net: use netdev_mc_count and netdev_mc_empty when appropriate
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/mm.h>
45 #include <linux/firmware.h>
46 #include <asm/processor.h> /* Processor type for cache alignment. */
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49
50 /*
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
53 */
54 #define HAS_BROKEN_FIRMWARE
55
56 /*
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 */
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
61 #endif
62
63 /*
64 * Define this if using the driver with the zero-copy patch
65 */
66 #define ZEROCOPY
67
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69 #define VLAN_SUPPORT
70 #endif
71
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
74
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
78
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
81 static int mtu;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
87
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89 /*
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
92 *
93 * NOTE:
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
97 * 23/10/2000 - Jes
98 *
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
101 * penalty. -Ion
102 */
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
105 #else
106 static int rx_copybreak /* = 0 */;
107 #endif
108
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110 #ifdef __sparc__
111 #define DMA_BURST_SIZE 64
112 #else
113 #define DMA_BURST_SIZE 128
114 #endif
115
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
120 */
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
124
125 /* Operational parameters that are set at compile time. */
126
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
129 */
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
136
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
139 #else
140 #define RX_Q_ENTRIES Rx256QEntries
141 #endif
142
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
146
147 /*
148 * This SUCKS.
149 * We need a much better method to determine if dma_addr_t is 64-bit.
150 */
151 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
152 /* 64-bit dma_addr_t */
153 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
154 #define netdrv_addr_t __le64
155 #define cpu_to_dma(x) cpu_to_le64(x)
156 #define dma_to_cpu(x) le64_to_cpu(x)
157 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
162 #else /* 32-bit dma_addr_t */
163 #define netdrv_addr_t __le32
164 #define cpu_to_dma(x) cpu_to_le32(x)
165 #define dma_to_cpu(x) le32_to_cpu(x)
166 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
171 #endif
172
173 #define skb_first_frag_len(skb) skb_headlen(skb)
174 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
175
176 /* Firmware names */
177 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
178 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
179
180 /* These identify the driver base version and may not be removed. */
181 static const char version[] __devinitconst =
182 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
183 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
184
185 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
186 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
187 MODULE_LICENSE("GPL");
188 MODULE_VERSION(DRV_VERSION);
189 MODULE_FIRMWARE(FIRMWARE_RX);
190 MODULE_FIRMWARE(FIRMWARE_TX);
191
192 module_param(max_interrupt_work, int, 0);
193 module_param(mtu, int, 0);
194 module_param(debug, int, 0);
195 module_param(rx_copybreak, int, 0);
196 module_param(intr_latency, int, 0);
197 module_param(small_frames, int, 0);
198 module_param_array(options, int, NULL, 0);
199 module_param_array(full_duplex, int, NULL, 0);
200 module_param(enable_hw_cksum, int, 0);
201 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
202 MODULE_PARM_DESC(mtu, "MTU (all boards)");
203 MODULE_PARM_DESC(debug, "Debug level (0-6)");
204 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
205 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
206 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
207 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
208 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
209 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
210
211 /*
212 Theory of Operation
213
214 I. Board Compatibility
215
216 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
217
218 II. Board-specific settings
219
220 III. Driver operation
221
222 IIIa. Ring buffers
223
224 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
225 ring sizes are set fixed by the hardware, but may optionally be wrapped
226 earlier by the END bit in the descriptor.
227 This driver uses that hardware queue size for the Rx ring, where a large
228 number of entries has no ill effect beyond increases the potential backlog.
229 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
230 disables the queue layer priority ordering and we have no mechanism to
231 utilize the hardware two-level priority queue. When modifying the
232 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
233 levels.
234
235 IIIb/c. Transmit/Receive Structure
236
237 See the Adaptec manual for the many possible structures, and options for
238 each structure. There are far too many to document all of them here.
239
240 For transmit this driver uses type 0/1 transmit descriptors (depending
241 on the 32/64 bitness of the architecture), and relies on automatic
242 minimum-length padding. It does not use the completion queue
243 consumer index, but instead checks for non-zero status entries.
244
245 For receive this driver uses type 2/3 receive descriptors. The driver
246 allocates full frame size skbuffs for the Rx ring buffers, so all frames
247 should fit in a single descriptor. The driver does not use the completion
248 queue consumer index, but instead checks for non-zero status entries.
249
250 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
251 is allocated and the frame is copied to the new skbuff. When the incoming
252 frame is larger, the skbuff is passed directly up the protocol stack.
253 Buffers consumed this way are replaced by newly allocated skbuffs in a later
254 phase of receive.
255
256 A notable aspect of operation is that unaligned buffers are not permitted by
257 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
258 isn't longword aligned, which may cause problems on some machine
259 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
260 the frame into a new skbuff unconditionally. Copied frames are put into the
261 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
262
263 IIId. Synchronization
264
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and interrupt handling software.
269
270 The send packet thread has partial control over the Tx ring and the netif_queue
271 status. If the number of free Tx slots in the ring falls below a certain number
272 (currently hardcoded to 4), it signals the upper layer to stop the queue.
273
274 The interrupt handler has exclusive control over the Rx ring and records stats
275 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
276 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
277 number of free Tx slow is above the threshold, it signals the upper layer to
278 restart the queue.
279
280 IV. Notes
281
282 IVb. References
283
284 The Adaptec Starfire manuals, available only from Adaptec.
285 http://www.scyld.com/expert/100mbps.html
286 http://www.scyld.com/expert/NWay.html
287
288 IVc. Errata
289
290 - StopOnPerr is broken, don't enable
291 - Hardware ethernet padding exposes random data, perform software padding
292 instead (unverified -- works correctly for all the hardware I have)
293
294 */
295
296
297
298 enum chip_capability_flags {CanHaveMII=1, };
299
300 enum chipset {
301 CH_6915 = 0,
302 };
303
304 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
305 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
306 { 0, }
307 };
308 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
309
310 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
311 static const struct chip_info {
312 const char *name;
313 int drv_flags;
314 } netdrv_tbl[] __devinitdata = {
315 { "Adaptec Starfire 6915", CanHaveMII },
316 };
317
318
319 /* Offsets to the device registers.
320 Unlike software-only systems, device drivers interact with complex hardware.
321 It's not useful to define symbolic names for every register bit in the
322 device. The name can only partially document the semantics and make
323 the driver longer and more difficult to read.
324 In general, only the important configuration values or bits changed
325 multiple times should be defined symbolically.
326 */
327 enum register_offsets {
328 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
329 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
330 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
331 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
332 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
333 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
334 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
335 TxThreshold=0x500B0,
336 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
337 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
338 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
339 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
340 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
341 TxMode=0x55000, VlanType=0x55064,
342 PerfFilterTable=0x56000, HashTable=0x56100,
343 TxGfpMem=0x58000, RxGfpMem=0x5a000,
344 };
345
346 /*
347 * Bits in the interrupt status/mask registers.
348 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
349 * enables all the interrupt sources that are or'ed into those status bits.
350 */
351 enum intr_status_bits {
352 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
353 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
354 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
355 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
356 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
357 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
358 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
359 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
360 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
361 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
362 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
363 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
364 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
365 IntrTxGfp=0x02, IntrPCIPad=0x01,
366 /* not quite bits */
367 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
368 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
369 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
370 };
371
372 /* Bits in the RxFilterMode register. */
373 enum rx_mode_bits {
374 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
375 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
376 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
377 WakeupOnGFP=0x0800,
378 };
379
380 /* Bits in the TxMode register */
381 enum tx_mode_bits {
382 MiiSoftReset=0x8000, MIILoopback=0x4000,
383 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
384 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
385 };
386
387 /* Bits in the TxDescCtrl register. */
388 enum tx_ctrl_bits {
389 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
390 TxDescSpace128=0x30, TxDescSpace256=0x40,
391 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
392 TxDescType3=0x03, TxDescType4=0x04,
393 TxNoDMACompletion=0x08,
394 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
395 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
396 TxDMABurstSizeShift=8,
397 };
398
399 /* Bits in the RxDescQCtrl register. */
400 enum rx_ctrl_bits {
401 RxBufferLenShift=16, RxMinDescrThreshShift=0,
402 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
403 Rx2048QEntries=0x4000, Rx256QEntries=0,
404 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
405 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
406 RxDescSpace4=0x000, RxDescSpace8=0x100,
407 RxDescSpace16=0x200, RxDescSpace32=0x300,
408 RxDescSpace64=0x400, RxDescSpace128=0x500,
409 RxConsumerWrEn=0x80,
410 };
411
412 /* Bits in the RxDMACtrl register. */
413 enum rx_dmactrl_bits {
414 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
415 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
416 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
417 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
418 RxChecksumRejectTCPOnly=0x01000000,
419 RxCompletionQ2Enable=0x800000,
420 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
421 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
422 RxDMAQ2NonIP=0x400000,
423 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
424 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
425 RxBurstSizeShift=0,
426 };
427
428 /* Bits in the RxCompletionAddr register */
429 enum rx_compl_bits {
430 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
431 RxComplProducerWrEn=0x40,
432 RxComplType0=0x00, RxComplType1=0x10,
433 RxComplType2=0x20, RxComplType3=0x30,
434 RxComplThreshShift=0,
435 };
436
437 /* Bits in the TxCompletionAddr register */
438 enum tx_compl_bits {
439 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
440 TxComplProducerWrEn=0x40,
441 TxComplIntrStatus=0x20,
442 CommonQueueMode=0x10,
443 TxComplThreshShift=0,
444 };
445
446 /* Bits in the GenCtrl register */
447 enum gen_ctrl_bits {
448 RxEnable=0x05, TxEnable=0x0a,
449 RxGFPEnable=0x10, TxGFPEnable=0x20,
450 };
451
452 /* Bits in the IntrTimerCtrl register */
453 enum intr_ctrl_bits {
454 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
455 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
456 IntrLatencyMask=0x1f,
457 };
458
459 /* The Rx and Tx buffer descriptors. */
460 struct starfire_rx_desc {
461 netdrv_addr_t rxaddr;
462 };
463 enum rx_desc_bits {
464 RxDescValid=1, RxDescEndRing=2,
465 };
466
467 /* Completion queue entry. */
468 struct short_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
470 };
471 struct basic_rx_done_desc {
472 __le32 status; /* Low 16 bits is length. */
473 __le16 vlanid;
474 __le16 status2;
475 };
476 struct csum_rx_done_desc {
477 __le32 status; /* Low 16 bits is length. */
478 __le16 csum; /* Partial checksum */
479 __le16 status2;
480 };
481 struct full_rx_done_desc {
482 __le32 status; /* Low 16 bits is length. */
483 __le16 status3;
484 __le16 status2;
485 __le16 vlanid;
486 __le16 csum; /* partial checksum */
487 __le32 timestamp;
488 };
489 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
490 #ifdef VLAN_SUPPORT
491 typedef struct full_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType3
493 #else /* not VLAN_SUPPORT */
494 typedef struct csum_rx_done_desc rx_done_desc;
495 #define RxComplType RxComplType2
496 #endif /* not VLAN_SUPPORT */
497
498 enum rx_done_bits {
499 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
500 };
501
502 /* Type 1 Tx descriptor. */
503 struct starfire_tx_desc_1 {
504 __le32 status; /* Upper bits are status, lower 16 length. */
505 __le32 addr;
506 };
507
508 /* Type 2 Tx descriptor. */
509 struct starfire_tx_desc_2 {
510 __le32 status; /* Upper bits are status, lower 16 length. */
511 __le32 reserved;
512 __le64 addr;
513 };
514
515 #ifdef ADDR_64BITS
516 typedef struct starfire_tx_desc_2 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType2
518 #else /* not ADDR_64BITS */
519 typedef struct starfire_tx_desc_1 starfire_tx_desc;
520 #define TX_DESC_TYPE TxDescType1
521 #endif /* not ADDR_64BITS */
522 #define TX_DESC_SPACING TxDescSpaceUnlim
523
524 enum tx_desc_bits {
525 TxDescID=0xB0000000,
526 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
527 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
528 };
529 struct tx_done_desc {
530 __le32 status; /* timestamp, index. */
531 #if 0
532 __le32 intrstatus; /* interrupt status */
533 #endif
534 };
535
536 struct rx_ring_info {
537 struct sk_buff *skb;
538 dma_addr_t mapping;
539 };
540 struct tx_ring_info {
541 struct sk_buff *skb;
542 dma_addr_t mapping;
543 unsigned int used_slots;
544 };
545
546 #define PHY_CNT 2
547 struct netdev_private {
548 /* Descriptor rings first for alignment. */
549 struct starfire_rx_desc *rx_ring;
550 starfire_tx_desc *tx_ring;
551 dma_addr_t rx_ring_dma;
552 dma_addr_t tx_ring_dma;
553 /* The addresses of rx/tx-in-place skbuffs. */
554 struct rx_ring_info rx_info[RX_RING_SIZE];
555 struct tx_ring_info tx_info[TX_RING_SIZE];
556 /* Pointers to completion queues (full pages). */
557 rx_done_desc *rx_done_q;
558 dma_addr_t rx_done_q_dma;
559 unsigned int rx_done;
560 struct tx_done_desc *tx_done_q;
561 dma_addr_t tx_done_q_dma;
562 unsigned int tx_done;
563 struct napi_struct napi;
564 struct net_device *dev;
565 struct net_device_stats stats;
566 struct pci_dev *pci_dev;
567 #ifdef VLAN_SUPPORT
568 struct vlan_group *vlgrp;
569 #endif
570 void *queue_mem;
571 dma_addr_t queue_mem_dma;
572 size_t queue_mem_size;
573
574 /* Frequently used values: keep some adjacent for cache effect. */
575 spinlock_t lock;
576 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
577 unsigned int cur_tx, dirty_tx, reap_tx;
578 unsigned int rx_buf_sz; /* Based on MTU+slack. */
579 /* These values keep track of the transceiver/media in use. */
580 int speed100; /* Set if speed == 100MBit. */
581 u32 tx_mode;
582 u32 intr_timer_ctrl;
583 u8 tx_threshold;
584 /* MII transceiver section. */
585 struct mii_if_info mii_if; /* MII lib hooks/info */
586 int phy_cnt; /* MII device addresses. */
587 unsigned char phys[PHY_CNT]; /* MII device addresses. */
588 void __iomem *base;
589 };
590
591
592 static int mdio_read(struct net_device *dev, int phy_id, int location);
593 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
594 static int netdev_open(struct net_device *dev);
595 static void check_duplex(struct net_device *dev);
596 static void tx_timeout(struct net_device *dev);
597 static void init_ring(struct net_device *dev);
598 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
599 static irqreturn_t intr_handler(int irq, void *dev_instance);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static int __netdev_rx(struct net_device *dev, int *quota);
602 static int netdev_poll(struct napi_struct *napi, int budget);
603 static void refill_rx_ring(struct net_device *dev);
604 static void netdev_error(struct net_device *dev, int intr_status);
605 static void set_rx_mode(struct net_device *dev);
606 static struct net_device_stats *get_stats(struct net_device *dev);
607 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
608 static int netdev_close(struct net_device *dev);
609 static void netdev_media_change(struct net_device *dev);
610 static const struct ethtool_ops ethtool_ops;
611
612
613 #ifdef VLAN_SUPPORT
614 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
615 {
616 struct netdev_private *np = netdev_priv(dev);
617
618 spin_lock(&np->lock);
619 if (debug > 2)
620 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
621 np->vlgrp = grp;
622 set_rx_mode(dev);
623 spin_unlock(&np->lock);
624 }
625
626 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
627 {
628 struct netdev_private *np = netdev_priv(dev);
629
630 spin_lock(&np->lock);
631 if (debug > 1)
632 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
633 set_rx_mode(dev);
634 spin_unlock(&np->lock);
635 }
636
637 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
638 {
639 struct netdev_private *np = netdev_priv(dev);
640
641 spin_lock(&np->lock);
642 if (debug > 1)
643 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
644 vlan_group_set_device(np->vlgrp, vid, NULL);
645 set_rx_mode(dev);
646 spin_unlock(&np->lock);
647 }
648 #endif /* VLAN_SUPPORT */
649
650
651 static const struct net_device_ops netdev_ops = {
652 .ndo_open = netdev_open,
653 .ndo_stop = netdev_close,
654 .ndo_start_xmit = start_tx,
655 .ndo_tx_timeout = tx_timeout,
656 .ndo_get_stats = get_stats,
657 .ndo_set_multicast_list = &set_rx_mode,
658 .ndo_do_ioctl = netdev_ioctl,
659 .ndo_change_mtu = eth_change_mtu,
660 .ndo_set_mac_address = eth_mac_addr,
661 .ndo_validate_addr = eth_validate_addr,
662 #ifdef VLAN_SUPPORT
663 .ndo_vlan_rx_register = netdev_vlan_rx_register,
664 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
665 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
666 #endif
667 };
668
669 static int __devinit starfire_init_one(struct pci_dev *pdev,
670 const struct pci_device_id *ent)
671 {
672 struct netdev_private *np;
673 int i, irq, option, chip_idx = ent->driver_data;
674 struct net_device *dev;
675 static int card_idx = -1;
676 long ioaddr;
677 void __iomem *base;
678 int drv_flags, io_size;
679 int boguscnt;
680
681 /* when built into the kernel, we only print version if device is found */
682 #ifndef MODULE
683 static int printed_version;
684 if (!printed_version++)
685 printk(version);
686 #endif
687
688 card_idx++;
689
690 if (pci_enable_device (pdev))
691 return -EIO;
692
693 ioaddr = pci_resource_start(pdev, 0);
694 io_size = pci_resource_len(pdev, 0);
695 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
696 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
697 return -ENODEV;
698 }
699
700 dev = alloc_etherdev(sizeof(*np));
701 if (!dev) {
702 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
703 return -ENOMEM;
704 }
705 SET_NETDEV_DEV(dev, &pdev->dev);
706
707 irq = pdev->irq;
708
709 if (pci_request_regions (pdev, DRV_NAME)) {
710 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
711 goto err_out_free_netdev;
712 }
713
714 base = ioremap(ioaddr, io_size);
715 if (!base) {
716 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
717 card_idx, io_size, ioaddr);
718 goto err_out_free_res;
719 }
720
721 pci_set_master(pdev);
722
723 /* enable MWI -- it vastly improves Rx performance on sparc64 */
724 pci_try_set_mwi(pdev);
725
726 #ifdef ZEROCOPY
727 /* Starfire can do TCP/UDP checksumming */
728 if (enable_hw_cksum)
729 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
730 #endif /* ZEROCOPY */
731
732 #ifdef VLAN_SUPPORT
733 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
734 #endif /* VLAN_RX_KILL_VID */
735 #ifdef ADDR_64BITS
736 dev->features |= NETIF_F_HIGHDMA;
737 #endif /* ADDR_64BITS */
738
739 /* Serial EEPROM reads are hidden by the hardware. */
740 for (i = 0; i < 6; i++)
741 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
742
743 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
744 if (debug > 4)
745 for (i = 0; i < 0x20; i++)
746 printk("%2.2x%s",
747 (unsigned int)readb(base + EEPROMCtrl + i),
748 i % 16 != 15 ? " " : "\n");
749 #endif
750
751 /* Issue soft reset */
752 writel(MiiSoftReset, base + TxMode);
753 udelay(1000);
754 writel(0, base + TxMode);
755
756 /* Reset the chip to erase previous misconfiguration. */
757 writel(1, base + PCIDeviceConfig);
758 boguscnt = 1000;
759 while (--boguscnt > 0) {
760 udelay(10);
761 if ((readl(base + PCIDeviceConfig) & 1) == 0)
762 break;
763 }
764 if (boguscnt == 0)
765 printk("%s: chipset reset never completed!\n", dev->name);
766 /* wait a little longer */
767 udelay(1000);
768
769 dev->base_addr = (unsigned long)base;
770 dev->irq = irq;
771
772 np = netdev_priv(dev);
773 np->dev = dev;
774 np->base = base;
775 spin_lock_init(&np->lock);
776 pci_set_drvdata(pdev, dev);
777
778 np->pci_dev = pdev;
779
780 np->mii_if.dev = dev;
781 np->mii_if.mdio_read = mdio_read;
782 np->mii_if.mdio_write = mdio_write;
783 np->mii_if.phy_id_mask = 0x1f;
784 np->mii_if.reg_num_mask = 0x1f;
785
786 drv_flags = netdrv_tbl[chip_idx].drv_flags;
787
788 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
789 if (dev->mem_start)
790 option = dev->mem_start;
791
792 /* The lower four bits are the media type. */
793 if (option & 0x200)
794 np->mii_if.full_duplex = 1;
795
796 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
797 np->mii_if.full_duplex = 1;
798
799 if (np->mii_if.full_duplex)
800 np->mii_if.force_media = 1;
801 else
802 np->mii_if.force_media = 0;
803 np->speed100 = 1;
804
805 /* timer resolution is 128 * 0.8us */
806 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
807 Timer10X | EnableIntrMasking;
808
809 if (small_frames > 0) {
810 np->intr_timer_ctrl |= SmallFrameBypass;
811 switch (small_frames) {
812 case 1 ... 64:
813 np->intr_timer_ctrl |= SmallFrame64;
814 break;
815 case 65 ... 128:
816 np->intr_timer_ctrl |= SmallFrame128;
817 break;
818 case 129 ... 256:
819 np->intr_timer_ctrl |= SmallFrame256;
820 break;
821 default:
822 np->intr_timer_ctrl |= SmallFrame512;
823 if (small_frames > 512)
824 printk("Adjusting small_frames down to 512\n");
825 break;
826 }
827 }
828
829 dev->netdev_ops = &netdev_ops;
830 dev->watchdog_timeo = TX_TIMEOUT;
831 SET_ETHTOOL_OPS(dev, &ethtool_ops);
832
833 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
834
835 if (mtu)
836 dev->mtu = mtu;
837
838 if (register_netdev(dev))
839 goto err_out_cleardev;
840
841 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
842 dev->name, netdrv_tbl[chip_idx].name, base,
843 dev->dev_addr, irq);
844
845 if (drv_flags & CanHaveMII) {
846 int phy, phy_idx = 0;
847 int mii_status;
848 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
849 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
850 mdelay(100);
851 boguscnt = 1000;
852 while (--boguscnt > 0)
853 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
854 break;
855 if (boguscnt == 0) {
856 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
857 continue;
858 }
859 mii_status = mdio_read(dev, phy, MII_BMSR);
860 if (mii_status != 0) {
861 np->phys[phy_idx++] = phy;
862 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
863 printk(KERN_INFO "%s: MII PHY found at address %d, status "
864 "%#4.4x advertising %#4.4x.\n",
865 dev->name, phy, mii_status, np->mii_if.advertising);
866 /* there can be only one PHY on-board */
867 break;
868 }
869 }
870 np->phy_cnt = phy_idx;
871 if (np->phy_cnt > 0)
872 np->mii_if.phy_id = np->phys[0];
873 else
874 memset(&np->mii_if, 0, sizeof(np->mii_if));
875 }
876
877 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
878 dev->name, enable_hw_cksum ? "enabled" : "disabled");
879 return 0;
880
881 err_out_cleardev:
882 pci_set_drvdata(pdev, NULL);
883 iounmap(base);
884 err_out_free_res:
885 pci_release_regions (pdev);
886 err_out_free_netdev:
887 free_netdev(dev);
888 return -ENODEV;
889 }
890
891
892 /* Read the MII Management Data I/O (MDIO) interfaces. */
893 static int mdio_read(struct net_device *dev, int phy_id, int location)
894 {
895 struct netdev_private *np = netdev_priv(dev);
896 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
897 int result, boguscnt=1000;
898 /* ??? Should we add a busy-wait here? */
899 do {
900 result = readl(mdio_addr);
901 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
902 if (boguscnt == 0)
903 return 0;
904 if ((result & 0xffff) == 0xffff)
905 return 0;
906 return result & 0xffff;
907 }
908
909
910 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
911 {
912 struct netdev_private *np = netdev_priv(dev);
913 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
914 writel(value, mdio_addr);
915 /* The busy-wait will occur before a read. */
916 }
917
918
919 static int netdev_open(struct net_device *dev)
920 {
921 const struct firmware *fw_rx, *fw_tx;
922 const __be32 *fw_rx_data, *fw_tx_data;
923 struct netdev_private *np = netdev_priv(dev);
924 void __iomem *ioaddr = np->base;
925 int i, retval;
926 size_t tx_size, rx_size;
927 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
928
929 /* Do we ever need to reset the chip??? */
930
931 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
932 if (retval)
933 return retval;
934
935 /* Disable the Rx and Tx, and reset the chip. */
936 writel(0, ioaddr + GenCtrl);
937 writel(1, ioaddr + PCIDeviceConfig);
938 if (debug > 1)
939 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
940 dev->name, dev->irq);
941
942 /* Allocate the various queues. */
943 if (!np->queue_mem) {
944 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
945 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
946 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
947 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
948 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
949 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
950 if (np->queue_mem == NULL) {
951 free_irq(dev->irq, dev);
952 return -ENOMEM;
953 }
954
955 np->tx_done_q = np->queue_mem;
956 np->tx_done_q_dma = np->queue_mem_dma;
957 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
958 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
959 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
960 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
961 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
962 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
963 }
964
965 /* Start with no carrier, it gets adjusted later */
966 netif_carrier_off(dev);
967 init_ring(dev);
968 /* Set the size of the Rx buffers. */
969 writel((np->rx_buf_sz << RxBufferLenShift) |
970 (0 << RxMinDescrThreshShift) |
971 RxPrefetchMode | RxVariableQ |
972 RX_Q_ENTRIES |
973 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
974 RxDescSpace4,
975 ioaddr + RxDescQCtrl);
976
977 /* Set up the Rx DMA controller. */
978 writel(RxChecksumIgnore |
979 (0 << RxEarlyIntThreshShift) |
980 (6 << RxHighPrioThreshShift) |
981 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
982 ioaddr + RxDMACtrl);
983
984 /* Set Tx descriptor */
985 writel((2 << TxHiPriFIFOThreshShift) |
986 (0 << TxPadLenShift) |
987 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
988 TX_DESC_Q_ADDR_SIZE |
989 TX_DESC_SPACING | TX_DESC_TYPE,
990 ioaddr + TxDescCtrl);
991
992 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
993 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
994 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
995 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
996 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
997
998 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
999 writel(np->rx_done_q_dma |
1000 RxComplType |
1001 (0 << RxComplThreshShift),
1002 ioaddr + RxCompletionAddr);
1003
1004 if (debug > 1)
1005 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1006
1007 /* Fill both the Tx SA register and the Rx perfect filter. */
1008 for (i = 0; i < 6; i++)
1009 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1010 /* The first entry is special because it bypasses the VLAN filter.
1011 Don't use it. */
1012 writew(0, ioaddr + PerfFilterTable);
1013 writew(0, ioaddr + PerfFilterTable + 4);
1014 writew(0, ioaddr + PerfFilterTable + 8);
1015 for (i = 1; i < 16; i++) {
1016 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1017 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1018 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1019 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1020 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1021 }
1022
1023 /* Initialize other registers. */
1024 /* Configure the PCI bus bursts and FIFO thresholds. */
1025 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1026 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1027 udelay(1000);
1028 writel(np->tx_mode, ioaddr + TxMode);
1029 np->tx_threshold = 4;
1030 writel(np->tx_threshold, ioaddr + TxThreshold);
1031
1032 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1033
1034 napi_enable(&np->napi);
1035
1036 netif_start_queue(dev);
1037
1038 if (debug > 1)
1039 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1040 set_rx_mode(dev);
1041
1042 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1043 check_duplex(dev);
1044
1045 /* Enable GPIO interrupts on link change */
1046 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1047
1048 /* Set the interrupt mask */
1049 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1050 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1051 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1052 ioaddr + IntrEnable);
1053 /* Enable PCI interrupts. */
1054 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1055 ioaddr + PCIDeviceConfig);
1056
1057 #ifdef VLAN_SUPPORT
1058 /* Set VLAN type to 802.1q */
1059 writel(ETH_P_8021Q, ioaddr + VlanType);
1060 #endif /* VLAN_SUPPORT */
1061
1062 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1063 if (retval) {
1064 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1065 FIRMWARE_RX);
1066 goto out_init;
1067 }
1068 if (fw_rx->size % 4) {
1069 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1070 fw_rx->size, FIRMWARE_RX);
1071 retval = -EINVAL;
1072 goto out_rx;
1073 }
1074 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1075 if (retval) {
1076 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1077 FIRMWARE_TX);
1078 goto out_rx;
1079 }
1080 if (fw_tx->size % 4) {
1081 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1082 fw_tx->size, FIRMWARE_TX);
1083 retval = -EINVAL;
1084 goto out_tx;
1085 }
1086 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1087 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1088 rx_size = fw_rx->size / 4;
1089 tx_size = fw_tx->size / 4;
1090
1091 /* Load Rx/Tx firmware into the frame processors */
1092 for (i = 0; i < rx_size; i++)
1093 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1094 for (i = 0; i < tx_size; i++)
1095 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1096 if (enable_hw_cksum)
1097 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1098 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1099 else
1100 /* Enable the Rx and Tx units only. */
1101 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1102
1103 if (debug > 1)
1104 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1105 dev->name);
1106
1107 out_tx:
1108 release_firmware(fw_tx);
1109 out_rx:
1110 release_firmware(fw_rx);
1111 out_init:
1112 if (retval)
1113 netdev_close(dev);
1114 return retval;
1115 }
1116
1117
1118 static void check_duplex(struct net_device *dev)
1119 {
1120 struct netdev_private *np = netdev_priv(dev);
1121 u16 reg0;
1122 int silly_count = 1000;
1123
1124 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1125 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1126 udelay(500);
1127 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1128 /* do nothing */;
1129 if (!silly_count) {
1130 printk("%s: MII reset failed!\n", dev->name);
1131 return;
1132 }
1133
1134 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1135
1136 if (!np->mii_if.force_media) {
1137 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1138 } else {
1139 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1140 if (np->speed100)
1141 reg0 |= BMCR_SPEED100;
1142 if (np->mii_if.full_duplex)
1143 reg0 |= BMCR_FULLDPLX;
1144 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1145 dev->name,
1146 np->speed100 ? "100" : "10",
1147 np->mii_if.full_duplex ? "full" : "half");
1148 }
1149 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1150 }
1151
1152
1153 static void tx_timeout(struct net_device *dev)
1154 {
1155 struct netdev_private *np = netdev_priv(dev);
1156 void __iomem *ioaddr = np->base;
1157 int old_debug;
1158
1159 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1160 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1161
1162 /* Perhaps we should reinitialize the hardware here. */
1163
1164 /*
1165 * Stop and restart the interface.
1166 * Cheat and increase the debug level temporarily.
1167 */
1168 old_debug = debug;
1169 debug = 2;
1170 netdev_close(dev);
1171 netdev_open(dev);
1172 debug = old_debug;
1173
1174 /* Trigger an immediate transmit demand. */
1175
1176 dev->trans_start = jiffies;
1177 np->stats.tx_errors++;
1178 netif_wake_queue(dev);
1179 }
1180
1181
1182 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1183 static void init_ring(struct net_device *dev)
1184 {
1185 struct netdev_private *np = netdev_priv(dev);
1186 int i;
1187
1188 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1189 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1190
1191 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1192
1193 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1194 for (i = 0; i < RX_RING_SIZE; i++) {
1195 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1196 np->rx_info[i].skb = skb;
1197 if (skb == NULL)
1198 break;
1199 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1200 skb->dev = dev; /* Mark as being used by this device. */
1201 /* Grrr, we cannot offset to correctly align the IP header. */
1202 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1203 }
1204 writew(i - 1, np->base + RxDescQIdx);
1205 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1206
1207 /* Clear the remainder of the Rx buffer ring. */
1208 for ( ; i < RX_RING_SIZE; i++) {
1209 np->rx_ring[i].rxaddr = 0;
1210 np->rx_info[i].skb = NULL;
1211 np->rx_info[i].mapping = 0;
1212 }
1213 /* Mark the last entry as wrapping the ring. */
1214 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1215
1216 /* Clear the completion rings. */
1217 for (i = 0; i < DONE_Q_SIZE; i++) {
1218 np->rx_done_q[i].status = 0;
1219 np->tx_done_q[i].status = 0;
1220 }
1221
1222 for (i = 0; i < TX_RING_SIZE; i++)
1223 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1224
1225 return;
1226 }
1227
1228
1229 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1230 {
1231 struct netdev_private *np = netdev_priv(dev);
1232 unsigned int entry;
1233 u32 status;
1234 int i;
1235
1236 /*
1237 * be cautious here, wrapping the queue has weird semantics
1238 * and we may not have enough slots even when it seems we do.
1239 */
1240 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1241 netif_stop_queue(dev);
1242 return NETDEV_TX_BUSY;
1243 }
1244
1245 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1246 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1247 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1248 return NETDEV_TX_OK;
1249 }
1250 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1251
1252 entry = np->cur_tx % TX_RING_SIZE;
1253 for (i = 0; i < skb_num_frags(skb); i++) {
1254 int wrap_ring = 0;
1255 status = TxDescID;
1256
1257 if (i == 0) {
1258 np->tx_info[entry].skb = skb;
1259 status |= TxCRCEn;
1260 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1261 status |= TxRingWrap;
1262 wrap_ring = 1;
1263 }
1264 if (np->reap_tx) {
1265 status |= TxDescIntr;
1266 np->reap_tx = 0;
1267 }
1268 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1269 status |= TxCalTCP;
1270 np->stats.tx_compressed++;
1271 }
1272 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1273
1274 np->tx_info[entry].mapping =
1275 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1276 } else {
1277 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1278 status |= this_frag->size;
1279 np->tx_info[entry].mapping =
1280 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1281 }
1282
1283 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1284 np->tx_ring[entry].status = cpu_to_le32(status);
1285 if (debug > 3)
1286 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1287 dev->name, np->cur_tx, np->dirty_tx,
1288 entry, status);
1289 if (wrap_ring) {
1290 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1291 np->cur_tx += np->tx_info[entry].used_slots;
1292 entry = 0;
1293 } else {
1294 np->tx_info[entry].used_slots = 1;
1295 np->cur_tx += np->tx_info[entry].used_slots;
1296 entry++;
1297 }
1298 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1299 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1300 np->reap_tx = 1;
1301 }
1302
1303 /* Non-x86: explicitly flush descriptor cache lines here. */
1304 /* Ensure all descriptors are written back before the transmit is
1305 initiated. - Jes */
1306 wmb();
1307
1308 /* Update the producer index. */
1309 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1310
1311 /* 4 is arbitrary, but should be ok */
1312 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1313 netif_stop_queue(dev);
1314
1315 dev->trans_start = jiffies;
1316
1317 return NETDEV_TX_OK;
1318 }
1319
1320
1321 /* The interrupt handler does all of the Rx thread work and cleans up
1322 after the Tx thread. */
1323 static irqreturn_t intr_handler(int irq, void *dev_instance)
1324 {
1325 struct net_device *dev = dev_instance;
1326 struct netdev_private *np = netdev_priv(dev);
1327 void __iomem *ioaddr = np->base;
1328 int boguscnt = max_interrupt_work;
1329 int consumer;
1330 int tx_status;
1331 int handled = 0;
1332
1333 do {
1334 u32 intr_status = readl(ioaddr + IntrClear);
1335
1336 if (debug > 4)
1337 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1338 dev->name, intr_status);
1339
1340 if (intr_status == 0 || intr_status == (u32) -1)
1341 break;
1342
1343 handled = 1;
1344
1345 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1346 u32 enable;
1347
1348 if (likely(napi_schedule_prep(&np->napi))) {
1349 __napi_schedule(&np->napi);
1350 enable = readl(ioaddr + IntrEnable);
1351 enable &= ~(IntrRxDone | IntrRxEmpty);
1352 writel(enable, ioaddr + IntrEnable);
1353 /* flush PCI posting buffers */
1354 readl(ioaddr + IntrEnable);
1355 } else {
1356 /* Paranoia check */
1357 enable = readl(ioaddr + IntrEnable);
1358 if (enable & (IntrRxDone | IntrRxEmpty)) {
1359 printk(KERN_INFO
1360 "%s: interrupt while in poll!\n",
1361 dev->name);
1362 enable &= ~(IntrRxDone | IntrRxEmpty);
1363 writel(enable, ioaddr + IntrEnable);
1364 }
1365 }
1366 }
1367
1368 /* Scavenge the skbuff list based on the Tx-done queue.
1369 There are redundant checks here that may be cleaned up
1370 after the driver has proven to be reliable. */
1371 consumer = readl(ioaddr + TxConsumerIdx);
1372 if (debug > 3)
1373 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1374 dev->name, consumer);
1375
1376 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1377 if (debug > 3)
1378 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1379 dev->name, np->dirty_tx, np->tx_done, tx_status);
1380 if ((tx_status & 0xe0000000) == 0xa0000000) {
1381 np->stats.tx_packets++;
1382 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1383 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1384 struct sk_buff *skb = np->tx_info[entry].skb;
1385 np->tx_info[entry].skb = NULL;
1386 pci_unmap_single(np->pci_dev,
1387 np->tx_info[entry].mapping,
1388 skb_first_frag_len(skb),
1389 PCI_DMA_TODEVICE);
1390 np->tx_info[entry].mapping = 0;
1391 np->dirty_tx += np->tx_info[entry].used_slots;
1392 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1393 {
1394 int i;
1395 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1396 pci_unmap_single(np->pci_dev,
1397 np->tx_info[entry].mapping,
1398 skb_shinfo(skb)->frags[i].size,
1399 PCI_DMA_TODEVICE);
1400 np->dirty_tx++;
1401 entry++;
1402 }
1403 }
1404
1405 dev_kfree_skb_irq(skb);
1406 }
1407 np->tx_done_q[np->tx_done].status = 0;
1408 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1409 }
1410 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1411
1412 if (netif_queue_stopped(dev) &&
1413 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1414 /* The ring is no longer full, wake the queue. */
1415 netif_wake_queue(dev);
1416 }
1417
1418 /* Stats overflow */
1419 if (intr_status & IntrStatsMax)
1420 get_stats(dev);
1421
1422 /* Media change interrupt. */
1423 if (intr_status & IntrLinkChange)
1424 netdev_media_change(dev);
1425
1426 /* Abnormal error summary/uncommon events handlers. */
1427 if (intr_status & IntrAbnormalSummary)
1428 netdev_error(dev, intr_status);
1429
1430 if (--boguscnt < 0) {
1431 if (debug > 1)
1432 printk(KERN_WARNING "%s: Too much work at interrupt, "
1433 "status=%#8.8x.\n",
1434 dev->name, intr_status);
1435 break;
1436 }
1437 } while (1);
1438
1439 if (debug > 4)
1440 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1441 dev->name, (int) readl(ioaddr + IntrStatus));
1442 return IRQ_RETVAL(handled);
1443 }
1444
1445
1446 /*
1447 * This routine is logically part of the interrupt/poll handler, but separated
1448 * for clarity and better register allocation.
1449 */
1450 static int __netdev_rx(struct net_device *dev, int *quota)
1451 {
1452 struct netdev_private *np = netdev_priv(dev);
1453 u32 desc_status;
1454 int retcode = 0;
1455
1456 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1457 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1458 struct sk_buff *skb;
1459 u16 pkt_len;
1460 int entry;
1461 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1462
1463 if (debug > 4)
1464 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1465 if (!(desc_status & RxOK)) {
1466 /* There was an error. */
1467 if (debug > 2)
1468 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1469 np->stats.rx_errors++;
1470 if (desc_status & RxFIFOErr)
1471 np->stats.rx_fifo_errors++;
1472 goto next_rx;
1473 }
1474
1475 if (*quota <= 0) { /* out of rx quota */
1476 retcode = 1;
1477 goto out;
1478 }
1479 (*quota)--;
1480
1481 pkt_len = desc_status; /* Implicitly Truncate */
1482 entry = (desc_status >> 16) & 0x7ff;
1483
1484 if (debug > 4)
1485 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1486 /* Check if the packet is long enough to accept without copying
1487 to a minimally-sized skbuff. */
1488 if (pkt_len < rx_copybreak &&
1489 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1490 skb_reserve(skb, 2); /* 16 byte align the IP header */
1491 pci_dma_sync_single_for_cpu(np->pci_dev,
1492 np->rx_info[entry].mapping,
1493 pkt_len, PCI_DMA_FROMDEVICE);
1494 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1495 pci_dma_sync_single_for_device(np->pci_dev,
1496 np->rx_info[entry].mapping,
1497 pkt_len, PCI_DMA_FROMDEVICE);
1498 skb_put(skb, pkt_len);
1499 } else {
1500 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1501 skb = np->rx_info[entry].skb;
1502 skb_put(skb, pkt_len);
1503 np->rx_info[entry].skb = NULL;
1504 np->rx_info[entry].mapping = 0;
1505 }
1506 #ifndef final_version /* Remove after testing. */
1507 /* You will want this info for the initial debug. */
1508 if (debug > 5) {
1509 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1510 skb->data, skb->data + 6,
1511 skb->data[12], skb->data[13]);
1512 }
1513 #endif
1514
1515 skb->protocol = eth_type_trans(skb, dev);
1516 #ifdef VLAN_SUPPORT
1517 if (debug > 4)
1518 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1519 #endif
1520 if (le16_to_cpu(desc->status2) & 0x0100) {
1521 skb->ip_summed = CHECKSUM_UNNECESSARY;
1522 np->stats.rx_compressed++;
1523 }
1524 /*
1525 * This feature doesn't seem to be working, at least
1526 * with the two firmware versions I have. If the GFP sees
1527 * an IP fragment, it either ignores it completely, or reports
1528 * "bad checksum" on it.
1529 *
1530 * Maybe I missed something -- corrections are welcome.
1531 * Until then, the printk stays. :-) -Ion
1532 */
1533 else if (le16_to_cpu(desc->status2) & 0x0040) {
1534 skb->ip_summed = CHECKSUM_COMPLETE;
1535 skb->csum = le16_to_cpu(desc->csum);
1536 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1537 }
1538 #ifdef VLAN_SUPPORT
1539 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1540 u16 vlid = le16_to_cpu(desc->vlanid);
1541
1542 if (debug > 4) {
1543 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1544 vlid);
1545 }
1546 /*
1547 * vlan_hwaccel_rx expects a packet with the VLAN tag
1548 * stripped out.
1549 */
1550 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1551 } else
1552 #endif /* VLAN_SUPPORT */
1553 netif_receive_skb(skb);
1554 np->stats.rx_packets++;
1555
1556 next_rx:
1557 np->cur_rx++;
1558 desc->status = 0;
1559 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1560 }
1561
1562 if (*quota == 0) { /* out of rx quota */
1563 retcode = 1;
1564 goto out;
1565 }
1566 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1567
1568 out:
1569 refill_rx_ring(dev);
1570 if (debug > 5)
1571 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1572 retcode, np->rx_done, desc_status);
1573 return retcode;
1574 }
1575
1576 static int netdev_poll(struct napi_struct *napi, int budget)
1577 {
1578 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1579 struct net_device *dev = np->dev;
1580 u32 intr_status;
1581 void __iomem *ioaddr = np->base;
1582 int quota = budget;
1583
1584 do {
1585 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1586
1587 if (__netdev_rx(dev, &quota))
1588 goto out;
1589
1590 intr_status = readl(ioaddr + IntrStatus);
1591 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1592
1593 napi_complete(napi);
1594 intr_status = readl(ioaddr + IntrEnable);
1595 intr_status |= IntrRxDone | IntrRxEmpty;
1596 writel(intr_status, ioaddr + IntrEnable);
1597
1598 out:
1599 if (debug > 5)
1600 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1601 budget - quota);
1602
1603 /* Restart Rx engine if stopped. */
1604 return budget - quota;
1605 }
1606
1607 static void refill_rx_ring(struct net_device *dev)
1608 {
1609 struct netdev_private *np = netdev_priv(dev);
1610 struct sk_buff *skb;
1611 int entry = -1;
1612
1613 /* Refill the Rx ring buffers. */
1614 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1615 entry = np->dirty_rx % RX_RING_SIZE;
1616 if (np->rx_info[entry].skb == NULL) {
1617 skb = dev_alloc_skb(np->rx_buf_sz);
1618 np->rx_info[entry].skb = skb;
1619 if (skb == NULL)
1620 break; /* Better luck next round. */
1621 np->rx_info[entry].mapping =
1622 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1623 skb->dev = dev; /* Mark as being used by this device. */
1624 np->rx_ring[entry].rxaddr =
1625 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1626 }
1627 if (entry == RX_RING_SIZE - 1)
1628 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1629 }
1630 if (entry >= 0)
1631 writew(entry, np->base + RxDescQIdx);
1632 }
1633
1634
1635 static void netdev_media_change(struct net_device *dev)
1636 {
1637 struct netdev_private *np = netdev_priv(dev);
1638 void __iomem *ioaddr = np->base;
1639 u16 reg0, reg1, reg4, reg5;
1640 u32 new_tx_mode;
1641 u32 new_intr_timer_ctrl;
1642
1643 /* reset status first */
1644 mdio_read(dev, np->phys[0], MII_BMCR);
1645 mdio_read(dev, np->phys[0], MII_BMSR);
1646
1647 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1648 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1649
1650 if (reg1 & BMSR_LSTATUS) {
1651 /* link is up */
1652 if (reg0 & BMCR_ANENABLE) {
1653 /* autonegotiation is enabled */
1654 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1655 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1656 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1657 np->speed100 = 1;
1658 np->mii_if.full_duplex = 1;
1659 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1660 np->speed100 = 1;
1661 np->mii_if.full_duplex = 0;
1662 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1663 np->speed100 = 0;
1664 np->mii_if.full_duplex = 1;
1665 } else {
1666 np->speed100 = 0;
1667 np->mii_if.full_duplex = 0;
1668 }
1669 } else {
1670 /* autonegotiation is disabled */
1671 if (reg0 & BMCR_SPEED100)
1672 np->speed100 = 1;
1673 else
1674 np->speed100 = 0;
1675 if (reg0 & BMCR_FULLDPLX)
1676 np->mii_if.full_duplex = 1;
1677 else
1678 np->mii_if.full_duplex = 0;
1679 }
1680 netif_carrier_on(dev);
1681 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1682 dev->name,
1683 np->speed100 ? "100" : "10",
1684 np->mii_if.full_duplex ? "full" : "half");
1685
1686 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1687 if (np->mii_if.full_duplex)
1688 new_tx_mode |= FullDuplex;
1689 if (np->tx_mode != new_tx_mode) {
1690 np->tx_mode = new_tx_mode;
1691 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1692 udelay(1000);
1693 writel(np->tx_mode, ioaddr + TxMode);
1694 }
1695
1696 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1697 if (np->speed100)
1698 new_intr_timer_ctrl |= Timer10X;
1699 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1700 np->intr_timer_ctrl = new_intr_timer_ctrl;
1701 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1702 }
1703 } else {
1704 netif_carrier_off(dev);
1705 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1706 }
1707 }
1708
1709
1710 static void netdev_error(struct net_device *dev, int intr_status)
1711 {
1712 struct netdev_private *np = netdev_priv(dev);
1713
1714 /* Came close to underrunning the Tx FIFO, increase threshold. */
1715 if (intr_status & IntrTxDataLow) {
1716 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1717 writel(++np->tx_threshold, np->base + TxThreshold);
1718 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1719 dev->name, np->tx_threshold * 16);
1720 } else
1721 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1722 }
1723 if (intr_status & IntrRxGFPDead) {
1724 np->stats.rx_fifo_errors++;
1725 np->stats.rx_errors++;
1726 }
1727 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1728 np->stats.tx_fifo_errors++;
1729 np->stats.tx_errors++;
1730 }
1731 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1732 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1733 dev->name, intr_status);
1734 }
1735
1736
1737 static struct net_device_stats *get_stats(struct net_device *dev)
1738 {
1739 struct netdev_private *np = netdev_priv(dev);
1740 void __iomem *ioaddr = np->base;
1741
1742 /* This adapter architecture needs no SMP locks. */
1743 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1744 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1745 np->stats.tx_packets = readl(ioaddr + 0x57000);
1746 np->stats.tx_aborted_errors =
1747 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1748 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1749 np->stats.collisions =
1750 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1751
1752 /* The chip only need report frame silently dropped. */
1753 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1754 writew(0, ioaddr + RxDMAStatus);
1755 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1756 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1757 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1758 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1759
1760 return &np->stats;
1761 }
1762
1763
1764 static void set_rx_mode(struct net_device *dev)
1765 {
1766 struct netdev_private *np = netdev_priv(dev);
1767 void __iomem *ioaddr = np->base;
1768 u32 rx_mode = MinVLANPrio;
1769 struct dev_mc_list *mclist;
1770 int i;
1771 #ifdef VLAN_SUPPORT
1772
1773 rx_mode |= VlanMode;
1774 if (np->vlgrp) {
1775 int vlan_count = 0;
1776 void __iomem *filter_addr = ioaddr + HashTable + 8;
1777 for (i = 0; i < VLAN_VID_MASK; i++) {
1778 if (vlan_group_get_device(np->vlgrp, i)) {
1779 if (vlan_count >= 32)
1780 break;
1781 writew(i, filter_addr);
1782 filter_addr += 16;
1783 vlan_count++;
1784 }
1785 }
1786 if (i == VLAN_VID_MASK) {
1787 rx_mode |= PerfectFilterVlan;
1788 while (vlan_count < 32) {
1789 writew(0, filter_addr);
1790 filter_addr += 16;
1791 vlan_count++;
1792 }
1793 }
1794 }
1795 #endif /* VLAN_SUPPORT */
1796
1797 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1798 rx_mode |= AcceptAll;
1799 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1800 (dev->flags & IFF_ALLMULTI)) {
1801 /* Too many to match, or accept all multicasts. */
1802 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1803 } else if (netdev_mc_count(dev) <= 14) {
1804 /* Use the 16 element perfect filter, skip first two entries. */
1805 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1806 __be16 *eaddrs;
1807 for (i = 2, mclist = dev->mc_list; mclist && i < netdev_mc_count(dev) + 2;
1808 i++, mclist = mclist->next) {
1809 eaddrs = (__be16 *)mclist->dmi_addr;
1810 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1811 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1812 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1813 }
1814 eaddrs = (__be16 *)dev->dev_addr;
1815 while (i++ < 16) {
1816 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1817 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1818 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1819 }
1820 rx_mode |= AcceptBroadcast|PerfectFilter;
1821 } else {
1822 /* Must use a multicast hash table. */
1823 void __iomem *filter_addr;
1824 __be16 *eaddrs;
1825 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1826
1827 memset(mc_filter, 0, sizeof(mc_filter));
1828 for (i = 0, mclist = dev->mc_list; mclist && i < netdev_mc_count(dev);
1829 i++, mclist = mclist->next) {
1830 /* The chip uses the upper 9 CRC bits
1831 as index into the hash table */
1832 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1833 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1834
1835 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1836 }
1837 /* Clear the perfect filter list, skip first two entries. */
1838 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1839 eaddrs = (__be16 *)dev->dev_addr;
1840 for (i = 2; i < 16; i++) {
1841 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1842 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1843 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1844 }
1845 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1846 writew(mc_filter[i], filter_addr);
1847 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1848 }
1849 writel(rx_mode, ioaddr + RxFilterMode);
1850 }
1851
1852 static int check_if_running(struct net_device *dev)
1853 {
1854 if (!netif_running(dev))
1855 return -EINVAL;
1856 return 0;
1857 }
1858
1859 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1860 {
1861 struct netdev_private *np = netdev_priv(dev);
1862 strcpy(info->driver, DRV_NAME);
1863 strcpy(info->version, DRV_VERSION);
1864 strcpy(info->bus_info, pci_name(np->pci_dev));
1865 }
1866
1867 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1868 {
1869 struct netdev_private *np = netdev_priv(dev);
1870 spin_lock_irq(&np->lock);
1871 mii_ethtool_gset(&np->mii_if, ecmd);
1872 spin_unlock_irq(&np->lock);
1873 return 0;
1874 }
1875
1876 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1877 {
1878 struct netdev_private *np = netdev_priv(dev);
1879 int res;
1880 spin_lock_irq(&np->lock);
1881 res = mii_ethtool_sset(&np->mii_if, ecmd);
1882 spin_unlock_irq(&np->lock);
1883 check_duplex(dev);
1884 return res;
1885 }
1886
1887 static int nway_reset(struct net_device *dev)
1888 {
1889 struct netdev_private *np = netdev_priv(dev);
1890 return mii_nway_restart(&np->mii_if);
1891 }
1892
1893 static u32 get_link(struct net_device *dev)
1894 {
1895 struct netdev_private *np = netdev_priv(dev);
1896 return mii_link_ok(&np->mii_if);
1897 }
1898
1899 static u32 get_msglevel(struct net_device *dev)
1900 {
1901 return debug;
1902 }
1903
1904 static void set_msglevel(struct net_device *dev, u32 val)
1905 {
1906 debug = val;
1907 }
1908
1909 static const struct ethtool_ops ethtool_ops = {
1910 .begin = check_if_running,
1911 .get_drvinfo = get_drvinfo,
1912 .get_settings = get_settings,
1913 .set_settings = set_settings,
1914 .nway_reset = nway_reset,
1915 .get_link = get_link,
1916 .get_msglevel = get_msglevel,
1917 .set_msglevel = set_msglevel,
1918 };
1919
1920 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1921 {
1922 struct netdev_private *np = netdev_priv(dev);
1923 struct mii_ioctl_data *data = if_mii(rq);
1924 int rc;
1925
1926 if (!netif_running(dev))
1927 return -EINVAL;
1928
1929 spin_lock_irq(&np->lock);
1930 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1931 spin_unlock_irq(&np->lock);
1932
1933 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1934 check_duplex(dev);
1935
1936 return rc;
1937 }
1938
1939 static int netdev_close(struct net_device *dev)
1940 {
1941 struct netdev_private *np = netdev_priv(dev);
1942 void __iomem *ioaddr = np->base;
1943 int i;
1944
1945 netif_stop_queue(dev);
1946
1947 napi_disable(&np->napi);
1948
1949 if (debug > 1) {
1950 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1951 dev->name, (int) readl(ioaddr + IntrStatus));
1952 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1953 dev->name, np->cur_tx, np->dirty_tx,
1954 np->cur_rx, np->dirty_rx);
1955 }
1956
1957 /* Disable interrupts by clearing the interrupt mask. */
1958 writel(0, ioaddr + IntrEnable);
1959
1960 /* Stop the chip's Tx and Rx processes. */
1961 writel(0, ioaddr + GenCtrl);
1962 readl(ioaddr + GenCtrl);
1963
1964 if (debug > 5) {
1965 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1966 (long long) np->tx_ring_dma);
1967 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1968 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1969 i, le32_to_cpu(np->tx_ring[i].status),
1970 (long long) dma_to_cpu(np->tx_ring[i].addr),
1971 le32_to_cpu(np->tx_done_q[i].status));
1972 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1973 (long long) np->rx_ring_dma, np->rx_done_q);
1974 if (np->rx_done_q)
1975 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1976 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1977 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1978 }
1979 }
1980
1981 free_irq(dev->irq, dev);
1982
1983 /* Free all the skbuffs in the Rx queue. */
1984 for (i = 0; i < RX_RING_SIZE; i++) {
1985 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1986 if (np->rx_info[i].skb != NULL) {
1987 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1988 dev_kfree_skb(np->rx_info[i].skb);
1989 }
1990 np->rx_info[i].skb = NULL;
1991 np->rx_info[i].mapping = 0;
1992 }
1993 for (i = 0; i < TX_RING_SIZE; i++) {
1994 struct sk_buff *skb = np->tx_info[i].skb;
1995 if (skb == NULL)
1996 continue;
1997 pci_unmap_single(np->pci_dev,
1998 np->tx_info[i].mapping,
1999 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
2000 np->tx_info[i].mapping = 0;
2001 dev_kfree_skb(skb);
2002 np->tx_info[i].skb = NULL;
2003 }
2004
2005 return 0;
2006 }
2007
2008 #ifdef CONFIG_PM
2009 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2010 {
2011 struct net_device *dev = pci_get_drvdata(pdev);
2012
2013 if (netif_running(dev)) {
2014 netif_device_detach(dev);
2015 netdev_close(dev);
2016 }
2017
2018 pci_save_state(pdev);
2019 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2020
2021 return 0;
2022 }
2023
2024 static int starfire_resume(struct pci_dev *pdev)
2025 {
2026 struct net_device *dev = pci_get_drvdata(pdev);
2027
2028 pci_set_power_state(pdev, PCI_D0);
2029 pci_restore_state(pdev);
2030
2031 if (netif_running(dev)) {
2032 netdev_open(dev);
2033 netif_device_attach(dev);
2034 }
2035
2036 return 0;
2037 }
2038 #endif /* CONFIG_PM */
2039
2040
2041 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2042 {
2043 struct net_device *dev = pci_get_drvdata(pdev);
2044 struct netdev_private *np = netdev_priv(dev);
2045
2046 BUG_ON(!dev);
2047
2048 unregister_netdev(dev);
2049
2050 if (np->queue_mem)
2051 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2052
2053
2054 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2055 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2056 pci_disable_device(pdev);
2057
2058 iounmap(np->base);
2059 pci_release_regions(pdev);
2060
2061 pci_set_drvdata(pdev, NULL);
2062 free_netdev(dev); /* Will also free np!! */
2063 }
2064
2065
2066 static struct pci_driver starfire_driver = {
2067 .name = DRV_NAME,
2068 .probe = starfire_init_one,
2069 .remove = __devexit_p(starfire_remove_one),
2070 #ifdef CONFIG_PM
2071 .suspend = starfire_suspend,
2072 .resume = starfire_resume,
2073 #endif /* CONFIG_PM */
2074 .id_table = starfire_pci_tbl,
2075 };
2076
2077
2078 static int __init starfire_init (void)
2079 {
2080 /* when a module, this is printed whether or not devices are found in probe */
2081 #ifdef MODULE
2082 printk(version);
2083
2084 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2085 #endif
2086
2087 /* we can do this test only at run-time... sigh */
2088 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2089 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2090 return -ENODEV;
2091 }
2092
2093 return pci_register_driver(&starfire_driver);
2094 }
2095
2096
2097 static void __exit starfire_cleanup (void)
2098 {
2099 pci_unregister_driver (&starfire_driver);
2100 }
2101
2102
2103 module_init(starfire_init);
2104 module_exit(starfire_cleanup);
2105
2106
2107 /*
2108 * Local variables:
2109 * c-basic-offset: 8
2110 * tab-width: 8
2111 * End:
2112 */