Merge branches 'pxa-ian' and 'pxa-xm270' into pxa
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44
45 #ifdef CONFIG_PPC_CPM_NEW_BINDING
46 #include <asm/of_platform.h>
47 #endif
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 #ifndef CONFIG_PPC_CPM_NEW_BINDING
54 static char version[] __devinitdata =
55 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
56 #endif
57
58 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
59 MODULE_DESCRIPTION("Freescale Ethernet Driver");
60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(DRV_MODULE_VERSION);
62
63 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
64 module_param(fs_enet_debug, int, 0);
65 MODULE_PARM_DESC(fs_enet_debug,
66 "Freescale bitmapped debugging message enable value");
67
68 #ifdef CONFIG_NET_POLL_CONTROLLER
69 static void fs_enet_netpoll(struct net_device *dev);
70 #endif
71
72 static void fs_set_multicast_list(struct net_device *dev)
73 {
74 struct fs_enet_private *fep = netdev_priv(dev);
75
76 (*fep->ops->set_multicast_list)(dev);
77 }
78
79 static void skb_align(struct sk_buff *skb, int align)
80 {
81 int off = ((unsigned long)skb->data) & (align - 1);
82
83 if (off)
84 skb_reserve(skb, align - off);
85 }
86
87 /* NAPI receive function */
88 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
89 {
90 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
91 struct net_device *dev = fep->ndev;
92 const struct fs_platform_info *fpi = fep->fpi;
93 cbd_t __iomem *bdp;
94 struct sk_buff *skb, *skbn, *skbt;
95 int received = 0;
96 u16 pkt_len, sc;
97 int curidx;
98
99 /*
100 * First, grab all of the stats for the incoming packet.
101 * These get messed up if we get called due to a busy condition.
102 */
103 bdp = fep->cur_rx;
104
105 /* clear RX status bits for napi*/
106 (*fep->ops->napi_clear_rx_event)(dev);
107
108 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
109 curidx = bdp - fep->rx_bd_base;
110
111 /*
112 * Since we have allocated space to hold a complete frame,
113 * the last indicator should be set.
114 */
115 if ((sc & BD_ENET_RX_LAST) == 0)
116 printk(KERN_WARNING DRV_MODULE_NAME
117 ": %s rcv is not +last\n",
118 dev->name);
119
120 /*
121 * Check for errors.
122 */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
124 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
125 fep->stats.rx_errors++;
126 /* Frame too long or too short. */
127 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
128 fep->stats.rx_length_errors++;
129 /* Frame alignment */
130 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
131 fep->stats.rx_frame_errors++;
132 /* CRC Error */
133 if (sc & BD_ENET_RX_CR)
134 fep->stats.rx_crc_errors++;
135 /* FIFO overrun */
136 if (sc & BD_ENET_RX_OV)
137 fep->stats.rx_crc_errors++;
138
139 skb = fep->rx_skbuff[curidx];
140
141 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
142 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
143 DMA_FROM_DEVICE);
144
145 skbn = skb;
146
147 } else {
148 skb = fep->rx_skbuff[curidx];
149
150 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
151 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
152 DMA_FROM_DEVICE);
153
154 /*
155 * Process the incoming frame.
156 */
157 fep->stats.rx_packets++;
158 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
159 fep->stats.rx_bytes += pkt_len + 4;
160
161 if (pkt_len <= fpi->rx_copybreak) {
162 /* +2 to make IP header L1 cache aligned */
163 skbn = dev_alloc_skb(pkt_len + 2);
164 if (skbn != NULL) {
165 skb_reserve(skbn, 2); /* align IP header */
166 skb_copy_from_linear_data(skb,
167 skbn->data, pkt_len);
168 /* swap */
169 skbt = skb;
170 skb = skbn;
171 skbn = skbt;
172 }
173 } else {
174 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
175
176 if (skbn)
177 skb_align(skbn, ENET_RX_ALIGN);
178 }
179
180 if (skbn != NULL) {
181 skb_put(skb, pkt_len); /* Make room */
182 skb->protocol = eth_type_trans(skb, dev);
183 received++;
184 netif_receive_skb(skb);
185 } else {
186 printk(KERN_WARNING DRV_MODULE_NAME
187 ": %s Memory squeeze, dropping packet.\n",
188 dev->name);
189 fep->stats.rx_dropped++;
190 skbn = skb;
191 }
192 }
193
194 fep->rx_skbuff[curidx] = skbn;
195 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
196 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
197 DMA_FROM_DEVICE));
198 CBDW_DATLEN(bdp, 0);
199 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
200
201 /*
202 * Update BD pointer to next entry.
203 */
204 if ((sc & BD_ENET_RX_WRAP) == 0)
205 bdp++;
206 else
207 bdp = fep->rx_bd_base;
208
209 (*fep->ops->rx_bd_done)(dev);
210
211 if (received >= budget)
212 break;
213 }
214
215 fep->cur_rx = bdp;
216
217 if (received < budget) {
218 /* done */
219 netif_rx_complete(dev, napi);
220 (*fep->ops->napi_enable_rx)(dev);
221 }
222 return received;
223 }
224
225 /* non NAPI receive function */
226 static int fs_enet_rx_non_napi(struct net_device *dev)
227 {
228 struct fs_enet_private *fep = netdev_priv(dev);
229 const struct fs_platform_info *fpi = fep->fpi;
230 cbd_t __iomem *bdp;
231 struct sk_buff *skb, *skbn, *skbt;
232 int received = 0;
233 u16 pkt_len, sc;
234 int curidx;
235 /*
236 * First, grab all of the stats for the incoming packet.
237 * These get messed up if we get called due to a busy condition.
238 */
239 bdp = fep->cur_rx;
240
241 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
242
243 curidx = bdp - fep->rx_bd_base;
244
245 /*
246 * Since we have allocated space to hold a complete frame,
247 * the last indicator should be set.
248 */
249 if ((sc & BD_ENET_RX_LAST) == 0)
250 printk(KERN_WARNING DRV_MODULE_NAME
251 ": %s rcv is not +last\n",
252 dev->name);
253
254 /*
255 * Check for errors.
256 */
257 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
258 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
259 fep->stats.rx_errors++;
260 /* Frame too long or too short. */
261 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
262 fep->stats.rx_length_errors++;
263 /* Frame alignment */
264 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
265 fep->stats.rx_frame_errors++;
266 /* CRC Error */
267 if (sc & BD_ENET_RX_CR)
268 fep->stats.rx_crc_errors++;
269 /* FIFO overrun */
270 if (sc & BD_ENET_RX_OV)
271 fep->stats.rx_crc_errors++;
272
273 skb = fep->rx_skbuff[curidx];
274
275 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
276 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
277 DMA_FROM_DEVICE);
278
279 skbn = skb;
280
281 } else {
282
283 skb = fep->rx_skbuff[curidx];
284
285 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
287 DMA_FROM_DEVICE);
288
289 /*
290 * Process the incoming frame.
291 */
292 fep->stats.rx_packets++;
293 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
294 fep->stats.rx_bytes += pkt_len + 4;
295
296 if (pkt_len <= fpi->rx_copybreak) {
297 /* +2 to make IP header L1 cache aligned */
298 skbn = dev_alloc_skb(pkt_len + 2);
299 if (skbn != NULL) {
300 skb_reserve(skbn, 2); /* align IP header */
301 skb_copy_from_linear_data(skb,
302 skbn->data, pkt_len);
303 /* swap */
304 skbt = skb;
305 skb = skbn;
306 skbn = skbt;
307 }
308 } else {
309 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
310
311 if (skbn)
312 skb_align(skbn, ENET_RX_ALIGN);
313 }
314
315 if (skbn != NULL) {
316 skb_put(skb, pkt_len); /* Make room */
317 skb->protocol = eth_type_trans(skb, dev);
318 received++;
319 netif_rx(skb);
320 } else {
321 printk(KERN_WARNING DRV_MODULE_NAME
322 ": %s Memory squeeze, dropping packet.\n",
323 dev->name);
324 fep->stats.rx_dropped++;
325 skbn = skb;
326 }
327 }
328
329 fep->rx_skbuff[curidx] = skbn;
330 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
331 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
332 DMA_FROM_DEVICE));
333 CBDW_DATLEN(bdp, 0);
334 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
335
336 /*
337 * Update BD pointer to next entry.
338 */
339 if ((sc & BD_ENET_RX_WRAP) == 0)
340 bdp++;
341 else
342 bdp = fep->rx_bd_base;
343
344 (*fep->ops->rx_bd_done)(dev);
345 }
346
347 fep->cur_rx = bdp;
348
349 return 0;
350 }
351
352 static void fs_enet_tx(struct net_device *dev)
353 {
354 struct fs_enet_private *fep = netdev_priv(dev);
355 cbd_t __iomem *bdp;
356 struct sk_buff *skb;
357 int dirtyidx, do_wake, do_restart;
358 u16 sc;
359
360 spin_lock(&fep->tx_lock);
361 bdp = fep->dirty_tx;
362
363 do_wake = do_restart = 0;
364 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
365 dirtyidx = bdp - fep->tx_bd_base;
366
367 if (fep->tx_free == fep->tx_ring)
368 break;
369
370 skb = fep->tx_skbuff[dirtyidx];
371
372 /*
373 * Check for errors.
374 */
375 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
376 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
377
378 if (sc & BD_ENET_TX_HB) /* No heartbeat */
379 fep->stats.tx_heartbeat_errors++;
380 if (sc & BD_ENET_TX_LC) /* Late collision */
381 fep->stats.tx_window_errors++;
382 if (sc & BD_ENET_TX_RL) /* Retrans limit */
383 fep->stats.tx_aborted_errors++;
384 if (sc & BD_ENET_TX_UN) /* Underrun */
385 fep->stats.tx_fifo_errors++;
386 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
387 fep->stats.tx_carrier_errors++;
388
389 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
390 fep->stats.tx_errors++;
391 do_restart = 1;
392 }
393 } else
394 fep->stats.tx_packets++;
395
396 if (sc & BD_ENET_TX_READY)
397 printk(KERN_WARNING DRV_MODULE_NAME
398 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
399 dev->name);
400
401 /*
402 * Deferred means some collisions occurred during transmit,
403 * but we eventually sent the packet OK.
404 */
405 if (sc & BD_ENET_TX_DEF)
406 fep->stats.collisions++;
407
408 /* unmap */
409 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
410 skb->len, DMA_TO_DEVICE);
411
412 /*
413 * Free the sk buffer associated with this last transmit.
414 */
415 dev_kfree_skb_irq(skb);
416 fep->tx_skbuff[dirtyidx] = NULL;
417
418 /*
419 * Update pointer to next buffer descriptor to be transmitted.
420 */
421 if ((sc & BD_ENET_TX_WRAP) == 0)
422 bdp++;
423 else
424 bdp = fep->tx_bd_base;
425
426 /*
427 * Since we have freed up a buffer, the ring is no longer
428 * full.
429 */
430 if (!fep->tx_free++)
431 do_wake = 1;
432 }
433
434 fep->dirty_tx = bdp;
435
436 if (do_restart)
437 (*fep->ops->tx_restart)(dev);
438
439 spin_unlock(&fep->tx_lock);
440
441 if (do_wake)
442 netif_wake_queue(dev);
443 }
444
445 /*
446 * The interrupt handler.
447 * This is called from the MPC core interrupt.
448 */
449 static irqreturn_t
450 fs_enet_interrupt(int irq, void *dev_id)
451 {
452 struct net_device *dev = dev_id;
453 struct fs_enet_private *fep;
454 const struct fs_platform_info *fpi;
455 u32 int_events;
456 u32 int_clr_events;
457 int nr, napi_ok;
458 int handled;
459
460 fep = netdev_priv(dev);
461 fpi = fep->fpi;
462
463 nr = 0;
464 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
465 nr++;
466
467 int_clr_events = int_events;
468 if (fpi->use_napi)
469 int_clr_events &= ~fep->ev_napi_rx;
470
471 (*fep->ops->clear_int_events)(dev, int_clr_events);
472
473 if (int_events & fep->ev_err)
474 (*fep->ops->ev_error)(dev, int_events);
475
476 if (int_events & fep->ev_rx) {
477 if (!fpi->use_napi)
478 fs_enet_rx_non_napi(dev);
479 else {
480 napi_ok = napi_schedule_prep(&fep->napi);
481
482 (*fep->ops->napi_disable_rx)(dev);
483 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
484
485 /* NOTE: it is possible for FCCs in NAPI mode */
486 /* to submit a spurious interrupt while in poll */
487 if (napi_ok)
488 __netif_rx_schedule(dev, &fep->napi);
489 }
490 }
491
492 if (int_events & fep->ev_tx)
493 fs_enet_tx(dev);
494 }
495
496 handled = nr > 0;
497 return IRQ_RETVAL(handled);
498 }
499
500 void fs_init_bds(struct net_device *dev)
501 {
502 struct fs_enet_private *fep = netdev_priv(dev);
503 cbd_t __iomem *bdp;
504 struct sk_buff *skb;
505 int i;
506
507 fs_cleanup_bds(dev);
508
509 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
510 fep->tx_free = fep->tx_ring;
511 fep->cur_rx = fep->rx_bd_base;
512
513 /*
514 * Initialize the receive buffer descriptors.
515 */
516 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
517 skb = dev_alloc_skb(ENET_RX_FRSIZE);
518 if (skb == NULL) {
519 printk(KERN_WARNING DRV_MODULE_NAME
520 ": %s Memory squeeze, unable to allocate skb\n",
521 dev->name);
522 break;
523 }
524 skb_align(skb, ENET_RX_ALIGN);
525 fep->rx_skbuff[i] = skb;
526 CBDW_BUFADDR(bdp,
527 dma_map_single(fep->dev, skb->data,
528 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
529 DMA_FROM_DEVICE));
530 CBDW_DATLEN(bdp, 0); /* zero */
531 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
532 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
533 }
534 /*
535 * if we failed, fillup remainder
536 */
537 for (; i < fep->rx_ring; i++, bdp++) {
538 fep->rx_skbuff[i] = NULL;
539 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
540 }
541
542 /*
543 * ...and the same for transmit.
544 */
545 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
546 fep->tx_skbuff[i] = NULL;
547 CBDW_BUFADDR(bdp, 0);
548 CBDW_DATLEN(bdp, 0);
549 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
550 }
551 }
552
553 void fs_cleanup_bds(struct net_device *dev)
554 {
555 struct fs_enet_private *fep = netdev_priv(dev);
556 struct sk_buff *skb;
557 cbd_t __iomem *bdp;
558 int i;
559
560 /*
561 * Reset SKB transmit buffers.
562 */
563 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
564 if ((skb = fep->tx_skbuff[i]) == NULL)
565 continue;
566
567 /* unmap */
568 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
569 skb->len, DMA_TO_DEVICE);
570
571 fep->tx_skbuff[i] = NULL;
572 dev_kfree_skb(skb);
573 }
574
575 /*
576 * Reset SKB receive buffers
577 */
578 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
579 if ((skb = fep->rx_skbuff[i]) == NULL)
580 continue;
581
582 /* unmap */
583 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
584 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
585 DMA_FROM_DEVICE);
586
587 fep->rx_skbuff[i] = NULL;
588
589 dev_kfree_skb(skb);
590 }
591 }
592
593 /**********************************************************************************/
594
595 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
596 {
597 struct fs_enet_private *fep = netdev_priv(dev);
598 cbd_t __iomem *bdp;
599 int curidx;
600 u16 sc;
601 unsigned long flags;
602
603 spin_lock_irqsave(&fep->tx_lock, flags);
604
605 /*
606 * Fill in a Tx ring entry
607 */
608 bdp = fep->cur_tx;
609
610 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
611 netif_stop_queue(dev);
612 spin_unlock_irqrestore(&fep->tx_lock, flags);
613
614 /*
615 * Ooops. All transmit buffers are full. Bail out.
616 * This should not happen, since the tx queue should be stopped.
617 */
618 printk(KERN_WARNING DRV_MODULE_NAME
619 ": %s tx queue full!.\n", dev->name);
620 return NETDEV_TX_BUSY;
621 }
622
623 curidx = bdp - fep->tx_bd_base;
624 /*
625 * Clear all of the status flags.
626 */
627 CBDC_SC(bdp, BD_ENET_TX_STATS);
628
629 /*
630 * Save skb pointer.
631 */
632 fep->tx_skbuff[curidx] = skb;
633
634 fep->stats.tx_bytes += skb->len;
635
636 /*
637 * Push the data cache so the CPM does not get stale memory data.
638 */
639 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
640 skb->data, skb->len, DMA_TO_DEVICE));
641 CBDW_DATLEN(bdp, skb->len);
642
643 dev->trans_start = jiffies;
644
645 /*
646 * If this was the last BD in the ring, start at the beginning again.
647 */
648 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
649 fep->cur_tx++;
650 else
651 fep->cur_tx = fep->tx_bd_base;
652
653 if (!--fep->tx_free)
654 netif_stop_queue(dev);
655
656 /* Trigger transmission start */
657 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
658 BD_ENET_TX_LAST | BD_ENET_TX_TC;
659
660 /* note that while FEC does not have this bit
661 * it marks it as available for software use
662 * yay for hw reuse :) */
663 if (skb->len <= 60)
664 sc |= BD_ENET_TX_PAD;
665 CBDS_SC(bdp, sc);
666
667 (*fep->ops->tx_kickstart)(dev);
668
669 spin_unlock_irqrestore(&fep->tx_lock, flags);
670
671 return NETDEV_TX_OK;
672 }
673
674 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
675 irq_handler_t irqf)
676 {
677 struct fs_enet_private *fep = netdev_priv(dev);
678
679 (*fep->ops->pre_request_irq)(dev, irq);
680 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
681 }
682
683 static void fs_free_irq(struct net_device *dev, int irq)
684 {
685 struct fs_enet_private *fep = netdev_priv(dev);
686
687 free_irq(irq, dev);
688 (*fep->ops->post_free_irq)(dev, irq);
689 }
690
691 static void fs_timeout(struct net_device *dev)
692 {
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695 int wake = 0;
696
697 fep->stats.tx_errors++;
698
699 spin_lock_irqsave(&fep->lock, flags);
700
701 if (dev->flags & IFF_UP) {
702 phy_stop(fep->phydev);
703 (*fep->ops->stop)(dev);
704 (*fep->ops->restart)(dev);
705 phy_start(fep->phydev);
706 }
707
708 phy_start(fep->phydev);
709 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
710 spin_unlock_irqrestore(&fep->lock, flags);
711
712 if (wake)
713 netif_wake_queue(dev);
714 }
715
716 /*-----------------------------------------------------------------------------
717 * generic link-change handler - should be sufficient for most cases
718 *-----------------------------------------------------------------------------*/
719 static void generic_adjust_link(struct net_device *dev)
720 {
721 struct fs_enet_private *fep = netdev_priv(dev);
722 struct phy_device *phydev = fep->phydev;
723 int new_state = 0;
724
725 if (phydev->link) {
726 /* adjust to duplex mode */
727 if (phydev->duplex != fep->oldduplex) {
728 new_state = 1;
729 fep->oldduplex = phydev->duplex;
730 }
731
732 if (phydev->speed != fep->oldspeed) {
733 new_state = 1;
734 fep->oldspeed = phydev->speed;
735 }
736
737 if (!fep->oldlink) {
738 new_state = 1;
739 fep->oldlink = 1;
740 netif_schedule(dev);
741 netif_carrier_on(dev);
742 netif_start_queue(dev);
743 }
744
745 if (new_state)
746 fep->ops->restart(dev);
747 } else if (fep->oldlink) {
748 new_state = 1;
749 fep->oldlink = 0;
750 fep->oldspeed = 0;
751 fep->oldduplex = -1;
752 netif_carrier_off(dev);
753 netif_stop_queue(dev);
754 }
755
756 if (new_state && netif_msg_link(fep))
757 phy_print_status(phydev);
758 }
759
760
761 static void fs_adjust_link(struct net_device *dev)
762 {
763 struct fs_enet_private *fep = netdev_priv(dev);
764 unsigned long flags;
765
766 spin_lock_irqsave(&fep->lock, flags);
767
768 if(fep->ops->adjust_link)
769 fep->ops->adjust_link(dev);
770 else
771 generic_adjust_link(dev);
772
773 spin_unlock_irqrestore(&fep->lock, flags);
774 }
775
776 static int fs_init_phy(struct net_device *dev)
777 {
778 struct fs_enet_private *fep = netdev_priv(dev);
779 struct phy_device *phydev;
780
781 fep->oldlink = 0;
782 fep->oldspeed = 0;
783 fep->oldduplex = -1;
784 if(fep->fpi->bus_id)
785 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
786 PHY_INTERFACE_MODE_MII);
787 else {
788 printk("No phy bus ID specified in BSP code\n");
789 return -EINVAL;
790 }
791 if (IS_ERR(phydev)) {
792 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
793 return PTR_ERR(phydev);
794 }
795
796 fep->phydev = phydev;
797
798 return 0;
799 }
800
801 static int fs_enet_open(struct net_device *dev)
802 {
803 struct fs_enet_private *fep = netdev_priv(dev);
804 int r;
805 int err;
806
807 if (fep->fpi->use_napi)
808 napi_enable(&fep->napi);
809
810 /* Install our interrupt handler. */
811 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
812 if (r != 0) {
813 printk(KERN_ERR DRV_MODULE_NAME
814 ": %s Could not allocate FS_ENET IRQ!", dev->name);
815 if (fep->fpi->use_napi)
816 napi_disable(&fep->napi);
817 return -EINVAL;
818 }
819
820 err = fs_init_phy(dev);
821 if (err) {
822 if (fep->fpi->use_napi)
823 napi_disable(&fep->napi);
824 return err;
825 }
826 phy_start(fep->phydev);
827
828 return 0;
829 }
830
831 static int fs_enet_close(struct net_device *dev)
832 {
833 struct fs_enet_private *fep = netdev_priv(dev);
834 unsigned long flags;
835
836 netif_stop_queue(dev);
837 netif_carrier_off(dev);
838 if (fep->fpi->use_napi)
839 napi_disable(&fep->napi);
840 phy_stop(fep->phydev);
841
842 spin_lock_irqsave(&fep->lock, flags);
843 spin_lock(&fep->tx_lock);
844 (*fep->ops->stop)(dev);
845 spin_unlock(&fep->tx_lock);
846 spin_unlock_irqrestore(&fep->lock, flags);
847
848 /* release any irqs */
849 phy_disconnect(fep->phydev);
850 fep->phydev = NULL;
851 fs_free_irq(dev, fep->interrupt);
852
853 return 0;
854 }
855
856 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
857 {
858 struct fs_enet_private *fep = netdev_priv(dev);
859 return &fep->stats;
860 }
861
862 /*************************************************************************/
863
864 static void fs_get_drvinfo(struct net_device *dev,
865 struct ethtool_drvinfo *info)
866 {
867 strcpy(info->driver, DRV_MODULE_NAME);
868 strcpy(info->version, DRV_MODULE_VERSION);
869 }
870
871 static int fs_get_regs_len(struct net_device *dev)
872 {
873 struct fs_enet_private *fep = netdev_priv(dev);
874
875 return (*fep->ops->get_regs_len)(dev);
876 }
877
878 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
879 void *p)
880 {
881 struct fs_enet_private *fep = netdev_priv(dev);
882 unsigned long flags;
883 int r, len;
884
885 len = regs->len;
886
887 spin_lock_irqsave(&fep->lock, flags);
888 r = (*fep->ops->get_regs)(dev, p, &len);
889 spin_unlock_irqrestore(&fep->lock, flags);
890
891 if (r == 0)
892 regs->version = 0;
893 }
894
895 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
896 {
897 struct fs_enet_private *fep = netdev_priv(dev);
898
899 if (!fep->phydev)
900 return -ENODEV;
901
902 return phy_ethtool_gset(fep->phydev, cmd);
903 }
904
905 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
906 {
907 struct fs_enet_private *fep = netdev_priv(dev);
908
909 if (!fep->phydev)
910 return -ENODEV;
911
912 return phy_ethtool_sset(fep->phydev, cmd);
913 }
914
915 static int fs_nway_reset(struct net_device *dev)
916 {
917 return 0;
918 }
919
920 static u32 fs_get_msglevel(struct net_device *dev)
921 {
922 struct fs_enet_private *fep = netdev_priv(dev);
923 return fep->msg_enable;
924 }
925
926 static void fs_set_msglevel(struct net_device *dev, u32 value)
927 {
928 struct fs_enet_private *fep = netdev_priv(dev);
929 fep->msg_enable = value;
930 }
931
932 static const struct ethtool_ops fs_ethtool_ops = {
933 .get_drvinfo = fs_get_drvinfo,
934 .get_regs_len = fs_get_regs_len,
935 .get_settings = fs_get_settings,
936 .set_settings = fs_set_settings,
937 .nway_reset = fs_nway_reset,
938 .get_link = ethtool_op_get_link,
939 .get_msglevel = fs_get_msglevel,
940 .set_msglevel = fs_set_msglevel,
941 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
942 .set_sg = ethtool_op_set_sg,
943 .get_regs = fs_get_regs,
944 };
945
946 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
947 {
948 struct fs_enet_private *fep = netdev_priv(dev);
949 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
950
951 if (!netif_running(dev))
952 return -EINVAL;
953
954 return phy_mii_ioctl(fep->phydev, mii, cmd);
955 }
956
957 extern int fs_mii_connect(struct net_device *dev);
958 extern void fs_mii_disconnect(struct net_device *dev);
959
960 #ifndef CONFIG_PPC_CPM_NEW_BINDING
961 static struct net_device *fs_init_instance(struct device *dev,
962 struct fs_platform_info *fpi)
963 {
964 struct net_device *ndev = NULL;
965 struct fs_enet_private *fep = NULL;
966 int privsize, i, r, err = 0, registered = 0;
967
968 fpi->fs_no = fs_get_id(fpi);
969 /* guard */
970 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
971 return ERR_PTR(-EINVAL);
972
973 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
974 (fpi->rx_ring + fpi->tx_ring));
975
976 ndev = alloc_etherdev(privsize);
977 if (!ndev) {
978 err = -ENOMEM;
979 goto err;
980 }
981
982 fep = netdev_priv(ndev);
983
984 fep->dev = dev;
985 dev_set_drvdata(dev, ndev);
986 fep->fpi = fpi;
987 if (fpi->init_ioports)
988 fpi->init_ioports((struct fs_platform_info *)fpi);
989
990 #ifdef CONFIG_FS_ENET_HAS_FEC
991 if (fs_get_fec_index(fpi->fs_no) >= 0)
992 fep->ops = &fs_fec_ops;
993 #endif
994
995 #ifdef CONFIG_FS_ENET_HAS_SCC
996 if (fs_get_scc_index(fpi->fs_no) >=0)
997 fep->ops = &fs_scc_ops;
998 #endif
999
1000 #ifdef CONFIG_FS_ENET_HAS_FCC
1001 if (fs_get_fcc_index(fpi->fs_no) >= 0)
1002 fep->ops = &fs_fcc_ops;
1003 #endif
1004
1005 if (fep->ops == NULL) {
1006 printk(KERN_ERR DRV_MODULE_NAME
1007 ": %s No matching ops found (%d).\n",
1008 ndev->name, fpi->fs_no);
1009 err = -EINVAL;
1010 goto err;
1011 }
1012
1013 r = (*fep->ops->setup_data)(ndev);
1014 if (r != 0) {
1015 printk(KERN_ERR DRV_MODULE_NAME
1016 ": %s setup_data failed\n",
1017 ndev->name);
1018 err = r;
1019 goto err;
1020 }
1021
1022 /* point rx_skbuff, tx_skbuff */
1023 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1024 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1025
1026 /* init locks */
1027 spin_lock_init(&fep->lock);
1028 spin_lock_init(&fep->tx_lock);
1029
1030 /*
1031 * Set the Ethernet address.
1032 */
1033 for (i = 0; i < 6; i++)
1034 ndev->dev_addr[i] = fpi->macaddr[i];
1035
1036 r = (*fep->ops->allocate_bd)(ndev);
1037
1038 if (fep->ring_base == NULL) {
1039 printk(KERN_ERR DRV_MODULE_NAME
1040 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1041 err = r;
1042 goto err;
1043 }
1044
1045 /*
1046 * Set receive and transmit descriptor base.
1047 */
1048 fep->rx_bd_base = fep->ring_base;
1049 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1050
1051 /* initialize ring size variables */
1052 fep->tx_ring = fpi->tx_ring;
1053 fep->rx_ring = fpi->rx_ring;
1054
1055 /*
1056 * The FEC Ethernet specific entries in the device structure.
1057 */
1058 ndev->open = fs_enet_open;
1059 ndev->hard_start_xmit = fs_enet_start_xmit;
1060 ndev->tx_timeout = fs_timeout;
1061 ndev->watchdog_timeo = 2 * HZ;
1062 ndev->stop = fs_enet_close;
1063 ndev->get_stats = fs_enet_get_stats;
1064 ndev->set_multicast_list = fs_set_multicast_list;
1065
1066 #ifdef CONFIG_NET_POLL_CONTROLLER
1067 ndev->poll_controller = fs_enet_netpoll;
1068 #endif
1069
1070 netif_napi_add(ndev, &fep->napi,
1071 fs_enet_rx_napi, fpi->napi_weight);
1072
1073 ndev->ethtool_ops = &fs_ethtool_ops;
1074 ndev->do_ioctl = fs_ioctl;
1075
1076 init_timer(&fep->phy_timer_list);
1077
1078 netif_carrier_off(ndev);
1079
1080 err = register_netdev(ndev);
1081 if (err != 0) {
1082 printk(KERN_ERR DRV_MODULE_NAME
1083 ": %s register_netdev failed.\n", ndev->name);
1084 goto err;
1085 }
1086 registered = 1;
1087
1088
1089 return ndev;
1090
1091 err:
1092 if (ndev != NULL) {
1093 if (registered)
1094 unregister_netdev(ndev);
1095
1096 if (fep && fep->ops) {
1097 (*fep->ops->free_bd)(ndev);
1098 (*fep->ops->cleanup_data)(ndev);
1099 }
1100
1101 free_netdev(ndev);
1102 }
1103
1104 dev_set_drvdata(dev, NULL);
1105
1106 return ERR_PTR(err);
1107 }
1108
1109 static int fs_cleanup_instance(struct net_device *ndev)
1110 {
1111 struct fs_enet_private *fep;
1112 const struct fs_platform_info *fpi;
1113 struct device *dev;
1114
1115 if (ndev == NULL)
1116 return -EINVAL;
1117
1118 fep = netdev_priv(ndev);
1119 if (fep == NULL)
1120 return -EINVAL;
1121
1122 fpi = fep->fpi;
1123
1124 unregister_netdev(ndev);
1125
1126 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1127 (void __force *)fep->ring_base, fep->ring_mem_addr);
1128
1129 /* reset it */
1130 (*fep->ops->cleanup_data)(ndev);
1131
1132 dev = fep->dev;
1133 if (dev != NULL) {
1134 dev_set_drvdata(dev, NULL);
1135 fep->dev = NULL;
1136 }
1137
1138 free_netdev(ndev);
1139
1140 return 0;
1141 }
1142 #endif
1143
1144 /**************************************************************************************/
1145
1146 /* handy pointer to the immap */
1147 void __iomem *fs_enet_immap = NULL;
1148
1149 static int setup_immap(void)
1150 {
1151 #ifdef CONFIG_CPM1
1152 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
1153 WARN_ON(!fs_enet_immap);
1154 #elif defined(CONFIG_CPM2)
1155 fs_enet_immap = cpm2_immr;
1156 #endif
1157
1158 return 0;
1159 }
1160
1161 static void cleanup_immap(void)
1162 {
1163 #if defined(CONFIG_CPM1)
1164 iounmap(fs_enet_immap);
1165 #endif
1166 }
1167
1168 /**************************************************************************************/
1169
1170 #ifdef CONFIG_PPC_CPM_NEW_BINDING
1171 static int __devinit find_phy(struct device_node *np,
1172 struct fs_platform_info *fpi)
1173 {
1174 struct device_node *phynode, *mdionode;
1175 struct resource res;
1176 int ret = 0, len;
1177 const u32 *data;
1178
1179 data = of_get_property(np, "fixed-link", NULL);
1180 if (data) {
1181 snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
1182 return 0;
1183 }
1184
1185 data = of_get_property(np, "phy-handle", &len);
1186 if (!data || len != 4)
1187 return -EINVAL;
1188
1189 phynode = of_find_node_by_phandle(*data);
1190 if (!phynode)
1191 return -EINVAL;
1192
1193 mdionode = of_get_parent(phynode);
1194 if (!mdionode)
1195 goto out_put_phy;
1196
1197 ret = of_address_to_resource(mdionode, 0, &res);
1198 if (ret)
1199 goto out_put_mdio;
1200
1201 data = of_get_property(phynode, "reg", &len);
1202 if (!data || len != 4)
1203 goto out_put_mdio;
1204
1205 snprintf(fpi->bus_id, 16, "%x:%02x", res.start, *data);
1206
1207 out_put_mdio:
1208 of_node_put(mdionode);
1209 out_put_phy:
1210 of_node_put(phynode);
1211 return ret;
1212 }
1213
1214 #ifdef CONFIG_FS_ENET_HAS_FEC
1215 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1216 #else
1217 #define IS_FEC(match) 0
1218 #endif
1219
1220 static int __devinit fs_enet_probe(struct of_device *ofdev,
1221 const struct of_device_id *match)
1222 {
1223 struct net_device *ndev;
1224 struct fs_enet_private *fep;
1225 struct fs_platform_info *fpi;
1226 const u32 *data;
1227 const u8 *mac_addr;
1228 int privsize, len, ret = -ENODEV;
1229
1230 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1231 if (!fpi)
1232 return -ENOMEM;
1233
1234 if (!IS_FEC(match)) {
1235 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1236 if (!data || len != 4)
1237 goto out_free_fpi;
1238
1239 fpi->cp_command = *data;
1240 }
1241
1242 fpi->rx_ring = 32;
1243 fpi->tx_ring = 32;
1244 fpi->rx_copybreak = 240;
1245 fpi->use_napi = 1;
1246 fpi->napi_weight = 17;
1247
1248 ret = find_phy(ofdev->node, fpi);
1249 if (ret)
1250 goto out_free_fpi;
1251
1252 privsize = sizeof(*fep) +
1253 sizeof(struct sk_buff **) *
1254 (fpi->rx_ring + fpi->tx_ring);
1255
1256 ndev = alloc_etherdev(privsize);
1257 if (!ndev) {
1258 ret = -ENOMEM;
1259 goto out_free_fpi;
1260 }
1261
1262 dev_set_drvdata(&ofdev->dev, ndev);
1263
1264 fep = netdev_priv(ndev);
1265 fep->dev = &ofdev->dev;
1266 fep->ndev = ndev;
1267 fep->fpi = fpi;
1268 fep->ops = match->data;
1269
1270 ret = fep->ops->setup_data(ndev);
1271 if (ret)
1272 goto out_free_dev;
1273
1274 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1275 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1276
1277 spin_lock_init(&fep->lock);
1278 spin_lock_init(&fep->tx_lock);
1279
1280 mac_addr = of_get_mac_address(ofdev->node);
1281 if (mac_addr)
1282 memcpy(ndev->dev_addr, mac_addr, 6);
1283
1284 ret = fep->ops->allocate_bd(ndev);
1285 if (ret)
1286 goto out_cleanup_data;
1287
1288 fep->rx_bd_base = fep->ring_base;
1289 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1290
1291 fep->tx_ring = fpi->tx_ring;
1292 fep->rx_ring = fpi->rx_ring;
1293
1294 ndev->open = fs_enet_open;
1295 ndev->hard_start_xmit = fs_enet_start_xmit;
1296 ndev->tx_timeout = fs_timeout;
1297 ndev->watchdog_timeo = 2 * HZ;
1298 ndev->stop = fs_enet_close;
1299 ndev->get_stats = fs_enet_get_stats;
1300 ndev->set_multicast_list = fs_set_multicast_list;
1301
1302 if (fpi->use_napi)
1303 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1304 fpi->napi_weight);
1305
1306 ndev->ethtool_ops = &fs_ethtool_ops;
1307 ndev->do_ioctl = fs_ioctl;
1308
1309 init_timer(&fep->phy_timer_list);
1310
1311 netif_carrier_off(ndev);
1312
1313 ret = register_netdev(ndev);
1314 if (ret)
1315 goto out_free_bd;
1316
1317 printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1318 ndev->name,
1319 ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1320 ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1321
1322 return 0;
1323
1324 out_free_bd:
1325 fep->ops->free_bd(ndev);
1326 out_cleanup_data:
1327 fep->ops->cleanup_data(ndev);
1328 out_free_dev:
1329 free_netdev(ndev);
1330 dev_set_drvdata(&ofdev->dev, NULL);
1331 out_free_fpi:
1332 kfree(fpi);
1333 return ret;
1334 }
1335
1336 static int fs_enet_remove(struct of_device *ofdev)
1337 {
1338 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1339 struct fs_enet_private *fep = netdev_priv(ndev);
1340
1341 unregister_netdev(ndev);
1342
1343 fep->ops->free_bd(ndev);
1344 fep->ops->cleanup_data(ndev);
1345 dev_set_drvdata(fep->dev, NULL);
1346
1347 free_netdev(ndev);
1348 return 0;
1349 }
1350
1351 static struct of_device_id fs_enet_match[] = {
1352 #ifdef CONFIG_FS_ENET_HAS_SCC
1353 {
1354 .compatible = "fsl,cpm1-scc-enet",
1355 .data = (void *)&fs_scc_ops,
1356 },
1357 #endif
1358 #ifdef CONFIG_FS_ENET_HAS_FCC
1359 {
1360 .compatible = "fsl,cpm2-fcc-enet",
1361 .data = (void *)&fs_fcc_ops,
1362 },
1363 #endif
1364 #ifdef CONFIG_FS_ENET_HAS_FEC
1365 {
1366 .compatible = "fsl,pq1-fec-enet",
1367 .data = (void *)&fs_fec_ops,
1368 },
1369 #endif
1370 {}
1371 };
1372
1373 static struct of_platform_driver fs_enet_driver = {
1374 .name = "fs_enet",
1375 .match_table = fs_enet_match,
1376 .probe = fs_enet_probe,
1377 .remove = fs_enet_remove,
1378 };
1379
1380 static int __init fs_init(void)
1381 {
1382 int r = setup_immap();
1383 if (r != 0)
1384 return r;
1385
1386 r = of_register_platform_driver(&fs_enet_driver);
1387 if (r != 0)
1388 goto out;
1389
1390 return 0;
1391
1392 out:
1393 cleanup_immap();
1394 return r;
1395 }
1396
1397 static void __exit fs_cleanup(void)
1398 {
1399 of_unregister_platform_driver(&fs_enet_driver);
1400 cleanup_immap();
1401 }
1402 #else
1403 static int __devinit fs_enet_probe(struct device *dev)
1404 {
1405 struct net_device *ndev;
1406
1407 /* no fixup - no device */
1408 if (dev->platform_data == NULL) {
1409 printk(KERN_INFO "fs_enet: "
1410 "probe called with no platform data; "
1411 "remove unused devices\n");
1412 return -ENODEV;
1413 }
1414
1415 ndev = fs_init_instance(dev, dev->platform_data);
1416 if (IS_ERR(ndev))
1417 return PTR_ERR(ndev);
1418 return 0;
1419 }
1420
1421 static int fs_enet_remove(struct device *dev)
1422 {
1423 return fs_cleanup_instance(dev_get_drvdata(dev));
1424 }
1425
1426 static struct device_driver fs_enet_fec_driver = {
1427 .name = "fsl-cpm-fec",
1428 .bus = &platform_bus_type,
1429 .probe = fs_enet_probe,
1430 .remove = fs_enet_remove,
1431 #ifdef CONFIG_PM
1432 /* .suspend = fs_enet_suspend, TODO */
1433 /* .resume = fs_enet_resume, TODO */
1434 #endif
1435 };
1436
1437 static struct device_driver fs_enet_scc_driver = {
1438 .name = "fsl-cpm-scc",
1439 .bus = &platform_bus_type,
1440 .probe = fs_enet_probe,
1441 .remove = fs_enet_remove,
1442 #ifdef CONFIG_PM
1443 /* .suspend = fs_enet_suspend, TODO */
1444 /* .resume = fs_enet_resume, TODO */
1445 #endif
1446 };
1447
1448 static struct device_driver fs_enet_fcc_driver = {
1449 .name = "fsl-cpm-fcc",
1450 .bus = &platform_bus_type,
1451 .probe = fs_enet_probe,
1452 .remove = fs_enet_remove,
1453 #ifdef CONFIG_PM
1454 /* .suspend = fs_enet_suspend, TODO */
1455 /* .resume = fs_enet_resume, TODO */
1456 #endif
1457 };
1458
1459 static int __init fs_init(void)
1460 {
1461 int r;
1462
1463 printk(KERN_INFO
1464 "%s", version);
1465
1466 r = setup_immap();
1467 if (r != 0)
1468 return r;
1469
1470 #ifdef CONFIG_FS_ENET_HAS_FCC
1471 /* let's insert mii stuff */
1472 r = fs_enet_mdio_bb_init();
1473
1474 if (r != 0) {
1475 printk(KERN_ERR DRV_MODULE_NAME
1476 "BB PHY init failed.\n");
1477 return r;
1478 }
1479 r = driver_register(&fs_enet_fcc_driver);
1480 if (r != 0)
1481 goto err;
1482 #endif
1483
1484 #ifdef CONFIG_FS_ENET_HAS_FEC
1485 r = fs_enet_mdio_fec_init();
1486 if (r != 0) {
1487 printk(KERN_ERR DRV_MODULE_NAME
1488 "FEC PHY init failed.\n");
1489 return r;
1490 }
1491
1492 r = driver_register(&fs_enet_fec_driver);
1493 if (r != 0)
1494 goto err;
1495 #endif
1496
1497 #ifdef CONFIG_FS_ENET_HAS_SCC
1498 r = driver_register(&fs_enet_scc_driver);
1499 if (r != 0)
1500 goto err;
1501 #endif
1502
1503 return 0;
1504 err:
1505 cleanup_immap();
1506 return r;
1507 }
1508
1509 static void __exit fs_cleanup(void)
1510 {
1511 driver_unregister(&fs_enet_fec_driver);
1512 driver_unregister(&fs_enet_fcc_driver);
1513 driver_unregister(&fs_enet_scc_driver);
1514 cleanup_immap();
1515 }
1516 #endif
1517
1518 #ifdef CONFIG_NET_POLL_CONTROLLER
1519 static void fs_enet_netpoll(struct net_device *dev)
1520 {
1521 disable_irq(dev->irq);
1522 fs_enet_interrupt(dev->irq, dev, NULL);
1523 enable_irq(dev->irq);
1524 }
1525 #endif
1526
1527 /**************************************************************************************/
1528
1529 module_init(fs_init);
1530 module_exit(fs_cleanup);