIOCGMIIREG:
2998 if (!capable(CAP_NET_ADMIN))
2999 return -EPERM;
3000 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3001 return -ETIMEDOUT;
3002 break;
3003 case SIOCSMIIREG:
3004 if (!capable(CAP_NET_ADMIN))
3005 return -EPERM;
3006 spin_lock_irqsave(&vptr->lock, flags);
3007 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3008 spin_unlock_irqrestore(&vptr->lock, flags);
3009 check_connection_type(vptr->mac_regs);
3010 if(err)
3011 return err;
3012 break;
3013 default:
3014 return -EOPNOTSUPP;
3015 }
3016 return 0;
3017 }
3018
3019 #ifdef CONFIG_PM
3020
3021 /**
3022 * velocity_save_context - save registers
3023 * @vptr: velocity
3024 * @context: buffer for stored context
3025 *
3026 * Retrieve the current configuration from the velocity hardware
3027 * and stash it in the context structure, for use by the context
3028 * restore functions. This allows us to save things we need across
3029 * power down states
3030 */
3031
3032 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3033 {
3034 struct mac_regs __iomem * regs = vptr->mac_regs;
3035 u16 i;
3036 u8 __iomem *ptr = (u8 __iomem *)regs;
3037
3038 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3039 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3040
3041 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3042 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3043
3044 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3045 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3046
3047 }
3048
3049 /**
3050 * velocity_restore_context - restore registers
3051 * @vptr: velocity
3052 * @context: buffer for stored context
3053 *
3054 * Reload the register configuration from the velocity context
3055 * created by velocity_save_context.
3056 */
3057
3058 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3059 {
3060 struct mac_regs __iomem * regs = vptr->mac_regs;
3061 int i;
3062 u8 __iomem *ptr = (u8 __iomem *)regs;
3063
3064 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3065 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3066 }
3067
3068 /* Just skip cr0 */
3069 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3070 /* Clear */
3071 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3072 /* Set */
3073 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3074 }
3075
3076 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3077 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3078 }
3079
3080 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3081 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3082 }
3083
3084 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3085 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3086 }
3087
3088 }
3089
3090 /**
3091 * wol_calc_crc - WOL CRC
3092 * @pattern: data pattern
3093 * @mask_pattern: mask
3094 *
3095 * Compute the wake on lan crc hashes for the packet header
3096 * we are interested in.
3097 */
3098
3099 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3100 {
3101 u16 crc = 0xFFFF;
3102 u8 mask;
3103 int i, j;
3104
3105 for (i = 0; i < size; i++) {
3106 mask = mask_pattern[i];
3107
3108 /* Skip this loop if the mask equals to zero */
3109 if (mask == 0x00)
3110 continue;
3111
3112 for (j = 0; j < 8; j++) {
3113 if ((mask & 0x01) == 0) {
3114 mask >>= 1;
3115 continue;
3116 }
3117 mask >>= 1;
3118 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3119 }
3120 }
3121 /* Finally, invert the result once to get the correct data */
3122 crc = ~crc;
3123 return bitreverse(crc) >> 16;
3124 }
3125
3126 /**
3127 * velocity_set_wol - set up for wake on lan
3128 * @vptr: velocity to set WOL status on
3129 *
3130 * Set a card up for wake on lan either by unicast or by
3131 * ARP packet.
3132 *
3133 * FIXME: check static buffer is safe here
3134 */
3135
3136 static int velocity_set_wol(struct velocity_info *vptr)
3137 {
3138 struct mac_regs __iomem * regs = vptr->mac_regs;
3139 static u8 buf[256];
3140 int i;
3141
3142 static u32 mask_pattern[2][4] = {
3143 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3144 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3145 };
3146
3147 writew(0xFFFF, &regs->WOLCRClr);
3148 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3149 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3150
3151 /*
3152 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3153 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3154 */
3155
3156 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3157 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3158 }
3159
3160 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3161 struct arp_packet *arp = (struct arp_packet *) buf;
3162 u16 crc;
3163 memset(buf, 0, sizeof(struct arp_packet) + 7);
3164
3165 for (i = 0; i < 4; i++)
3166 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3167
3168 arp->type = htons(ETH_P_ARP);
3169 arp->ar_op = htons(1);
3170
3171 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3172
3173 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3174 (u8 *) & mask_pattern[0][0]);
3175
3176 writew(crc, &regs->PatternCRC[0]);
3177 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3178 }
3179
3180 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3181 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3182
3183 writew(0x0FFF, &regs->WOLSRClr);
3184
3185 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3186 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3187 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3188
3189 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3190 }
3191
3192 if (vptr->mii_status & VELOCITY_SPEED_1000)
3193 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3194
3195 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3196
3197 {
3198 u8 GCR;
3199 GCR = readb(&regs->CHIPGCR);
3200 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3201 writeb(GCR, &regs->CHIPGCR);
3202 }
3203
3204 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3205 /* Turn on SWPTAG just before entering power mode */
3206 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3207 /* Go to bed ..... */
3208 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3209
3210 return 0;
3211 }
3212
3213 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3214 {
3215 struct net_device *dev = pci_get_drvdata(pdev);
3216 struct velocity_info *vptr = netdev_priv(dev);
3217 unsigned long flags;
3218
3219 if(!netif_running(vptr->dev))
3220 return 0;
3221
3222 netif_device_detach(vptr->dev);
3223
3224 spin_lock_irqsave(&vptr->lock, flags);
3225 pci_save_state(pdev);
3226 #ifdef ETHTOOL_GWOL
3227 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3228 velocity_get_ip(vptr);
3229 velocity_save_context(vptr, &vptr->context);
3230 velocity_shutdown(vptr);
3231 velocity_set_wol(vptr);
3232 pci_enable_wake(pdev, 3, 1);
3233 pci_set_power_state(pdev, PCI_D3hot);
3234 } else {
3235 velocity_save_context(vptr, &vptr->context);
3236 velocity_shutdown(vptr);
3237 pci_disable_device(pdev);
3238 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3239 }
3240 #else
3241 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3242 #endif
3243 spin_unlock_irqrestore(&vptr->lock, flags);
3244 return 0;
3245 }
3246
3247 static int velocity_resume(struct pci_dev *pdev)
3248 {
3249 struct net_device *dev = pci_get_drvdata(pdev);
3250 struct velocity_info *vptr = netdev_priv(dev);
3251 unsigned long flags;
3252 int i;
3253
3254 if(!netif_running(vptr->dev))
3255 return 0;
3256
3257 pci_set_power_state(pdev, PCI_D0);
3258 pci_enable_wake(pdev, 0, 0);
3259 pci_restore_state(pdev);
3260
3261 mac_wol_reset(vptr->mac_regs);
3262
3263 spin_lock_irqsave(&vptr->lock, flags);
3264 velocity_restore_context(vptr, &vptr->context);
3265 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3266 mac_disable_int(vptr->mac_regs);
3267
3268 velocity_tx_srv(vptr, 0);
3269
3270 for (i = 0; i < vptr->num_txq; i++) {
3271 if (vptr->td_used[i]) {
3272 mac_tx_queue_wake(vptr->mac_regs, i);
3273 }
3274 }
3275
3276 mac_enable_int(vptr->mac_regs);
3277 spin_unlock_irqrestore(&vptr->lock, flags);
3278 netif_device_attach(vptr->dev);
3279
3280 return 0;
3281 }
3282
3283 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3284 {
3285 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3286
3287 if (ifa) {
3288 struct net_device *dev = ifa->ifa_dev->dev;
3289 struct velocity_info *vptr;
3290 unsigned long flags;
3291
3292 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3293 list_for_each_entry(vptr, &velocity_dev_list, list) {
3294 if (vptr->dev == dev) {
3295 velocity_get_ip(vptr);
3296 break;
3297 }
3298 }
3299 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3300 }
3301 return NOTIFY_DONE;
3302 }
3303 #endif