Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
10 *
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * Gianfar: AKA Lambda Draconis, "Dragon"
19 * RA 11 31 24.2
20 * Dec +69 19 52
21 * V 3.84
22 * B-V +1.62
23 *
24 * Theory of operation
25 * This driver is designed for the Triple-speed Ethernet
26 * controllers on the Freescale 8540/8560 integrated processors,
27 * as well as the Fast Ethernet Controller on the 8540.
28 *
29 * The driver is initialized through platform_device. Structures which
30 * define the configuration needed by the board are defined in a
31 * board structure in arch/ppc/platforms (though I do not
32 * discount the possibility that other architectures could one
33 * day be supported. One assumption the driver currently makes
34 * is that the PHY is configured in such a way to advertise all
35 * capabilities. This is a sensible default, and on certain
36 * PHYs, changing this default encounters substantial errata
37 * issues. Future versions may remove this requirement, but for
38 * now, it is best for the firmware to ensure this is the case.
39 *
40 * The Gianfar Ethernet Controller uses a ring of buffer
41 * descriptors. The beginning is indicated by a register
42 * pointing to the physical address of the start of the ring.
43 * The end is determined by a "wrap" bit being set in the
44 * last descriptor of the ring.
45 *
46 * When a packet is received, the RXF bit in the
47 * IEVENT register is set, triggering an interrupt when the
48 * corresponding bit in the IMASK register is also set (if
49 * interrupt coalescing is active, then the interrupt may not
50 * happen immediately, but will wait until either a set number
51 * of frames or amount of time have passed.). In NAPI, the
52 * interrupt handler will signal there is work to be done, and
53 * exit. Without NAPI, the packet(s) will be handled
54 * immediately. Both methods will start at the last known empty
55 * descriptor, and process every subsequent descriptor until there
56 * are none left with data (NAPI will stop after a set number of
57 * packets to give time to other tasks, but will eventually
58 * process all the packets). The data arrives inside a
59 * pre-allocated skb, and so after the skb is passed up to the
60 * stack, a new skb must be allocated, and the address field in
61 * the buffer descriptor must be updated to indicate this new
62 * skb.
63 *
64 * When the kernel requests that a packet be transmitted, the
65 * driver starts where it left off last time, and points the
66 * descriptor at the buffer which was passed in. The driver
67 * then informs the DMA engine that there are packets ready to
68 * be transmitted. Once the controller is finished transmitting
69 * the packet, an interrupt may be triggered (under the same
70 * conditions as for reception, but depending on the TXF bit).
71 * The driver then cleans up the buffer.
72 */
73
74 #include <linux/config.h>
75 #include <linux/kernel.h>
76 #include <linux/sched.h>
77 #include <linux/string.h>
78 #include <linux/errno.h>
79 #include <linux/slab.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/delay.h>
83 #include <linux/netdevice.h>
84 #include <linux/etherdevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/spinlock.h>
87 #include <linux/mm.h>
88 #include <linux/device.h>
89
90 #include <asm/io.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/version.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97
98 #include "gianfar.h"
99 #include "gianfar_phy.h"
100
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
108 #else
109 #define RECEIVE(x) netif_rx(x)
110 #endif
111
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.1";
114
115 int startup_gfar(struct net_device *dev);
116 static int gfar_enet_open(struct net_device *dev);
117 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
118 static void gfar_timeout(struct net_device *dev);
119 static int gfar_close(struct net_device *dev);
120 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
121 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
122 static int gfar_set_mac_address(struct net_device *dev);
123 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
124 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
126 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs);
127 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
128 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs);
129 static void gfar_phy_change(void *data);
130 static void gfar_phy_timer(unsigned long data);
131 static void adjust_link(struct net_device *dev);
132 static void init_registers(struct net_device *dev);
133 static int init_phy(struct net_device *dev);
134 static int gfar_probe(struct device *device);
135 static int gfar_remove(struct device *device);
136 void free_skb_resources(struct gfar_private *priv);
137 static void gfar_set_multi(struct net_device *dev);
138 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
139 #ifdef CONFIG_GFAR_NAPI
140 static int gfar_poll(struct net_device *dev, int *budget);
141 #endif
142 static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
143 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
144 static void gfar_phy_startup_timer(unsigned long data);
145
146 extern struct ethtool_ops gfar_ethtool_ops;
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static int gfar_probe(struct device *device)
153 {
154 u32 tempval;
155 struct net_device *dev = NULL;
156 struct gfar_private *priv = NULL;
157 struct platform_device *pdev = to_platform_device(device);
158 struct gianfar_platform_data *einfo;
159 struct resource *r;
160 int idx;
161 int err = 0;
162 int dev_ethtool_ops = 0;
163
164 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
165
166 if (einfo == NULL) {
167 printk(KERN_ERR "gfar %d: Missing additional data!\n",
168 pdev->id);
169
170 return -ENODEV;
171 }
172
173 /* Create an ethernet device instance */
174 dev = alloc_etherdev(sizeof (*priv));
175
176 if (dev == NULL)
177 return -ENOMEM;
178
179 priv = netdev_priv(dev);
180
181 /* Set the info in the priv to the current info */
182 priv->einfo = einfo;
183
184 /* fill out IRQ fields */
185 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
186 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
187 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
188 priv->interruptError = platform_get_irq_byname(pdev, "error");
189 } else {
190 priv->interruptTransmit = platform_get_irq(pdev, 0);
191 }
192
193 /* get a pointer to the register memory */
194 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
195 priv->regs = (struct gfar *)
196 ioremap(r->start, sizeof (struct gfar));
197
198 if (priv->regs == NULL) {
199 err = -ENOMEM;
200 goto regs_fail;
201 }
202
203 /* Set the PHY base address */
204 priv->phyregs = (struct gfar *)
205 ioremap(einfo->phy_reg_addr, sizeof (struct gfar));
206
207 if (priv->phyregs == NULL) {
208 err = -ENOMEM;
209 goto phy_regs_fail;
210 }
211
212 spin_lock_init(&priv->lock);
213
214 dev_set_drvdata(device, dev);
215
216 /* Stop the DMA engine now, in case it was running before */
217 /* (The firmware could have used it, and left it running). */
218 /* To do this, we write Graceful Receive Stop and Graceful */
219 /* Transmit Stop, and then wait until the corresponding bits */
220 /* in IEVENT indicate the stops have completed. */
221 tempval = gfar_read(&priv->regs->dmactrl);
222 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
223 gfar_write(&priv->regs->dmactrl, tempval);
224
225 tempval = gfar_read(&priv->regs->dmactrl);
226 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
227 gfar_write(&priv->regs->dmactrl, tempval);
228
229 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
230 cpu_relax();
231
232 /* Reset MAC layer */
233 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
234
235 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
236 gfar_write(&priv->regs->maccfg1, tempval);
237
238 /* Initialize MACCFG2. */
239 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
240
241 /* Initialize ECNTRL */
242 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
243
244 /* Copy the station address into the dev structure, */
245 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
246
247 /* Set the dev->base_addr to the gfar reg region */
248 dev->base_addr = (unsigned long) (priv->regs);
249
250 SET_MODULE_OWNER(dev);
251 SET_NETDEV_DEV(dev, device);
252
253 /* Fill in the dev structure */
254 dev->open = gfar_enet_open;
255 dev->hard_start_xmit = gfar_start_xmit;
256 dev->tx_timeout = gfar_timeout;
257 dev->watchdog_timeo = TX_TIMEOUT;
258 #ifdef CONFIG_GFAR_NAPI
259 dev->poll = gfar_poll;
260 dev->weight = GFAR_DEV_WEIGHT;
261 #endif
262 dev->stop = gfar_close;
263 dev->get_stats = gfar_get_stats;
264 dev->change_mtu = gfar_change_mtu;
265 dev->mtu = 1500;
266 dev->set_multicast_list = gfar_set_multi;
267
268 /* Index into the array of possible ethtool
269 * ops to catch all 4 possibilities */
270 if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) == 0)
271 dev_ethtool_ops += 1;
272
273 if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE) == 0)
274 dev_ethtool_ops += 2;
275
276 dev->ethtool_ops = gfar_op_array[dev_ethtool_ops];
277
278 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
279 #ifdef CONFIG_GFAR_BUFSTASH
280 priv->rx_stash_size = STASH_LENGTH;
281 #endif
282 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
283 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
284
285 priv->txcoalescing = DEFAULT_TX_COALESCE;
286 priv->txcount = DEFAULT_TXCOUNT;
287 priv->txtime = DEFAULT_TXTIME;
288 priv->rxcoalescing = DEFAULT_RX_COALESCE;
289 priv->rxcount = DEFAULT_RXCOUNT;
290 priv->rxtime = DEFAULT_RXTIME;
291
292 err = register_netdev(dev);
293
294 if (err) {
295 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
296 dev->name);
297 goto register_fail;
298 }
299
300 /* Print out the device info */
301 printk(KERN_INFO DEVICE_NAME, dev->name);
302 for (idx = 0; idx < 6; idx++)
303 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
304 printk("\n");
305
306 /* Even more device info helps when determining which kernel */
307 /* provided which set of benchmarks. Since this is global for all */
308 /* devices, we only print it once */
309 #ifdef CONFIG_GFAR_NAPI
310 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
311 #else
312 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
313 #endif
314 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
315 dev->name, priv->rx_ring_size, priv->tx_ring_size);
316
317 return 0;
318
319 register_fail:
320 iounmap((void *) priv->phyregs);
321 phy_regs_fail:
322 iounmap((void *) priv->regs);
323 regs_fail:
324 free_netdev(dev);
325 return -ENOMEM;
326 }
327
328 static int gfar_remove(struct device *device)
329 {
330 struct net_device *dev = dev_get_drvdata(device);
331 struct gfar_private *priv = netdev_priv(dev);
332
333 dev_set_drvdata(device, NULL);
334
335 iounmap((void *) priv->regs);
336 iounmap((void *) priv->phyregs);
337 free_netdev(dev);
338
339 return 0;
340 }
341
342
343 /* Configure the PHY for dev.
344 * returns 0 if success. -1 if failure
345 */
346 static int init_phy(struct net_device *dev)
347 {
348 struct gfar_private *priv = netdev_priv(dev);
349 struct phy_info *curphy;
350 unsigned int timeout = PHY_INIT_TIMEOUT;
351 struct gfar *phyregs = priv->phyregs;
352 struct gfar_mii_info *mii_info;
353 int err;
354
355 priv->oldlink = 0;
356 priv->oldspeed = 0;
357 priv->oldduplex = -1;
358
359 mii_info = kmalloc(sizeof(struct gfar_mii_info),
360 GFP_KERNEL);
361
362 if(NULL == mii_info) {
363 printk(KERN_ERR "%s: Could not allocate mii_info\n",
364 dev->name);
365 return -ENOMEM;
366 }
367
368 mii_info->speed = SPEED_1000;
369 mii_info->duplex = DUPLEX_FULL;
370 mii_info->pause = 0;
371 mii_info->link = 1;
372
373 mii_info->advertising = (ADVERTISED_10baseT_Half |
374 ADVERTISED_10baseT_Full |
375 ADVERTISED_100baseT_Half |
376 ADVERTISED_100baseT_Full |
377 ADVERTISED_1000baseT_Full);
378 mii_info->autoneg = 1;
379
380 spin_lock_init(&mii_info->mdio_lock);
381
382 mii_info->mii_id = priv->einfo->phyid;
383
384 mii_info->dev = dev;
385
386 mii_info->mdio_read = &read_phy_reg;
387 mii_info->mdio_write = &write_phy_reg;
388
389 priv->mii_info = mii_info;
390
391 /* Reset the management interface */
392 gfar_write(&phyregs->miimcfg, MIIMCFG_RESET);
393
394 /* Setup the MII Mgmt clock speed */
395 gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE);
396
397 /* Wait until the bus is free */
398 while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) &&
399 timeout--)
400 cpu_relax();
401
402 if(timeout <= 0) {
403 printk(KERN_ERR "%s: The MII Bus is stuck!\n",
404 dev->name);
405 err = -1;
406 goto bus_fail;
407 }
408
409 /* get info for this PHY */
410 curphy = get_phy_info(priv->mii_info);
411
412 if (curphy == NULL) {
413 printk(KERN_ERR "%s: No PHY found\n", dev->name);
414 err = -1;
415 goto no_phy;
416 }
417
418 mii_info->phyinfo = curphy;
419
420 /* Run the commands which initialize the PHY */
421 if(curphy->init) {
422 err = curphy->init(priv->mii_info);
423
424 if (err)
425 goto phy_init_fail;
426 }
427
428 return 0;
429
430 phy_init_fail:
431 no_phy:
432 bus_fail:
433 kfree(mii_info);
434
435 return err;
436 }
437
438 static void init_registers(struct net_device *dev)
439 {
440 struct gfar_private *priv = netdev_priv(dev);
441
442 /* Clear IEVENT */
443 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
444
445 /* Initialize IMASK */
446 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
447
448 /* Init hash registers to zero */
449 gfar_write(&priv->regs->iaddr0, 0);
450 gfar_write(&priv->regs->iaddr1, 0);
451 gfar_write(&priv->regs->iaddr2, 0);
452 gfar_write(&priv->regs->iaddr3, 0);
453 gfar_write(&priv->regs->iaddr4, 0);
454 gfar_write(&priv->regs->iaddr5, 0);
455 gfar_write(&priv->regs->iaddr6, 0);
456 gfar_write(&priv->regs->iaddr7, 0);
457
458 gfar_write(&priv->regs->gaddr0, 0);
459 gfar_write(&priv->regs->gaddr1, 0);
460 gfar_write(&priv->regs->gaddr2, 0);
461 gfar_write(&priv->regs->gaddr3, 0);
462 gfar_write(&priv->regs->gaddr4, 0);
463 gfar_write(&priv->regs->gaddr5, 0);
464 gfar_write(&priv->regs->gaddr6, 0);
465 gfar_write(&priv->regs->gaddr7, 0);
466
467 /* Zero out rctrl */
468 gfar_write(&priv->regs->rctrl, 0x00000000);
469
470 /* Zero out the rmon mib registers if it has them */
471 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
472 memset((void *) &(priv->regs->rmon), 0,
473 sizeof (struct rmon_mib));
474
475 /* Mask off the CAM interrupts */
476 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
477 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
478 }
479
480 /* Initialize the max receive buffer length */
481 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
482
483 #ifdef CONFIG_GFAR_BUFSTASH
484 /* If we are stashing buffers, we need to set the
485 * extraction length to the size of the buffer */
486 gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16);
487 #endif
488
489 /* Initialize the Minimum Frame Length Register */
490 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
491
492 /* Setup Attributes so that snooping is on for rx */
493 gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS);
494 gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS);
495
496 /* Assign the TBI an address which won't conflict with the PHYs */
497 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
498 }
499
500 void stop_gfar(struct net_device *dev)
501 {
502 struct gfar_private *priv = netdev_priv(dev);
503 struct gfar *regs = priv->regs;
504 unsigned long flags;
505 u32 tempval;
506
507 /* Lock it down */
508 spin_lock_irqsave(&priv->lock, flags);
509
510 /* Tell the kernel the link is down */
511 priv->mii_info->link = 0;
512 adjust_link(dev);
513
514 /* Mask all interrupts */
515 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
516
517 /* Clear all interrupts */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520 /* Stop the DMA, and wait for it to stop */
521 tempval = gfar_read(&priv->regs->dmactrl);
522 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
523 != (DMACTRL_GRS | DMACTRL_GTS)) {
524 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
525 gfar_write(&priv->regs->dmactrl, tempval);
526
527 while (!(gfar_read(&priv->regs->ievent) &
528 (IEVENT_GRSC | IEVENT_GTSC)))
529 cpu_relax();
530 }
531
532 /* Disable Rx and Tx */
533 tempval = gfar_read(&regs->maccfg1);
534 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
535 gfar_write(&regs->maccfg1, tempval);
536
537 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
538 /* Clear any pending interrupts */
539 mii_clear_phy_interrupt(priv->mii_info);
540
541 /* Disable PHY Interrupts */
542 mii_configure_phy_interrupt(priv->mii_info,
543 MII_INTERRUPT_DISABLED);
544 }
545
546 spin_unlock_irqrestore(&priv->lock, flags);
547
548 /* Free the IRQs */
549 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
550 free_irq(priv->interruptError, dev);
551 free_irq(priv->interruptTransmit, dev);
552 free_irq(priv->interruptReceive, dev);
553 } else {
554 free_irq(priv->interruptTransmit, dev);
555 }
556
557 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
558 free_irq(priv->einfo->interruptPHY, dev);
559 } else {
560 del_timer_sync(&priv->phy_info_timer);
561 }
562
563 free_skb_resources(priv);
564
565 dma_free_coherent(NULL,
566 sizeof(struct txbd8)*priv->tx_ring_size
567 + sizeof(struct rxbd8)*priv->rx_ring_size,
568 priv->tx_bd_base,
569 gfar_read(&regs->tbase));
570 }
571
572 /* If there are any tx skbs or rx skbs still around, free them.
573 * Then free tx_skbuff and rx_skbuff */
574 void free_skb_resources(struct gfar_private *priv)
575 {
576 struct rxbd8 *rxbdp;
577 struct txbd8 *txbdp;
578 int i;
579
580 /* Go through all the buffer descriptors and free their data buffers */
581 txbdp = priv->tx_bd_base;
582
583 for (i = 0; i < priv->tx_ring_size; i++) {
584
585 if (priv->tx_skbuff[i]) {
586 dma_unmap_single(NULL, txbdp->bufPtr,
587 txbdp->length,
588 DMA_TO_DEVICE);
589 dev_kfree_skb_any(priv->tx_skbuff[i]);
590 priv->tx_skbuff[i] = NULL;
591 }
592 }
593
594 kfree(priv->tx_skbuff);
595
596 rxbdp = priv->rx_bd_base;
597
598 /* rx_skbuff is not guaranteed to be allocated, so only
599 * free it and its contents if it is allocated */
600 if(priv->rx_skbuff != NULL) {
601 for (i = 0; i < priv->rx_ring_size; i++) {
602 if (priv->rx_skbuff[i]) {
603 dma_unmap_single(NULL, rxbdp->bufPtr,
604 priv->rx_buffer_size
605 + RXBUF_ALIGNMENT,
606 DMA_FROM_DEVICE);
607
608 dev_kfree_skb_any(priv->rx_skbuff[i]);
609 priv->rx_skbuff[i] = NULL;
610 }
611
612 rxbdp->status = 0;
613 rxbdp->length = 0;
614 rxbdp->bufPtr = 0;
615
616 rxbdp++;
617 }
618
619 kfree(priv->rx_skbuff);
620 }
621 }
622
623 /* Bring the controller up and running */
624 int startup_gfar(struct net_device *dev)
625 {
626 struct txbd8 *txbdp;
627 struct rxbd8 *rxbdp;
628 dma_addr_t addr;
629 unsigned long vaddr;
630 int i;
631 struct gfar_private *priv = netdev_priv(dev);
632 struct gfar *regs = priv->regs;
633 u32 tempval;
634 int err = 0;
635
636 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
637
638 /* Allocate memory for the buffer descriptors */
639 vaddr = (unsigned long) dma_alloc_coherent(NULL,
640 sizeof (struct txbd8) * priv->tx_ring_size +
641 sizeof (struct rxbd8) * priv->rx_ring_size,
642 &addr, GFP_KERNEL);
643
644 if (vaddr == 0) {
645 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
646 dev->name);
647 return -ENOMEM;
648 }
649
650 priv->tx_bd_base = (struct txbd8 *) vaddr;
651
652 /* enet DMA only understands physical addresses */
653 gfar_write(&regs->tbase, addr);
654
655 /* Start the rx descriptor ring where the tx ring leaves off */
656 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
657 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
658 priv->rx_bd_base = (struct rxbd8 *) vaddr;
659 gfar_write(&regs->rbase, addr);
660
661 /* Setup the skbuff rings */
662 priv->tx_skbuff =
663 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
664 priv->tx_ring_size, GFP_KERNEL);
665
666 if (priv->tx_skbuff == NULL) {
667 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
668 dev->name);
669 err = -ENOMEM;
670 goto tx_skb_fail;
671 }
672
673 for (i = 0; i < priv->tx_ring_size; i++)
674 priv->tx_skbuff[i] = NULL;
675
676 priv->rx_skbuff =
677 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
678 priv->rx_ring_size, GFP_KERNEL);
679
680 if (priv->rx_skbuff == NULL) {
681 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
682 dev->name);
683 err = -ENOMEM;
684 goto rx_skb_fail;
685 }
686
687 for (i = 0; i < priv->rx_ring_size; i++)
688 priv->rx_skbuff[i] = NULL;
689
690 /* Initialize some variables in our dev structure */
691 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
692 priv->cur_rx = priv->rx_bd_base;
693 priv->skb_curtx = priv->skb_dirtytx = 0;
694 priv->skb_currx = 0;
695
696 /* Initialize Transmit Descriptor Ring */
697 txbdp = priv->tx_bd_base;
698 for (i = 0; i < priv->tx_ring_size; i++) {
699 txbdp->status = 0;
700 txbdp->length = 0;
701 txbdp->bufPtr = 0;
702 txbdp++;
703 }
704
705 /* Set the last descriptor in the ring to indicate wrap */
706 txbdp--;
707 txbdp->status |= TXBD_WRAP;
708
709 rxbdp = priv->rx_bd_base;
710 for (i = 0; i < priv->rx_ring_size; i++) {
711 struct sk_buff *skb = NULL;
712
713 rxbdp->status = 0;
714
715 skb = gfar_new_skb(dev, rxbdp);
716
717 priv->rx_skbuff[i] = skb;
718
719 rxbdp++;
720 }
721
722 /* Set the last descriptor in the ring to wrap */
723 rxbdp--;
724 rxbdp->status |= RXBD_WRAP;
725
726 /* If the device has multiple interrupts, register for
727 * them. Otherwise, only register for the one */
728 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
729 /* Install our interrupt handlers for Error,
730 * Transmit, and Receive */
731 if (request_irq(priv->interruptError, gfar_error,
732 0, "enet_error", dev) < 0) {
733 printk(KERN_ERR "%s: Can't get IRQ %d\n",
734 dev->name, priv->interruptError);
735
736 err = -1;
737 goto err_irq_fail;
738 }
739
740 if (request_irq(priv->interruptTransmit, gfar_transmit,
741 0, "enet_tx", dev) < 0) {
742 printk(KERN_ERR "%s: Can't get IRQ %d\n",
743 dev->name, priv->interruptTransmit);
744
745 err = -1;
746
747 goto tx_irq_fail;
748 }
749
750 if (request_irq(priv->interruptReceive, gfar_receive,
751 0, "enet_rx", dev) < 0) {
752 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
753 dev->name, priv->interruptReceive);
754
755 err = -1;
756 goto rx_irq_fail;
757 }
758 } else {
759 if (request_irq(priv->interruptTransmit, gfar_interrupt,
760 0, "gfar_interrupt", dev) < 0) {
761 printk(KERN_ERR "%s: Can't get IRQ %d\n",
762 dev->name, priv->interruptError);
763
764 err = -1;
765 goto err_irq_fail;
766 }
767 }
768
769 /* Set up the PHY change work queue */
770 INIT_WORK(&priv->tq, gfar_phy_change, dev);
771
772 init_timer(&priv->phy_info_timer);
773 priv->phy_info_timer.function = &gfar_phy_startup_timer;
774 priv->phy_info_timer.data = (unsigned long) priv->mii_info;
775 mod_timer(&priv->phy_info_timer, jiffies + HZ);
776
777 /* Configure the coalescing support */
778 if (priv->txcoalescing)
779 gfar_write(&regs->txic,
780 mk_ic_value(priv->txcount, priv->txtime));
781 else
782 gfar_write(&regs->txic, 0);
783
784 if (priv->rxcoalescing)
785 gfar_write(&regs->rxic,
786 mk_ic_value(priv->rxcount, priv->rxtime));
787 else
788 gfar_write(&regs->rxic, 0);
789
790 init_waitqueue_head(&priv->rxcleanupq);
791
792 /* Enable Rx and Tx in MACCFG1 */
793 tempval = gfar_read(&regs->maccfg1);
794 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
795 gfar_write(&regs->maccfg1, tempval);
796
797 /* Initialize DMACTRL to have WWR and WOP */
798 tempval = gfar_read(&priv->regs->dmactrl);
799 tempval |= DMACTRL_INIT_SETTINGS;
800 gfar_write(&priv->regs->dmactrl, tempval);
801
802 /* Clear THLT, so that the DMA starts polling now */
803 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
804
805 /* Make sure we aren't stopped */
806 tempval = gfar_read(&priv->regs->dmactrl);
807 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
808 gfar_write(&priv->regs->dmactrl, tempval);
809
810 /* Unmask the interrupts we look for */
811 gfar_write(&regs->imask, IMASK_DEFAULT);
812
813 return 0;
814
815 rx_irq_fail:
816 free_irq(priv->interruptTransmit, dev);
817 tx_irq_fail:
818 free_irq(priv->interruptError, dev);
819 err_irq_fail:
820 rx_skb_fail:
821 free_skb_resources(priv);
822 tx_skb_fail:
823 dma_free_coherent(NULL,
824 sizeof(struct txbd8)*priv->tx_ring_size
825 + sizeof(struct rxbd8)*priv->rx_ring_size,
826 priv->tx_bd_base,
827 gfar_read(&regs->tbase));
828
829 if (priv->mii_info->phyinfo->close)
830 priv->mii_info->phyinfo->close(priv->mii_info);
831
832 kfree(priv->mii_info);
833
834 return err;
835 }
836
837 /* Called when something needs to use the ethernet device */
838 /* Returns 0 for success. */
839 static int gfar_enet_open(struct net_device *dev)
840 {
841 int err;
842
843 /* Initialize a bunch of registers */
844 init_registers(dev);
845
846 gfar_set_mac_address(dev);
847
848 err = init_phy(dev);
849
850 if(err)
851 return err;
852
853 err = startup_gfar(dev);
854
855 netif_start_queue(dev);
856
857 return err;
858 }
859
860 /* This is called by the kernel when a frame is ready for transmission. */
861 /* It is pointed to by the dev->hard_start_xmit function pointer */
862 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
863 {
864 struct gfar_private *priv = netdev_priv(dev);
865 struct txbd8 *txbdp;
866
867 /* Update transmit stats */
868 priv->stats.tx_bytes += skb->len;
869
870 /* Lock priv now */
871 spin_lock_irq(&priv->lock);
872
873 /* Point at the first free tx descriptor */
874 txbdp = priv->cur_tx;
875
876 /* Clear all but the WRAP status flags */
877 txbdp->status &= TXBD_WRAP;
878
879 /* Set buffer length and pointer */
880 txbdp->length = skb->len;
881 txbdp->bufPtr = dma_map_single(NULL, skb->data,
882 skb->len, DMA_TO_DEVICE);
883
884 /* Save the skb pointer so we can free it later */
885 priv->tx_skbuff[priv->skb_curtx] = skb;
886
887 /* Update the current skb pointer (wrapping if this was the last) */
888 priv->skb_curtx =
889 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
890
891 /* Flag the BD as interrupt-causing */
892 txbdp->status |= TXBD_INTERRUPT;
893
894 /* Flag the BD as ready to go, last in frame, and */
895 /* in need of CRC */
896 txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
897
898 dev->trans_start = jiffies;
899
900 /* If this was the last BD in the ring, the next one */
901 /* is at the beginning of the ring */
902 if (txbdp->status & TXBD_WRAP)
903 txbdp = priv->tx_bd_base;
904 else
905 txbdp++;
906
907 /* If the next BD still needs to be cleaned up, then the bds
908 are full. We need to tell the kernel to stop sending us stuff. */
909 if (txbdp == priv->dirty_tx) {
910 netif_stop_queue(dev);
911
912 priv->stats.tx_fifo_errors++;
913 }
914
915 /* Update the current txbd to the next one */
916 priv->cur_tx = txbdp;
917
918 /* Tell the DMA to go go go */
919 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
920
921 /* Unlock priv */
922 spin_unlock_irq(&priv->lock);
923
924 return 0;
925 }
926
927 /* Stops the kernel queue, and halts the controller */
928 static int gfar_close(struct net_device *dev)
929 {
930 struct gfar_private *priv = netdev_priv(dev);
931 stop_gfar(dev);
932
933 /* Shutdown the PHY */
934 if (priv->mii_info->phyinfo->close)
935 priv->mii_info->phyinfo->close(priv->mii_info);
936
937 kfree(priv->mii_info);
938
939 netif_stop_queue(dev);
940
941 return 0;
942 }
943
944 /* returns a net_device_stats structure pointer */
945 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
946 {
947 struct gfar_private *priv = netdev_priv(dev);
948
949 return &(priv->stats);
950 }
951
952 /* Changes the mac address if the controller is not running. */
953 int gfar_set_mac_address(struct net_device *dev)
954 {
955 struct gfar_private *priv = netdev_priv(dev);
956 int i;
957 char tmpbuf[MAC_ADDR_LEN];
958 u32 tempval;
959
960 /* Now copy it into the mac registers backwards, cuz */
961 /* little endian is silly */
962 for (i = 0; i < MAC_ADDR_LEN; i++)
963 tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i];
964
965 gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf)));
966
967 tempval = *((u32 *) (tmpbuf + 4));
968
969 gfar_write(&priv->regs->macstnaddr2, tempval);
970
971 return 0;
972 }
973
974
975 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
976 {
977 int tempsize, tempval;
978 struct gfar_private *priv = netdev_priv(dev);
979 int oldsize = priv->rx_buffer_size;
980 int frame_size = new_mtu + 18;
981
982 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
983 printk(KERN_ERR "%s: Invalid MTU setting\n", dev->name);
984 return -EINVAL;
985 }
986
987 tempsize =
988 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
989 INCREMENTAL_BUFFER_SIZE;
990
991 /* Only stop and start the controller if it isn't already
992 * stopped */
993 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
994 stop_gfar(dev);
995
996 priv->rx_buffer_size = tempsize;
997
998 dev->mtu = new_mtu;
999
1000 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1001 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1002
1003 /* If the mtu is larger than the max size for standard
1004 * ethernet frames (ie, a jumbo frame), then set maccfg2
1005 * to allow huge frames, and to check the length */
1006 tempval = gfar_read(&priv->regs->maccfg2);
1007
1008 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1009 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1010 else
1011 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1012
1013 gfar_write(&priv->regs->maccfg2, tempval);
1014
1015 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1016 startup_gfar(dev);
1017
1018 return 0;
1019 }
1020
1021 /* gfar_timeout gets called when a packet has not been
1022 * transmitted after a set amount of time.
1023 * For now, assume that clearing out all the structures, and
1024 * starting over will fix the problem. */
1025 static void gfar_timeout(struct net_device *dev)
1026 {
1027 struct gfar_private *priv = netdev_priv(dev);
1028
1029 priv->stats.tx_errors++;
1030
1031 if (dev->flags & IFF_UP) {
1032 stop_gfar(dev);
1033 startup_gfar(dev);
1034 }
1035
1036 netif_schedule(dev);
1037 }
1038
1039 /* Interrupt Handler for Transmit complete */
1040 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1041 {
1042 struct net_device *dev = (struct net_device *) dev_id;
1043 struct gfar_private *priv = netdev_priv(dev);
1044 struct txbd8 *bdp;
1045
1046 /* Clear IEVENT */
1047 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1048
1049 /* Lock priv */
1050 spin_lock(&priv->lock);
1051 bdp = priv->dirty_tx;
1052 while ((bdp->status & TXBD_READY) == 0) {
1053 /* If dirty_tx and cur_tx are the same, then either the */
1054 /* ring is empty or full now (it could only be full in the beginning, */
1055 /* obviously). If it is empty, we are done. */
1056 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1057 break;
1058
1059 priv->stats.tx_packets++;
1060
1061 /* Deferred means some collisions occurred during transmit, */
1062 /* but we eventually sent the packet. */
1063 if (bdp->status & TXBD_DEF)
1064 priv->stats.collisions++;
1065
1066 /* Free the sk buffer associated with this TxBD */
1067 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1068 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1069 priv->skb_dirtytx =
1070 (priv->skb_dirtytx +
1071 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1072
1073 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1074 if (bdp->status & TXBD_WRAP)
1075 bdp = priv->tx_bd_base;
1076 else
1077 bdp++;
1078
1079 /* Move dirty_tx to be the next bd */
1080 priv->dirty_tx = bdp;
1081
1082 /* We freed a buffer, so now we can restart transmission */
1083 if (netif_queue_stopped(dev))
1084 netif_wake_queue(dev);
1085 } /* while ((bdp->status & TXBD_READY) == 0) */
1086
1087 /* If we are coalescing the interrupts, reset the timer */
1088 /* Otherwise, clear it */
1089 if (priv->txcoalescing)
1090 gfar_write(&priv->regs->txic,
1091 mk_ic_value(priv->txcount, priv->txtime));
1092 else
1093 gfar_write(&priv->regs->txic, 0);
1094
1095 spin_unlock(&priv->lock);
1096
1097 return IRQ_HANDLED;
1098 }
1099
1100 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1101 {
1102 struct gfar_private *priv = netdev_priv(dev);
1103 struct sk_buff *skb = NULL;
1104 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1105
1106 /* We have to allocate the skb, so keep trying till we succeed */
1107 while ((!skb) && timeout--)
1108 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1109
1110 if (skb == NULL)
1111 return NULL;
1112
1113 /* We need the data buffer to be aligned properly. We will reserve
1114 * as many bytes as needed to align the data properly
1115 */
1116 skb_reserve(skb,
1117 RXBUF_ALIGNMENT -
1118 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1)));
1119
1120 skb->dev = dev;
1121
1122 bdp->bufPtr = dma_map_single(NULL, skb->data,
1123 priv->rx_buffer_size + RXBUF_ALIGNMENT,
1124 DMA_FROM_DEVICE);
1125
1126 bdp->length = 0;
1127
1128 /* Mark the buffer empty */
1129 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1130
1131 return skb;
1132 }
1133
1134 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1135 {
1136 struct net_device_stats *stats = &priv->stats;
1137 struct gfar_extra_stats *estats = &priv->extra_stats;
1138
1139 /* If the packet was truncated, none of the other errors
1140 * matter */
1141 if (status & RXBD_TRUNCATED) {
1142 stats->rx_length_errors++;
1143
1144 estats->rx_trunc++;
1145
1146 return;
1147 }
1148 /* Count the errors, if there were any */
1149 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1150 stats->rx_length_errors++;
1151
1152 if (status & RXBD_LARGE)
1153 estats->rx_large++;
1154 else
1155 estats->rx_short++;
1156 }
1157 if (status & RXBD_NONOCTET) {
1158 stats->rx_frame_errors++;
1159 estats->rx_nonoctet++;
1160 }
1161 if (status & RXBD_CRCERR) {
1162 estats->rx_crcerr++;
1163 stats->rx_crc_errors++;
1164 }
1165 if (status & RXBD_OVERRUN) {
1166 estats->rx_overrun++;
1167 stats->rx_crc_errors++;
1168 }
1169 }
1170
1171 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1172 {
1173 struct net_device *dev = (struct net_device *) dev_id;
1174 struct gfar_private *priv = netdev_priv(dev);
1175
1176 #ifdef CONFIG_GFAR_NAPI
1177 u32 tempval;
1178 #endif
1179
1180 /* Clear IEVENT, so rx interrupt isn't called again
1181 * because of this interrupt */
1182 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1183
1184 /* support NAPI */
1185 #ifdef CONFIG_GFAR_NAPI
1186 if (netif_rx_schedule_prep(dev)) {
1187 tempval = gfar_read(&priv->regs->imask);
1188 tempval &= IMASK_RX_DISABLED;
1189 gfar_write(&priv->regs->imask, tempval);
1190
1191 __netif_rx_schedule(dev);
1192 } else {
1193 #ifdef VERBOSE_GFAR_ERRORS
1194 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1195 dev->name, gfar_read(&priv->regs->ievent),
1196 gfar_read(&priv->regs->imask));
1197 #endif
1198 }
1199 #else
1200
1201 spin_lock(&priv->lock);
1202 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1203
1204 /* If we are coalescing interrupts, update the timer */
1205 /* Otherwise, clear it */
1206 if (priv->rxcoalescing)
1207 gfar_write(&priv->regs->rxic,
1208 mk_ic_value(priv->rxcount, priv->rxtime));
1209 else
1210 gfar_write(&priv->regs->rxic, 0);
1211
1212 /* Just in case we need to wake the ring param changer */
1213 priv->rxclean = 1;
1214
1215 spin_unlock(&priv->lock);
1216 #endif
1217
1218 return IRQ_HANDLED;
1219 }
1220
1221
1222 /* gfar_process_frame() -- handle one incoming packet if skb
1223 * isn't NULL. */
1224 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1225 int length)
1226 {
1227 struct gfar_private *priv = netdev_priv(dev);
1228
1229 if (skb == NULL) {
1230 #ifdef BRIEF_GFAR_ERRORS
1231 printk(KERN_WARNING "%s: Missing skb!!.\n",
1232 dev->name);
1233 #endif
1234 priv->stats.rx_dropped++;
1235 priv->extra_stats.rx_skbmissing++;
1236 } else {
1237 /* Prep the skb for the packet */
1238 skb_put(skb, length);
1239
1240 /* Tell the skb what kind of packet this is */
1241 skb->protocol = eth_type_trans(skb, dev);
1242
1243 /* Send the packet up the stack */
1244 if (RECEIVE(skb) == NET_RX_DROP) {
1245 priv->extra_stats.kernel_dropped++;
1246 }
1247 }
1248
1249 return 0;
1250 }
1251
1252 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1253 * until the budget/quota has been reached. Returns the number
1254 * of frames handled
1255 */
1256 static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1257 {
1258 struct rxbd8 *bdp;
1259 struct sk_buff *skb;
1260 u16 pkt_len;
1261 int howmany = 0;
1262 struct gfar_private *priv = netdev_priv(dev);
1263
1264 /* Get the first full descriptor */
1265 bdp = priv->cur_rx;
1266
1267 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1268 skb = priv->rx_skbuff[priv->skb_currx];
1269
1270 if (!(bdp->status &
1271 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1272 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1273 /* Increment the number of packets */
1274 priv->stats.rx_packets++;
1275 howmany++;
1276
1277 /* Remove the FCS from the packet length */
1278 pkt_len = bdp->length - 4;
1279
1280 gfar_process_frame(dev, skb, pkt_len);
1281
1282 priv->stats.rx_bytes += pkt_len;
1283 } else {
1284 count_errors(bdp->status, priv);
1285
1286 if (skb)
1287 dev_kfree_skb_any(skb);
1288
1289 priv->rx_skbuff[priv->skb_currx] = NULL;
1290 }
1291
1292 dev->last_rx = jiffies;
1293
1294 /* Clear the status flags for this buffer */
1295 bdp->status &= ~RXBD_STATS;
1296
1297 /* Add another skb for the future */
1298 skb = gfar_new_skb(dev, bdp);
1299 priv->rx_skbuff[priv->skb_currx] = skb;
1300
1301 /* Update to the next pointer */
1302 if (bdp->status & RXBD_WRAP)
1303 bdp = priv->rx_bd_base;
1304 else
1305 bdp++;
1306
1307 /* update to point at the next skb */
1308 priv->skb_currx =
1309 (priv->skb_currx +
1310 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1311
1312 }
1313
1314 /* Update the current rxbd pointer to be the next one */
1315 priv->cur_rx = bdp;
1316
1317 /* If no packets have arrived since the
1318 * last one we processed, clear the IEVENT RX and
1319 * BSY bits so that another interrupt won't be
1320 * generated when we set IMASK */
1321 if (bdp->status & RXBD_EMPTY)
1322 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1323
1324 return howmany;
1325 }
1326
1327 #ifdef CONFIG_GFAR_NAPI
1328 static int gfar_poll(struct net_device *dev, int *budget)
1329 {
1330 int howmany;
1331 struct gfar_private *priv = netdev_priv(dev);
1332 int rx_work_limit = *budget;
1333
1334 if (rx_work_limit > dev->quota)
1335 rx_work_limit = dev->quota;
1336
1337 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1338
1339 dev->quota -= howmany;
1340 rx_work_limit -= howmany;
1341 *budget -= howmany;
1342
1343 if (rx_work_limit >= 0) {
1344 netif_rx_complete(dev);
1345
1346 /* Clear the halt bit in RSTAT */
1347 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1348
1349 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1350
1351 /* If we are coalescing interrupts, update the timer */
1352 /* Otherwise, clear it */
1353 if (priv->rxcoalescing)
1354 gfar_write(&priv->regs->rxic,
1355 mk_ic_value(priv->rxcount, priv->rxtime));
1356 else
1357 gfar_write(&priv->regs->rxic, 0);
1358
1359 /* Signal to the ring size changer that it's safe to go */
1360 priv->rxclean = 1;
1361 }
1362
1363 return (rx_work_limit < 0) ? 1 : 0;
1364 }
1365 #endif
1366
1367 /* The interrupt handler for devices with one interrupt */
1368 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1369 {
1370 struct net_device *dev = dev_id;
1371 struct gfar_private *priv = netdev_priv(dev);
1372
1373 /* Save ievent for future reference */
1374 u32 events = gfar_read(&priv->regs->ievent);
1375
1376 /* Clear IEVENT */
1377 gfar_write(&priv->regs->ievent, events);
1378
1379 /* Check for reception */
1380 if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1381 gfar_receive(irq, dev_id, regs);
1382
1383 /* Check for transmit completion */
1384 if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1385 gfar_transmit(irq, dev_id, regs);
1386
1387 /* Update error statistics */
1388 if (events & IEVENT_TXE) {
1389 priv->stats.tx_errors++;
1390
1391 if (events & IEVENT_LC)
1392 priv->stats.tx_window_errors++;
1393 if (events & IEVENT_CRL)
1394 priv->stats.tx_aborted_errors++;
1395 if (events & IEVENT_XFUN) {
1396 #ifdef VERBOSE_GFAR_ERRORS
1397 printk(KERN_WARNING "%s: tx underrun. dropped packet\n",
1398 dev->name);
1399 #endif
1400 priv->stats.tx_dropped++;
1401 priv->extra_stats.tx_underrun++;
1402
1403 /* Reactivate the Tx Queues */
1404 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1405 }
1406 }
1407 if (events & IEVENT_BSY) {
1408 priv->stats.rx_errors++;
1409 priv->extra_stats.rx_bsy++;
1410
1411 gfar_receive(irq, dev_id, regs);
1412
1413 #ifndef CONFIG_GFAR_NAPI
1414 /* Clear the halt bit in RSTAT */
1415 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1416 #endif
1417
1418 #ifdef VERBOSE_GFAR_ERRORS
1419 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name,
1420 gfar_read(&priv->regs->rstat));
1421 #endif
1422 }
1423 if (events & IEVENT_BABR) {
1424 priv->stats.rx_errors++;
1425 priv->extra_stats.rx_babr++;
1426
1427 #ifdef VERBOSE_GFAR_ERRORS
1428 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1429 #endif
1430 }
1431 if (events & IEVENT_EBERR) {
1432 priv->extra_stats.eberr++;
1433 #ifdef VERBOSE_GFAR_ERRORS
1434 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1435 #endif
1436 }
1437 if (events & IEVENT_RXC) {
1438 #ifdef VERBOSE_GFAR_ERRORS
1439 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1440 #endif
1441 }
1442
1443 if (events & IEVENT_BABT) {
1444 priv->extra_stats.tx_babt++;
1445 #ifdef VERBOSE_GFAR_ERRORS
1446 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1447 #endif
1448 }
1449
1450 return IRQ_HANDLED;
1451 }
1452
1453 static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1454 {
1455 struct net_device *dev = (struct net_device *) dev_id;
1456 struct gfar_private *priv = netdev_priv(dev);
1457
1458 /* Clear the interrupt */
1459 mii_clear_phy_interrupt(priv->mii_info);
1460
1461 /* Disable PHY interrupts */
1462 mii_configure_phy_interrupt(priv->mii_info,
1463 MII_INTERRUPT_DISABLED);
1464
1465 /* Schedule the phy change */
1466 schedule_work(&priv->tq);
1467
1468 return IRQ_HANDLED;
1469 }
1470
1471 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1472 static void gfar_phy_change(void *data)
1473 {
1474 struct net_device *dev = (struct net_device *) data;
1475 struct gfar_private *priv = netdev_priv(dev);
1476 int result = 0;
1477
1478 /* Delay to give the PHY a chance to change the
1479 * register state */
1480 msleep(1);
1481
1482 /* Update the link, speed, duplex */
1483 result = priv->mii_info->phyinfo->read_status(priv->mii_info);
1484
1485 /* Adjust the known status as long as the link
1486 * isn't still coming up */
1487 if((0 == result) || (priv->mii_info->link == 0))
1488 adjust_link(dev);
1489
1490 /* Reenable interrupts, if needed */
1491 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR)
1492 mii_configure_phy_interrupt(priv->mii_info,
1493 MII_INTERRUPT_ENABLED);
1494 }
1495
1496 /* Called every so often on systems that don't interrupt
1497 * the core for PHY changes */
1498 static void gfar_phy_timer(unsigned long data)
1499 {
1500 struct net_device *dev = (struct net_device *) data;
1501 struct gfar_private *priv = netdev_priv(dev);
1502
1503 schedule_work(&priv->tq);
1504
1505 mod_timer(&priv->phy_info_timer, jiffies +
1506 GFAR_PHY_CHANGE_TIME * HZ);
1507 }
1508
1509 /* Keep trying aneg for some time
1510 * If, after GFAR_AN_TIMEOUT seconds, it has not
1511 * finished, we switch to forced.
1512 * Either way, once the process has completed, we either
1513 * request the interrupt, or switch the timer over to
1514 * using gfar_phy_timer to check status */
1515 static void gfar_phy_startup_timer(unsigned long data)
1516 {
1517 int result;
1518 static int secondary = GFAR_AN_TIMEOUT;
1519 struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data;
1520 struct gfar_private *priv = netdev_priv(mii_info->dev);
1521
1522 /* Configure the Auto-negotiation */
1523 result = mii_info->phyinfo->config_aneg(mii_info);
1524
1525 /* If autonegotiation failed to start, and
1526 * we haven't timed out, reset the timer, and return */
1527 if (result && secondary--) {
1528 mod_timer(&priv->phy_info_timer, jiffies + HZ);
1529 return;
1530 } else if (result) {
1531 /* Couldn't start autonegotiation.
1532 * Try switching to forced */
1533 mii_info->autoneg = 0;
1534 result = mii_info->phyinfo->config_aneg(mii_info);
1535
1536 /* Forcing failed! Give up */
1537 if(result) {
1538 printk(KERN_ERR "%s: Forcing failed!\n",
1539 mii_info->dev->name);
1540 return;
1541 }
1542 }
1543
1544 /* Kill the timer so it can be restarted */
1545 del_timer_sync(&priv->phy_info_timer);
1546
1547 /* Grab the PHY interrupt, if necessary/possible */
1548 if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) {
1549 if (request_irq(priv->einfo->interruptPHY,
1550 phy_interrupt,
1551 SA_SHIRQ,
1552 "phy_interrupt",
1553 mii_info->dev) < 0) {
1554 printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n",
1555 mii_info->dev->name,
1556 priv->einfo->interruptPHY);
1557 } else {
1558 mii_configure_phy_interrupt(priv->mii_info,
1559 MII_INTERRUPT_ENABLED);
1560 return;
1561 }
1562 }
1563
1564 /* Start the timer again, this time in order to
1565 * handle a change in status */
1566 init_timer(&priv->phy_info_timer);
1567 priv->phy_info_timer.function = &gfar_phy_timer;
1568 priv->phy_info_timer.data = (unsigned long) mii_info->dev;
1569 mod_timer(&priv->phy_info_timer, jiffies +
1570 GFAR_PHY_CHANGE_TIME * HZ);
1571 }
1572
1573 /* Called every time the controller might need to be made
1574 * aware of new link state. The PHY code conveys this
1575 * information through variables in the priv structure, and this
1576 * function converts those variables into the appropriate
1577 * register values, and can bring down the device if needed.
1578 */
1579 static void adjust_link(struct net_device *dev)
1580 {
1581 struct gfar_private *priv = netdev_priv(dev);
1582 struct gfar *regs = priv->regs;
1583 u32 tempval;
1584 struct gfar_mii_info *mii_info = priv->mii_info;
1585
1586 if (mii_info->link) {
1587 /* Now we make sure that we can be in full duplex mode.
1588 * If not, we operate in half-duplex mode. */
1589 if (mii_info->duplex != priv->oldduplex) {
1590 if (!(mii_info->duplex)) {
1591 tempval = gfar_read(&regs->maccfg2);
1592 tempval &= ~(MACCFG2_FULL_DUPLEX);
1593 gfar_write(&regs->maccfg2, tempval);
1594
1595 printk(KERN_INFO "%s: Half Duplex\n",
1596 dev->name);
1597 } else {
1598 tempval = gfar_read(&regs->maccfg2);
1599 tempval |= MACCFG2_FULL_DUPLEX;
1600 gfar_write(&regs->maccfg2, tempval);
1601
1602 printk(KERN_INFO "%s: Full Duplex\n",
1603 dev->name);
1604 }
1605
1606 priv->oldduplex = mii_info->duplex;
1607 }
1608
1609 if (mii_info->speed != priv->oldspeed) {
1610 switch (mii_info->speed) {
1611 case 1000:
1612 tempval = gfar_read(&regs->maccfg2);
1613 tempval =
1614 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1615 gfar_write(&regs->maccfg2, tempval);
1616 break;
1617 case 100:
1618 case 10:
1619 tempval = gfar_read(&regs->maccfg2);
1620 tempval =
1621 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1622 gfar_write(&regs->maccfg2, tempval);
1623 break;
1624 default:
1625 printk(KERN_WARNING
1626 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1627 dev->name, mii_info->speed);
1628 break;
1629 }
1630
1631 printk(KERN_INFO "%s: Speed %dBT\n", dev->name,
1632 mii_info->speed);
1633
1634 priv->oldspeed = mii_info->speed;
1635 }
1636
1637 if (!priv->oldlink) {
1638 printk(KERN_INFO "%s: Link is up\n", dev->name);
1639 priv->oldlink = 1;
1640 netif_carrier_on(dev);
1641 netif_schedule(dev);
1642 }
1643 } else {
1644 if (priv->oldlink) {
1645 printk(KERN_INFO "%s: Link is down\n", dev->name);
1646 priv->oldlink = 0;
1647 priv->oldspeed = 0;
1648 priv->oldduplex = -1;
1649 netif_carrier_off(dev);
1650 }
1651 }
1652 }
1653
1654
1655 /* Update the hash table based on the current list of multicast
1656 * addresses we subscribe to. Also, change the promiscuity of
1657 * the device based on the flags (this function is called
1658 * whenever dev->flags is changed */
1659 static void gfar_set_multi(struct net_device *dev)
1660 {
1661 struct dev_mc_list *mc_ptr;
1662 struct gfar_private *priv = netdev_priv(dev);
1663 struct gfar *regs = priv->regs;
1664 u32 tempval;
1665
1666 if(dev->flags & IFF_PROMISC) {
1667 printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1668 dev->name);
1669 /* Set RCTRL to PROM */
1670 tempval = gfar_read(&regs->rctrl);
1671 tempval |= RCTRL_PROM;
1672 gfar_write(&regs->rctrl, tempval);
1673 } else {
1674 /* Set RCTRL to not PROM */
1675 tempval = gfar_read(&regs->rctrl);
1676 tempval &= ~(RCTRL_PROM);
1677 gfar_write(&regs->rctrl, tempval);
1678 }
1679
1680 if(dev->flags & IFF_ALLMULTI) {
1681 /* Set the hash to rx all multicast frames */
1682 gfar_write(&regs->gaddr0, 0xffffffff);
1683 gfar_write(&regs->gaddr1, 0xffffffff);
1684 gfar_write(&regs->gaddr2, 0xffffffff);
1685 gfar_write(&regs->gaddr3, 0xffffffff);
1686 gfar_write(&regs->gaddr4, 0xffffffff);
1687 gfar_write(&regs->gaddr5, 0xffffffff);
1688 gfar_write(&regs->gaddr6, 0xffffffff);
1689 gfar_write(&regs->gaddr7, 0xffffffff);
1690 } else {
1691 /* zero out the hash */
1692 gfar_write(&regs->gaddr0, 0x0);
1693 gfar_write(&regs->gaddr1, 0x0);
1694 gfar_write(&regs->gaddr2, 0x0);
1695 gfar_write(&regs->gaddr3, 0x0);
1696 gfar_write(&regs->gaddr4, 0x0);
1697 gfar_write(&regs->gaddr5, 0x0);
1698 gfar_write(&regs->gaddr6, 0x0);
1699 gfar_write(&regs->gaddr7, 0x0);
1700
1701 if(dev->mc_count == 0)
1702 return;
1703
1704 /* Parse the list, and set the appropriate bits */
1705 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1706 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1707 }
1708 }
1709
1710 return;
1711 }
1712
1713 /* Set the appropriate hash bit for the given addr */
1714 /* The algorithm works like so:
1715 * 1) Take the Destination Address (ie the multicast address), and
1716 * do a CRC on it (little endian), and reverse the bits of the
1717 * result.
1718 * 2) Use the 8 most significant bits as a hash into a 256-entry
1719 * table. The table is controlled through 8 32-bit registers:
1720 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1721 * gaddr7. This means that the 3 most significant bits in the
1722 * hash index which gaddr register to use, and the 5 other bits
1723 * indicate which bit (assuming an IBM numbering scheme, which
1724 * for PowerPC (tm) is usually the case) in the register holds
1725 * the entry. */
1726 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1727 {
1728 u32 tempval;
1729 struct gfar_private *priv = netdev_priv(dev);
1730 struct gfar *regs = priv->regs;
1731 u32 *hash = &regs->gaddr0;
1732 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1733 u8 whichreg = ((result >> 29) & 0x7);
1734 u8 whichbit = ((result >> 24) & 0x1f);
1735 u32 value = (1 << (31-whichbit));
1736
1737 tempval = gfar_read(&hash[whichreg]);
1738 tempval |= value;
1739 gfar_write(&hash[whichreg], tempval);
1740
1741 return;
1742 }
1743
1744 /* GFAR error interrupt handler */
1745 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1746 {
1747 struct net_device *dev = dev_id;
1748 struct gfar_private *priv = netdev_priv(dev);
1749
1750 /* Save ievent for future reference */
1751 u32 events = gfar_read(&priv->regs->ievent);
1752
1753 /* Clear IEVENT */
1754 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1755
1756 /* Hmm... */
1757 #if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS)
1758 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1759 dev->name, events, gfar_read(&priv->regs->imask));
1760 #endif
1761
1762 /* Update the error counters */
1763 if (events & IEVENT_TXE) {
1764 priv->stats.tx_errors++;
1765
1766 if (events & IEVENT_LC)
1767 priv->stats.tx_window_errors++;
1768 if (events & IEVENT_CRL)
1769 priv->stats.tx_aborted_errors++;
1770 if (events & IEVENT_XFUN) {
1771 #ifdef VERBOSE_GFAR_ERRORS
1772 printk(KERN_DEBUG "%s: underrun. packet dropped.\n",
1773 dev->name);
1774 #endif
1775 priv->stats.tx_dropped++;
1776 priv->extra_stats.tx_underrun++;
1777
1778 /* Reactivate the Tx Queues */
1779 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1780 }
1781 #ifdef VERBOSE_GFAR_ERRORS
1782 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1783 #endif
1784 }
1785 if (events & IEVENT_BSY) {
1786 priv->stats.rx_errors++;
1787 priv->extra_stats.rx_bsy++;
1788
1789 gfar_receive(irq, dev_id, regs);
1790
1791 #ifndef CONFIG_GFAR_NAPI
1792 /* Clear the halt bit in RSTAT */
1793 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1794 #endif
1795
1796 #ifdef VERBOSE_GFAR_ERRORS
1797 printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name,
1798 gfar_read(&priv->regs->rstat));
1799 #endif
1800 }
1801 if (events & IEVENT_BABR) {
1802 priv->stats.rx_errors++;
1803 priv->extra_stats.rx_babr++;
1804
1805 #ifdef VERBOSE_GFAR_ERRORS
1806 printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1807 #endif
1808 }
1809 if (events & IEVENT_EBERR) {
1810 priv->extra_stats.eberr++;
1811 #ifdef VERBOSE_GFAR_ERRORS
1812 printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1813 #endif
1814 }
1815 if (events & IEVENT_RXC)
1816 #ifdef VERBOSE_GFAR_ERRORS
1817 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1818 #endif
1819
1820 if (events & IEVENT_BABT) {
1821 priv->extra_stats.tx_babt++;
1822 #ifdef VERBOSE_GFAR_ERRORS
1823 printk(KERN_DEBUG "%s: babt error\n", dev->name);
1824 #endif
1825 }
1826 return IRQ_HANDLED;
1827 }
1828
1829 /* Structure for a device driver */
1830 static struct device_driver gfar_driver = {
1831 .name = "fsl-gianfar",
1832 .bus = &platform_bus_type,
1833 .probe = gfar_probe,
1834 .remove = gfar_remove,
1835 };
1836
1837 static int __init gfar_init(void)
1838 {
1839 return driver_register(&gfar_driver);
1840 }
1841
1842 static void __exit gfar_exit(void)
1843 {
1844 driver_unregister(&gfar_driver);
1845 }
1846
1847 module_init(gfar_init);
1848 module_exit(gfar_exit);
1849