fix mismerge in ll_rw_blk.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
10 *
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * Gianfar: AKA Lambda Draconis, "Dragon"
19 * RA 11 31 24.2
20 * Dec +69 19 52
21 * V 3.84
22 * B-V +1.62
23 *
24 * Theory of operation
25 * This driver is designed for the non-CPM ethernet controllers
26 * on the 85xx and 83xx family of integrated processors
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported. One assumption the driver currently makes
33 * is that the PHY is configured in such a way to advertise all
34 * capabilities. This is a sensible default, and on certain
35 * PHYs, changing this default encounters substantial errata
36 * issues. Future versions may remove this requirement, but for
37 * now, it is best for the firmware to ensure this is the case.
38 *
39 * The Gianfar Ethernet Controller uses a ring of buffer
40 * descriptors. The beginning is indicated by a register
41 * pointing to the physical address of the start of the ring.
42 * The end is determined by a "wrap" bit being set in the
43 * last descriptor of the ring.
44 *
45 * When a packet is received, the RXF bit in the
46 * IEVENT register is set, triggering an interrupt when the
47 * corresponding bit in the IMASK register is also set (if
48 * interrupt coalescing is active, then the interrupt may not
49 * happen immediately, but will wait until either a set number
50 * of frames or amount of time have passed.). In NAPI, the
51 * interrupt handler will signal there is work to be done, and
52 * exit. Without NAPI, the packet(s) will be handled
53 * immediately. Both methods will start at the last known empty
54 * descriptor, and process every subsequent descriptor until there
55 * are none left with data (NAPI will stop after a set number of
56 * packets to give time to other tasks, but will eventually
57 * process all the packets). The data arrives inside a
58 * pre-allocated skb, and so after the skb is passed up to the
59 * stack, a new skb must be allocated, and the address field in
60 * the buffer descriptor must be updated to indicate this new
61 * skb.
62 *
63 * When the kernel requests that a packet be transmitted, the
64 * driver starts where it left off last time, and points the
65 * descriptor at the buffer which was passed in. The driver
66 * then informs the DMA engine that there are packets ready to
67 * be transmitted. Once the controller is finished transmitting
68 * the packet, an interrupt may be triggered (under the same
69 * conditions as for reception, but depending on the TXF bit).
70 * The driver then cleans up the buffer.
71 */
72
73 #include <linux/config.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/string.h>
77 #include <linux/errno.h>
78 #include <linux/slab.h>
79 #include <linux/interrupt.h>
80 #include <linux/init.h>
81 #include <linux/delay.h>
82 #include <linux/netdevice.h>
83 #include <linux/etherdevice.h>
84 #include <linux/skbuff.h>
85 #include <linux/if_vlan.h>
86 #include <linux/spinlock.h>
87 #include <linux/mm.h>
88 #include <linux/device.h>
89 #include <linux/ip.h>
90 #include <linux/tcp.h>
91 #include <linux/udp.h>
92
93 #include <asm/io.h>
94 #include <asm/irq.h>
95 #include <asm/uaccess.h>
96 #include <linux/module.h>
97 #include <linux/version.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100
101 #include "gianfar.h"
102 #include "gianfar_phy.h"
103
104 #define TX_TIMEOUT (1*HZ)
105 #define SKB_ALLOC_TIMEOUT 1000000
106 #undef BRIEF_GFAR_ERRORS
107 #undef VERBOSE_GFAR_ERRORS
108
109 #ifdef CONFIG_GFAR_NAPI
110 #define RECEIVE(x) netif_receive_skb(x)
111 #else
112 #define RECEIVE(x) netif_rx(x)
113 #endif
114
115 const char gfar_driver_name[] = "Gianfar Ethernet";
116 const char gfar_driver_version[] = "1.1";
117
118 int startup_gfar(struct net_device *dev);
119 static int gfar_enet_open(struct net_device *dev);
120 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
121 static void gfar_timeout(struct net_device *dev);
122 static int gfar_close(struct net_device *dev);
123 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
124 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
125 static int gfar_set_mac_address(struct net_device *dev);
126 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
127 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
128 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
129 static irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs);
130 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
131 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
132 static void gfar_phy_change(void *data);
133 static void gfar_phy_timer(unsigned long data);
134 static void adjust_link(struct net_device *dev);
135 static void init_registers(struct net_device *dev);
136 static int init_phy(struct net_device *dev);
137 static int gfar_probe(struct device *device);
138 static int gfar_remove(struct device *device);
139 void free_skb_resources(struct gfar_private *priv);
140 static void gfar_set_multi(struct net_device *dev);
141 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
142 #ifdef CONFIG_GFAR_NAPI
143 static int gfar_poll(struct net_device *dev, int *budget);
144 #endif
145 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
146 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
147 static void gfar_phy_startup_timer(unsigned long data);
148 static void gfar_vlan_rx_register(struct net_device *netdev,
149 struct vlan_group *grp);
150 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
151
152 extern struct ethtool_ops gfar_ethtool_ops;
153
154 MODULE_AUTHOR("Freescale Semiconductor, Inc");
155 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
156 MODULE_LICENSE("GPL");
157
158 int gfar_uses_fcb(struct gfar_private *priv)
159 {
160 if (priv->vlan_enable || priv->rx_csum_enable)
161 return 1;
162 else
163 return 0;
164 }
165 static int gfar_probe(struct device *device)
166 {
167 u32 tempval;
168 struct net_device *dev = NULL;
169 struct gfar_private *priv = NULL;
170 struct platform_device *pdev = to_platform_device(device);
171 struct gianfar_platform_data *einfo;
172 struct resource *r;
173 int idx;
174 int err = 0;
175
176 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
177
178 if (einfo == NULL) {
179 printk(KERN_ERR "gfar %d: Missing additional data!\n",
180 pdev->id);
181
182 return -ENODEV;
183 }
184
185 /* Create an ethernet device instance */
186 dev = alloc_etherdev(sizeof (*priv));
187
188 if (dev == NULL)
189 return -ENOMEM;
190
191 priv = netdev_priv(dev);
192
193 /* Set the info in the priv to the current info */
194 priv->einfo = einfo;
195
196 /* fill out IRQ fields */
197 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
198 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
199 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
200 priv->interruptError = platform_get_irq_byname(pdev, "error");
201 } else {
202 priv->interruptTransmit = platform_get_irq(pdev, 0);
203 }
204
205 /* get a pointer to the register memory */
206 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
207 priv->regs = (struct gfar *)
208 ioremap(r->start, sizeof (struct gfar));
209
210 if (priv->regs == NULL) {
211 err = -ENOMEM;
212 goto regs_fail;
213 }
214
215 /* Set the PHY base address */
216 priv->phyregs = (struct gfar *)
217 ioremap(einfo->phy_reg_addr, sizeof (struct gfar));
218
219 if (priv->phyregs == NULL) {
220 err = -ENOMEM;
221 goto phy_regs_fail;
222 }
223
224 spin_lock_init(&priv->lock);
225
226 dev_set_drvdata(device, dev);
227
228 /* Stop the DMA engine now, in case it was running before */
229 /* (The firmware could have used it, and left it running). */
230 /* To do this, we write Graceful Receive Stop and Graceful */
231 /* Transmit Stop, and then wait until the corresponding bits */
232 /* in IEVENT indicate the stops have completed. */
233 tempval = gfar_read(&priv->regs->dmactrl);
234 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
235 gfar_write(&priv->regs->dmactrl, tempval);
236
237 tempval = gfar_read(&priv->regs->dmactrl);
238 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
239 gfar_write(&priv->regs->dmactrl, tempval);
240
241 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
242 cpu_relax();
243
244 /* Reset MAC layer */
245 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
246
247 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
248 gfar_write(&priv->regs->maccfg1, tempval);
249
250 /* Initialize MACCFG2. */
251 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
252
253 /* Initialize ECNTRL */
254 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
255
256 /* Copy the station address into the dev structure, */
257 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
258
259 /* Set the dev->base_addr to the gfar reg region */
260 dev->base_addr = (unsigned long) (priv->regs);
261
262 SET_MODULE_OWNER(dev);
263 SET_NETDEV_DEV(dev, device);
264
265 /* Fill in the dev structure */
266 dev->open = gfar_enet_open;
267 dev->hard_start_xmit = gfar_start_xmit;
268 dev->tx_timeout = gfar_timeout;
269 dev->watchdog_timeo = TX_TIMEOUT;
270 #ifdef CONFIG_GFAR_NAPI
271 dev->poll = gfar_poll;
272 dev->weight = GFAR_DEV_WEIGHT;
273 #endif
274 dev->stop = gfar_close;
275 dev->get_stats = gfar_get_stats;
276 dev->change_mtu = gfar_change_mtu;
277 dev->mtu = 1500;
278 dev->set_multicast_list = gfar_set_multi;
279
280 dev->ethtool_ops = &gfar_ethtool_ops;
281
282 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
283 priv->rx_csum_enable = 1;
284 dev->features |= NETIF_F_IP_CSUM;
285 } else
286 priv->rx_csum_enable = 0;
287
288 priv->vlgrp = NULL;
289
290 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
291 dev->vlan_rx_register = gfar_vlan_rx_register;
292 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
293
294 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
295
296 priv->vlan_enable = 1;
297 }
298
299 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
300 priv->extended_hash = 1;
301 priv->hash_width = 9;
302
303 priv->hash_regs[0] = &priv->regs->igaddr0;
304 priv->hash_regs[1] = &priv->regs->igaddr1;
305 priv->hash_regs[2] = &priv->regs->igaddr2;
306 priv->hash_regs[3] = &priv->regs->igaddr3;
307 priv->hash_regs[4] = &priv->regs->igaddr4;
308 priv->hash_regs[5] = &priv->regs->igaddr5;
309 priv->hash_regs[6] = &priv->regs->igaddr6;
310 priv->hash_regs[7] = &priv->regs->igaddr7;
311 priv->hash_regs[8] = &priv->regs->gaddr0;
312 priv->hash_regs[9] = &priv->regs->gaddr1;
313 priv->hash_regs[10] = &priv->regs->gaddr2;
314 priv->hash_regs[11] = &priv->regs->gaddr3;
315 priv->hash_regs[12] = &priv->regs->gaddr4;
316 priv->hash_regs[13] = &priv->regs->gaddr5;
317 priv->hash_regs[14] = &priv->regs->gaddr6;
318 priv->hash_regs[15] = &priv->regs->gaddr7;
319
320 } else {
321 priv->extended_hash = 0;
322 priv->hash_width = 8;
323
324 priv->hash_regs[0] = &priv->regs->gaddr0;
325 priv->hash_regs[1] = &priv->regs->gaddr1;
326 priv->hash_regs[2] = &priv->regs->gaddr2;
327 priv->hash_regs[3] = &priv->regs->gaddr3;
328 priv->hash_regs[4] = &priv->regs->gaddr4;
329 priv->hash_regs[5] = &priv->regs->gaddr5;
330 priv->hash_regs[6] = &priv->regs->gaddr6;
331 priv->hash_regs[7] = &priv->regs->gaddr7;
332 }
333
334 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
335 priv->padding = DEFAULT_PADDING;
336 else
337 priv->padding = 0;
338
339 dev->hard_header_len += priv->padding;
340
341 if (dev->features & NETIF_F_IP_CSUM)
342 dev->hard_header_len += GMAC_FCB_LEN;
343
344 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
345 #ifdef CONFIG_GFAR_BUFSTASH
346 priv->rx_stash_size = STASH_LENGTH;
347 #endif
348 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
349 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
350
351 priv->txcoalescing = DEFAULT_TX_COALESCE;
352 priv->txcount = DEFAULT_TXCOUNT;
353 priv->txtime = DEFAULT_TXTIME;
354 priv->rxcoalescing = DEFAULT_RX_COALESCE;
355 priv->rxcount = DEFAULT_RXCOUNT;
356 priv->rxtime = DEFAULT_RXTIME;
357
358 /* Enable most messages by default */
359 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
360
361 err = register_netdev(dev);
362
363 if (err) {
364 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
365 dev->name);
366 goto register_fail;
367 }
368
369 /* Print out the device info */
370 printk(KERN_INFO DEVICE_NAME, dev->name);
371 for (idx = 0; idx < 6; idx++)
372 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
373 printk("\n");
374
375 /* Even more device info helps when determining which kernel */
376 /* provided which set of benchmarks. Since this is global for all */
377 /* devices, we only print it once */
378 #ifdef CONFIG_GFAR_NAPI
379 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
380 #else
381 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
382 #endif
383 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
384 dev->name, priv->rx_ring_size, priv->tx_ring_size);
385
386 return 0;
387
388 register_fail:
389 iounmap((void *) priv->phyregs);
390 phy_regs_fail:
391 iounmap((void *) priv->regs);
392 regs_fail:
393 free_netdev(dev);
394 return -ENOMEM;
395 }
396
397 static int gfar_remove(struct device *device)
398 {
399 struct net_device *dev = dev_get_drvdata(device);
400 struct gfar_private *priv = netdev_priv(dev);
401
402 dev_set_drvdata(device, NULL);
403
404 iounmap((void *) priv->regs);
405 iounmap((void *) priv->phyregs);
406 free_netdev(dev);
407
408 return 0;
409 }
410
411
412 /* Configure the PHY for dev.
413 * returns 0 if success. -1 if failure
414 */
415 static int init_phy(struct net_device *dev)
416 {
417 struct gfar_private *priv = netdev_priv(dev);
418 struct phy_info *curphy;
419 unsigned int timeout = PHY_INIT_TIMEOUT;
420 struct gfar *phyregs = priv->phyregs;
421 struct gfar_mii_info *mii_info;
422 int err;
423
424 priv->oldlink = 0;
425 priv->oldspeed = 0;
426 priv->oldduplex = -1;
427
428 mii_info = kmalloc(sizeof(struct gfar_mii_info),
429 GFP_KERNEL);
430
431 if(NULL == mii_info) {
432 if (netif_msg_ifup(priv))
433 printk(KERN_ERR "%s: Could not allocate mii_info\n",
434 dev->name);
435 return -ENOMEM;
436 }
437
438 mii_info->speed = SPEED_1000;
439 mii_info->duplex = DUPLEX_FULL;
440 mii_info->pause = 0;
441 mii_info->link = 1;
442
443 mii_info->advertising = (ADVERTISED_10baseT_Half |
444 ADVERTISED_10baseT_Full |
445 ADVERTISED_100baseT_Half |
446 ADVERTISED_100baseT_Full |
447 ADVERTISED_1000baseT_Full);
448 mii_info->autoneg = 1;
449
450 spin_lock_init(&mii_info->mdio_lock);
451
452 mii_info->mii_id = priv->einfo->phyid;
453
454 mii_info->dev = dev;
455
456 mii_info->mdio_read = &read_phy_reg;
457 mii_info->mdio_write = &write_phy_reg;
458
459 priv->mii_info = mii_info;
460
461 /* Reset the management interface */
462 gfar_write(&phyregs->miimcfg, MIIMCFG_RESET);
463
464 /* Setup the MII Mgmt clock speed */
465 gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE);
466
467 /* Wait until the bus is free */
468 while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) &&
469 timeout--)
470 cpu_relax();
471
472 if(timeout <= 0) {
473 printk(KERN_ERR "%s: The MII Bus is stuck!\n",
474 dev->name);
475 err = -1;
476 goto bus_fail;
477 }
478
479 /* get info for this PHY */
480 curphy = get_phy_info(priv->mii_info);
481
482 if (curphy == NULL) {
483 if (netif_msg_ifup(priv))
484 printk(KERN_ERR "%s: No PHY found\n", dev->name);
485 err = -1;
486 goto no_phy;
487 }
488
489 mii_info->phyinfo = curphy;
490
491 /* Run the commands which initialize the PHY */
492 if(curphy->init) {
493 err = curphy->init(priv->mii_info);
494
495 if (err)
496 goto phy_init_fail;
497 }
498
499 return 0;
500
501 phy_init_fail:
502 no_phy:
503 bus_fail:
504 kfree(mii_info);
505
506 return err;
507 }
508
509 static void init_registers(struct net_device *dev)
510 {
511 struct gfar_private *priv = netdev_priv(dev);
512
513 /* Clear IEVENT */
514 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
515
516 /* Initialize IMASK */
517 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
518
519 /* Init hash registers to zero */
520 gfar_write(&priv->regs->igaddr0, 0);
521 gfar_write(&priv->regs->igaddr1, 0);
522 gfar_write(&priv->regs->igaddr2, 0);
523 gfar_write(&priv->regs->igaddr3, 0);
524 gfar_write(&priv->regs->igaddr4, 0);
525 gfar_write(&priv->regs->igaddr5, 0);
526 gfar_write(&priv->regs->igaddr6, 0);
527 gfar_write(&priv->regs->igaddr7, 0);
528
529 gfar_write(&priv->regs->gaddr0, 0);
530 gfar_write(&priv->regs->gaddr1, 0);
531 gfar_write(&priv->regs->gaddr2, 0);
532 gfar_write(&priv->regs->gaddr3, 0);
533 gfar_write(&priv->regs->gaddr4, 0);
534 gfar_write(&priv->regs->gaddr5, 0);
535 gfar_write(&priv->regs->gaddr6, 0);
536 gfar_write(&priv->regs->gaddr7, 0);
537
538 /* Zero out the rmon mib registers if it has them */
539 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
540 memset((void *) &(priv->regs->rmon), 0,
541 sizeof (struct rmon_mib));
542
543 /* Mask off the CAM interrupts */
544 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
545 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
546 }
547
548 /* Initialize the max receive buffer length */
549 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
550
551 #ifdef CONFIG_GFAR_BUFSTASH
552 /* If we are stashing buffers, we need to set the
553 * extraction length to the size of the buffer */
554 gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16);
555 #endif
556
557 /* Initialize the Minimum Frame Length Register */
558 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
559
560 /* Setup Attributes so that snooping is on for rx */
561 gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS);
562 gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS);
563
564 /* Assign the TBI an address which won't conflict with the PHYs */
565 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
566 }
567
568
569 /* Halt the receive and transmit queues */
570 void gfar_halt(struct net_device *dev)
571 {
572 struct gfar_private *priv = netdev_priv(dev);
573 struct gfar *regs = priv->regs;
574 u32 tempval;
575
576 /* Mask all interrupts */
577 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
578
579 /* Clear all interrupts */
580 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
581
582 /* Stop the DMA, and wait for it to stop */
583 tempval = gfar_read(&priv->regs->dmactrl);
584 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
585 != (DMACTRL_GRS | DMACTRL_GTS)) {
586 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
587 gfar_write(&priv->regs->dmactrl, tempval);
588
589 while (!(gfar_read(&priv->regs->ievent) &
590 (IEVENT_GRSC | IEVENT_GTSC)))
591 cpu_relax();
592 }
593
594 /* Disable Rx and Tx */
595 tempval = gfar_read(&regs->maccfg1);
596 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
597 gfar_write(&regs->maccfg1, tempval);
598 }
599
600 void stop_gfar(struct net_device *dev)
601 {
602 struct gfar_private *priv = netdev_priv(dev);
603 struct gfar *regs = priv->regs;
604 unsigned long flags;
605
606 /* Lock it down */
607 spin_lock_irqsave(&priv->lock, flags);
608
609 /* Tell the kernel the link is down */
610 priv->mii_info->link = 0;
611 adjust_link(dev);
612
613 gfar_halt(dev);
614
615 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
616 /* Clear any pending interrupts */
617 mii_clear_phy_interrupt(priv->mii_info);
618
619 /* Disable PHY Interrupts */
620 mii_configure_phy_interrupt(priv->mii_info,
621 MII_INTERRUPT_DISABLED);
622 }
623
624 spin_unlock_irqrestore(&priv->lock, flags);
625
626 /* Free the IRQs */
627 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
628 free_irq(priv->interruptError, dev);
629 free_irq(priv->interruptTransmit, dev);
630 free_irq(priv->interruptReceive, dev);
631 } else {
632 free_irq(priv->interruptTransmit, dev);
633 }
634
635 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
636 free_irq(priv->einfo->interruptPHY, dev);
637 } else {
638 del_timer_sync(&priv->phy_info_timer);
639 }
640
641 free_skb_resources(priv);
642
643 dma_free_coherent(NULL,
644 sizeof(struct txbd8)*priv->tx_ring_size
645 + sizeof(struct rxbd8)*priv->rx_ring_size,
646 priv->tx_bd_base,
647 gfar_read(&regs->tbase0));
648 }
649
650 /* If there are any tx skbs or rx skbs still around, free them.
651 * Then free tx_skbuff and rx_skbuff */
652 void free_skb_resources(struct gfar_private *priv)
653 {
654 struct rxbd8 *rxbdp;
655 struct txbd8 *txbdp;
656 int i;
657
658 /* Go through all the buffer descriptors and free their data buffers */
659 txbdp = priv->tx_bd_base;
660
661 for (i = 0; i < priv->tx_ring_size; i++) {
662
663 if (priv->tx_skbuff[i]) {
664 dma_unmap_single(NULL, txbdp->bufPtr,
665 txbdp->length,
666 DMA_TO_DEVICE);
667 dev_kfree_skb_any(priv->tx_skbuff[i]);
668 priv->tx_skbuff[i] = NULL;
669 }
670 }
671
672 kfree(priv->tx_skbuff);
673
674 rxbdp = priv->rx_bd_base;
675
676 /* rx_skbuff is not guaranteed to be allocated, so only
677 * free it and its contents if it is allocated */
678 if(priv->rx_skbuff != NULL) {
679 for (i = 0; i < priv->rx_ring_size; i++) {
680 if (priv->rx_skbuff[i]) {
681 dma_unmap_single(NULL, rxbdp->bufPtr,
682 priv->rx_buffer_size
683 + RXBUF_ALIGNMENT,
684 DMA_FROM_DEVICE);
685
686 dev_kfree_skb_any(priv->rx_skbuff[i]);
687 priv->rx_skbuff[i] = NULL;
688 }
689
690 rxbdp->status = 0;
691 rxbdp->length = 0;
692 rxbdp->bufPtr = 0;
693
694 rxbdp++;
695 }
696
697 kfree(priv->rx_skbuff);
698 }
699 }
700
701 void gfar_start(struct net_device *dev)
702 {
703 struct gfar_private *priv = netdev_priv(dev);
704 struct gfar *regs = priv->regs;
705 u32 tempval;
706
707 /* Enable Rx and Tx in MACCFG1 */
708 tempval = gfar_read(&regs->maccfg1);
709 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
710 gfar_write(&regs->maccfg1, tempval);
711
712 /* Initialize DMACTRL to have WWR and WOP */
713 tempval = gfar_read(&priv->regs->dmactrl);
714 tempval |= DMACTRL_INIT_SETTINGS;
715 gfar_write(&priv->regs->dmactrl, tempval);
716
717 /* Clear THLT, so that the DMA starts polling now */
718 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
719
720 /* Make sure we aren't stopped */
721 tempval = gfar_read(&priv->regs->dmactrl);
722 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
723 gfar_write(&priv->regs->dmactrl, tempval);
724
725 /* Unmask the interrupts we look for */
726 gfar_write(&regs->imask, IMASK_DEFAULT);
727 }
728
729 /* Bring the controller up and running */
730 int startup_gfar(struct net_device *dev)
731 {
732 struct txbd8 *txbdp;
733 struct rxbd8 *rxbdp;
734 dma_addr_t addr;
735 unsigned long vaddr;
736 int i;
737 struct gfar_private *priv = netdev_priv(dev);
738 struct gfar *regs = priv->regs;
739 int err = 0;
740 u32 rctrl = 0;
741
742 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
743
744 /* Allocate memory for the buffer descriptors */
745 vaddr = (unsigned long) dma_alloc_coherent(NULL,
746 sizeof (struct txbd8) * priv->tx_ring_size +
747 sizeof (struct rxbd8) * priv->rx_ring_size,
748 &addr, GFP_KERNEL);
749
750 if (vaddr == 0) {
751 if (netif_msg_ifup(priv))
752 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
753 dev->name);
754 return -ENOMEM;
755 }
756
757 priv->tx_bd_base = (struct txbd8 *) vaddr;
758
759 /* enet DMA only understands physical addresses */
760 gfar_write(&regs->tbase0, addr);
761
762 /* Start the rx descriptor ring where the tx ring leaves off */
763 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
764 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
765 priv->rx_bd_base = (struct rxbd8 *) vaddr;
766 gfar_write(&regs->rbase0, addr);
767
768 /* Setup the skbuff rings */
769 priv->tx_skbuff =
770 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
771 priv->tx_ring_size, GFP_KERNEL);
772
773 if (priv->tx_skbuff == NULL) {
774 if (netif_msg_ifup(priv))
775 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
776 dev->name);
777 err = -ENOMEM;
778 goto tx_skb_fail;
779 }
780
781 for (i = 0; i < priv->tx_ring_size; i++)
782 priv->tx_skbuff[i] = NULL;
783
784 priv->rx_skbuff =
785 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
786 priv->rx_ring_size, GFP_KERNEL);
787
788 if (priv->rx_skbuff == NULL) {
789 if (netif_msg_ifup(priv))
790 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
791 dev->name);
792 err = -ENOMEM;
793 goto rx_skb_fail;
794 }
795
796 for (i = 0; i < priv->rx_ring_size; i++)
797 priv->rx_skbuff[i] = NULL;
798
799 /* Initialize some variables in our dev structure */
800 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
801 priv->cur_rx = priv->rx_bd_base;
802 priv->skb_curtx = priv->skb_dirtytx = 0;
803 priv->skb_currx = 0;
804
805 /* Initialize Transmit Descriptor Ring */
806 txbdp = priv->tx_bd_base;
807 for (i = 0; i < priv->tx_ring_size; i++) {
808 txbdp->status = 0;
809 txbdp->length = 0;
810 txbdp->bufPtr = 0;
811 txbdp++;
812 }
813
814 /* Set the last descriptor in the ring to indicate wrap */
815 txbdp--;
816 txbdp->status |= TXBD_WRAP;
817
818 rxbdp = priv->rx_bd_base;
819 for (i = 0; i < priv->rx_ring_size; i++) {
820 struct sk_buff *skb = NULL;
821
822 rxbdp->status = 0;
823
824 skb = gfar_new_skb(dev, rxbdp);
825
826 priv->rx_skbuff[i] = skb;
827
828 rxbdp++;
829 }
830
831 /* Set the last descriptor in the ring to wrap */
832 rxbdp--;
833 rxbdp->status |= RXBD_WRAP;
834
835 /* If the device has multiple interrupts, register for
836 * them. Otherwise, only register for the one */
837 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
838 /* Install our interrupt handlers for Error,
839 * Transmit, and Receive */
840 if (request_irq(priv->interruptError, gfar_error,
841 0, "enet_error", dev) < 0) {
842 if (netif_msg_intr(priv))
843 printk(KERN_ERR "%s: Can't get IRQ %d\n",
844 dev->name, priv->interruptError);
845
846 err = -1;
847 goto err_irq_fail;
848 }
849
850 if (request_irq(priv->interruptTransmit, gfar_transmit,
851 0, "enet_tx", dev) < 0) {
852 if (netif_msg_intr(priv))
853 printk(KERN_ERR "%s: Can't get IRQ %d\n",
854 dev->name, priv->interruptTransmit);
855
856 err = -1;
857
858 goto tx_irq_fail;
859 }
860
861 if (request_irq(priv->interruptReceive, gfar_receive,
862 0, "enet_rx", dev) < 0) {
863 if (netif_msg_intr(priv))
864 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
865 dev->name, priv->interruptReceive);
866
867 err = -1;
868 goto rx_irq_fail;
869 }
870 } else {
871 if (request_irq(priv->interruptTransmit, gfar_interrupt,
872 0, "gfar_interrupt", dev) < 0) {
873 if (netif_msg_intr(priv))
874 printk(KERN_ERR "%s: Can't get IRQ %d\n",
875 dev->name, priv->interruptError);
876
877 err = -1;
878 goto err_irq_fail;
879 }
880 }
881
882 /* Set up the PHY change work queue */
883 INIT_WORK(&priv->tq, gfar_phy_change, dev);
884
885 init_timer(&priv->phy_info_timer);
886 priv->phy_info_timer.function = &gfar_phy_startup_timer;
887 priv->phy_info_timer.data = (unsigned long) priv->mii_info;
888 mod_timer(&priv->phy_info_timer, jiffies + HZ);
889
890 /* Configure the coalescing support */
891 if (priv->txcoalescing)
892 gfar_write(&regs->txic,
893 mk_ic_value(priv->txcount, priv->txtime));
894 else
895 gfar_write(&regs->txic, 0);
896
897 if (priv->rxcoalescing)
898 gfar_write(&regs->rxic,
899 mk_ic_value(priv->rxcount, priv->rxtime));
900 else
901 gfar_write(&regs->rxic, 0);
902
903 if (priv->rx_csum_enable)
904 rctrl |= RCTRL_CHECKSUMMING;
905
906 if (priv->extended_hash)
907 rctrl |= RCTRL_EXTHASH;
908
909 if (priv->vlan_enable)
910 rctrl |= RCTRL_VLAN;
911
912 /* Init rctrl based on our settings */
913 gfar_write(&priv->regs->rctrl, rctrl);
914
915 if (dev->features & NETIF_F_IP_CSUM)
916 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
917
918 gfar_start(dev);
919
920 return 0;
921
922 rx_irq_fail:
923 free_irq(priv->interruptTransmit, dev);
924 tx_irq_fail:
925 free_irq(priv->interruptError, dev);
926 err_irq_fail:
927 rx_skb_fail:
928 free_skb_resources(priv);
929 tx_skb_fail:
930 dma_free_coherent(NULL,
931 sizeof(struct txbd8)*priv->tx_ring_size
932 + sizeof(struct rxbd8)*priv->rx_ring_size,
933 priv->tx_bd_base,
934 gfar_read(&regs->tbase0));
935
936 if (priv->mii_info->phyinfo->close)
937 priv->mii_info->phyinfo->close(priv->mii_info);
938
939 kfree(priv->mii_info);
940
941 return err;
942 }
943
944 /* Called when something needs to use the ethernet device */
945 /* Returns 0 for success. */
946 static int gfar_enet_open(struct net_device *dev)
947 {
948 int err;
949
950 /* Initialize a bunch of registers */
951 init_registers(dev);
952
953 gfar_set_mac_address(dev);
954
955 err = init_phy(dev);
956
957 if(err)
958 return err;
959
960 err = startup_gfar(dev);
961
962 netif_start_queue(dev);
963
964 return err;
965 }
966
967 static struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
968 {
969 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
970
971 memset(fcb, 0, GMAC_FCB_LEN);
972
973 /* Flag the bd so the controller looks for the FCB */
974 bdp->status |= TXBD_TOE;
975
976 return fcb;
977 }
978
979 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
980 {
981 int len;
982
983 /* If we're here, it's a IP packet with a TCP or UDP
984 * payload. We set it to checksum, using a pseudo-header
985 * we provide
986 */
987 fcb->ip = 1;
988 fcb->tup = 1;
989 fcb->ctu = 1;
990 fcb->nph = 1;
991
992 /* Notify the controller what the protocol is */
993 if (skb->nh.iph->protocol == IPPROTO_UDP)
994 fcb->udp = 1;
995
996 /* l3os is the distance between the start of the
997 * frame (skb->data) and the start of the IP hdr.
998 * l4os is the distance between the start of the
999 * l3 hdr and the l4 hdr */
1000 fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
1001 fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
1002
1003 len = skb->nh.iph->tot_len - fcb->l4os;
1004
1005 /* Provide the pseudoheader csum */
1006 fcb->phcs = ~csum_tcpudp_magic(skb->nh.iph->saddr,
1007 skb->nh.iph->daddr, len,
1008 skb->nh.iph->protocol, 0);
1009 }
1010
1011 void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1012 {
1013 fcb->vln = 1;
1014 fcb->vlctl = vlan_tx_tag_get(skb);
1015 }
1016
1017 /* This is called by the kernel when a frame is ready for transmission. */
1018 /* It is pointed to by the dev->hard_start_xmit function pointer */
1019 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 {
1021 struct gfar_private *priv = netdev_priv(dev);
1022 struct txfcb *fcb = NULL;
1023 struct txbd8 *txbdp;
1024
1025 /* Update transmit stats */
1026 priv->stats.tx_bytes += skb->len;
1027
1028 /* Lock priv now */
1029 spin_lock_irq(&priv->lock);
1030
1031 /* Point at the first free tx descriptor */
1032 txbdp = priv->cur_tx;
1033
1034 /* Clear all but the WRAP status flags */
1035 txbdp->status &= TXBD_WRAP;
1036
1037 /* Set up checksumming */
1038 if ((dev->features & NETIF_F_IP_CSUM)
1039 && (CHECKSUM_HW == skb->ip_summed)) {
1040 fcb = gfar_add_fcb(skb, txbdp);
1041 gfar_tx_checksum(skb, fcb);
1042 }
1043
1044 if (priv->vlan_enable &&
1045 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1046 if (NULL == fcb)
1047 fcb = gfar_add_fcb(skb, txbdp);
1048
1049 gfar_tx_vlan(skb, fcb);
1050 }
1051
1052 /* Set buffer length and pointer */
1053 txbdp->length = skb->len;
1054 txbdp->bufPtr = dma_map_single(NULL, skb->data,
1055 skb->len, DMA_TO_DEVICE);
1056
1057 /* Save the skb pointer so we can free it later */
1058 priv->tx_skbuff[priv->skb_curtx] = skb;
1059
1060 /* Update the current skb pointer (wrapping if this was the last) */
1061 priv->skb_curtx =
1062 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1063
1064 /* Flag the BD as interrupt-causing */
1065 txbdp->status |= TXBD_INTERRUPT;
1066
1067 /* Flag the BD as ready to go, last in frame, and */
1068 /* in need of CRC */
1069 txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1070
1071 dev->trans_start = jiffies;
1072
1073 /* If this was the last BD in the ring, the next one */
1074 /* is at the beginning of the ring */
1075 if (txbdp->status & TXBD_WRAP)
1076 txbdp = priv->tx_bd_base;
1077 else
1078 txbdp++;
1079
1080 /* If the next BD still needs to be cleaned up, then the bds
1081 are full. We need to tell the kernel to stop sending us stuff. */
1082 if (txbdp == priv->dirty_tx) {
1083 netif_stop_queue(dev);
1084
1085 priv->stats.tx_fifo_errors++;
1086 }
1087
1088 /* Update the current txbd to the next one */
1089 priv->cur_tx = txbdp;
1090
1091 /* Tell the DMA to go go go */
1092 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1093
1094 /* Unlock priv */
1095 spin_unlock_irq(&priv->lock);
1096
1097 return 0;
1098 }
1099
1100 /* Stops the kernel queue, and halts the controller */
1101 static int gfar_close(struct net_device *dev)
1102 {
1103 struct gfar_private *priv = netdev_priv(dev);
1104 stop_gfar(dev);
1105
1106 /* Shutdown the PHY */
1107 if (priv->mii_info->phyinfo->close)
1108 priv->mii_info->phyinfo->close(priv->mii_info);
1109
1110 kfree(priv->mii_info);
1111
1112 netif_stop_queue(dev);
1113
1114 return 0;
1115 }
1116
1117 /* returns a net_device_stats structure pointer */
1118 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1119 {
1120 struct gfar_private *priv = netdev_priv(dev);
1121
1122 return &(priv->stats);
1123 }
1124
1125 /* Changes the mac address if the controller is not running. */
1126 int gfar_set_mac_address(struct net_device *dev)
1127 {
1128 struct gfar_private *priv = netdev_priv(dev);
1129 int i;
1130 char tmpbuf[MAC_ADDR_LEN];
1131 u32 tempval;
1132
1133 /* Now copy it into the mac registers backwards, cuz */
1134 /* little endian is silly */
1135 for (i = 0; i < MAC_ADDR_LEN; i++)
1136 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i];
1137
1138 gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf)));
1139
1140 tempval = *((u32 *) (tmpbuf + 4));
1141
1142 gfar_write(&priv->regs->macstnaddr2, tempval);
1143
1144 return 0;
1145 }
1146
1147
1148 /* Enables and disables VLAN insertion/extraction */
1149 static void gfar_vlan_rx_register(struct net_device *dev,
1150 struct vlan_group *grp)
1151 {
1152 struct gfar_private *priv = netdev_priv(dev);
1153 unsigned long flags;
1154 u32 tempval;
1155
1156 spin_lock_irqsave(&priv->lock, flags);
1157
1158 priv->vlgrp = grp;
1159
1160 if (grp) {
1161 /* Enable VLAN tag insertion */
1162 tempval = gfar_read(&priv->regs->tctrl);
1163 tempval |= TCTRL_VLINS;
1164
1165 gfar_write(&priv->regs->tctrl, tempval);
1166
1167 /* Enable VLAN tag extraction */
1168 tempval = gfar_read(&priv->regs->rctrl);
1169 tempval |= RCTRL_VLEX;
1170 gfar_write(&priv->regs->rctrl, tempval);
1171 } else {
1172 /* Disable VLAN tag insertion */
1173 tempval = gfar_read(&priv->regs->tctrl);
1174 tempval &= ~TCTRL_VLINS;
1175 gfar_write(&priv->regs->tctrl, tempval);
1176
1177 /* Disable VLAN tag extraction */
1178 tempval = gfar_read(&priv->regs->rctrl);
1179 tempval &= ~RCTRL_VLEX;
1180 gfar_write(&priv->regs->rctrl, tempval);
1181 }
1182
1183 spin_unlock_irqrestore(&priv->lock, flags);
1184 }
1185
1186
1187 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1188 {
1189 struct gfar_private *priv = netdev_priv(dev);
1190 unsigned long flags;
1191
1192 spin_lock_irqsave(&priv->lock, flags);
1193
1194 if (priv->vlgrp)
1195 priv->vlgrp->vlan_devices[vid] = NULL;
1196
1197 spin_unlock_irqrestore(&priv->lock, flags);
1198 }
1199
1200
1201 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1202 {
1203 int tempsize, tempval;
1204 struct gfar_private *priv = netdev_priv(dev);
1205 int oldsize = priv->rx_buffer_size;
1206 int frame_size = new_mtu + ETH_HLEN;
1207
1208 if (priv->vlan_enable)
1209 frame_size += VLAN_ETH_HLEN;
1210
1211 if (gfar_uses_fcb(priv))
1212 frame_size += GMAC_FCB_LEN;
1213
1214 frame_size += priv->padding;
1215
1216 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1217 if (netif_msg_drv(priv))
1218 printk(KERN_ERR "%s: Invalid MTU setting\n",
1219 dev->name);
1220 return -EINVAL;
1221 }
1222
1223 tempsize =
1224 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1225 INCREMENTAL_BUFFER_SIZE;
1226
1227 /* Only stop and start the controller if it isn't already
1228 * stopped */
1229 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1230 stop_gfar(dev);
1231
1232 priv->rx_buffer_size = tempsize;
1233
1234 dev->mtu = new_mtu;
1235
1236 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1237 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1238
1239 /* If the mtu is larger than the max size for standard
1240 * ethernet frames (ie, a jumbo frame), then set maccfg2
1241 * to allow huge frames, and to check the length */
1242 tempval = gfar_read(&priv->regs->maccfg2);
1243
1244 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1245 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1246 else
1247 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1248
1249 gfar_write(&priv->regs->maccfg2, tempval);
1250
1251 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1252 startup_gfar(dev);
1253
1254 return 0;
1255 }
1256
1257 /* gfar_timeout gets called when a packet has not been
1258 * transmitted after a set amount of time.
1259 * For now, assume that clearing out all the structures, and
1260 * starting over will fix the problem. */
1261 static void gfar_timeout(struct net_device *dev)
1262 {
1263 struct gfar_private *priv = netdev_priv(dev);
1264
1265 priv->stats.tx_errors++;
1266
1267 if (dev->flags & IFF_UP) {
1268 stop_gfar(dev);
1269 startup_gfar(dev);
1270 }
1271
1272 netif_schedule(dev);
1273 }
1274
1275 /* Interrupt Handler for Transmit complete */
1276 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1277 {
1278 struct net_device *dev = (struct net_device *) dev_id;
1279 struct gfar_private *priv = netdev_priv(dev);
1280 struct txbd8 *bdp;
1281
1282 /* Clear IEVENT */
1283 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1284
1285 /* Lock priv */
1286 spin_lock(&priv->lock);
1287 bdp = priv->dirty_tx;
1288 while ((bdp->status & TXBD_READY) == 0) {
1289 /* If dirty_tx and cur_tx are the same, then either the */
1290 /* ring is empty or full now (it could only be full in the beginning, */
1291 /* obviously). If it is empty, we are done. */
1292 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1293 break;
1294
1295 priv->stats.tx_packets++;
1296
1297 /* Deferred means some collisions occurred during transmit, */
1298 /* but we eventually sent the packet. */
1299 if (bdp->status & TXBD_DEF)
1300 priv->stats.collisions++;
1301
1302 /* Free the sk buffer associated with this TxBD */
1303 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1304 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1305 priv->skb_dirtytx =
1306 (priv->skb_dirtytx +
1307 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1308
1309 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1310 if (bdp->status & TXBD_WRAP)
1311 bdp = priv->tx_bd_base;
1312 else
1313 bdp++;
1314
1315 /* Move dirty_tx to be the next bd */
1316 priv->dirty_tx = bdp;
1317
1318 /* We freed a buffer, so now we can restart transmission */
1319 if (netif_queue_stopped(dev))
1320 netif_wake_queue(dev);
1321 } /* while ((bdp->status & TXBD_READY) == 0) */
1322
1323 /* If we are coalescing the interrupts, reset the timer */
1324 /* Otherwise, clear it */
1325 if (priv->txcoalescing)
1326 gfar_write(&priv->regs->txic,
1327 mk_ic_value(priv->txcount, priv->txtime));
1328 else
1329 gfar_write(&priv->regs->txic, 0);
1330
1331 spin_unlock(&priv->lock);
1332
1333 return IRQ_HANDLED;
1334 }
1335
1336 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1337 {
1338 struct gfar_private *priv = netdev_priv(dev);
1339 struct sk_buff *skb = NULL;
1340 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1341
1342 /* We have to allocate the skb, so keep trying till we succeed */
1343 while ((!skb) && timeout--)
1344 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1345
1346 if (skb == NULL)
1347 return NULL;
1348
1349 /* We need the data buffer to be aligned properly. We will reserve
1350 * as many bytes as needed to align the data properly
1351 */
1352 skb_reserve(skb,
1353 RXBUF_ALIGNMENT -
1354 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1)));
1355
1356 skb->dev = dev;
1357
1358 bdp->bufPtr = dma_map_single(NULL, skb->data,
1359 priv->rx_buffer_size + RXBUF_ALIGNMENT,
1360 DMA_FROM_DEVICE);
1361
1362 bdp->length = 0;
1363
1364 /* Mark the buffer empty */
1365 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1366
1367 return skb;
1368 }
1369
1370 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1371 {
1372 struct net_device_stats *stats = &priv->stats;
1373 struct gfar_extra_stats *estats = &priv->extra_stats;
1374
1375 /* If the packet was truncated, none of the other errors
1376 * matter */
1377 if (status & RXBD_TRUNCATED) {
1378 stats->rx_length_errors++;
1379
1380 estats->rx_trunc++;
1381
1382 return;
1383 }
1384 /* Count the errors, if there were any */
1385 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1386 stats->rx_length_errors++;
1387
1388 if (status & RXBD_LARGE)
1389 estats->rx_large++;
1390 else
1391 estats->rx_short++;
1392 }
1393 if (status & RXBD_NONOCTET) {
1394 stats->rx_frame_errors++;
1395 estats->rx_nonoctet++;
1396 }
1397 if (status & RXBD_CRCERR) {
1398 estats->rx_crcerr++;
1399 stats->rx_crc_errors++;
1400 }
1401 if (status & RXBD_OVERRUN) {
1402 estats->rx_overrun++;
1403 stats->rx_crc_errors++;
1404 }
1405 }
1406
1407 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1408 {
1409 struct net_device *dev = (struct net_device *) dev_id;
1410 struct gfar_private *priv = netdev_priv(dev);
1411
1412 #ifdef CONFIG_GFAR_NAPI
1413 u32 tempval;
1414 #endif
1415
1416 /* Clear IEVENT, so rx interrupt isn't called again
1417 * because of this interrupt */
1418 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1419
1420 /* support NAPI */
1421 #ifdef CONFIG_GFAR_NAPI
1422 if (netif_rx_schedule_prep(dev)) {
1423 tempval = gfar_read(&priv->regs->imask);
1424 tempval &= IMASK_RX_DISABLED;
1425 gfar_write(&priv->regs->imask, tempval);
1426
1427 __netif_rx_schedule(dev);
1428 } else {
1429 if (netif_msg_rx_err(priv))
1430 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1431 dev->name, gfar_read(&priv->regs->ievent),
1432 gfar_read(&priv->regs->imask));
1433 }
1434 #else
1435
1436 spin_lock(&priv->lock);
1437 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1438
1439 /* If we are coalescing interrupts, update the timer */
1440 /* Otherwise, clear it */
1441 if (priv->rxcoalescing)
1442 gfar_write(&priv->regs->rxic,
1443 mk_ic_value(priv->rxcount, priv->rxtime));
1444 else
1445 gfar_write(&priv->regs->rxic, 0);
1446
1447 spin_unlock(&priv->lock);
1448 #endif
1449
1450 return IRQ_HANDLED;
1451 }
1452
1453 static inline int gfar_rx_vlan(struct sk_buff *skb,
1454 struct vlan_group *vlgrp, unsigned short vlctl)
1455 {
1456 #ifdef CONFIG_GFAR_NAPI
1457 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1458 #else
1459 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1460 #endif
1461 }
1462
1463 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1464 {
1465 /* If valid headers were found, and valid sums
1466 * were verified, then we tell the kernel that no
1467 * checksumming is necessary. Otherwise, it is */
1468 if (fcb->cip && !fcb->eip && fcb->ctu && !fcb->etu)
1469 skb->ip_summed = CHECKSUM_UNNECESSARY;
1470 else
1471 skb->ip_summed = CHECKSUM_NONE;
1472 }
1473
1474
1475 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1476 {
1477 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1478
1479 /* Remove the FCB from the skb */
1480 skb_pull(skb, GMAC_FCB_LEN);
1481
1482 return fcb;
1483 }
1484
1485 /* gfar_process_frame() -- handle one incoming packet if skb
1486 * isn't NULL. */
1487 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1488 int length)
1489 {
1490 struct gfar_private *priv = netdev_priv(dev);
1491 struct rxfcb *fcb = NULL;
1492
1493 if (skb == NULL) {
1494 if (netif_msg_rx_err(priv))
1495 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1496 priv->stats.rx_dropped++;
1497 priv->extra_stats.rx_skbmissing++;
1498 } else {
1499 int ret;
1500
1501 /* Prep the skb for the packet */
1502 skb_put(skb, length);
1503
1504 /* Grab the FCB if there is one */
1505 if (gfar_uses_fcb(priv))
1506 fcb = gfar_get_fcb(skb);
1507
1508 /* Remove the padded bytes, if there are any */
1509 if (priv->padding)
1510 skb_pull(skb, priv->padding);
1511
1512 if (priv->rx_csum_enable)
1513 gfar_rx_checksum(skb, fcb);
1514
1515 /* Tell the skb what kind of packet this is */
1516 skb->protocol = eth_type_trans(skb, dev);
1517
1518 /* Send the packet up the stack */
1519 if (unlikely(priv->vlgrp && fcb->vln))
1520 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1521 else
1522 ret = RECEIVE(skb);
1523
1524 if (NET_RX_DROP == ret)
1525 priv->extra_stats.kernel_dropped++;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1532 * until the budget/quota has been reached. Returns the number
1533 * of frames handled
1534 */
1535 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1536 {
1537 struct rxbd8 *bdp;
1538 struct sk_buff *skb;
1539 u16 pkt_len;
1540 int howmany = 0;
1541 struct gfar_private *priv = netdev_priv(dev);
1542
1543 /* Get the first full descriptor */
1544 bdp = priv->cur_rx;
1545
1546 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1547 skb = priv->rx_skbuff[priv->skb_currx];
1548
1549 if (!(bdp->status &
1550 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1551 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1552 /* Increment the number of packets */
1553 priv->stats.rx_packets++;
1554 howmany++;
1555
1556 /* Remove the FCS from the packet length */
1557 pkt_len = bdp->length - 4;
1558
1559 gfar_process_frame(dev, skb, pkt_len);
1560
1561 priv->stats.rx_bytes += pkt_len;
1562 } else {
1563 count_errors(bdp->status, priv);
1564
1565 if (skb)
1566 dev_kfree_skb_any(skb);
1567
1568 priv->rx_skbuff[priv->skb_currx] = NULL;
1569 }
1570
1571 dev->last_rx = jiffies;
1572
1573 /* Clear the status flags for this buffer */
1574 bdp->status &= ~RXBD_STATS;
1575
1576 /* Add another skb for the future */
1577 skb = gfar_new_skb(dev, bdp);
1578 priv->rx_skbuff[priv->skb_currx] = skb;
1579
1580 /* Update to the next pointer */
1581 if (bdp->status & RXBD_WRAP)
1582 bdp = priv->rx_bd_base;
1583 else
1584 bdp++;
1585
1586 /* update to point at the next skb */
1587 priv->skb_currx =
1588 (priv->skb_currx +
1589 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1590
1591 }
1592
1593 /* Update the current rxbd pointer to be the next one */
1594 priv->cur_rx = bdp;
1595
1596 /* If no packets have arrived since the
1597 * last one we processed, clear the IEVENT RX and
1598 * BSY bits so that another interrupt won't be
1599 * generated when we set IMASK */
1600 if (bdp->status & RXBD_EMPTY)
1601 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1602
1603 return howmany;
1604 }
1605
1606 #ifdef CONFIG_GFAR_NAPI
1607 static int gfar_poll(struct net_device *dev, int *budget)
1608 {
1609 int howmany;
1610 struct gfar_private *priv = netdev_priv(dev);
1611 int rx_work_limit = *budget;
1612
1613 if (rx_work_limit > dev->quota)
1614 rx_work_limit = dev->quota;
1615
1616 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1617
1618 dev->quota -= howmany;
1619 rx_work_limit -= howmany;
1620 *budget -= howmany;
1621
1622 if (rx_work_limit >= 0) {
1623 netif_rx_complete(dev);
1624
1625 /* Clear the halt bit in RSTAT */
1626 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1627
1628 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1629
1630 /* If we are coalescing interrupts, update the timer */
1631 /* Otherwise, clear it */
1632 if (priv->rxcoalescing)
1633 gfar_write(&priv->regs->rxic,
1634 mk_ic_value(priv->rxcount, priv->rxtime));
1635 else
1636 gfar_write(&priv->regs->rxic, 0);
1637 }
1638
1639 return (rx_work_limit < 0) ? 1 : 0;
1640 }
1641 #endif
1642
1643 /* The interrupt handler for devices with one interrupt */
1644 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1645 {
1646 struct net_device *dev = dev_id;
1647 struct gfar_private *priv = netdev_priv(dev);
1648
1649 /* Save ievent for future reference */
1650 u32 events = gfar_read(&priv->regs->ievent);
1651
1652 /* Clear IEVENT */
1653 gfar_write(&priv->regs->ievent, events);
1654
1655 /* Check for reception */
1656 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1657 gfar_receive(irq, dev_id, regs);
1658
1659 /* Check for transmit completion */
1660 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1661 gfar_transmit(irq, dev_id, regs);
1662
1663 /* Update error statistics */
1664 if (events & IEVENT_TXE) {
1665 priv->stats.tx_errors++;
1666
1667 if (events & IEVENT_LC)
1668 priv->stats.tx_window_errors++;
1669 if (events & IEVENT_CRL)
1670 priv->stats.tx_aborted_errors++;
1671 if (events & IEVENT_XFUN) {
1672 if (netif_msg_tx_err(priv))
1673 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1674 priv->stats.tx_dropped++;
1675 priv->extra_stats.tx_underrun++;
1676
1677 /* Reactivate the Tx Queues */
1678 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1679 }
1680 }
1681 if (events & IEVENT_BSY) {
1682 priv->stats.rx_errors++;
1683 priv->extra_stats.rx_bsy++;
1684
1685 gfar_receive(irq, dev_id, regs);
1686
1687 #ifndef CONFIG_GFAR_NAPI
1688 /* Clear the halt bit in RSTAT */
1689 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1690 #endif
1691
1692 if (netif_msg_rx_err(priv))
1693 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1694 dev->name,
1695 gfar_read(&priv->regs->rstat));
1696 }
1697 if (events & IEVENT_BABR) {
1698 priv->stats.rx_errors++;
1699 priv->extra_stats.rx_babr++;
1700
1701 if (netif_msg_rx_err(priv))
1702 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1703 }
1704 if (events & IEVENT_EBERR) {
1705 priv->extra_stats.eberr++;
1706 if (netif_msg_rx_err(priv))
1707 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1708 }
1709 if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1710 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1711
1712 if (events & IEVENT_BABT) {
1713 priv->extra_stats.tx_babt++;
1714 if (netif_msg_rx_err(priv))
1715 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1716 }
1717
1718 return IRQ_HANDLED;
1719 }
1720
1721 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1722 {
1723 struct net_device *dev = (struct net_device *) dev_id;
1724 struct gfar_private *priv = netdev_priv(dev);
1725
1726 /* Clear the interrupt */
1727 mii_clear_phy_interrupt(priv->mii_info);
1728
1729 /* Disable PHY interrupts */
1730 mii_configure_phy_interrupt(priv->mii_info,
1731 MII_INTERRUPT_DISABLED);
1732
1733 /* Schedule the phy change */
1734 schedule_work(&priv->tq);
1735
1736 return IRQ_HANDLED;
1737 }
1738
1739 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1740 static void gfar_phy_change(void *data)
1741 {
1742 struct net_device *dev = (struct net_device *) data;
1743 struct gfar_private *priv = netdev_priv(dev);
1744 int result = 0;
1745
1746 /* Delay to give the PHY a chance to change the
1747 * register state */
1748 msleep(1);
1749
1750 /* Update the link, speed, duplex */
1751 result = priv->mii_info->phyinfo->read_status(priv->mii_info);
1752
1753 /* Adjust the known status as long as the link
1754 * isn't still coming up */
1755 if((0 == result) || (priv->mii_info->link == 0))
1756 adjust_link(dev);
1757
1758 /* Reenable interrupts, if needed */
1759 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR)
1760 mii_configure_phy_interrupt(priv->mii_info,
1761 MII_INTERRUPT_ENABLED);
1762 }
1763
1764 /* Called every so often on systems that don't interrupt
1765 * the core for PHY changes */
1766 static void gfar_phy_timer(unsigned long data)
1767 {
1768 struct net_device *dev = (struct net_device *) data;
1769 struct gfar_private *priv = netdev_priv(dev);
1770
1771 schedule_work(&priv->tq);
1772
1773 mod_timer(&priv->phy_info_timer, jiffies +
1774 GFAR_PHY_CHANGE_TIME * HZ);
1775 }
1776
1777 /* Keep trying aneg for some time
1778 * If, after GFAR_AN_TIMEOUT seconds, it has not
1779 * finished, we switch to forced.
1780 * Either way, once the process has completed, we either
1781 * request the interrupt, or switch the timer over to
1782 * using gfar_phy_timer to check status */
1783 static void gfar_phy_startup_timer(unsigned long data)
1784 {
1785 int result;
1786 static int secondary = GFAR_AN_TIMEOUT;
1787 struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data;
1788 struct gfar_private *priv = netdev_priv(mii_info->dev);
1789
1790 /* Configure the Auto-negotiation */
1791 result = mii_info->phyinfo->config_aneg(mii_info);
1792
1793 /* If autonegotiation failed to start, and
1794 * we haven't timed out, reset the timer, and return */
1795 if (result && secondary--) {
1796 mod_timer(&priv->phy_info_timer, jiffies + HZ);
1797 return;
1798 } else if (result) {
1799 /* Couldn't start autonegotiation.
1800 * Try switching to forced */
1801 mii_info->autoneg = 0;
1802 result = mii_info->phyinfo->config_aneg(mii_info);
1803
1804 /* Forcing failed! Give up */
1805 if(result) {
1806 if (netif_msg_link(priv))
1807 printk(KERN_ERR "%s: Forcing failed!\n",
1808 mii_info->dev->name);
1809 return;
1810 }
1811 }
1812
1813 /* Kill the timer so it can be restarted */
1814 del_timer_sync(&priv->phy_info_timer);
1815
1816 /* Grab the PHY interrupt, if necessary/possible */
1817 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
1818 if (request_irq(priv->einfo->interruptPHY,
1819 phy_interrupt,
1820 SA_SHIRQ,
1821 "phy_interrupt",
1822 mii_info->dev) < 0) {
1823 if (netif_msg_intr(priv))
1824 printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n",
1825 mii_info->dev->name,
1826 priv->einfo->interruptPHY);
1827 } else {
1828 mii_configure_phy_interrupt(priv->mii_info,
1829 MII_INTERRUPT_ENABLED);
1830 return;
1831 }
1832 }
1833
1834 /* Start the timer again, this time in order to
1835 * handle a change in status */
1836 init_timer(&priv->phy_info_timer);
1837 priv->phy_info_timer.function = &gfar_phy_timer;
1838 priv->phy_info_timer.data = (unsigned long) mii_info->dev;
1839 mod_timer(&priv->phy_info_timer, jiffies +
1840 GFAR_PHY_CHANGE_TIME * HZ);
1841 }
1842
1843 /* Called every time the controller might need to be made
1844 * aware of new link state. The PHY code conveys this
1845 * information through variables in the priv structure, and this
1846 * function converts those variables into the appropriate
1847 * register values, and can bring down the device if needed.
1848 */
1849 static void adjust_link(struct net_device *dev)
1850 {
1851 struct gfar_private *priv = netdev_priv(dev);
1852 struct gfar *regs = priv->regs;
1853 u32 tempval;
1854 struct gfar_mii_info *mii_info = priv->mii_info;
1855
1856 if (mii_info->link) {
1857 /* Now we make sure that we can be in full duplex mode.
1858 * If not, we operate in half-duplex mode. */
1859 if (mii_info->duplex != priv->oldduplex) {
1860 if (!(mii_info->duplex)) {
1861 tempval = gfar_read(&regs->maccfg2);
1862 tempval &= ~(MACCFG2_FULL_DUPLEX);
1863 gfar_write(&regs->maccfg2, tempval);
1864
1865 if (netif_msg_link(priv))
1866 printk(KERN_INFO "%s: Half Duplex\n",
1867 dev->name);
1868 } else {
1869 tempval = gfar_read(&regs->maccfg2);
1870 tempval |= MACCFG2_FULL_DUPLEX;
1871 gfar_write(&regs->maccfg2, tempval);
1872
1873 if (netif_msg_link(priv))
1874 printk(KERN_INFO "%s: Full Duplex\n",
1875 dev->name);
1876 }
1877
1878 priv->oldduplex = mii_info->duplex;
1879 }
1880
1881 if (mii_info->speed != priv->oldspeed) {
1882 switch (mii_info->speed) {
1883 case 1000:
1884 tempval = gfar_read(&regs->maccfg2);
1885 tempval =
1886 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1887 gfar_write(&regs->maccfg2, tempval);
1888 break;
1889 case 100:
1890 case 10:
1891 tempval = gfar_read(&regs->maccfg2);
1892 tempval =
1893 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1894 gfar_write(&regs->maccfg2, tempval);
1895 break;
1896 default:
1897 if (netif_msg_link(priv))
1898 printk(KERN_WARNING
1899 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1900 dev->name, mii_info->speed);
1901 break;
1902 }
1903
1904 if (netif_msg_link(priv))
1905 printk(KERN_INFO "%s: Speed %dBT\n", dev->name,
1906 mii_info->speed);
1907
1908 priv->oldspeed = mii_info->speed;
1909 }
1910
1911 if (!priv->oldlink) {
1912 if (netif_msg_link(priv))
1913 printk(KERN_INFO "%s: Link is up\n", dev->name);
1914 priv->oldlink = 1;
1915 netif_carrier_on(dev);
1916 netif_schedule(dev);
1917 }
1918 } else {
1919 if (priv->oldlink) {
1920 if (netif_msg_link(priv))
1921 printk(KERN_INFO "%s: Link is down\n",
1922 dev->name);
1923 priv->oldlink = 0;
1924 priv->oldspeed = 0;
1925 priv->oldduplex = -1;
1926 netif_carrier_off(dev);
1927 }
1928 }
1929 }
1930
1931
1932 /* Update the hash table based on the current list of multicast
1933 * addresses we subscribe to. Also, change the promiscuity of
1934 * the device based on the flags (this function is called
1935 * whenever dev->flags is changed */
1936 static void gfar_set_multi(struct net_device *dev)
1937 {
1938 struct dev_mc_list *mc_ptr;
1939 struct gfar_private *priv = netdev_priv(dev);
1940 struct gfar *regs = priv->regs;
1941 u32 tempval;
1942
1943 if(dev->flags & IFF_PROMISC) {
1944 if (netif_msg_drv(priv))
1945 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1946 dev->name);
1947 /* Set RCTRL to PROM */
1948 tempval = gfar_read(&regs->rctrl);
1949 tempval |= RCTRL_PROM;
1950 gfar_write(&regs->rctrl, tempval);
1951 } else {
1952 /* Set RCTRL to not PROM */
1953 tempval = gfar_read(&regs->rctrl);
1954 tempval &= ~(RCTRL_PROM);
1955 gfar_write(&regs->rctrl, tempval);
1956 }
1957
1958 if(dev->flags & IFF_ALLMULTI) {
1959 /* Set the hash to rx all multicast frames */
1960 gfar_write(&regs->igaddr0, 0xffffffff);
1961 gfar_write(&regs->igaddr1, 0xffffffff);
1962 gfar_write(&regs->igaddr2, 0xffffffff);
1963 gfar_write(&regs->igaddr3, 0xffffffff);
1964 gfar_write(&regs->igaddr4, 0xffffffff);
1965 gfar_write(&regs->igaddr5, 0xffffffff);
1966 gfar_write(&regs->igaddr6, 0xffffffff);
1967 gfar_write(&regs->igaddr7, 0xffffffff);
1968 gfar_write(&regs->gaddr0, 0xffffffff);
1969 gfar_write(&regs->gaddr1, 0xffffffff);
1970 gfar_write(&regs->gaddr2, 0xffffffff);
1971 gfar_write(&regs->gaddr3, 0xffffffff);
1972 gfar_write(&regs->gaddr4, 0xffffffff);
1973 gfar_write(&regs->gaddr5, 0xffffffff);
1974 gfar_write(&regs->gaddr6, 0xffffffff);
1975 gfar_write(&regs->gaddr7, 0xffffffff);
1976 } else {
1977 /* zero out the hash */
1978 gfar_write(&regs->igaddr0, 0x0);
1979 gfar_write(&regs->igaddr1, 0x0);
1980 gfar_write(&regs->igaddr2, 0x0);
1981 gfar_write(&regs->igaddr3, 0x0);
1982 gfar_write(&regs->igaddr4, 0x0);
1983 gfar_write(&regs->igaddr5, 0x0);
1984 gfar_write(&regs->igaddr6, 0x0);
1985 gfar_write(&regs->igaddr7, 0x0);
1986 gfar_write(&regs->gaddr0, 0x0);
1987 gfar_write(&regs->gaddr1, 0x0);
1988 gfar_write(&regs->gaddr2, 0x0);
1989 gfar_write(&regs->gaddr3, 0x0);
1990 gfar_write(&regs->gaddr4, 0x0);
1991 gfar_write(&regs->gaddr5, 0x0);
1992 gfar_write(&regs->gaddr6, 0x0);
1993 gfar_write(&regs->gaddr7, 0x0);
1994
1995 if(dev->mc_count == 0)
1996 return;
1997
1998 /* Parse the list, and set the appropriate bits */
1999 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2000 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2001 }
2002 }
2003
2004 return;
2005 }
2006
2007 /* Set the appropriate hash bit for the given addr */
2008 /* The algorithm works like so:
2009 * 1) Take the Destination Address (ie the multicast address), and
2010 * do a CRC on it (little endian), and reverse the bits of the
2011 * result.
2012 * 2) Use the 8 most significant bits as a hash into a 256-entry
2013 * table. The table is controlled through 8 32-bit registers:
2014 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2015 * gaddr7. This means that the 3 most significant bits in the
2016 * hash index which gaddr register to use, and the 5 other bits
2017 * indicate which bit (assuming an IBM numbering scheme, which
2018 * for PowerPC (tm) is usually the case) in the register holds
2019 * the entry. */
2020 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2021 {
2022 u32 tempval;
2023 struct gfar_private *priv = netdev_priv(dev);
2024 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2025 int width = priv->hash_width;
2026 u8 whichbit = (result >> (32 - width)) & 0x1f;
2027 u8 whichreg = result >> (32 - width + 5);
2028 u32 value = (1 << (31-whichbit));
2029
2030 tempval = gfar_read(priv->hash_regs[whichreg]);
2031 tempval |= value;
2032 gfar_write(priv->hash_regs[whichreg], tempval);
2033
2034 return;
2035 }
2036
2037 /* GFAR error interrupt handler */
2038 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
2039 {
2040 struct net_device *dev = dev_id;
2041 struct gfar_private *priv = netdev_priv(dev);
2042
2043 /* Save ievent for future reference */
2044 u32 events = gfar_read(&priv->regs->ievent);
2045
2046 /* Clear IEVENT */
2047 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
2048
2049 /* Hmm... */
2050 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2051 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2052 dev->name, events, gfar_read(&priv->regs->imask));
2053
2054 /* Update the error counters */
2055 if (events & IEVENT_TXE) {
2056 priv->stats.tx_errors++;
2057
2058 if (events & IEVENT_LC)
2059 priv->stats.tx_window_errors++;
2060 if (events & IEVENT_CRL)
2061 priv->stats.tx_aborted_errors++;
2062 if (events & IEVENT_XFUN) {
2063 if (netif_msg_tx_err(priv))
2064 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
2065 dev->name);
2066 priv->stats.tx_dropped++;
2067 priv->extra_stats.tx_underrun++;
2068
2069 /* Reactivate the Tx Queues */
2070 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2071 }
2072 if (netif_msg_tx_err(priv))
2073 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2074 }
2075 if (events & IEVENT_BSY) {
2076 priv->stats.rx_errors++;
2077 priv->extra_stats.rx_bsy++;
2078
2079 gfar_receive(irq, dev_id, regs);
2080
2081 #ifndef CONFIG_GFAR_NAPI
2082 /* Clear the halt bit in RSTAT */
2083 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
2084 #endif
2085
2086 if (netif_msg_rx_err(priv))
2087 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
2088 dev->name,
2089 gfar_read(&priv->regs->rstat));
2090 }
2091 if (events & IEVENT_BABR) {
2092 priv->stats.rx_errors++;
2093 priv->extra_stats.rx_babr++;
2094
2095 if (netif_msg_rx_err(priv))
2096 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
2097 }
2098 if (events & IEVENT_EBERR) {
2099 priv->extra_stats.eberr++;
2100 if (netif_msg_rx_err(priv))
2101 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
2102 }
2103 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2104 if (netif_msg_rx_status(priv))
2105 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2106
2107 if (events & IEVENT_BABT) {
2108 priv->extra_stats.tx_babt++;
2109 if (netif_msg_tx_err(priv))
2110 printk(KERN_DEBUG "%s: babt error\n", dev->name);
2111 }
2112 return IRQ_HANDLED;
2113 }
2114
2115 /* Structure for a device driver */
2116 static struct device_driver gfar_driver = {
2117 .name = "fsl-gianfar",
2118 .bus = &platform_bus_type,
2119 .probe = gfar_probe,
2120 .remove = gfar_remove,
2121 };
2122
2123 static int __init gfar_init(void)
2124 {
2125 return driver_register(&gfar_driver);
2126 }
2127
2128 static void __exit gfar_exit(void)
2129 {
2130 driver_unregister(&gfar_driver);
2131 }
2132
2133 module_init(gfar_init);
2134 module_exit(gfar_exit);
2135