net: Remove redundant NAPI functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / natsemi.c
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
15
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
20
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
24
25
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
59
60 #define RX_OFFSET 2
61
62 /* Updated to recommendations in pci-skeleton v2.03. */
63
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73
74 static int mtu;
75
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
79
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83
84 static int dspcfg_workaround = 1;
85
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94
95 /* Operational parameters that are set at compile time. */
96
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
105
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
109
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 5*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
119
120 /* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
128
129 /* These identify the driver base version and may not be removed. */
130 static char version[] __devinitdata =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
134 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 1);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155 /*
156 Theory of Operation
157
158 I. Board Compatibility
159
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162
163 II. Board-specific settings
164
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167
168 III. Driver operation
169
170 IIIa. Ring buffers
171
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177
178 IIIb/c. Transmit/Receive Structure
179
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack. Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames. New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets. When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine. Copying also preloads the cache, which is
196 most useful with small frames.
197
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing. On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203 IIId. Synchronization
204
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 recieve and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208
209 IVb. References
210
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215
216 IVc. Errata
217
218 None characterised.
219 */
220
221
222
223 /*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228 #define PHYID_AM79C874 0x0022561b
229
230 enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
234 };
235
236 enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
238 };
239
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 const char *name;
243 unsigned long flags;
244 unsigned int eeprom_size;
245 } natsemi_pci_info[] __devinitdata = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
248 };
249
250 static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 { } /* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257 /* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
261 */
262 enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
296
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL 0x0
308 #define DSPCFG_VAL 0x5040
309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
313
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 PCIPM = 0x44,
317 };
318
319 enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
327 };
328
329 enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
340 };
341
342 enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
350 };
351
352 enum PCIBusCfg_bits {
353 EepromReload = 0x4,
354 };
355
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
379 };
380
381 /*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390 #define DEFAULT_INTR 0x00f1cd65
391
392 enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
409 };
410
411 /*
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422 #define TX_FLTH_VAL ((512/32) << 8)
423 #define TX_DRTH_VAL_START (64/32)
424 #define TX_DRTH_VAL_INC 2
425 #define TX_DRTH_VAL_LIMIT (1472/32)
426
427 enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
442 };
443 #define RX_DRTH_VAL (128/8)
444
445 enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
448 };
449
450 enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
474 };
475
476 enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
484 };
485
486 enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
491 };
492
493 enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
495 };
496
497 enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
499 };
500
501 #define PHY_ADDR_NONE 32
502 #define PHY_ADDR_INTERNAL 1
503
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C 0x0302
506 #define SRR_DP83815_D 0x0403
507 #define SRR_DP83816_A4 0x0504
508 #define SRR_DP83816_A5 0x0505
509
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513 struct netdev_desc {
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
518 };
519
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
525
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537
538 struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
549 struct net_device *dev;
550 struct napi_struct napi;
551 struct net_device_stats stats;
552 /* Media monitoring timer */
553 struct timer_list timer;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz;
562 int oom;
563 /* Interrupt status */
564 u32 intr_status;
565 /* Do not touch the nic registers */
566 int hands_off;
567 /* Don't pay attention to the reported link state. */
568 int ignore_phy;
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573 /* Rx filter */
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config, rx_config;
578 /* original contents of ClkRun register */
579 u32 SavedClkRun;
580 /* silicon revision */
581 u32 srr;
582 /* expected DSPCFG value */
583 u16 dspcfg;
584 int dspcfg_workaround;
585 /* parms saved in ethtool format */
586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex; /* Duplex, half or full */
588 u8 autoneg; /* Autonegotiation enabled */
589 /* MII transceiver section */
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
594 /* EEPROM data */
595 int eeprom_size;
596 };
597
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static int start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
650
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653 struct device_attribute *attr, char *buf); \
654 static ssize_t natsemi_set_##_name(struct device *dev, \
655 struct device_attribute *attr, \
656 const char *buf, size_t count); \
657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660 device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662 device_remove_file(&_dev->dev, &dev_attr_##_name)
663
664 NATSEMI_ATTR(dspcfg_workaround);
665
666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 struct device_attribute *attr,
668 char *buf)
669 {
670 struct netdev_private *np = netdev_priv(to_net_dev(dev));
671
672 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673 }
674
675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 struct device_attribute *attr,
677 const char *buf, size_t count)
678 {
679 struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 int new_setting;
681 unsigned long flags;
682
683 /* Find out the new setting */
684 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685 new_setting = 1;
686 else if (!strncmp("off", buf, count - 1)
687 || !strncmp("0", buf, count - 1))
688 new_setting = 0;
689 else
690 return count;
691
692 spin_lock_irqsave(&np->lock, flags);
693
694 np->dspcfg_workaround = new_setting;
695
696 spin_unlock_irqrestore(&np->lock, flags);
697
698 return count;
699 }
700
701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
702 {
703 return (void __iomem *) dev->base_addr;
704 }
705
706 static inline void natsemi_irq_enable(struct net_device *dev)
707 {
708 writel(1, ns_ioaddr(dev) + IntrEnable);
709 readl(ns_ioaddr(dev) + IntrEnable);
710 }
711
712 static inline void natsemi_irq_disable(struct net_device *dev)
713 {
714 writel(0, ns_ioaddr(dev) + IntrEnable);
715 readl(ns_ioaddr(dev) + IntrEnable);
716 }
717
718 static void move_int_phy(struct net_device *dev, int addr)
719 {
720 struct netdev_private *np = netdev_priv(dev);
721 void __iomem *ioaddr = ns_ioaddr(dev);
722 int target = 31;
723
724 /*
725 * The internal phy is visible on the external mii bus. Therefore we must
726 * move it away before we can send commands to an external phy.
727 * There are two addresses we must avoid:
728 * - the address on the external phy that is used for transmission.
729 * - the address that we want to access. User space can access phys
730 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
731 * phy that is used for transmission.
732 */
733
734 if (target == addr)
735 target--;
736 if (target == np->phy_addr_external)
737 target--;
738 writew(target, ioaddr + PhyCtrl);
739 readw(ioaddr + PhyCtrl);
740 udelay(1);
741 }
742
743 static void __devinit natsemi_init_media (struct net_device *dev)
744 {
745 struct netdev_private *np = netdev_priv(dev);
746 u32 tmp;
747
748 if (np->ignore_phy)
749 netif_carrier_on(dev);
750 else
751 netif_carrier_off(dev);
752
753 /* get the initial settings from hardware */
754 tmp = mdio_read(dev, MII_BMCR);
755 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
756 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
757 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
758 np->advertising= mdio_read(dev, MII_ADVERTISE);
759
760 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
761 && netif_msg_probe(np)) {
762 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
763 "10%s %s duplex.\n",
764 pci_name(np->pci_dev),
765 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
766 "enabled, advertise" : "disabled, force",
767 (np->advertising &
768 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
769 "0" : "",
770 (np->advertising &
771 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
772 "full" : "half");
773 }
774 if (netif_msg_probe(np))
775 printk(KERN_INFO
776 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
777 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
778 np->advertising);
779
780 }
781
782 static const struct net_device_ops natsemi_netdev_ops = {
783 .ndo_open = netdev_open,
784 .ndo_stop = netdev_close,
785 .ndo_start_xmit = start_tx,
786 .ndo_get_stats = get_stats,
787 .ndo_set_multicast_list = set_rx_mode,
788 .ndo_change_mtu = natsemi_change_mtu,
789 .ndo_do_ioctl = netdev_ioctl,
790 .ndo_tx_timeout = ns_tx_timeout,
791 .ndo_set_mac_address = eth_mac_addr,
792 .ndo_validate_addr = eth_validate_addr,
793 #ifdef CONFIG_NET_POLL_CONTROLLER
794 .ndo_poll_controller = natsemi_poll_controller,
795 #endif
796 };
797
798 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
799 const struct pci_device_id *ent)
800 {
801 struct net_device *dev;
802 struct netdev_private *np;
803 int i, option, irq, chip_idx = ent->driver_data;
804 static int find_cnt = -1;
805 resource_size_t iostart;
806 unsigned long iosize;
807 void __iomem *ioaddr;
808 const int pcibar = 1; /* PCI base address register */
809 int prev_eedata;
810 u32 tmp;
811
812 /* when built into the kernel, we only print version if device is found */
813 #ifndef MODULE
814 static int printed_version;
815 if (!printed_version++)
816 printk(version);
817 #endif
818
819 i = pci_enable_device(pdev);
820 if (i) return i;
821
822 /* natsemi has a non-standard PM control register
823 * in PCI config space. Some boards apparently need
824 * to be brought to D0 in this manner.
825 */
826 pci_read_config_dword(pdev, PCIPM, &tmp);
827 if (tmp & PCI_PM_CTRL_STATE_MASK) {
828 /* D0 state, disable PME assertion */
829 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
830 pci_write_config_dword(pdev, PCIPM, newtmp);
831 }
832
833 find_cnt++;
834 iostart = pci_resource_start(pdev, pcibar);
835 iosize = pci_resource_len(pdev, pcibar);
836 irq = pdev->irq;
837
838 pci_set_master(pdev);
839
840 dev = alloc_etherdev(sizeof (struct netdev_private));
841 if (!dev)
842 return -ENOMEM;
843 SET_NETDEV_DEV(dev, &pdev->dev);
844
845 i = pci_request_regions(pdev, DRV_NAME);
846 if (i)
847 goto err_pci_request_regions;
848
849 ioaddr = ioremap(iostart, iosize);
850 if (!ioaddr) {
851 i = -ENOMEM;
852 goto err_ioremap;
853 }
854
855 /* Work around the dropped serial bit. */
856 prev_eedata = eeprom_read(ioaddr, 6);
857 for (i = 0; i < 3; i++) {
858 int eedata = eeprom_read(ioaddr, i + 7);
859 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
860 dev->dev_addr[i*2+1] = eedata >> 7;
861 prev_eedata = eedata;
862 }
863
864 dev->base_addr = (unsigned long __force) ioaddr;
865 dev->irq = irq;
866
867 np = netdev_priv(dev);
868 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
869 np->dev = dev;
870
871 np->pci_dev = pdev;
872 pci_set_drvdata(pdev, dev);
873 np->iosize = iosize;
874 spin_lock_init(&np->lock);
875 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
876 np->hands_off = 0;
877 np->intr_status = 0;
878 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
879 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
880 np->ignore_phy = 1;
881 else
882 np->ignore_phy = 0;
883 np->dspcfg_workaround = dspcfg_workaround;
884
885 /* Initial port:
886 * - If configured to ignore the PHY set up for external.
887 * - If the nic was configured to use an external phy and if find_mii
888 * finds a phy: use external port, first phy that replies.
889 * - Otherwise: internal port.
890 * Note that the phy address for the internal phy doesn't matter:
891 * The address would be used to access a phy over the mii bus, but
892 * the internal phy is accessed through mapped registers.
893 */
894 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
895 dev->if_port = PORT_MII;
896 else
897 dev->if_port = PORT_TP;
898 /* Reset the chip to erase previous misconfiguration. */
899 natsemi_reload_eeprom(dev);
900 natsemi_reset(dev);
901
902 if (dev->if_port != PORT_TP) {
903 np->phy_addr_external = find_mii(dev);
904 /* If we're ignoring the PHY it doesn't matter if we can't
905 * find one. */
906 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
907 dev->if_port = PORT_TP;
908 np->phy_addr_external = PHY_ADDR_INTERNAL;
909 }
910 } else {
911 np->phy_addr_external = PHY_ADDR_INTERNAL;
912 }
913
914 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
915 if (dev->mem_start)
916 option = dev->mem_start;
917
918 /* The lower four bits are the media type. */
919 if (option) {
920 if (option & 0x200)
921 np->full_duplex = 1;
922 if (option & 15)
923 printk(KERN_INFO
924 "natsemi %s: ignoring user supplied media type %d",
925 pci_name(np->pci_dev), option & 15);
926 }
927 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
928 np->full_duplex = 1;
929
930 dev->netdev_ops = &natsemi_netdev_ops;
931 dev->watchdog_timeo = TX_TIMEOUT;
932
933 SET_ETHTOOL_OPS(dev, &ethtool_ops);
934
935 if (mtu)
936 dev->mtu = mtu;
937
938 natsemi_init_media(dev);
939
940 /* save the silicon revision for later querying */
941 np->srr = readl(ioaddr + SiliconRev);
942 if (netif_msg_hw(np))
943 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
944 pci_name(np->pci_dev), np->srr);
945
946 i = register_netdev(dev);
947 if (i)
948 goto err_register_netdev;
949
950 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
951 goto err_create_file;
952
953 if (netif_msg_drv(np)) {
954 printk(KERN_INFO "natsemi %s: %s at %#08llx "
955 "(%s), %pM, IRQ %d",
956 dev->name, natsemi_pci_info[chip_idx].name,
957 (unsigned long long)iostart, pci_name(np->pci_dev),
958 dev->dev_addr, irq);
959 if (dev->if_port == PORT_TP)
960 printk(", port TP.\n");
961 else if (np->ignore_phy)
962 printk(", port MII, ignoring PHY\n");
963 else
964 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
965 }
966 return 0;
967
968 err_create_file:
969 unregister_netdev(dev);
970
971 err_register_netdev:
972 iounmap(ioaddr);
973
974 err_ioremap:
975 pci_release_regions(pdev);
976 pci_set_drvdata(pdev, NULL);
977
978 err_pci_request_regions:
979 free_netdev(dev);
980 return i;
981 }
982
983
984 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
985 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
986
987 /* Delay between EEPROM clock transitions.
988 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
989 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
990 made udelay() unreliable.
991 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
992 deprecated.
993 */
994 #define eeprom_delay(ee_addr) readl(ee_addr)
995
996 #define EE_Write0 (EE_ChipSelect)
997 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
998
999 /* The EEPROM commands include the alway-set leading bit. */
1000 enum EEPROM_Cmds {
1001 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1002 };
1003
1004 static int eeprom_read(void __iomem *addr, int location)
1005 {
1006 int i;
1007 int retval = 0;
1008 void __iomem *ee_addr = addr + EECtrl;
1009 int read_cmd = location | EE_ReadCmd;
1010
1011 writel(EE_Write0, ee_addr);
1012
1013 /* Shift the read command bits out. */
1014 for (i = 10; i >= 0; i--) {
1015 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1016 writel(dataval, ee_addr);
1017 eeprom_delay(ee_addr);
1018 writel(dataval | EE_ShiftClk, ee_addr);
1019 eeprom_delay(ee_addr);
1020 }
1021 writel(EE_ChipSelect, ee_addr);
1022 eeprom_delay(ee_addr);
1023
1024 for (i = 0; i < 16; i++) {
1025 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1026 eeprom_delay(ee_addr);
1027 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1028 writel(EE_ChipSelect, ee_addr);
1029 eeprom_delay(ee_addr);
1030 }
1031
1032 /* Terminate the EEPROM access. */
1033 writel(EE_Write0, ee_addr);
1034 writel(0, ee_addr);
1035 return retval;
1036 }
1037
1038 /* MII transceiver control section.
1039 * The 83815 series has an internal transceiver, and we present the
1040 * internal management registers as if they were MII connected.
1041 * External Phy registers are referenced through the MII interface.
1042 */
1043
1044 /* clock transitions >= 20ns (25MHz)
1045 * One readl should be good to PCI @ 100MHz
1046 */
1047 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1048
1049 static int mii_getbit (struct net_device *dev)
1050 {
1051 int data;
1052 void __iomem *ioaddr = ns_ioaddr(dev);
1053
1054 writel(MII_ShiftClk, ioaddr + EECtrl);
1055 data = readl(ioaddr + EECtrl);
1056 writel(0, ioaddr + EECtrl);
1057 mii_delay(ioaddr);
1058 return (data & MII_Data)? 1 : 0;
1059 }
1060
1061 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1062 {
1063 u32 i;
1064 void __iomem *ioaddr = ns_ioaddr(dev);
1065
1066 for (i = (1 << (len-1)); i; i >>= 1)
1067 {
1068 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1069 writel(mdio_val, ioaddr + EECtrl);
1070 mii_delay(ioaddr);
1071 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1072 mii_delay(ioaddr);
1073 }
1074 writel(0, ioaddr + EECtrl);
1075 mii_delay(ioaddr);
1076 }
1077
1078 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1079 {
1080 u32 cmd;
1081 int i;
1082 u32 retval = 0;
1083
1084 /* Ensure sync */
1085 mii_send_bits (dev, 0xffffffff, 32);
1086 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1087 /* ST,OP = 0110'b for read operation */
1088 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1089 mii_send_bits (dev, cmd, 14);
1090 /* Turnaround */
1091 if (mii_getbit (dev))
1092 return 0;
1093 /* Read data */
1094 for (i = 0; i < 16; i++) {
1095 retval <<= 1;
1096 retval |= mii_getbit (dev);
1097 }
1098 /* End cycle */
1099 mii_getbit (dev);
1100 return retval;
1101 }
1102
1103 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1104 {
1105 u32 cmd;
1106
1107 /* Ensure sync */
1108 mii_send_bits (dev, 0xffffffff, 32);
1109 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1110 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1111 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1112 mii_send_bits (dev, cmd, 32);
1113 /* End cycle */
1114 mii_getbit (dev);
1115 }
1116
1117 static int mdio_read(struct net_device *dev, int reg)
1118 {
1119 struct netdev_private *np = netdev_priv(dev);
1120 void __iomem *ioaddr = ns_ioaddr(dev);
1121
1122 /* The 83815 series has two ports:
1123 * - an internal transceiver
1124 * - an external mii bus
1125 */
1126 if (dev->if_port == PORT_TP)
1127 return readw(ioaddr+BasicControl+(reg<<2));
1128 else
1129 return miiport_read(dev, np->phy_addr_external, reg);
1130 }
1131
1132 static void mdio_write(struct net_device *dev, int reg, u16 data)
1133 {
1134 struct netdev_private *np = netdev_priv(dev);
1135 void __iomem *ioaddr = ns_ioaddr(dev);
1136
1137 /* The 83815 series has an internal transceiver; handle separately */
1138 if (dev->if_port == PORT_TP)
1139 writew(data, ioaddr+BasicControl+(reg<<2));
1140 else
1141 miiport_write(dev, np->phy_addr_external, reg, data);
1142 }
1143
1144 static void init_phy_fixup(struct net_device *dev)
1145 {
1146 struct netdev_private *np = netdev_priv(dev);
1147 void __iomem *ioaddr = ns_ioaddr(dev);
1148 int i;
1149 u32 cfg;
1150 u16 tmp;
1151
1152 /* restore stuff lost when power was out */
1153 tmp = mdio_read(dev, MII_BMCR);
1154 if (np->autoneg == AUTONEG_ENABLE) {
1155 /* renegotiate if something changed */
1156 if ((tmp & BMCR_ANENABLE) == 0
1157 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1158 {
1159 /* turn on autonegotiation and force negotiation */
1160 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1161 mdio_write(dev, MII_ADVERTISE, np->advertising);
1162 }
1163 } else {
1164 /* turn off auto negotiation, set speed and duplexity */
1165 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1166 if (np->speed == SPEED_100)
1167 tmp |= BMCR_SPEED100;
1168 if (np->duplex == DUPLEX_FULL)
1169 tmp |= BMCR_FULLDPLX;
1170 /*
1171 * Note: there is no good way to inform the link partner
1172 * that our capabilities changed. The user has to unplug
1173 * and replug the network cable after some changes, e.g.
1174 * after switching from 10HD, autoneg off to 100 HD,
1175 * autoneg off.
1176 */
1177 }
1178 mdio_write(dev, MII_BMCR, tmp);
1179 readl(ioaddr + ChipConfig);
1180 udelay(1);
1181
1182 /* find out what phy this is */
1183 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1184 + mdio_read(dev, MII_PHYSID2);
1185
1186 /* handle external phys here */
1187 switch (np->mii) {
1188 case PHYID_AM79C874:
1189 /* phy specific configuration for fibre/tp operation */
1190 tmp = mdio_read(dev, MII_MCTRL);
1191 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1192 if (dev->if_port == PORT_FIBRE)
1193 tmp |= MII_FX_SEL;
1194 else
1195 tmp |= MII_EN_SCRM;
1196 mdio_write(dev, MII_MCTRL, tmp);
1197 break;
1198 default:
1199 break;
1200 }
1201 cfg = readl(ioaddr + ChipConfig);
1202 if (cfg & CfgExtPhy)
1203 return;
1204
1205 /* On page 78 of the spec, they recommend some settings for "optimum
1206 performance" to be done in sequence. These settings optimize some
1207 of the 100Mbit autodetection circuitry. They say we only want to
1208 do this for rev C of the chip, but engineers at NSC (Bradley
1209 Kennedy) recommends always setting them. If you don't, you get
1210 errors on some autonegotiations that make the device unusable.
1211
1212 It seems that the DSP needs a few usec to reinitialize after
1213 the start of the phy. Just retry writing these values until they
1214 stick.
1215 */
1216 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1217
1218 int dspcfg;
1219 writew(1, ioaddr + PGSEL);
1220 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1221 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1222 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1223 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1224 writew(np->dspcfg, ioaddr + DSPCFG);
1225 writew(SDCFG_VAL, ioaddr + SDCFG);
1226 writew(0, ioaddr + PGSEL);
1227 readl(ioaddr + ChipConfig);
1228 udelay(10);
1229
1230 writew(1, ioaddr + PGSEL);
1231 dspcfg = readw(ioaddr + DSPCFG);
1232 writew(0, ioaddr + PGSEL);
1233 if (np->dspcfg == dspcfg)
1234 break;
1235 }
1236
1237 if (netif_msg_link(np)) {
1238 if (i==NATSEMI_HW_TIMEOUT) {
1239 printk(KERN_INFO
1240 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1241 dev->name, i*10);
1242 } else {
1243 printk(KERN_INFO
1244 "%s: DSPCFG accepted after %d usec.\n",
1245 dev->name, i*10);
1246 }
1247 }
1248 /*
1249 * Enable PHY Specific event based interrupts. Link state change
1250 * and Auto-Negotiation Completion are among the affected.
1251 * Read the intr status to clear it (needed for wake events).
1252 */
1253 readw(ioaddr + MIntrStatus);
1254 writew(MICRIntEn, ioaddr + MIntrCtrl);
1255 }
1256
1257 static int switch_port_external(struct net_device *dev)
1258 {
1259 struct netdev_private *np = netdev_priv(dev);
1260 void __iomem *ioaddr = ns_ioaddr(dev);
1261 u32 cfg;
1262
1263 cfg = readl(ioaddr + ChipConfig);
1264 if (cfg & CfgExtPhy)
1265 return 0;
1266
1267 if (netif_msg_link(np)) {
1268 printk(KERN_INFO "%s: switching to external transceiver.\n",
1269 dev->name);
1270 }
1271
1272 /* 1) switch back to external phy */
1273 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1274 readl(ioaddr + ChipConfig);
1275 udelay(1);
1276
1277 /* 2) reset the external phy: */
1278 /* resetting the external PHY has been known to cause a hub supplying
1279 * power over Ethernet to kill the power. We don't want to kill
1280 * power to this computer, so we avoid resetting the phy.
1281 */
1282
1283 /* 3) reinit the phy fixup, it got lost during power down. */
1284 move_int_phy(dev, np->phy_addr_external);
1285 init_phy_fixup(dev);
1286
1287 return 1;
1288 }
1289
1290 static int switch_port_internal(struct net_device *dev)
1291 {
1292 struct netdev_private *np = netdev_priv(dev);
1293 void __iomem *ioaddr = ns_ioaddr(dev);
1294 int i;
1295 u32 cfg;
1296 u16 bmcr;
1297
1298 cfg = readl(ioaddr + ChipConfig);
1299 if (!(cfg &CfgExtPhy))
1300 return 0;
1301
1302 if (netif_msg_link(np)) {
1303 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1304 dev->name);
1305 }
1306 /* 1) switch back to internal phy: */
1307 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1308 writel(cfg, ioaddr + ChipConfig);
1309 readl(ioaddr + ChipConfig);
1310 udelay(1);
1311
1312 /* 2) reset the internal phy: */
1313 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1314 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1315 readl(ioaddr + ChipConfig);
1316 udelay(10);
1317 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1318 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1319 if (!(bmcr & BMCR_RESET))
1320 break;
1321 udelay(10);
1322 }
1323 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1324 printk(KERN_INFO
1325 "%s: phy reset did not complete in %d usec.\n",
1326 dev->name, i*10);
1327 }
1328 /* 3) reinit the phy fixup, it got lost during power down. */
1329 init_phy_fixup(dev);
1330
1331 return 1;
1332 }
1333
1334 /* Scan for a PHY on the external mii bus.
1335 * There are two tricky points:
1336 * - Do not scan while the internal phy is enabled. The internal phy will
1337 * crash: e.g. reads from the DSPCFG register will return odd values and
1338 * the nasty random phy reset code will reset the nic every few seconds.
1339 * - The internal phy must be moved around, an external phy could
1340 * have the same address as the internal phy.
1341 */
1342 static int find_mii(struct net_device *dev)
1343 {
1344 struct netdev_private *np = netdev_priv(dev);
1345 int tmp;
1346 int i;
1347 int did_switch;
1348
1349 /* Switch to external phy */
1350 did_switch = switch_port_external(dev);
1351
1352 /* Scan the possible phy addresses:
1353 *
1354 * PHY address 0 means that the phy is in isolate mode. Not yet
1355 * supported due to lack of test hardware. User space should
1356 * handle it through ethtool.
1357 */
1358 for (i = 1; i <= 31; i++) {
1359 move_int_phy(dev, i);
1360 tmp = miiport_read(dev, i, MII_BMSR);
1361 if (tmp != 0xffff && tmp != 0x0000) {
1362 /* found something! */
1363 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1364 + mdio_read(dev, MII_PHYSID2);
1365 if (netif_msg_probe(np)) {
1366 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1367 pci_name(np->pci_dev), np->mii, i);
1368 }
1369 break;
1370 }
1371 }
1372 /* And switch back to internal phy: */
1373 if (did_switch)
1374 switch_port_internal(dev);
1375 return i;
1376 }
1377
1378 /* CFG bits [13:16] [18:23] */
1379 #define CFG_RESET_SAVE 0xfde000
1380 /* WCSR bits [0:4] [9:10] */
1381 #define WCSR_RESET_SAVE 0x61f
1382 /* RFCR bits [20] [22] [27:31] */
1383 #define RFCR_RESET_SAVE 0xf8500000;
1384
1385 static void natsemi_reset(struct net_device *dev)
1386 {
1387 int i;
1388 u32 cfg;
1389 u32 wcsr;
1390 u32 rfcr;
1391 u16 pmatch[3];
1392 u16 sopass[3];
1393 struct netdev_private *np = netdev_priv(dev);
1394 void __iomem *ioaddr = ns_ioaddr(dev);
1395
1396 /*
1397 * Resetting the chip causes some registers to be lost.
1398 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1399 * we save the state that would have been loaded from EEPROM
1400 * on a normal power-up (see the spec EEPROM map). This assumes
1401 * whoever calls this will follow up with init_registers() eventually.
1402 */
1403
1404 /* CFG */
1405 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1406 /* WCSR */
1407 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1408 /* RFCR */
1409 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1410 /* PMATCH */
1411 for (i = 0; i < 3; i++) {
1412 writel(i*2, ioaddr + RxFilterAddr);
1413 pmatch[i] = readw(ioaddr + RxFilterData);
1414 }
1415 /* SOPAS */
1416 for (i = 0; i < 3; i++) {
1417 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1418 sopass[i] = readw(ioaddr + RxFilterData);
1419 }
1420
1421 /* now whack the chip */
1422 writel(ChipReset, ioaddr + ChipCmd);
1423 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1424 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1425 break;
1426 udelay(5);
1427 }
1428 if (i==NATSEMI_HW_TIMEOUT) {
1429 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1430 dev->name, i*5);
1431 } else if (netif_msg_hw(np)) {
1432 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1433 dev->name, i*5);
1434 }
1435
1436 /* restore CFG */
1437 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1438 /* turn on external phy if it was selected */
1439 if (dev->if_port == PORT_TP)
1440 cfg &= ~(CfgExtPhy | CfgPhyDis);
1441 else
1442 cfg |= (CfgExtPhy | CfgPhyDis);
1443 writel(cfg, ioaddr + ChipConfig);
1444 /* restore WCSR */
1445 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1446 writel(wcsr, ioaddr + WOLCmd);
1447 /* read RFCR */
1448 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1449 /* restore PMATCH */
1450 for (i = 0; i < 3; i++) {
1451 writel(i*2, ioaddr + RxFilterAddr);
1452 writew(pmatch[i], ioaddr + RxFilterData);
1453 }
1454 for (i = 0; i < 3; i++) {
1455 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1456 writew(sopass[i], ioaddr + RxFilterData);
1457 }
1458 /* restore RFCR */
1459 writel(rfcr, ioaddr + RxFilterAddr);
1460 }
1461
1462 static void reset_rx(struct net_device *dev)
1463 {
1464 int i;
1465 struct netdev_private *np = netdev_priv(dev);
1466 void __iomem *ioaddr = ns_ioaddr(dev);
1467
1468 np->intr_status &= ~RxResetDone;
1469
1470 writel(RxReset, ioaddr + ChipCmd);
1471
1472 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1473 np->intr_status |= readl(ioaddr + IntrStatus);
1474 if (np->intr_status & RxResetDone)
1475 break;
1476 udelay(15);
1477 }
1478 if (i==NATSEMI_HW_TIMEOUT) {
1479 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1480 dev->name, i*15);
1481 } else if (netif_msg_hw(np)) {
1482 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1483 dev->name, i*15);
1484 }
1485 }
1486
1487 static void natsemi_reload_eeprom(struct net_device *dev)
1488 {
1489 struct netdev_private *np = netdev_priv(dev);
1490 void __iomem *ioaddr = ns_ioaddr(dev);
1491 int i;
1492
1493 writel(EepromReload, ioaddr + PCIBusCfg);
1494 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1495 udelay(50);
1496 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1497 break;
1498 }
1499 if (i==NATSEMI_HW_TIMEOUT) {
1500 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1501 pci_name(np->pci_dev), i*50);
1502 } else if (netif_msg_hw(np)) {
1503 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1504 pci_name(np->pci_dev), i*50);
1505 }
1506 }
1507
1508 static void natsemi_stop_rxtx(struct net_device *dev)
1509 {
1510 void __iomem * ioaddr = ns_ioaddr(dev);
1511 struct netdev_private *np = netdev_priv(dev);
1512 int i;
1513
1514 writel(RxOff | TxOff, ioaddr + ChipCmd);
1515 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1516 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1517 break;
1518 udelay(5);
1519 }
1520 if (i==NATSEMI_HW_TIMEOUT) {
1521 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1522 dev->name, i*5);
1523 } else if (netif_msg_hw(np)) {
1524 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1525 dev->name, i*5);
1526 }
1527 }
1528
1529 static int netdev_open(struct net_device *dev)
1530 {
1531 struct netdev_private *np = netdev_priv(dev);
1532 void __iomem * ioaddr = ns_ioaddr(dev);
1533 int i;
1534
1535 /* Reset the chip, just in case. */
1536 natsemi_reset(dev);
1537
1538 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1539 if (i) return i;
1540
1541 if (netif_msg_ifup(np))
1542 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543 dev->name, dev->irq);
1544 i = alloc_ring(dev);
1545 if (i < 0) {
1546 free_irq(dev->irq, dev);
1547 return i;
1548 }
1549 napi_enable(&np->napi);
1550
1551 init_ring(dev);
1552 spin_lock_irq(&np->lock);
1553 init_registers(dev);
1554 /* now set the MAC address according to dev->dev_addr */
1555 for (i = 0; i < 3; i++) {
1556 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557
1558 writel(i*2, ioaddr + RxFilterAddr);
1559 writew(mac, ioaddr + RxFilterData);
1560 }
1561 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562 spin_unlock_irq(&np->lock);
1563
1564 netif_start_queue(dev);
1565
1566 if (netif_msg_ifup(np))
1567 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568 dev->name, (int)readl(ioaddr + ChipCmd));
1569
1570 /* Set the timer to check for link beat. */
1571 init_timer(&np->timer);
1572 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573 np->timer.data = (unsigned long)dev;
1574 np->timer.function = &netdev_timer; /* timer handler */
1575 add_timer(&np->timer);
1576
1577 return 0;
1578 }
1579
1580 static void do_cable_magic(struct net_device *dev)
1581 {
1582 struct netdev_private *np = netdev_priv(dev);
1583 void __iomem *ioaddr = ns_ioaddr(dev);
1584
1585 if (dev->if_port != PORT_TP)
1586 return;
1587
1588 if (np->srr >= SRR_DP83816_A5)
1589 return;
1590
1591 /*
1592 * 100 MBit links with short cables can trip an issue with the chip.
1593 * The problem manifests as lots of CRC errors and/or flickering
1594 * activity LED while idle. This process is based on instructions
1595 * from engineers at National.
1596 */
1597 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1598 u16 data;
1599
1600 writew(1, ioaddr + PGSEL);
1601 /*
1602 * coefficient visibility should already be enabled via
1603 * DSPCFG | 0x1000
1604 */
1605 data = readw(ioaddr + TSTDAT) & 0xff;
1606 /*
1607 * the value must be negative, and within certain values
1608 * (these values all come from National)
1609 */
1610 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1611 np = netdev_priv(dev);
1612
1613 /* the bug has been triggered - fix the coefficient */
1614 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1615 /* lock the value */
1616 data = readw(ioaddr + DSPCFG);
1617 np->dspcfg = data | DSPCFG_LOCK;
1618 writew(np->dspcfg, ioaddr + DSPCFG);
1619 }
1620 writew(0, ioaddr + PGSEL);
1621 }
1622 }
1623
1624 static void undo_cable_magic(struct net_device *dev)
1625 {
1626 u16 data;
1627 struct netdev_private *np = netdev_priv(dev);
1628 void __iomem * ioaddr = ns_ioaddr(dev);
1629
1630 if (dev->if_port != PORT_TP)
1631 return;
1632
1633 if (np->srr >= SRR_DP83816_A5)
1634 return;
1635
1636 writew(1, ioaddr + PGSEL);
1637 /* make sure the lock bit is clear */
1638 data = readw(ioaddr + DSPCFG);
1639 np->dspcfg = data & ~DSPCFG_LOCK;
1640 writew(np->dspcfg, ioaddr + DSPCFG);
1641 writew(0, ioaddr + PGSEL);
1642 }
1643
1644 static void check_link(struct net_device *dev)
1645 {
1646 struct netdev_private *np = netdev_priv(dev);
1647 void __iomem * ioaddr = ns_ioaddr(dev);
1648 int duplex = np->duplex;
1649 u16 bmsr;
1650
1651 /* If we are ignoring the PHY then don't try reading it. */
1652 if (np->ignore_phy)
1653 goto propagate_state;
1654
1655 /* The link status field is latched: it remains low after a temporary
1656 * link failure until it's read. We need the current link status,
1657 * thus read twice.
1658 */
1659 mdio_read(dev, MII_BMSR);
1660 bmsr = mdio_read(dev, MII_BMSR);
1661
1662 if (!(bmsr & BMSR_LSTATUS)) {
1663 if (netif_carrier_ok(dev)) {
1664 if (netif_msg_link(np))
1665 printk(KERN_NOTICE "%s: link down.\n",
1666 dev->name);
1667 netif_carrier_off(dev);
1668 undo_cable_magic(dev);
1669 }
1670 return;
1671 }
1672 if (!netif_carrier_ok(dev)) {
1673 if (netif_msg_link(np))
1674 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1675 netif_carrier_on(dev);
1676 do_cable_magic(dev);
1677 }
1678
1679 duplex = np->full_duplex;
1680 if (!duplex) {
1681 if (bmsr & BMSR_ANEGCOMPLETE) {
1682 int tmp = mii_nway_result(
1683 np->advertising & mdio_read(dev, MII_LPA));
1684 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1685 duplex = 1;
1686 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1687 duplex = 1;
1688 }
1689
1690 propagate_state:
1691 /* if duplex is set then bit 28 must be set, too */
1692 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1693 if (netif_msg_link(np))
1694 printk(KERN_INFO
1695 "%s: Setting %s-duplex based on negotiated "
1696 "link capability.\n", dev->name,
1697 duplex ? "full" : "half");
1698 if (duplex) {
1699 np->rx_config |= RxAcceptTx;
1700 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1701 } else {
1702 np->rx_config &= ~RxAcceptTx;
1703 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1704 }
1705 writel(np->tx_config, ioaddr + TxConfig);
1706 writel(np->rx_config, ioaddr + RxConfig);
1707 }
1708 }
1709
1710 static void init_registers(struct net_device *dev)
1711 {
1712 struct netdev_private *np = netdev_priv(dev);
1713 void __iomem * ioaddr = ns_ioaddr(dev);
1714
1715 init_phy_fixup(dev);
1716
1717 /* clear any interrupts that are pending, such as wake events */
1718 readl(ioaddr + IntrStatus);
1719
1720 writel(np->ring_dma, ioaddr + RxRingPtr);
1721 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1722 ioaddr + TxRingPtr);
1723
1724 /* Initialize other registers.
1725 * Configure the PCI bus bursts and FIFO thresholds.
1726 * Configure for standard, in-spec Ethernet.
1727 * Start with half-duplex. check_link will update
1728 * to the correct settings.
1729 */
1730
1731 /* DRTH: 2: start tx if 64 bytes are in the fifo
1732 * FLTH: 0x10: refill with next packet if 512 bytes are free
1733 * MXDMA: 0: up to 256 byte bursts.
1734 * MXDMA must be <= FLTH
1735 * ECRETRY=1
1736 * ATP=1
1737 */
1738 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1739 TX_FLTH_VAL | TX_DRTH_VAL_START;
1740 writel(np->tx_config, ioaddr + TxConfig);
1741
1742 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1743 * MXDMA 0: up to 256 byte bursts
1744 */
1745 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1746 /* if receive ring now has bigger buffers than normal, enable jumbo */
1747 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1748 np->rx_config |= RxAcceptLong;
1749
1750 writel(np->rx_config, ioaddr + RxConfig);
1751
1752 /* Disable PME:
1753 * The PME bit is initialized from the EEPROM contents.
1754 * PCI cards probably have PME disabled, but motherboard
1755 * implementations may have PME set to enable WakeOnLan.
1756 * With PME set the chip will scan incoming packets but
1757 * nothing will be written to memory. */
1758 np->SavedClkRun = readl(ioaddr + ClkRun);
1759 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1760 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1761 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1762 dev->name, readl(ioaddr + WOLCmd));
1763 }
1764
1765 check_link(dev);
1766 __set_rx_mode(dev);
1767
1768 /* Enable interrupts by setting the interrupt mask. */
1769 writel(DEFAULT_INTR, ioaddr + IntrMask);
1770 natsemi_irq_enable(dev);
1771
1772 writel(RxOn | TxOn, ioaddr + ChipCmd);
1773 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1774 }
1775
1776 /*
1777 * netdev_timer:
1778 * Purpose:
1779 * 1) check for link changes. Usually they are handled by the MII interrupt
1780 * but it doesn't hurt to check twice.
1781 * 2) check for sudden death of the NIC:
1782 * It seems that a reference set for this chip went out with incorrect info,
1783 * and there exist boards that aren't quite right. An unexpected voltage
1784 * drop can cause the PHY to get itself in a weird state (basically reset).
1785 * NOTE: this only seems to affect revC chips. The user can disable
1786 * this check via dspcfg_workaround sysfs option.
1787 * 3) check of death of the RX path due to OOM
1788 */
1789 static void netdev_timer(unsigned long data)
1790 {
1791 struct net_device *dev = (struct net_device *)data;
1792 struct netdev_private *np = netdev_priv(dev);
1793 void __iomem * ioaddr = ns_ioaddr(dev);
1794 int next_tick = NATSEMI_TIMER_FREQ;
1795
1796 if (netif_msg_timer(np)) {
1797 /* DO NOT read the IntrStatus register,
1798 * a read clears any pending interrupts.
1799 */
1800 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1801 dev->name);
1802 }
1803
1804 if (dev->if_port == PORT_TP) {
1805 u16 dspcfg;
1806
1807 spin_lock_irq(&np->lock);
1808 /* check for a nasty random phy-reset - use dspcfg as a flag */
1809 writew(1, ioaddr+PGSEL);
1810 dspcfg = readw(ioaddr+DSPCFG);
1811 writew(0, ioaddr+PGSEL);
1812 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1813 if (!netif_queue_stopped(dev)) {
1814 spin_unlock_irq(&np->lock);
1815 if (netif_msg_drv(np))
1816 printk(KERN_NOTICE "%s: possible phy reset: "
1817 "re-initializing\n", dev->name);
1818 disable_irq(dev->irq);
1819 spin_lock_irq(&np->lock);
1820 natsemi_stop_rxtx(dev);
1821 dump_ring(dev);
1822 reinit_ring(dev);
1823 init_registers(dev);
1824 spin_unlock_irq(&np->lock);
1825 enable_irq(dev->irq);
1826 } else {
1827 /* hurry back */
1828 next_tick = HZ;
1829 spin_unlock_irq(&np->lock);
1830 }
1831 } else {
1832 /* init_registers() calls check_link() for the above case */
1833 check_link(dev);
1834 spin_unlock_irq(&np->lock);
1835 }
1836 } else {
1837 spin_lock_irq(&np->lock);
1838 check_link(dev);
1839 spin_unlock_irq(&np->lock);
1840 }
1841 if (np->oom) {
1842 disable_irq(dev->irq);
1843 np->oom = 0;
1844 refill_rx(dev);
1845 enable_irq(dev->irq);
1846 if (!np->oom) {
1847 writel(RxOn, ioaddr + ChipCmd);
1848 } else {
1849 next_tick = 1;
1850 }
1851 }
1852
1853 if (next_tick > 1)
1854 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1855 else
1856 mod_timer(&np->timer, jiffies + next_tick);
1857 }
1858
1859 static void dump_ring(struct net_device *dev)
1860 {
1861 struct netdev_private *np = netdev_priv(dev);
1862
1863 if (netif_msg_pktdata(np)) {
1864 int i;
1865 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1866 for (i = 0; i < TX_RING_SIZE; i++) {
1867 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1868 i, np->tx_ring[i].next_desc,
1869 np->tx_ring[i].cmd_status,
1870 np->tx_ring[i].addr);
1871 }
1872 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1873 for (i = 0; i < RX_RING_SIZE; i++) {
1874 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1875 i, np->rx_ring[i].next_desc,
1876 np->rx_ring[i].cmd_status,
1877 np->rx_ring[i].addr);
1878 }
1879 }
1880 }
1881
1882 static void ns_tx_timeout(struct net_device *dev)
1883 {
1884 struct netdev_private *np = netdev_priv(dev);
1885 void __iomem * ioaddr = ns_ioaddr(dev);
1886
1887 disable_irq(dev->irq);
1888 spin_lock_irq(&np->lock);
1889 if (!np->hands_off) {
1890 if (netif_msg_tx_err(np))
1891 printk(KERN_WARNING
1892 "%s: Transmit timed out, status %#08x,"
1893 " resetting...\n",
1894 dev->name, readl(ioaddr + IntrStatus));
1895 dump_ring(dev);
1896
1897 natsemi_reset(dev);
1898 reinit_ring(dev);
1899 init_registers(dev);
1900 } else {
1901 printk(KERN_WARNING
1902 "%s: tx_timeout while in hands_off state?\n",
1903 dev->name);
1904 }
1905 spin_unlock_irq(&np->lock);
1906 enable_irq(dev->irq);
1907
1908 dev->trans_start = jiffies;
1909 np->stats.tx_errors++;
1910 netif_wake_queue(dev);
1911 }
1912
1913 static int alloc_ring(struct net_device *dev)
1914 {
1915 struct netdev_private *np = netdev_priv(dev);
1916 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1917 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1918 &np->ring_dma);
1919 if (!np->rx_ring)
1920 return -ENOMEM;
1921 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922 return 0;
1923 }
1924
1925 static void refill_rx(struct net_device *dev)
1926 {
1927 struct netdev_private *np = netdev_priv(dev);
1928
1929 /* Refill the Rx ring buffers. */
1930 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931 struct sk_buff *skb;
1932 int entry = np->dirty_rx % RX_RING_SIZE;
1933 if (np->rx_skbuff[entry] == NULL) {
1934 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935 skb = dev_alloc_skb(buflen);
1936 np->rx_skbuff[entry] = skb;
1937 if (skb == NULL)
1938 break; /* Better luck next round. */
1939 skb->dev = dev; /* Mark as being used by this device. */
1940 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1941 skb->data, buflen, PCI_DMA_FROMDEVICE);
1942 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1943 }
1944 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1945 }
1946 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1947 if (netif_msg_rx_err(np))
1948 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1949 np->oom = 1;
1950 }
1951 }
1952
1953 static void set_bufsize(struct net_device *dev)
1954 {
1955 struct netdev_private *np = netdev_priv(dev);
1956 if (dev->mtu <= ETH_DATA_LEN)
1957 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1958 else
1959 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1960 }
1961
1962 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1963 static void init_ring(struct net_device *dev)
1964 {
1965 struct netdev_private *np = netdev_priv(dev);
1966 int i;
1967
1968 /* 1) TX ring */
1969 np->dirty_tx = np->cur_tx = 0;
1970 for (i = 0; i < TX_RING_SIZE; i++) {
1971 np->tx_skbuff[i] = NULL;
1972 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1973 +sizeof(struct netdev_desc)
1974 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1975 np->tx_ring[i].cmd_status = 0;
1976 }
1977
1978 /* 2) RX ring */
1979 np->dirty_rx = 0;
1980 np->cur_rx = RX_RING_SIZE;
1981 np->oom = 0;
1982 set_bufsize(dev);
1983
1984 np->rx_head_desc = &np->rx_ring[0];
1985
1986 /* Please be carefull before changing this loop - at least gcc-2.95.1
1987 * miscompiles it otherwise.
1988 */
1989 /* Initialize all Rx descriptors. */
1990 for (i = 0; i < RX_RING_SIZE; i++) {
1991 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1992 +sizeof(struct netdev_desc)
1993 *((i+1)%RX_RING_SIZE));
1994 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1995 np->rx_skbuff[i] = NULL;
1996 }
1997 refill_rx(dev);
1998 dump_ring(dev);
1999 }
2000
2001 static void drain_tx(struct net_device *dev)
2002 {
2003 struct netdev_private *np = netdev_priv(dev);
2004 int i;
2005
2006 for (i = 0; i < TX_RING_SIZE; i++) {
2007 if (np->tx_skbuff[i]) {
2008 pci_unmap_single(np->pci_dev,
2009 np->tx_dma[i], np->tx_skbuff[i]->len,
2010 PCI_DMA_TODEVICE);
2011 dev_kfree_skb(np->tx_skbuff[i]);
2012 np->stats.tx_dropped++;
2013 }
2014 np->tx_skbuff[i] = NULL;
2015 }
2016 }
2017
2018 static void drain_rx(struct net_device *dev)
2019 {
2020 struct netdev_private *np = netdev_priv(dev);
2021 unsigned int buflen = np->rx_buf_sz;
2022 int i;
2023
2024 /* Free all the skbuffs in the Rx queue. */
2025 for (i = 0; i < RX_RING_SIZE; i++) {
2026 np->rx_ring[i].cmd_status = 0;
2027 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2028 if (np->rx_skbuff[i]) {
2029 pci_unmap_single(np->pci_dev,
2030 np->rx_dma[i], buflen,
2031 PCI_DMA_FROMDEVICE);
2032 dev_kfree_skb(np->rx_skbuff[i]);
2033 }
2034 np->rx_skbuff[i] = NULL;
2035 }
2036 }
2037
2038 static void drain_ring(struct net_device *dev)
2039 {
2040 drain_rx(dev);
2041 drain_tx(dev);
2042 }
2043
2044 static void free_ring(struct net_device *dev)
2045 {
2046 struct netdev_private *np = netdev_priv(dev);
2047 pci_free_consistent(np->pci_dev,
2048 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2049 np->rx_ring, np->ring_dma);
2050 }
2051
2052 static void reinit_rx(struct net_device *dev)
2053 {
2054 struct netdev_private *np = netdev_priv(dev);
2055 int i;
2056
2057 /* RX Ring */
2058 np->dirty_rx = 0;
2059 np->cur_rx = RX_RING_SIZE;
2060 np->rx_head_desc = &np->rx_ring[0];
2061 /* Initialize all Rx descriptors. */
2062 for (i = 0; i < RX_RING_SIZE; i++)
2063 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2064
2065 refill_rx(dev);
2066 }
2067
2068 static void reinit_ring(struct net_device *dev)
2069 {
2070 struct netdev_private *np = netdev_priv(dev);
2071 int i;
2072
2073 /* drain TX ring */
2074 drain_tx(dev);
2075 np->dirty_tx = np->cur_tx = 0;
2076 for (i=0;i<TX_RING_SIZE;i++)
2077 np->tx_ring[i].cmd_status = 0;
2078
2079 reinit_rx(dev);
2080 }
2081
2082 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2083 {
2084 struct netdev_private *np = netdev_priv(dev);
2085 void __iomem * ioaddr = ns_ioaddr(dev);
2086 unsigned entry;
2087 unsigned long flags;
2088
2089 /* Note: Ordering is important here, set the field with the
2090 "ownership" bit last, and only then increment cur_tx. */
2091
2092 /* Calculate the next Tx descriptor entry. */
2093 entry = np->cur_tx % TX_RING_SIZE;
2094
2095 np->tx_skbuff[entry] = skb;
2096 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2097 skb->data,skb->len, PCI_DMA_TODEVICE);
2098
2099 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2100
2101 spin_lock_irqsave(&np->lock, flags);
2102
2103 if (!np->hands_off) {
2104 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2105 /* StrongARM: Explicitly cache flush np->tx_ring and
2106 * skb->data,skb->len. */
2107 wmb();
2108 np->cur_tx++;
2109 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2110 netdev_tx_done(dev);
2111 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2112 netif_stop_queue(dev);
2113 }
2114 /* Wake the potentially-idle transmit channel. */
2115 writel(TxOn, ioaddr + ChipCmd);
2116 } else {
2117 dev_kfree_skb_irq(skb);
2118 np->stats.tx_dropped++;
2119 }
2120 spin_unlock_irqrestore(&np->lock, flags);
2121
2122 dev->trans_start = jiffies;
2123
2124 if (netif_msg_tx_queued(np)) {
2125 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126 dev->name, np->cur_tx, entry);
2127 }
2128 return 0;
2129 }
2130
2131 static void netdev_tx_done(struct net_device *dev)
2132 {
2133 struct netdev_private *np = netdev_priv(dev);
2134
2135 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136 int entry = np->dirty_tx % TX_RING_SIZE;
2137 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138 break;
2139 if (netif_msg_tx_done(np))
2140 printk(KERN_DEBUG
2141 "%s: tx frame #%d finished, status %#08x.\n",
2142 dev->name, np->dirty_tx,
2143 le32_to_cpu(np->tx_ring[entry].cmd_status));
2144 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145 np->stats.tx_packets++;
2146 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147 } else { /* Various Tx errors */
2148 int tx_status =
2149 le32_to_cpu(np->tx_ring[entry].cmd_status);
2150 if (tx_status & (DescTxAbort|DescTxExcColl))
2151 np->stats.tx_aborted_errors++;
2152 if (tx_status & DescTxFIFO)
2153 np->stats.tx_fifo_errors++;
2154 if (tx_status & DescTxCarrier)
2155 np->stats.tx_carrier_errors++;
2156 if (tx_status & DescTxOOWCol)
2157 np->stats.tx_window_errors++;
2158 np->stats.tx_errors++;
2159 }
2160 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161 np->tx_skbuff[entry]->len,
2162 PCI_DMA_TODEVICE);
2163 /* Free the original skb. */
2164 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165 np->tx_skbuff[entry] = NULL;
2166 }
2167 if (netif_queue_stopped(dev)
2168 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169 /* The ring is no longer full, wake queue. */
2170 netif_wake_queue(dev);
2171 }
2172 }
2173
2174 /* The interrupt handler doesn't actually handle interrupts itself, it
2175 * schedules a NAPI poll if there is anything to do. */
2176 static irqreturn_t intr_handler(int irq, void *dev_instance)
2177 {
2178 struct net_device *dev = dev_instance;
2179 struct netdev_private *np = netdev_priv(dev);
2180 void __iomem * ioaddr = ns_ioaddr(dev);
2181
2182 /* Reading IntrStatus automatically acknowledges so don't do
2183 * that while interrupts are disabled, (for example, while a
2184 * poll is scheduled). */
2185 if (np->hands_off || !readl(ioaddr + IntrEnable))
2186 return IRQ_NONE;
2187
2188 np->intr_status = readl(ioaddr + IntrStatus);
2189
2190 if (!np->intr_status)
2191 return IRQ_NONE;
2192
2193 if (netif_msg_intr(np))
2194 printk(KERN_DEBUG
2195 "%s: Interrupt, status %#08x, mask %#08x.\n",
2196 dev->name, np->intr_status,
2197 readl(ioaddr + IntrMask));
2198
2199 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2200
2201 if (napi_schedule_prep(&np->napi)) {
2202 /* Disable interrupts and register for poll */
2203 natsemi_irq_disable(dev);
2204 __napi_schedule(&np->napi);
2205 } else
2206 printk(KERN_WARNING
2207 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208 dev->name, np->intr_status,
2209 readl(ioaddr + IntrMask));
2210
2211 return IRQ_HANDLED;
2212 }
2213
2214 /* This is the NAPI poll routine. As well as the standard RX handling
2215 * it also handles all other interrupts that the chip might raise.
2216 */
2217 static int natsemi_poll(struct napi_struct *napi, int budget)
2218 {
2219 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220 struct net_device *dev = np->dev;
2221 void __iomem * ioaddr = ns_ioaddr(dev);
2222 int work_done = 0;
2223
2224 do {
2225 if (netif_msg_intr(np))
2226 printk(KERN_DEBUG
2227 "%s: Poll, status %#08x, mask %#08x.\n",
2228 dev->name, np->intr_status,
2229 readl(ioaddr + IntrMask));
2230
2231 /* netdev_rx() may read IntrStatus again if the RX state
2232 * machine falls over so do it first. */
2233 if (np->intr_status &
2234 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235 IntrRxErr | IntrRxOverrun)) {
2236 netdev_rx(dev, &work_done, budget);
2237 }
2238
2239 if (np->intr_status &
2240 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241 spin_lock(&np->lock);
2242 netdev_tx_done(dev);
2243 spin_unlock(&np->lock);
2244 }
2245
2246 /* Abnormal error summary/uncommon events handlers. */
2247 if (np->intr_status & IntrAbnormalSummary)
2248 netdev_error(dev, np->intr_status);
2249
2250 if (work_done >= budget)
2251 return work_done;
2252
2253 np->intr_status = readl(ioaddr + IntrStatus);
2254 } while (np->intr_status);
2255
2256 napi_complete(napi);
2257
2258 /* Reenable interrupts providing nothing is trying to shut
2259 * the chip down. */
2260 spin_lock(&np->lock);
2261 if (!np->hands_off)
2262 natsemi_irq_enable(dev);
2263 spin_unlock(&np->lock);
2264
2265 return work_done;
2266 }
2267
2268 /* This routine is logically part of the interrupt handler, but separated
2269 for clarity and better register allocation. */
2270 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2271 {
2272 struct netdev_private *np = netdev_priv(dev);
2273 int entry = np->cur_rx % RX_RING_SIZE;
2274 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276 unsigned int buflen = np->rx_buf_sz;
2277 void __iomem * ioaddr = ns_ioaddr(dev);
2278
2279 /* If the driver owns the next entry it's a new packet. Send it up. */
2280 while (desc_status < 0) { /* e.g. & DescOwn */
2281 int pkt_len;
2282 if (netif_msg_rx_status(np))
2283 printk(KERN_DEBUG
2284 " netdev_rx() entry %d status was %#08x.\n",
2285 entry, desc_status);
2286 if (--boguscnt < 0)
2287 break;
2288
2289 if (*work_done >= work_to_do)
2290 break;
2291
2292 (*work_done)++;
2293
2294 pkt_len = (desc_status & DescSizeMask) - 4;
2295 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296 if (desc_status & DescMore) {
2297 unsigned long flags;
2298
2299 if (netif_msg_rx_err(np))
2300 printk(KERN_WARNING
2301 "%s: Oversized(?) Ethernet "
2302 "frame spanned multiple "
2303 "buffers, entry %#08x "
2304 "status %#08x.\n", dev->name,
2305 np->cur_rx, desc_status);
2306 np->stats.rx_length_errors++;
2307
2308 /* The RX state machine has probably
2309 * locked up beneath us. Follow the
2310 * reset procedure documented in
2311 * AN-1287. */
2312
2313 spin_lock_irqsave(&np->lock, flags);
2314 reset_rx(dev);
2315 reinit_rx(dev);
2316 writel(np->ring_dma, ioaddr + RxRingPtr);
2317 check_link(dev);
2318 spin_unlock_irqrestore(&np->lock, flags);
2319
2320 /* We'll enable RX on exit from this
2321 * function. */
2322 break;
2323
2324 } else {
2325 /* There was an error. */
2326 np->stats.rx_errors++;
2327 if (desc_status & (DescRxAbort|DescRxOver))
2328 np->stats.rx_over_errors++;
2329 if (desc_status & (DescRxLong|DescRxRunt))
2330 np->stats.rx_length_errors++;
2331 if (desc_status & (DescRxInvalid|DescRxAlign))
2332 np->stats.rx_frame_errors++;
2333 if (desc_status & DescRxCRC)
2334 np->stats.rx_crc_errors++;
2335 }
2336 } else if (pkt_len > np->rx_buf_sz) {
2337 /* if this is the tail of a double buffer
2338 * packet, we've already counted the error
2339 * on the first part. Ignore the second half.
2340 */
2341 } else {
2342 struct sk_buff *skb;
2343 /* Omit CRC size. */
2344 /* Check if the packet is long enough to accept
2345 * without copying to a minimally-sized skbuff. */
2346 if (pkt_len < rx_copybreak
2347 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2348 /* 16 byte align the IP header */
2349 skb_reserve(skb, RX_OFFSET);
2350 pci_dma_sync_single_for_cpu(np->pci_dev,
2351 np->rx_dma[entry],
2352 buflen,
2353 PCI_DMA_FROMDEVICE);
2354 skb_copy_to_linear_data(skb,
2355 np->rx_skbuff[entry]->data, pkt_len);
2356 skb_put(skb, pkt_len);
2357 pci_dma_sync_single_for_device(np->pci_dev,
2358 np->rx_dma[entry],
2359 buflen,
2360 PCI_DMA_FROMDEVICE);
2361 } else {
2362 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363 buflen, PCI_DMA_FROMDEVICE);
2364 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2365 np->rx_skbuff[entry] = NULL;
2366 }
2367 skb->protocol = eth_type_trans(skb, dev);
2368 netif_receive_skb(skb);
2369 np->stats.rx_packets++;
2370 np->stats.rx_bytes += pkt_len;
2371 }
2372 entry = (++np->cur_rx) % RX_RING_SIZE;
2373 np->rx_head_desc = &np->rx_ring[entry];
2374 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2375 }
2376 refill_rx(dev);
2377
2378 /* Restart Rx engine if stopped. */
2379 if (np->oom)
2380 mod_timer(&np->timer, jiffies + 1);
2381 else
2382 writel(RxOn, ioaddr + ChipCmd);
2383 }
2384
2385 static void netdev_error(struct net_device *dev, int intr_status)
2386 {
2387 struct netdev_private *np = netdev_priv(dev);
2388 void __iomem * ioaddr = ns_ioaddr(dev);
2389
2390 spin_lock(&np->lock);
2391 if (intr_status & LinkChange) {
2392 u16 lpa = mdio_read(dev, MII_LPA);
2393 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2394 && netif_msg_link(np)) {
2395 printk(KERN_INFO
2396 "%s: Autonegotiation advertising"
2397 " %#04x partner %#04x.\n", dev->name,
2398 np->advertising, lpa);
2399 }
2400
2401 /* read MII int status to clear the flag */
2402 readw(ioaddr + MIntrStatus);
2403 check_link(dev);
2404 }
2405 if (intr_status & StatsMax) {
2406 __get_stats(dev);
2407 }
2408 if (intr_status & IntrTxUnderrun) {
2409 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2410 np->tx_config += TX_DRTH_VAL_INC;
2411 if (netif_msg_tx_err(np))
2412 printk(KERN_NOTICE
2413 "%s: increased tx threshold, txcfg %#08x.\n",
2414 dev->name, np->tx_config);
2415 } else {
2416 if (netif_msg_tx_err(np))
2417 printk(KERN_NOTICE
2418 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2419 dev->name, np->tx_config);
2420 }
2421 writel(np->tx_config, ioaddr + TxConfig);
2422 }
2423 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2424 int wol_status = readl(ioaddr + WOLCmd);
2425 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2426 dev->name, wol_status);
2427 }
2428 if (intr_status & RxStatusFIFOOver) {
2429 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2430 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2431 dev->name);
2432 }
2433 np->stats.rx_fifo_errors++;
2434 np->stats.rx_errors++;
2435 }
2436 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2437 if (intr_status & IntrPCIErr) {
2438 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2439 intr_status & IntrPCIErr);
2440 np->stats.tx_fifo_errors++;
2441 np->stats.tx_errors++;
2442 np->stats.rx_fifo_errors++;
2443 np->stats.rx_errors++;
2444 }
2445 spin_unlock(&np->lock);
2446 }
2447
2448 static void __get_stats(struct net_device *dev)
2449 {
2450 void __iomem * ioaddr = ns_ioaddr(dev);
2451 struct netdev_private *np = netdev_priv(dev);
2452
2453 /* The chip only need report frame silently dropped. */
2454 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2455 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2456 }
2457
2458 static struct net_device_stats *get_stats(struct net_device *dev)
2459 {
2460 struct netdev_private *np = netdev_priv(dev);
2461
2462 /* The chip only need report frame silently dropped. */
2463 spin_lock_irq(&np->lock);
2464 if (netif_running(dev) && !np->hands_off)
2465 __get_stats(dev);
2466 spin_unlock_irq(&np->lock);
2467
2468 return &np->stats;
2469 }
2470
2471 #ifdef CONFIG_NET_POLL_CONTROLLER
2472 static void natsemi_poll_controller(struct net_device *dev)
2473 {
2474 disable_irq(dev->irq);
2475 intr_handler(dev->irq, dev);
2476 enable_irq(dev->irq);
2477 }
2478 #endif
2479
2480 #define HASH_TABLE 0x200
2481 static void __set_rx_mode(struct net_device *dev)
2482 {
2483 void __iomem * ioaddr = ns_ioaddr(dev);
2484 struct netdev_private *np = netdev_priv(dev);
2485 u8 mc_filter[64]; /* Multicast hash filter */
2486 u32 rx_mode;
2487
2488 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489 rx_mode = RxFilterEnable | AcceptBroadcast
2490 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491 } else if ((dev->mc_count > multicast_filter_limit)
2492 || (dev->flags & IFF_ALLMULTI)) {
2493 rx_mode = RxFilterEnable | AcceptBroadcast
2494 | AcceptAllMulticast | AcceptMyPhys;
2495 } else {
2496 struct dev_mc_list *mclist;
2497 int i;
2498 memset(mc_filter, 0, sizeof(mc_filter));
2499 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2500 i++, mclist = mclist->next) {
2501 int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2502 mc_filter[b/8] |= (1 << (b & 0x07));
2503 }
2504 rx_mode = RxFilterEnable | AcceptBroadcast
2505 | AcceptMulticast | AcceptMyPhys;
2506 for (i = 0; i < 64; i += 2) {
2507 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509 ioaddr + RxFilterData);
2510 }
2511 }
2512 writel(rx_mode, ioaddr + RxFilterAddr);
2513 np->cur_rx_mode = rx_mode;
2514 }
2515
2516 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517 {
2518 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519 return -EINVAL;
2520
2521 dev->mtu = new_mtu;
2522
2523 /* synchronized against open : rtnl_lock() held by caller */
2524 if (netif_running(dev)) {
2525 struct netdev_private *np = netdev_priv(dev);
2526 void __iomem * ioaddr = ns_ioaddr(dev);
2527
2528 disable_irq(dev->irq);
2529 spin_lock(&np->lock);
2530 /* stop engines */
2531 natsemi_stop_rxtx(dev);
2532 /* drain rx queue */
2533 drain_rx(dev);
2534 /* change buffers */
2535 set_bufsize(dev);
2536 reinit_rx(dev);
2537 writel(np->ring_dma, ioaddr + RxRingPtr);
2538 /* restart engines */
2539 writel(RxOn | TxOn, ioaddr + ChipCmd);
2540 spin_unlock(&np->lock);
2541 enable_irq(dev->irq);
2542 }
2543 return 0;
2544 }
2545
2546 static void set_rx_mode(struct net_device *dev)
2547 {
2548 struct netdev_private *np = netdev_priv(dev);
2549 spin_lock_irq(&np->lock);
2550 if (!np->hands_off)
2551 __set_rx_mode(dev);
2552 spin_unlock_irq(&np->lock);
2553 }
2554
2555 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556 {
2557 struct netdev_private *np = netdev_priv(dev);
2558 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2559 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2560 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2561 }
2562
2563 static int get_regs_len(struct net_device *dev)
2564 {
2565 return NATSEMI_REGS_SIZE;
2566 }
2567
2568 static int get_eeprom_len(struct net_device *dev)
2569 {
2570 struct netdev_private *np = netdev_priv(dev);
2571 return np->eeprom_size;
2572 }
2573
2574 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575 {
2576 struct netdev_private *np = netdev_priv(dev);
2577 spin_lock_irq(&np->lock);
2578 netdev_get_ecmd(dev, ecmd);
2579 spin_unlock_irq(&np->lock);
2580 return 0;
2581 }
2582
2583 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584 {
2585 struct netdev_private *np = netdev_priv(dev);
2586 int res;
2587 spin_lock_irq(&np->lock);
2588 res = netdev_set_ecmd(dev, ecmd);
2589 spin_unlock_irq(&np->lock);
2590 return res;
2591 }
2592
2593 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594 {
2595 struct netdev_private *np = netdev_priv(dev);
2596 spin_lock_irq(&np->lock);
2597 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598 netdev_get_sopass(dev, wol->sopass);
2599 spin_unlock_irq(&np->lock);
2600 }
2601
2602 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603 {
2604 struct netdev_private *np = netdev_priv(dev);
2605 int res;
2606 spin_lock_irq(&np->lock);
2607 netdev_set_wol(dev, wol->wolopts);
2608 res = netdev_set_sopass(dev, wol->sopass);
2609 spin_unlock_irq(&np->lock);
2610 return res;
2611 }
2612
2613 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614 {
2615 struct netdev_private *np = netdev_priv(dev);
2616 regs->version = NATSEMI_REGS_VER;
2617 spin_lock_irq(&np->lock);
2618 netdev_get_regs(dev, buf);
2619 spin_unlock_irq(&np->lock);
2620 }
2621
2622 static u32 get_msglevel(struct net_device *dev)
2623 {
2624 struct netdev_private *np = netdev_priv(dev);
2625 return np->msg_enable;
2626 }
2627
2628 static void set_msglevel(struct net_device *dev, u32 val)
2629 {
2630 struct netdev_private *np = netdev_priv(dev);
2631 np->msg_enable = val;
2632 }
2633
2634 static int nway_reset(struct net_device *dev)
2635 {
2636 int tmp;
2637 int r = -EINVAL;
2638 /* if autoneg is off, it's an error */
2639 tmp = mdio_read(dev, MII_BMCR);
2640 if (tmp & BMCR_ANENABLE) {
2641 tmp |= (BMCR_ANRESTART);
2642 mdio_write(dev, MII_BMCR, tmp);
2643 r = 0;
2644 }
2645 return r;
2646 }
2647
2648 static u32 get_link(struct net_device *dev)
2649 {
2650 /* LSTATUS is latched low until a read - so read twice */
2651 mdio_read(dev, MII_BMSR);
2652 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653 }
2654
2655 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656 {
2657 struct netdev_private *np = netdev_priv(dev);
2658 u8 *eebuf;
2659 int res;
2660
2661 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662 if (!eebuf)
2663 return -ENOMEM;
2664
2665 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666 spin_lock_irq(&np->lock);
2667 res = netdev_get_eeprom(dev, eebuf);
2668 spin_unlock_irq(&np->lock);
2669 if (!res)
2670 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671 kfree(eebuf);
2672 return res;
2673 }
2674
2675 static const struct ethtool_ops ethtool_ops = {
2676 .get_drvinfo = get_drvinfo,
2677 .get_regs_len = get_regs_len,
2678 .get_eeprom_len = get_eeprom_len,
2679 .get_settings = get_settings,
2680 .set_settings = set_settings,
2681 .get_wol = get_wol,
2682 .set_wol = set_wol,
2683 .get_regs = get_regs,
2684 .get_msglevel = get_msglevel,
2685 .set_msglevel = set_msglevel,
2686 .nway_reset = nway_reset,
2687 .get_link = get_link,
2688 .get_eeprom = get_eeprom,
2689 };
2690
2691 static int netdev_set_wol(struct net_device *dev, u32 newval)
2692 {
2693 struct netdev_private *np = netdev_priv(dev);
2694 void __iomem * ioaddr = ns_ioaddr(dev);
2695 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696
2697 /* translate to bitmasks this chip understands */
2698 if (newval & WAKE_PHY)
2699 data |= WakePhy;
2700 if (newval & WAKE_UCAST)
2701 data |= WakeUnicast;
2702 if (newval & WAKE_MCAST)
2703 data |= WakeMulticast;
2704 if (newval & WAKE_BCAST)
2705 data |= WakeBroadcast;
2706 if (newval & WAKE_ARP)
2707 data |= WakeArp;
2708 if (newval & WAKE_MAGIC)
2709 data |= WakeMagic;
2710 if (np->srr >= SRR_DP83815_D) {
2711 if (newval & WAKE_MAGICSECURE) {
2712 data |= WakeMagicSecure;
2713 }
2714 }
2715
2716 writel(data, ioaddr + WOLCmd);
2717
2718 return 0;
2719 }
2720
2721 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722 {
2723 struct netdev_private *np = netdev_priv(dev);
2724 void __iomem * ioaddr = ns_ioaddr(dev);
2725 u32 regval = readl(ioaddr + WOLCmd);
2726
2727 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728 | WAKE_ARP | WAKE_MAGIC);
2729
2730 if (np->srr >= SRR_DP83815_D) {
2731 /* SOPASS works on revD and higher */
2732 *supported |= WAKE_MAGICSECURE;
2733 }
2734 *cur = 0;
2735
2736 /* translate from chip bitmasks */
2737 if (regval & WakePhy)
2738 *cur |= WAKE_PHY;
2739 if (regval & WakeUnicast)
2740 *cur |= WAKE_UCAST;
2741 if (regval & WakeMulticast)
2742 *cur |= WAKE_MCAST;
2743 if (regval & WakeBroadcast)
2744 *cur |= WAKE_BCAST;
2745 if (regval & WakeArp)
2746 *cur |= WAKE_ARP;
2747 if (regval & WakeMagic)
2748 *cur |= WAKE_MAGIC;
2749 if (regval & WakeMagicSecure) {
2750 /* this can be on in revC, but it's broken */
2751 *cur |= WAKE_MAGICSECURE;
2752 }
2753
2754 return 0;
2755 }
2756
2757 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758 {
2759 struct netdev_private *np = netdev_priv(dev);
2760 void __iomem * ioaddr = ns_ioaddr(dev);
2761 u16 *sval = (u16 *)newval;
2762 u32 addr;
2763
2764 if (np->srr < SRR_DP83815_D) {
2765 return 0;
2766 }
2767
2768 /* enable writing to these registers by disabling the RX filter */
2769 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770 addr &= ~RxFilterEnable;
2771 writel(addr, ioaddr + RxFilterAddr);
2772
2773 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774 writel(addr | 0xa, ioaddr + RxFilterAddr);
2775 writew(sval[0], ioaddr + RxFilterData);
2776
2777 writel(addr | 0xc, ioaddr + RxFilterAddr);
2778 writew(sval[1], ioaddr + RxFilterData);
2779
2780 writel(addr | 0xe, ioaddr + RxFilterAddr);
2781 writew(sval[2], ioaddr + RxFilterData);
2782
2783 /* re-enable the RX filter */
2784 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785
2786 return 0;
2787 }
2788
2789 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790 {
2791 struct netdev_private *np = netdev_priv(dev);
2792 void __iomem * ioaddr = ns_ioaddr(dev);
2793 u16 *sval = (u16 *)data;
2794 u32 addr;
2795
2796 if (np->srr < SRR_DP83815_D) {
2797 sval[0] = sval[1] = sval[2] = 0;
2798 return 0;
2799 }
2800
2801 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803
2804 writel(addr | 0xa, ioaddr + RxFilterAddr);
2805 sval[0] = readw(ioaddr + RxFilterData);
2806
2807 writel(addr | 0xc, ioaddr + RxFilterAddr);
2808 sval[1] = readw(ioaddr + RxFilterData);
2809
2810 writel(addr | 0xe, ioaddr + RxFilterAddr);
2811 sval[2] = readw(ioaddr + RxFilterData);
2812
2813 writel(addr, ioaddr + RxFilterAddr);
2814
2815 return 0;
2816 }
2817
2818 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819 {
2820 struct netdev_private *np = netdev_priv(dev);
2821 u32 tmp;
2822
2823 ecmd->port = dev->if_port;
2824 ecmd->speed = np->speed;
2825 ecmd->duplex = np->duplex;
2826 ecmd->autoneg = np->autoneg;
2827 ecmd->advertising = 0;
2828 if (np->advertising & ADVERTISE_10HALF)
2829 ecmd->advertising |= ADVERTISED_10baseT_Half;
2830 if (np->advertising & ADVERTISE_10FULL)
2831 ecmd->advertising |= ADVERTISED_10baseT_Full;
2832 if (np->advertising & ADVERTISE_100HALF)
2833 ecmd->advertising |= ADVERTISED_100baseT_Half;
2834 if (np->advertising & ADVERTISE_100FULL)
2835 ecmd->advertising |= ADVERTISED_100baseT_Full;
2836 ecmd->supported = (SUPPORTED_Autoneg |
2837 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2838 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840 ecmd->phy_address = np->phy_addr_external;
2841 /*
2842 * We intentionally report the phy address of the external
2843 * phy, even if the internal phy is used. This is necessary
2844 * to work around a deficiency of the ethtool interface:
2845 * It's only possible to query the settings of the active
2846 * port. Therefore
2847 * # ethtool -s ethX port mii
2848 * actually sends an ioctl to switch to port mii with the
2849 * settings that are used for the current active port.
2850 * If we would report a different phy address in this
2851 * command, then
2852 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853 * would unintentionally change the phy address.
2854 *
2855 * Fortunately the phy address doesn't matter with the
2856 * internal phy...
2857 */
2858
2859 /* set information based on active port type */
2860 switch (ecmd->port) {
2861 default:
2862 case PORT_TP:
2863 ecmd->advertising |= ADVERTISED_TP;
2864 ecmd->transceiver = XCVR_INTERNAL;
2865 break;
2866 case PORT_MII:
2867 ecmd->advertising |= ADVERTISED_MII;
2868 ecmd->transceiver = XCVR_EXTERNAL;
2869 break;
2870 case PORT_FIBRE:
2871 ecmd->advertising |= ADVERTISED_FIBRE;
2872 ecmd->transceiver = XCVR_EXTERNAL;
2873 break;
2874 }
2875
2876 /* if autonegotiation is on, try to return the active speed/duplex */
2877 if (ecmd->autoneg == AUTONEG_ENABLE) {
2878 ecmd->advertising |= ADVERTISED_Autoneg;
2879 tmp = mii_nway_result(
2880 np->advertising & mdio_read(dev, MII_LPA));
2881 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882 ecmd->speed = SPEED_100;
2883 else
2884 ecmd->speed = SPEED_10;
2885 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886 ecmd->duplex = DUPLEX_FULL;
2887 else
2888 ecmd->duplex = DUPLEX_HALF;
2889 }
2890
2891 /* ignore maxtxpkt, maxrxpkt for now */
2892
2893 return 0;
2894 }
2895
2896 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897 {
2898 struct netdev_private *np = netdev_priv(dev);
2899
2900 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901 return -EINVAL;
2902 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903 return -EINVAL;
2904 if (ecmd->autoneg == AUTONEG_ENABLE) {
2905 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906 ADVERTISED_10baseT_Full |
2907 ADVERTISED_100baseT_Half |
2908 ADVERTISED_100baseT_Full)) == 0) {
2909 return -EINVAL;
2910 }
2911 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2913 return -EINVAL;
2914 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2915 return -EINVAL;
2916 } else {
2917 return -EINVAL;
2918 }
2919
2920 /*
2921 * If we're ignoring the PHY then autoneg and the internal
2922 * transciever are really not going to work so don't let the
2923 * user select them.
2924 */
2925 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2926 ecmd->port == PORT_TP))
2927 return -EINVAL;
2928
2929 /*
2930 * maxtxpkt, maxrxpkt: ignored for now.
2931 *
2932 * transceiver:
2933 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2934 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2935 * selects based on ecmd->port.
2936 *
2937 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2938 * phys that are connected to the mii bus. It's used to apply fibre
2939 * specific updates.
2940 */
2941
2942 /* WHEW! now lets bang some bits */
2943
2944 /* save the parms */
2945 dev->if_port = ecmd->port;
2946 np->autoneg = ecmd->autoneg;
2947 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2948 if (np->autoneg == AUTONEG_ENABLE) {
2949 /* advertise only what has been requested */
2950 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2951 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2952 np->advertising |= ADVERTISE_10HALF;
2953 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2954 np->advertising |= ADVERTISE_10FULL;
2955 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2956 np->advertising |= ADVERTISE_100HALF;
2957 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2958 np->advertising |= ADVERTISE_100FULL;
2959 } else {
2960 np->speed = ecmd->speed;
2961 np->duplex = ecmd->duplex;
2962 /* user overriding the initial full duplex parm? */
2963 if (np->duplex == DUPLEX_HALF)
2964 np->full_duplex = 0;
2965 }
2966
2967 /* get the right phy enabled */
2968 if (ecmd->port == PORT_TP)
2969 switch_port_internal(dev);
2970 else
2971 switch_port_external(dev);
2972
2973 /* set parms and see how this affected our link status */
2974 init_phy_fixup(dev);
2975 check_link(dev);
2976 return 0;
2977 }
2978
2979 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2980 {
2981 int i;
2982 int j;
2983 u32 rfcr;
2984 u32 *rbuf = (u32 *)buf;
2985 void __iomem * ioaddr = ns_ioaddr(dev);
2986
2987 /* read non-mii page 0 of registers */
2988 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2989 rbuf[i] = readl(ioaddr + i*4);
2990 }
2991
2992 /* read current mii registers */
2993 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2994 rbuf[i] = mdio_read(dev, i & 0x1f);
2995
2996 /* read only the 'magic' registers from page 1 */
2997 writew(1, ioaddr + PGSEL);
2998 rbuf[i++] = readw(ioaddr + PMDCSR);
2999 rbuf[i++] = readw(ioaddr + TSTDAT);
3000 rbuf[i++] = readw(ioaddr + DSPCFG);
3001 rbuf[i++] = readw(ioaddr + SDCFG);
3002 writew(0, ioaddr + PGSEL);
3003
3004 /* read RFCR indexed registers */
3005 rfcr = readl(ioaddr + RxFilterAddr);
3006 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3007 writel(j*2, ioaddr + RxFilterAddr);
3008 rbuf[i++] = readw(ioaddr + RxFilterData);
3009 }
3010 writel(rfcr, ioaddr + RxFilterAddr);
3011
3012 /* the interrupt status is clear-on-read - see if we missed any */
3013 if (rbuf[4] & rbuf[5]) {
3014 printk(KERN_WARNING
3015 "%s: shoot, we dropped an interrupt (%#08x)\n",
3016 dev->name, rbuf[4] & rbuf[5]);
3017 }
3018
3019 return 0;
3020 }
3021
3022 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3023 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3024 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3025 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3026 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3027 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3028 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3029 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3030
3031 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3032 {
3033 int i;
3034 u16 *ebuf = (u16 *)buf;
3035 void __iomem * ioaddr = ns_ioaddr(dev);
3036 struct netdev_private *np = netdev_priv(dev);
3037
3038 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3039 for (i = 0; i < np->eeprom_size/2; i++) {
3040 ebuf[i] = eeprom_read(ioaddr, i);
3041 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3042 * reads it back "sanely". So we swap it back here in order to
3043 * present it to userland as it is stored. */
3044 ebuf[i] = SWAP_BITS(ebuf[i]);
3045 }
3046 return 0;
3047 }
3048
3049 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050 {
3051 struct mii_ioctl_data *data = if_mii(rq);
3052 struct netdev_private *np = netdev_priv(dev);
3053
3054 switch(cmd) {
3055 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3056 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3057 data->phy_id = np->phy_addr_external;
3058 /* Fall Through */
3059
3060 case SIOCGMIIREG: /* Read MII PHY register. */
3061 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3062 /* The phy_id is not enough to uniquely identify
3063 * the intended target. Therefore the command is sent to
3064 * the given mii on the current port.
3065 */
3066 if (dev->if_port == PORT_TP) {
3067 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3068 data->val_out = mdio_read(dev,
3069 data->reg_num & 0x1f);
3070 else
3071 data->val_out = 0;
3072 } else {
3073 move_int_phy(dev, data->phy_id & 0x1f);
3074 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3075 data->reg_num & 0x1f);
3076 }
3077 return 0;
3078
3079 case SIOCSMIIREG: /* Write MII PHY register. */
3080 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3081 if (!capable(CAP_NET_ADMIN))
3082 return -EPERM;
3083 if (dev->if_port == PORT_TP) {
3084 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3085 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3086 np->advertising = data->val_in;
3087 mdio_write(dev, data->reg_num & 0x1f,
3088 data->val_in);
3089 }
3090 } else {
3091 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3092 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3093 np->advertising = data->val_in;
3094 }
3095 move_int_phy(dev, data->phy_id & 0x1f);
3096 miiport_write(dev, data->phy_id & 0x1f,
3097 data->reg_num & 0x1f,
3098 data->val_in);
3099 }
3100 return 0;
3101 default:
3102 return -EOPNOTSUPP;
3103 }
3104 }
3105
3106 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3107 {
3108 void __iomem * ioaddr = ns_ioaddr(dev);
3109 struct netdev_private *np = netdev_priv(dev);
3110
3111 if (netif_msg_wol(np))
3112 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3113 dev->name);
3114
3115 /* For WOL we must restart the rx process in silent mode.
3116 * Write NULL to the RxRingPtr. Only possible if
3117 * rx process is stopped
3118 */
3119 writel(0, ioaddr + RxRingPtr);
3120
3121 /* read WoL status to clear */
3122 readl(ioaddr + WOLCmd);
3123
3124 /* PME on, clear status */
3125 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3126
3127 /* and restart the rx process */
3128 writel(RxOn, ioaddr + ChipCmd);
3129
3130 if (enable_intr) {
3131 /* enable the WOL interrupt.
3132 * Could be used to send a netlink message.
3133 */
3134 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3135 natsemi_irq_enable(dev);
3136 }
3137 }
3138
3139 static int netdev_close(struct net_device *dev)
3140 {
3141 void __iomem * ioaddr = ns_ioaddr(dev);
3142 struct netdev_private *np = netdev_priv(dev);
3143
3144 if (netif_msg_ifdown(np))
3145 printk(KERN_DEBUG
3146 "%s: Shutting down ethercard, status was %#04x.\n",
3147 dev->name, (int)readl(ioaddr + ChipCmd));
3148 if (netif_msg_pktdata(np))
3149 printk(KERN_DEBUG
3150 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3151 dev->name, np->cur_tx, np->dirty_tx,
3152 np->cur_rx, np->dirty_rx);
3153
3154 napi_disable(&np->napi);
3155
3156 /*
3157 * FIXME: what if someone tries to close a device
3158 * that is suspended?
3159 * Should we reenable the nic to switch to
3160 * the final WOL settings?
3161 */
3162
3163 del_timer_sync(&np->timer);
3164 disable_irq(dev->irq);
3165 spin_lock_irq(&np->lock);
3166 natsemi_irq_disable(dev);
3167 np->hands_off = 1;
3168 spin_unlock_irq(&np->lock);
3169 enable_irq(dev->irq);
3170
3171 free_irq(dev->irq, dev);
3172
3173 /* Interrupt disabled, interrupt handler released,
3174 * queue stopped, timer deleted, rtnl_lock held
3175 * All async codepaths that access the driver are disabled.
3176 */
3177 spin_lock_irq(&np->lock);
3178 np->hands_off = 0;
3179 readl(ioaddr + IntrMask);
3180 readw(ioaddr + MIntrStatus);
3181
3182 /* Freeze Stats */
3183 writel(StatsFreeze, ioaddr + StatsCtrl);
3184
3185 /* Stop the chip's Tx and Rx processes. */
3186 natsemi_stop_rxtx(dev);
3187
3188 __get_stats(dev);
3189 spin_unlock_irq(&np->lock);
3190
3191 /* clear the carrier last - an interrupt could reenable it otherwise */
3192 netif_carrier_off(dev);
3193 netif_stop_queue(dev);
3194
3195 dump_ring(dev);
3196 drain_ring(dev);
3197 free_ring(dev);
3198
3199 {
3200 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3201 if (wol) {
3202 /* restart the NIC in WOL mode.
3203 * The nic must be stopped for this.
3204 */
3205 enable_wol_mode(dev, 0);
3206 } else {
3207 /* Restore PME enable bit unmolested */
3208 writel(np->SavedClkRun, ioaddr + ClkRun);
3209 }
3210 }
3211 return 0;
3212 }
3213
3214
3215 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3216 {
3217 struct net_device *dev = pci_get_drvdata(pdev);
3218 void __iomem * ioaddr = ns_ioaddr(dev);
3219
3220 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3221 unregister_netdev (dev);
3222 pci_release_regions (pdev);
3223 iounmap(ioaddr);
3224 free_netdev (dev);
3225 pci_set_drvdata(pdev, NULL);
3226 }
3227
3228 #ifdef CONFIG_PM
3229
3230 /*
3231 * The ns83815 chip doesn't have explicit RxStop bits.
3232 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3233 * of the nic, thus this function must be very careful:
3234 *
3235 * suspend/resume synchronization:
3236 * entry points:
3237 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3238 * start_tx, ns_tx_timeout
3239 *
3240 * No function accesses the hardware without checking np->hands_off.
3241 * the check occurs under spin_lock_irq(&np->lock);
3242 * exceptions:
3243 * * netdev_ioctl: noncritical access.
3244 * * netdev_open: cannot happen due to the device_detach
3245 * * netdev_close: doesn't hurt.
3246 * * netdev_timer: timer stopped by natsemi_suspend.
3247 * * intr_handler: doesn't acquire the spinlock. suspend calls
3248 * disable_irq() to enforce synchronization.
3249 * * natsemi_poll: checks before reenabling interrupts. suspend
3250 * sets hands_off, disables interrupts and then waits with
3251 * napi_disable().
3252 *
3253 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3254 */
3255
3256 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3257 {
3258 struct net_device *dev = pci_get_drvdata (pdev);
3259 struct netdev_private *np = netdev_priv(dev);
3260 void __iomem * ioaddr = ns_ioaddr(dev);
3261
3262 rtnl_lock();
3263 if (netif_running (dev)) {
3264 del_timer_sync(&np->timer);
3265
3266 disable_irq(dev->irq);
3267 spin_lock_irq(&np->lock);
3268
3269 natsemi_irq_disable(dev);
3270 np->hands_off = 1;
3271 natsemi_stop_rxtx(dev);
3272 netif_stop_queue(dev);
3273
3274 spin_unlock_irq(&np->lock);
3275 enable_irq(dev->irq);
3276
3277 napi_disable(&np->napi);
3278
3279 /* Update the error counts. */
3280 __get_stats(dev);
3281
3282 /* pci_power_off(pdev, -1); */
3283 drain_ring(dev);
3284 {
3285 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3286 /* Restore PME enable bit */
3287 if (wol) {
3288 /* restart the NIC in WOL mode.
3289 * The nic must be stopped for this.
3290 * FIXME: use the WOL interrupt
3291 */
3292 enable_wol_mode(dev, 0);
3293 } else {
3294 /* Restore PME enable bit unmolested */
3295 writel(np->SavedClkRun, ioaddr + ClkRun);
3296 }
3297 }
3298 }
3299 netif_device_detach(dev);
3300 rtnl_unlock();
3301 return 0;
3302 }
3303
3304
3305 static int natsemi_resume (struct pci_dev *pdev)
3306 {
3307 struct net_device *dev = pci_get_drvdata (pdev);
3308 struct netdev_private *np = netdev_priv(dev);
3309 int ret = 0;
3310
3311 rtnl_lock();
3312 if (netif_device_present(dev))
3313 goto out;
3314 if (netif_running(dev)) {
3315 BUG_ON(!np->hands_off);
3316 ret = pci_enable_device(pdev);
3317 if (ret < 0) {
3318 dev_err(&pdev->dev,
3319 "pci_enable_device() failed: %d\n", ret);
3320 goto out;
3321 }
3322 /* pci_power_on(pdev); */
3323
3324 napi_enable(&np->napi);
3325
3326 natsemi_reset(dev);
3327 init_ring(dev);
3328 disable_irq(dev->irq);
3329 spin_lock_irq(&np->lock);
3330 np->hands_off = 0;
3331 init_registers(dev);
3332 netif_device_attach(dev);
3333 spin_unlock_irq(&np->lock);
3334 enable_irq(dev->irq);
3335
3336 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3337 }
3338 netif_device_attach(dev);
3339 out:
3340 rtnl_unlock();
3341 return ret;
3342 }
3343
3344 #endif /* CONFIG_PM */
3345
3346 static struct pci_driver natsemi_driver = {
3347 .name = DRV_NAME,
3348 .id_table = natsemi_pci_tbl,
3349 .probe = natsemi_probe1,
3350 .remove = __devexit_p(natsemi_remove1),
3351 #ifdef CONFIG_PM
3352 .suspend = natsemi_suspend,
3353 .resume = natsemi_resume,
3354 #endif
3355 };
3356
3357 static int __init natsemi_init_mod (void)
3358 {
3359 /* when a module, this is printed whether or not devices are found in probe */
3360 #ifdef MODULE
3361 printk(version);
3362 #endif
3363
3364 return pci_register_driver(&natsemi_driver);
3365 }
3366
3367 static void __exit natsemi_exit_mod (void)
3368 {
3369 pci_unregister_driver (&natsemi_driver);
3370 }
3371
3372 module_init(natsemi_init_mod);
3373 module_exit(natsemi_exit_mod);
3374