Merge tag 'stable/for-linus-3.10-rc3-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / realtek / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 Config5 = 0xD8, /* Config5 */
161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh = 0xEC, /* Early Tx threshold */
167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
169
170 /* Tx and Rx status descriptors */
171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd = (1 << 30), /* End of descriptor ring */
173 FirstFrag = (1 << 29), /* First segment of a packet */
174 LastFrag = (1 << 28), /* Final segment of a packet */
175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift = 16, /* MSS value position */
177 MSSMask = 0xfff, /* MSS value: 11 bits */
178 TxError = (1 << 23), /* Tx error summary */
179 RxError = (1 << 20), /* Rx error summary */
180 IPCS = (1 << 18), /* Calculate IP checksum */
181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag = (1 << 17), /* Add VLAN tag */
184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
185 IPFail = (1 << 15), /* IP checksum failed */
186 UDPFail = (1 << 14), /* UDP/IP checksum failed */
187 TCPFail = (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 RxProtoTCP = 1,
192 RxProtoUDP = 2,
193 RxProtoIP = 3,
194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
195 TxOWC = (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame = (1 << 27), /* Rx frame alignment error */
201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC = (1 << 18), /* Rx CRC error */
203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206
207 /* StatsAddr register */
208 DumpStats = (1 << 3), /* Begin stats dump */
209
210 /* RxConfig register */
211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr = 0x20, /* Accept packets with CRC errors */
214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast = 0x08, /* Accept broadcast packets */
216 AcceptMulticast = 0x04, /* Accept multicast packets */
217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
219
220 /* IntrMask / IntrStatus registers */
221 PciErr = (1 << 15), /* System error on the PCI bus */
222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg = (1 << 13), /* Cable length change */
224 SWInt = (1 << 8), /* Software-requested interrupt */
225 TxEmpty = (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
227 LinkChg = (1 << 5), /* Packet underrun, or link change */
228 RxEmpty = (1 << 4), /* No Rx descriptors available */
229 TxErr = (1 << 3), /* Tx error */
230 TxOK = (1 << 2), /* Tx packet sent */
231 RxErr = (1 << 1), /* Rx error */
232 RxOK = (1 << 0), /* Rx packet received */
233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
235
236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 RxErr | RxOK | IntrResvd,
239
240 /* C mode command register */
241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
242 RxOn = (1 << 3), /* Rx mode enable */
243 TxOn = (1 << 2), /* Tx mode enable */
244
245 /* C+ mode command register */
246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum = (1 << 5), /* Rx checksum offload enable */
248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn = (1 << 1), /* Rx mode enable */
251 CpTxOn = (1 << 0), /* Tx mode enable */
252
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
256
257 /* TxConfig register */
258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
260
261 /* Early Tx Threshold register */
262 TxThreshMask = 0x3f, /* Mask bits 5-0 */
263 TxThreshMax = 2048, /* Max early Tx threshold */
264
265 /* Config1 register */
266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
267 LWACT = (1 << 4), /* LWAKE active mode */
268 PMEnable = (1 << 0), /* Enable various PM features of chip */
269
270 /* Config3 register */
271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
274
275 /* Config4 register */
276 LWPTN = (1 << 1), /* LWAKE Pattern */
277 LWPME = (1 << 4), /* LANWAKE vs PMEB */
278
279 /* Config5 register */
280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF = (1 << 5), /* Accept Multicast wakeup frame */
282 UWF = (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake = (1 << 1), /* Enable LANWake signal */
284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
285
286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290
291 static const unsigned int cp_rx_config =
292 (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 (RX_DMA_BURST << RxCfgDMAShift);
294
295 struct cp_desc {
296 __le32 opts1;
297 __le32 opts2;
298 __le64 addr;
299 };
300
301 struct cp_dma_stats {
302 __le64 tx_ok;
303 __le64 rx_ok;
304 __le64 tx_err;
305 __le32 rx_err;
306 __le16 rx_fifo;
307 __le16 frame_align;
308 __le32 tx_ok_1col;
309 __le32 tx_ok_mcol;
310 __le64 rx_ok_phys;
311 __le64 rx_ok_bcast;
312 __le32 rx_ok_mcast;
313 __le16 tx_abort;
314 __le16 tx_underrun;
315 } __packed;
316
317 struct cp_extra_stats {
318 unsigned long rx_frags;
319 };
320
321 struct cp_private {
322 void __iomem *regs;
323 struct net_device *dev;
324 spinlock_t lock;
325 u32 msg_enable;
326
327 struct napi_struct napi;
328
329 struct pci_dev *pdev;
330 u32 rx_config;
331 u16 cpcmd;
332
333 struct cp_extra_stats cp_stats;
334
335 unsigned rx_head ____cacheline_aligned;
336 unsigned rx_tail;
337 struct cp_desc *rx_ring;
338 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
339
340 unsigned tx_head ____cacheline_aligned;
341 unsigned tx_tail;
342 struct cp_desc *tx_ring;
343 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
344
345 unsigned rx_buf_sz;
346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347
348 dma_addr_t ring_dma;
349
350 struct mii_if_info mii_if;
351 };
352
353 #define cpr8(reg) readb(cp->regs + (reg))
354 #define cpr16(reg) readw(cp->regs + (reg))
355 #define cpr32(reg) readl(cp->regs + (reg))
356 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val) writew((val), cp->regs + (reg))
358 #define cpw32(reg,val) writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
362 } while (0)
363 #define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
366 } while (0)
367 #define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
370 } while (0)
371
372
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
388 { },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391
392 static struct {
393 const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 { "tx_ok" },
396 { "rx_ok" },
397 { "tx_err" },
398 { "rx_err" },
399 { "rx_fifo" },
400 { "frame_align" },
401 { "tx_ok_1col" },
402 { "tx_ok_mcol" },
403 { "rx_ok_phys" },
404 { "rx_ok_bcast" },
405 { "rx_ok_mcast" },
406 { "tx_abort" },
407 { "tx_underrun" },
408 { "rx_frags" },
409 };
410
411
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 unsigned int mtu = cp->dev->mtu;
415
416 if (mtu > ETH_DATA_LEN)
417 /* MTU + ethernet header + FCS + optional VLAN tag */
418 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 else
420 cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 struct cp_desc *desc)
425 {
426 u32 opts2 = le32_to_cpu(desc->opts2);
427
428 skb->protocol = eth_type_trans (skb, cp->dev);
429
430 cp->dev->stats.rx_packets++;
431 cp->dev->stats.rx_bytes += skb->len;
432
433 if (opts2 & RxVlanTagged)
434 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
435
436 napi_gro_receive(&cp->napi, skb);
437 }
438
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 u32 status, u32 len)
441 {
442 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 rx_tail, status, len);
444 cp->dev->stats.rx_errors++;
445 if (status & RxErrFrame)
446 cp->dev->stats.rx_frame_errors++;
447 if (status & RxErrCRC)
448 cp->dev->stats.rx_crc_errors++;
449 if ((status & RxErrRunt) || (status & RxErrLong))
450 cp->dev->stats.rx_length_errors++;
451 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 cp->dev->stats.rx_length_errors++;
453 if (status & RxErrFIFO)
454 cp->dev->stats.rx_fifo_errors++;
455 }
456
457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 unsigned int protocol = (status >> 16) & 0x3;
460
461 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 return 1;
464 else
465 return 0;
466 }
467
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 struct net_device *dev = cp->dev;
472 unsigned int rx_tail = cp->rx_tail;
473 int rx;
474
475 rx_status_loop:
476 rx = 0;
477 cpw16(IntrStatus, cp_rx_intr_mask);
478
479 while (1) {
480 u32 status, len;
481 dma_addr_t mapping;
482 struct sk_buff *skb, *new_skb;
483 struct cp_desc *desc;
484 const unsigned buflen = cp->rx_buf_sz;
485
486 skb = cp->rx_skb[rx_tail];
487 BUG_ON(!skb);
488
489 desc = &cp->rx_ring[rx_tail];
490 status = le32_to_cpu(desc->opts1);
491 if (status & DescOwn)
492 break;
493
494 len = (status & 0x1fff) - 4;
495 mapping = le64_to_cpu(desc->addr);
496
497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 /* we don't support incoming fragmented frames.
499 * instead, we attempt to ensure that the
500 * pre-allocated RX skbs are properly sized such
501 * that RX fragments are never encountered
502 */
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 dev->stats.rx_dropped++;
505 cp->cp_stats.rx_frags++;
506 goto rx_next;
507 }
508
509 if (status & (RxError | RxErrFIFO)) {
510 cp_rx_err_acct(cp, rx_tail, status, len);
511 goto rx_next;
512 }
513
514 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 rx_tail, status, len);
516
517 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 if (!new_skb) {
519 dev->stats.rx_dropped++;
520 goto rx_next;
521 }
522
523 dma_unmap_single(&cp->pdev->dev, mapping,
524 buflen, PCI_DMA_FROMDEVICE);
525
526 /* Handle checksum offloading for incoming packets. */
527 if (cp_rx_csum_ok(status))
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 else
530 skb_checksum_none_assert(skb);
531
532 skb_put(skb, len);
533
534 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
535 PCI_DMA_FROMDEVICE);
536 cp->rx_skb[rx_tail] = new_skb;
537
538 cp_rx_skb(cp, skb, desc);
539 rx++;
540
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550
551 if (rx >= budget)
552 break;
553 }
554
555 cp->rx_tail = rx_tail;
556
557 /* if we did not reach work limit, then we're done with
558 * this round of polling
559 */
560 if (rx < budget) {
561 unsigned long flags;
562
563 if (cpr16(IntrStatus) & cp_rx_intr_mask)
564 goto rx_status_loop;
565
566 napi_gro_flush(napi, false);
567 spin_lock_irqsave(&cp->lock, flags);
568 __napi_complete(napi);
569 cpw16_f(IntrMask, cp_intr_mask);
570 spin_unlock_irqrestore(&cp->lock, flags);
571 }
572
573 return rx;
574 }
575
576 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
577 {
578 struct net_device *dev = dev_instance;
579 struct cp_private *cp;
580 int handled = 0;
581 u16 status;
582
583 if (unlikely(dev == NULL))
584 return IRQ_NONE;
585 cp = netdev_priv(dev);
586
587 spin_lock(&cp->lock);
588
589 status = cpr16(IntrStatus);
590 if (!status || (status == 0xFFFF))
591 goto out_unlock;
592
593 handled = 1;
594
595 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
596 status, cpr8(Cmd), cpr16(CpCmd));
597
598 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
599
600 /* close possible race's with dev_close */
601 if (unlikely(!netif_running(dev))) {
602 cpw16(IntrMask, 0);
603 goto out_unlock;
604 }
605
606 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
607 if (napi_schedule_prep(&cp->napi)) {
608 cpw16_f(IntrMask, cp_norx_intr_mask);
609 __napi_schedule(&cp->napi);
610 }
611
612 if (status & (TxOK | TxErr | TxEmpty | SWInt))
613 cp_tx(cp);
614 if (status & LinkChg)
615 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
616
617
618 if (status & PciErr) {
619 u16 pci_status;
620
621 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
622 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
623 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
624 status, pci_status);
625
626 /* TODO: reset hardware */
627 }
628
629 out_unlock:
630 spin_unlock(&cp->lock);
631
632 return IRQ_RETVAL(handled);
633 }
634
635 #ifdef CONFIG_NET_POLL_CONTROLLER
636 /*
637 * Polling receive - used by netconsole and other diagnostic tools
638 * to allow network i/o with interrupts disabled.
639 */
640 static void cp_poll_controller(struct net_device *dev)
641 {
642 struct cp_private *cp = netdev_priv(dev);
643 const int irq = cp->pdev->irq;
644
645 disable_irq(irq);
646 cp_interrupt(irq, dev);
647 enable_irq(irq);
648 }
649 #endif
650
651 static void cp_tx (struct cp_private *cp)
652 {
653 unsigned tx_head = cp->tx_head;
654 unsigned tx_tail = cp->tx_tail;
655 unsigned bytes_compl = 0, pkts_compl = 0;
656
657 while (tx_tail != tx_head) {
658 struct cp_desc *txd = cp->tx_ring + tx_tail;
659 struct sk_buff *skb;
660 u32 status;
661
662 rmb();
663 status = le32_to_cpu(txd->opts1);
664 if (status & DescOwn)
665 break;
666
667 skb = cp->tx_skb[tx_tail];
668 BUG_ON(!skb);
669
670 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
671 le32_to_cpu(txd->opts1) & 0xffff,
672 PCI_DMA_TODEVICE);
673
674 bytes_compl += skb->len;
675 pkts_compl++;
676
677 if (status & LastFrag) {
678 if (status & (TxError | TxFIFOUnder)) {
679 netif_dbg(cp, tx_err, cp->dev,
680 "tx err, status 0x%x\n", status);
681 cp->dev->stats.tx_errors++;
682 if (status & TxOWC)
683 cp->dev->stats.tx_window_errors++;
684 if (status & TxMaxCol)
685 cp->dev->stats.tx_aborted_errors++;
686 if (status & TxLinkFail)
687 cp->dev->stats.tx_carrier_errors++;
688 if (status & TxFIFOUnder)
689 cp->dev->stats.tx_fifo_errors++;
690 } else {
691 cp->dev->stats.collisions +=
692 ((status >> TxColCntShift) & TxColCntMask);
693 cp->dev->stats.tx_packets++;
694 cp->dev->stats.tx_bytes += skb->len;
695 netif_dbg(cp, tx_done, cp->dev,
696 "tx done, slot %d\n", tx_tail);
697 }
698 dev_kfree_skb_irq(skb);
699 }
700
701 cp->tx_skb[tx_tail] = NULL;
702
703 tx_tail = NEXT_TX(tx_tail);
704 }
705
706 cp->tx_tail = tx_tail;
707
708 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
709 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
710 netif_wake_queue(cp->dev);
711 }
712
713 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
714 {
715 return vlan_tx_tag_present(skb) ?
716 TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
717 }
718
719 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
720 struct net_device *dev)
721 {
722 struct cp_private *cp = netdev_priv(dev);
723 unsigned entry;
724 u32 eor, flags;
725 unsigned long intr_flags;
726 __le32 opts2;
727 int mss = 0;
728
729 spin_lock_irqsave(&cp->lock, intr_flags);
730
731 /* This is a hard error, log it. */
732 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
733 netif_stop_queue(dev);
734 spin_unlock_irqrestore(&cp->lock, intr_flags);
735 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
736 return NETDEV_TX_BUSY;
737 }
738
739 entry = cp->tx_head;
740 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
741 mss = skb_shinfo(skb)->gso_size;
742
743 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
744
745 if (skb_shinfo(skb)->nr_frags == 0) {
746 struct cp_desc *txd = &cp->tx_ring[entry];
747 u32 len;
748 dma_addr_t mapping;
749
750 len = skb->len;
751 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
752 txd->opts2 = opts2;
753 txd->addr = cpu_to_le64(mapping);
754 wmb();
755
756 flags = eor | len | DescOwn | FirstFrag | LastFrag;
757
758 if (mss)
759 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
760 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
761 const struct iphdr *ip = ip_hdr(skb);
762 if (ip->protocol == IPPROTO_TCP)
763 flags |= IPCS | TCPCS;
764 else if (ip->protocol == IPPROTO_UDP)
765 flags |= IPCS | UDPCS;
766 else
767 WARN_ON(1); /* we need a WARN() */
768 }
769
770 txd->opts1 = cpu_to_le32(flags);
771 wmb();
772
773 cp->tx_skb[entry] = skb;
774 entry = NEXT_TX(entry);
775 } else {
776 struct cp_desc *txd;
777 u32 first_len, first_eor;
778 dma_addr_t first_mapping;
779 int frag, first_entry = entry;
780 const struct iphdr *ip = ip_hdr(skb);
781
782 /* We must give this initial chunk to the device last.
783 * Otherwise we could race with the device.
784 */
785 first_eor = eor;
786 first_len = skb_headlen(skb);
787 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
788 first_len, PCI_DMA_TODEVICE);
789 cp->tx_skb[entry] = skb;
790 entry = NEXT_TX(entry);
791
792 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
793 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
794 u32 len;
795 u32 ctrl;
796 dma_addr_t mapping;
797
798 len = skb_frag_size(this_frag);
799 mapping = dma_map_single(&cp->pdev->dev,
800 skb_frag_address(this_frag),
801 len, PCI_DMA_TODEVICE);
802 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
803
804 ctrl = eor | len | DescOwn;
805
806 if (mss)
807 ctrl |= LargeSend |
808 ((mss & MSSMask) << MSSShift);
809 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
810 if (ip->protocol == IPPROTO_TCP)
811 ctrl |= IPCS | TCPCS;
812 else if (ip->protocol == IPPROTO_UDP)
813 ctrl |= IPCS | UDPCS;
814 else
815 BUG();
816 }
817
818 if (frag == skb_shinfo(skb)->nr_frags - 1)
819 ctrl |= LastFrag;
820
821 txd = &cp->tx_ring[entry];
822 txd->opts2 = opts2;
823 txd->addr = cpu_to_le64(mapping);
824 wmb();
825
826 txd->opts1 = cpu_to_le32(ctrl);
827 wmb();
828
829 cp->tx_skb[entry] = skb;
830 entry = NEXT_TX(entry);
831 }
832
833 txd = &cp->tx_ring[first_entry];
834 txd->opts2 = opts2;
835 txd->addr = cpu_to_le64(first_mapping);
836 wmb();
837
838 if (skb->ip_summed == CHECKSUM_PARTIAL) {
839 if (ip->protocol == IPPROTO_TCP)
840 txd->opts1 = cpu_to_le32(first_eor | first_len |
841 FirstFrag | DescOwn |
842 IPCS | TCPCS);
843 else if (ip->protocol == IPPROTO_UDP)
844 txd->opts1 = cpu_to_le32(first_eor | first_len |
845 FirstFrag | DescOwn |
846 IPCS | UDPCS);
847 else
848 BUG();
849 } else
850 txd->opts1 = cpu_to_le32(first_eor | first_len |
851 FirstFrag | DescOwn);
852 wmb();
853 }
854 cp->tx_head = entry;
855
856 netdev_sent_queue(dev, skb->len);
857 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
858 entry, skb->len);
859 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
860 netif_stop_queue(dev);
861
862 spin_unlock_irqrestore(&cp->lock, intr_flags);
863
864 cpw8(TxPoll, NormalTxPoll);
865
866 return NETDEV_TX_OK;
867 }
868
869 /* Set or clear the multicast filter for this adaptor.
870 This routine is not state sensitive and need not be SMP locked. */
871
872 static void __cp_set_rx_mode (struct net_device *dev)
873 {
874 struct cp_private *cp = netdev_priv(dev);
875 u32 mc_filter[2]; /* Multicast hash filter */
876 int rx_mode;
877
878 /* Note: do not reorder, GCC is clever about common statements. */
879 if (dev->flags & IFF_PROMISC) {
880 /* Unconditionally log net taps. */
881 rx_mode =
882 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
883 AcceptAllPhys;
884 mc_filter[1] = mc_filter[0] = 0xffffffff;
885 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
886 (dev->flags & IFF_ALLMULTI)) {
887 /* Too many to filter perfectly -- accept all multicasts. */
888 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
889 mc_filter[1] = mc_filter[0] = 0xffffffff;
890 } else {
891 struct netdev_hw_addr *ha;
892 rx_mode = AcceptBroadcast | AcceptMyPhys;
893 mc_filter[1] = mc_filter[0] = 0;
894 netdev_for_each_mc_addr(ha, dev) {
895 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
896
897 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
898 rx_mode |= AcceptMulticast;
899 }
900 }
901
902 /* We can safely update without stopping the chip. */
903 cp->rx_config = cp_rx_config | rx_mode;
904 cpw32_f(RxConfig, cp->rx_config);
905
906 cpw32_f (MAR0 + 0, mc_filter[0]);
907 cpw32_f (MAR0 + 4, mc_filter[1]);
908 }
909
910 static void cp_set_rx_mode (struct net_device *dev)
911 {
912 unsigned long flags;
913 struct cp_private *cp = netdev_priv(dev);
914
915 spin_lock_irqsave (&cp->lock, flags);
916 __cp_set_rx_mode(dev);
917 spin_unlock_irqrestore (&cp->lock, flags);
918 }
919
920 static void __cp_get_stats(struct cp_private *cp)
921 {
922 /* only lower 24 bits valid; write any value to clear */
923 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
924 cpw32 (RxMissed, 0);
925 }
926
927 static struct net_device_stats *cp_get_stats(struct net_device *dev)
928 {
929 struct cp_private *cp = netdev_priv(dev);
930 unsigned long flags;
931
932 /* The chip only need report frame silently dropped. */
933 spin_lock_irqsave(&cp->lock, flags);
934 if (netif_running(dev) && netif_device_present(dev))
935 __cp_get_stats(cp);
936 spin_unlock_irqrestore(&cp->lock, flags);
937
938 return &dev->stats;
939 }
940
941 static void cp_stop_hw (struct cp_private *cp)
942 {
943 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
944 cpw16_f(IntrMask, 0);
945 cpw8(Cmd, 0);
946 cpw16_f(CpCmd, 0);
947 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
948
949 cp->rx_tail = 0;
950 cp->tx_head = cp->tx_tail = 0;
951
952 netdev_reset_queue(cp->dev);
953 }
954
955 static void cp_reset_hw (struct cp_private *cp)
956 {
957 unsigned work = 1000;
958
959 cpw8(Cmd, CmdReset);
960
961 while (work--) {
962 if (!(cpr8(Cmd) & CmdReset))
963 return;
964
965 schedule_timeout_uninterruptible(10);
966 }
967
968 netdev_err(cp->dev, "hardware reset timeout\n");
969 }
970
971 static inline void cp_start_hw (struct cp_private *cp)
972 {
973 dma_addr_t ring_dma;
974
975 cpw16(CpCmd, cp->cpcmd);
976
977 /*
978 * These (at least TxRingAddr) need to be configured after the
979 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
980 * (C+ Command Register) recommends that these and more be configured
981 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
982 * it's been observed that the TxRingAddr is actually reset to garbage
983 * when C+ mode Tx is enabled in CpCmd.
984 */
985 cpw32_f(HiTxRingAddr, 0);
986 cpw32_f(HiTxRingAddr + 4, 0);
987
988 ring_dma = cp->ring_dma;
989 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
990 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
991
992 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
993 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
994 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
995
996 /*
997 * Strictly speaking, the datasheet says this should be enabled
998 * *before* setting the descriptor addresses. But what, then, would
999 * prevent it from doing DMA to random unconfigured addresses?
1000 * This variant appears to work fine.
1001 */
1002 cpw8(Cmd, RxOn | TxOn);
1003
1004 netdev_reset_queue(cp->dev);
1005 }
1006
1007 static void cp_enable_irq(struct cp_private *cp)
1008 {
1009 cpw16_f(IntrMask, cp_intr_mask);
1010 }
1011
1012 static void cp_init_hw (struct cp_private *cp)
1013 {
1014 struct net_device *dev = cp->dev;
1015
1016 cp_reset_hw(cp);
1017
1018 cpw8_f (Cfg9346, Cfg9346_Unlock);
1019
1020 /* Restore our idea of the MAC address. */
1021 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1022 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1023
1024 cp_start_hw(cp);
1025 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1026
1027 __cp_set_rx_mode(dev);
1028 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1029
1030 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1031 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1032 cpw8(Config3, PARMEnable);
1033 cp->wol_enabled = 0;
1034
1035 cpw8(Config5, cpr8(Config5) & PMEStatus);
1036
1037 cpw16(MultiIntr, 0);
1038
1039 cpw8_f(Cfg9346, Cfg9346_Lock);
1040 }
1041
1042 static int cp_refill_rx(struct cp_private *cp)
1043 {
1044 struct net_device *dev = cp->dev;
1045 unsigned i;
1046
1047 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1048 struct sk_buff *skb;
1049 dma_addr_t mapping;
1050
1051 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1052 if (!skb)
1053 goto err_out;
1054
1055 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1056 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1057 cp->rx_skb[i] = skb;
1058
1059 cp->rx_ring[i].opts2 = 0;
1060 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1061 if (i == (CP_RX_RING_SIZE - 1))
1062 cp->rx_ring[i].opts1 =
1063 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1064 else
1065 cp->rx_ring[i].opts1 =
1066 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1067 }
1068
1069 return 0;
1070
1071 err_out:
1072 cp_clean_rings(cp);
1073 return -ENOMEM;
1074 }
1075
1076 static void cp_init_rings_index (struct cp_private *cp)
1077 {
1078 cp->rx_tail = 0;
1079 cp->tx_head = cp->tx_tail = 0;
1080 }
1081
1082 static int cp_init_rings (struct cp_private *cp)
1083 {
1084 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1085 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1086
1087 cp_init_rings_index(cp);
1088
1089 return cp_refill_rx (cp);
1090 }
1091
1092 static int cp_alloc_rings (struct cp_private *cp)
1093 {
1094 struct device *d = &cp->pdev->dev;
1095 void *mem;
1096 int rc;
1097
1098 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1099 if (!mem)
1100 return -ENOMEM;
1101
1102 cp->rx_ring = mem;
1103 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1104
1105 rc = cp_init_rings(cp);
1106 if (rc < 0)
1107 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1108
1109 return rc;
1110 }
1111
1112 static void cp_clean_rings (struct cp_private *cp)
1113 {
1114 struct cp_desc *desc;
1115 unsigned i;
1116
1117 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1118 if (cp->rx_skb[i]) {
1119 desc = cp->rx_ring + i;
1120 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1121 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1122 dev_kfree_skb(cp->rx_skb[i]);
1123 }
1124 }
1125
1126 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1127 if (cp->tx_skb[i]) {
1128 struct sk_buff *skb = cp->tx_skb[i];
1129
1130 desc = cp->tx_ring + i;
1131 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1132 le32_to_cpu(desc->opts1) & 0xffff,
1133 PCI_DMA_TODEVICE);
1134 if (le32_to_cpu(desc->opts1) & LastFrag)
1135 dev_kfree_skb(skb);
1136 cp->dev->stats.tx_dropped++;
1137 }
1138 }
1139 netdev_reset_queue(cp->dev);
1140
1141 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1142 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1143
1144 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1145 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1146 }
1147
1148 static void cp_free_rings (struct cp_private *cp)
1149 {
1150 cp_clean_rings(cp);
1151 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1152 cp->ring_dma);
1153 cp->rx_ring = NULL;
1154 cp->tx_ring = NULL;
1155 }
1156
1157 static int cp_open (struct net_device *dev)
1158 {
1159 struct cp_private *cp = netdev_priv(dev);
1160 const int irq = cp->pdev->irq;
1161 int rc;
1162
1163 netif_dbg(cp, ifup, dev, "enabling interface\n");
1164
1165 rc = cp_alloc_rings(cp);
1166 if (rc)
1167 return rc;
1168
1169 napi_enable(&cp->napi);
1170
1171 cp_init_hw(cp);
1172
1173 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1174 if (rc)
1175 goto err_out_hw;
1176
1177 cp_enable_irq(cp);
1178
1179 netif_carrier_off(dev);
1180 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1181 netif_start_queue(dev);
1182
1183 return 0;
1184
1185 err_out_hw:
1186 napi_disable(&cp->napi);
1187 cp_stop_hw(cp);
1188 cp_free_rings(cp);
1189 return rc;
1190 }
1191
1192 static int cp_close (struct net_device *dev)
1193 {
1194 struct cp_private *cp = netdev_priv(dev);
1195 unsigned long flags;
1196
1197 napi_disable(&cp->napi);
1198
1199 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1200
1201 spin_lock_irqsave(&cp->lock, flags);
1202
1203 netif_stop_queue(dev);
1204 netif_carrier_off(dev);
1205
1206 cp_stop_hw(cp);
1207
1208 spin_unlock_irqrestore(&cp->lock, flags);
1209
1210 free_irq(cp->pdev->irq, dev);
1211
1212 cp_free_rings(cp);
1213 return 0;
1214 }
1215
1216 static void cp_tx_timeout(struct net_device *dev)
1217 {
1218 struct cp_private *cp = netdev_priv(dev);
1219 unsigned long flags;
1220 int rc;
1221
1222 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1223 cpr8(Cmd), cpr16(CpCmd),
1224 cpr16(IntrStatus), cpr16(IntrMask));
1225
1226 spin_lock_irqsave(&cp->lock, flags);
1227
1228 cp_stop_hw(cp);
1229 cp_clean_rings(cp);
1230 rc = cp_init_rings(cp);
1231 cp_start_hw(cp);
1232 cp_enable_irq(cp);
1233
1234 netif_wake_queue(dev);
1235
1236 spin_unlock_irqrestore(&cp->lock, flags);
1237 }
1238
1239 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1240 {
1241 struct cp_private *cp = netdev_priv(dev);
1242
1243 /* check for invalid MTU, according to hardware limits */
1244 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1245 return -EINVAL;
1246
1247 /* if network interface not up, no need for complexity */
1248 if (!netif_running(dev)) {
1249 dev->mtu = new_mtu;
1250 cp_set_rxbufsize(cp); /* set new rx buf size */
1251 return 0;
1252 }
1253
1254 /* network IS up, close it, reset MTU, and come up again. */
1255 cp_close(dev);
1256 dev->mtu = new_mtu;
1257 cp_set_rxbufsize(cp);
1258 return cp_open(dev);
1259 }
1260
1261 static const char mii_2_8139_map[8] = {
1262 BasicModeCtrl,
1263 BasicModeStatus,
1264 0,
1265 0,
1266 NWayAdvert,
1267 NWayLPAR,
1268 NWayExpansion,
1269 0
1270 };
1271
1272 static int mdio_read(struct net_device *dev, int phy_id, int location)
1273 {
1274 struct cp_private *cp = netdev_priv(dev);
1275
1276 return location < 8 && mii_2_8139_map[location] ?
1277 readw(cp->regs + mii_2_8139_map[location]) : 0;
1278 }
1279
1280
1281 static void mdio_write(struct net_device *dev, int phy_id, int location,
1282 int value)
1283 {
1284 struct cp_private *cp = netdev_priv(dev);
1285
1286 if (location == 0) {
1287 cpw8(Cfg9346, Cfg9346_Unlock);
1288 cpw16(BasicModeCtrl, value);
1289 cpw8(Cfg9346, Cfg9346_Lock);
1290 } else if (location < 8 && mii_2_8139_map[location])
1291 cpw16(mii_2_8139_map[location], value);
1292 }
1293
1294 /* Set the ethtool Wake-on-LAN settings */
1295 static int netdev_set_wol (struct cp_private *cp,
1296 const struct ethtool_wolinfo *wol)
1297 {
1298 u8 options;
1299
1300 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1301 /* If WOL is being disabled, no need for complexity */
1302 if (wol->wolopts) {
1303 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1304 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1305 }
1306
1307 cpw8 (Cfg9346, Cfg9346_Unlock);
1308 cpw8 (Config3, options);
1309 cpw8 (Cfg9346, Cfg9346_Lock);
1310
1311 options = 0; /* Paranoia setting */
1312 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1313 /* If WOL is being disabled, no need for complexity */
1314 if (wol->wolopts) {
1315 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1316 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1317 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1318 }
1319
1320 cpw8 (Config5, options);
1321
1322 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1323
1324 return 0;
1325 }
1326
1327 /* Get the ethtool Wake-on-LAN settings */
1328 static void netdev_get_wol (struct cp_private *cp,
1329 struct ethtool_wolinfo *wol)
1330 {
1331 u8 options;
1332
1333 wol->wolopts = 0; /* Start from scratch */
1334 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1335 WAKE_MCAST | WAKE_UCAST;
1336 /* We don't need to go on if WOL is disabled */
1337 if (!cp->wol_enabled) return;
1338
1339 options = cpr8 (Config3);
1340 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1341 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1342
1343 options = 0; /* Paranoia setting */
1344 options = cpr8 (Config5);
1345 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1346 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1347 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1348 }
1349
1350 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1351 {
1352 struct cp_private *cp = netdev_priv(dev);
1353
1354 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1355 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1356 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1357 }
1358
1359 static void cp_get_ringparam(struct net_device *dev,
1360 struct ethtool_ringparam *ring)
1361 {
1362 ring->rx_max_pending = CP_RX_RING_SIZE;
1363 ring->tx_max_pending = CP_TX_RING_SIZE;
1364 ring->rx_pending = CP_RX_RING_SIZE;
1365 ring->tx_pending = CP_TX_RING_SIZE;
1366 }
1367
1368 static int cp_get_regs_len(struct net_device *dev)
1369 {
1370 return CP_REGS_SIZE;
1371 }
1372
1373 static int cp_get_sset_count (struct net_device *dev, int sset)
1374 {
1375 switch (sset) {
1376 case ETH_SS_STATS:
1377 return CP_NUM_STATS;
1378 default:
1379 return -EOPNOTSUPP;
1380 }
1381 }
1382
1383 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1384 {
1385 struct cp_private *cp = netdev_priv(dev);
1386 int rc;
1387 unsigned long flags;
1388
1389 spin_lock_irqsave(&cp->lock, flags);
1390 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1391 spin_unlock_irqrestore(&cp->lock, flags);
1392
1393 return rc;
1394 }
1395
1396 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1397 {
1398 struct cp_private *cp = netdev_priv(dev);
1399 int rc;
1400 unsigned long flags;
1401
1402 spin_lock_irqsave(&cp->lock, flags);
1403 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1404 spin_unlock_irqrestore(&cp->lock, flags);
1405
1406 return rc;
1407 }
1408
1409 static int cp_nway_reset(struct net_device *dev)
1410 {
1411 struct cp_private *cp = netdev_priv(dev);
1412 return mii_nway_restart(&cp->mii_if);
1413 }
1414
1415 static u32 cp_get_msglevel(struct net_device *dev)
1416 {
1417 struct cp_private *cp = netdev_priv(dev);
1418 return cp->msg_enable;
1419 }
1420
1421 static void cp_set_msglevel(struct net_device *dev, u32 value)
1422 {
1423 struct cp_private *cp = netdev_priv(dev);
1424 cp->msg_enable = value;
1425 }
1426
1427 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1428 {
1429 struct cp_private *cp = netdev_priv(dev);
1430 unsigned long flags;
1431
1432 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1433 return 0;
1434
1435 spin_lock_irqsave(&cp->lock, flags);
1436
1437 if (features & NETIF_F_RXCSUM)
1438 cp->cpcmd |= RxChkSum;
1439 else
1440 cp->cpcmd &= ~RxChkSum;
1441
1442 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1443 cp->cpcmd |= RxVlanOn;
1444 else
1445 cp->cpcmd &= ~RxVlanOn;
1446
1447 cpw16_f(CpCmd, cp->cpcmd);
1448 spin_unlock_irqrestore(&cp->lock, flags);
1449
1450 return 0;
1451 }
1452
1453 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1454 void *p)
1455 {
1456 struct cp_private *cp = netdev_priv(dev);
1457 unsigned long flags;
1458
1459 if (regs->len < CP_REGS_SIZE)
1460 return /* -EINVAL */;
1461
1462 regs->version = CP_REGS_VER;
1463
1464 spin_lock_irqsave(&cp->lock, flags);
1465 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1466 spin_unlock_irqrestore(&cp->lock, flags);
1467 }
1468
1469 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1470 {
1471 struct cp_private *cp = netdev_priv(dev);
1472 unsigned long flags;
1473
1474 spin_lock_irqsave (&cp->lock, flags);
1475 netdev_get_wol (cp, wol);
1476 spin_unlock_irqrestore (&cp->lock, flags);
1477 }
1478
1479 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1480 {
1481 struct cp_private *cp = netdev_priv(dev);
1482 unsigned long flags;
1483 int rc;
1484
1485 spin_lock_irqsave (&cp->lock, flags);
1486 rc = netdev_set_wol (cp, wol);
1487 spin_unlock_irqrestore (&cp->lock, flags);
1488
1489 return rc;
1490 }
1491
1492 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1493 {
1494 switch (stringset) {
1495 case ETH_SS_STATS:
1496 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1497 break;
1498 default:
1499 BUG();
1500 break;
1501 }
1502 }
1503
1504 static void cp_get_ethtool_stats (struct net_device *dev,
1505 struct ethtool_stats *estats, u64 *tmp_stats)
1506 {
1507 struct cp_private *cp = netdev_priv(dev);
1508 struct cp_dma_stats *nic_stats;
1509 dma_addr_t dma;
1510 int i;
1511
1512 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1513 &dma, GFP_KERNEL);
1514 if (!nic_stats)
1515 return;
1516
1517 /* begin NIC statistics dump */
1518 cpw32(StatsAddr + 4, (u64)dma >> 32);
1519 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1520 cpr32(StatsAddr);
1521
1522 for (i = 0; i < 1000; i++) {
1523 if ((cpr32(StatsAddr) & DumpStats) == 0)
1524 break;
1525 udelay(10);
1526 }
1527 cpw32(StatsAddr, 0);
1528 cpw32(StatsAddr + 4, 0);
1529 cpr32(StatsAddr);
1530
1531 i = 0;
1532 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1533 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1534 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1535 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1536 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1537 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1538 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1539 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1540 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1541 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1542 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1543 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1544 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1545 tmp_stats[i++] = cp->cp_stats.rx_frags;
1546 BUG_ON(i != CP_NUM_STATS);
1547
1548 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1549 }
1550
1551 static const struct ethtool_ops cp_ethtool_ops = {
1552 .get_drvinfo = cp_get_drvinfo,
1553 .get_regs_len = cp_get_regs_len,
1554 .get_sset_count = cp_get_sset_count,
1555 .get_settings = cp_get_settings,
1556 .set_settings = cp_set_settings,
1557 .nway_reset = cp_nway_reset,
1558 .get_link = ethtool_op_get_link,
1559 .get_msglevel = cp_get_msglevel,
1560 .set_msglevel = cp_set_msglevel,
1561 .get_regs = cp_get_regs,
1562 .get_wol = cp_get_wol,
1563 .set_wol = cp_set_wol,
1564 .get_strings = cp_get_strings,
1565 .get_ethtool_stats = cp_get_ethtool_stats,
1566 .get_eeprom_len = cp_get_eeprom_len,
1567 .get_eeprom = cp_get_eeprom,
1568 .set_eeprom = cp_set_eeprom,
1569 .get_ringparam = cp_get_ringparam,
1570 };
1571
1572 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1573 {
1574 struct cp_private *cp = netdev_priv(dev);
1575 int rc;
1576 unsigned long flags;
1577
1578 if (!netif_running(dev))
1579 return -EINVAL;
1580
1581 spin_lock_irqsave(&cp->lock, flags);
1582 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1583 spin_unlock_irqrestore(&cp->lock, flags);
1584 return rc;
1585 }
1586
1587 static int cp_set_mac_address(struct net_device *dev, void *p)
1588 {
1589 struct cp_private *cp = netdev_priv(dev);
1590 struct sockaddr *addr = p;
1591
1592 if (!is_valid_ether_addr(addr->sa_data))
1593 return -EADDRNOTAVAIL;
1594
1595 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1596
1597 spin_lock_irq(&cp->lock);
1598
1599 cpw8_f(Cfg9346, Cfg9346_Unlock);
1600 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1601 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1602 cpw8_f(Cfg9346, Cfg9346_Lock);
1603
1604 spin_unlock_irq(&cp->lock);
1605
1606 return 0;
1607 }
1608
1609 /* Serial EEPROM section. */
1610
1611 /* EEPROM_Ctrl bits. */
1612 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1613 #define EE_CS 0x08 /* EEPROM chip select. */
1614 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1615 #define EE_WRITE_0 0x00
1616 #define EE_WRITE_1 0x02
1617 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1618 #define EE_ENB (0x80 | EE_CS)
1619
1620 /* Delay between EEPROM clock transitions.
1621 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1622 */
1623
1624 #define eeprom_delay() readb(ee_addr)
1625
1626 /* The EEPROM commands include the alway-set leading bit. */
1627 #define EE_EXTEND_CMD (4)
1628 #define EE_WRITE_CMD (5)
1629 #define EE_READ_CMD (6)
1630 #define EE_ERASE_CMD (7)
1631
1632 #define EE_EWDS_ADDR (0)
1633 #define EE_WRAL_ADDR (1)
1634 #define EE_ERAL_ADDR (2)
1635 #define EE_EWEN_ADDR (3)
1636
1637 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1638
1639 static void eeprom_cmd_start(void __iomem *ee_addr)
1640 {
1641 writeb (EE_ENB & ~EE_CS, ee_addr);
1642 writeb (EE_ENB, ee_addr);
1643 eeprom_delay ();
1644 }
1645
1646 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1647 {
1648 int i;
1649
1650 /* Shift the command bits out. */
1651 for (i = cmd_len - 1; i >= 0; i--) {
1652 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1653 writeb (EE_ENB | dataval, ee_addr);
1654 eeprom_delay ();
1655 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1656 eeprom_delay ();
1657 }
1658 writeb (EE_ENB, ee_addr);
1659 eeprom_delay ();
1660 }
1661
1662 static void eeprom_cmd_end(void __iomem *ee_addr)
1663 {
1664 writeb(0, ee_addr);
1665 eeprom_delay ();
1666 }
1667
1668 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1669 int addr_len)
1670 {
1671 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1672
1673 eeprom_cmd_start(ee_addr);
1674 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1675 eeprom_cmd_end(ee_addr);
1676 }
1677
1678 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1679 {
1680 int i;
1681 u16 retval = 0;
1682 void __iomem *ee_addr = ioaddr + Cfg9346;
1683 int read_cmd = location | (EE_READ_CMD << addr_len);
1684
1685 eeprom_cmd_start(ee_addr);
1686 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1687
1688 for (i = 16; i > 0; i--) {
1689 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1690 eeprom_delay ();
1691 retval =
1692 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1693 0);
1694 writeb (EE_ENB, ee_addr);
1695 eeprom_delay ();
1696 }
1697
1698 eeprom_cmd_end(ee_addr);
1699
1700 return retval;
1701 }
1702
1703 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1704 int addr_len)
1705 {
1706 int i;
1707 void __iomem *ee_addr = ioaddr + Cfg9346;
1708 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1709
1710 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1711
1712 eeprom_cmd_start(ee_addr);
1713 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1714 eeprom_cmd(ee_addr, val, 16);
1715 eeprom_cmd_end(ee_addr);
1716
1717 eeprom_cmd_start(ee_addr);
1718 for (i = 0; i < 20000; i++)
1719 if (readb(ee_addr) & EE_DATA_READ)
1720 break;
1721 eeprom_cmd_end(ee_addr);
1722
1723 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1724 }
1725
1726 static int cp_get_eeprom_len(struct net_device *dev)
1727 {
1728 struct cp_private *cp = netdev_priv(dev);
1729 int size;
1730
1731 spin_lock_irq(&cp->lock);
1732 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1733 spin_unlock_irq(&cp->lock);
1734
1735 return size;
1736 }
1737
1738 static int cp_get_eeprom(struct net_device *dev,
1739 struct ethtool_eeprom *eeprom, u8 *data)
1740 {
1741 struct cp_private *cp = netdev_priv(dev);
1742 unsigned int addr_len;
1743 u16 val;
1744 u32 offset = eeprom->offset >> 1;
1745 u32 len = eeprom->len;
1746 u32 i = 0;
1747
1748 eeprom->magic = CP_EEPROM_MAGIC;
1749
1750 spin_lock_irq(&cp->lock);
1751
1752 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1753
1754 if (eeprom->offset & 1) {
1755 val = read_eeprom(cp->regs, offset, addr_len);
1756 data[i++] = (u8)(val >> 8);
1757 offset++;
1758 }
1759
1760 while (i < len - 1) {
1761 val = read_eeprom(cp->regs, offset, addr_len);
1762 data[i++] = (u8)val;
1763 data[i++] = (u8)(val >> 8);
1764 offset++;
1765 }
1766
1767 if (i < len) {
1768 val = read_eeprom(cp->regs, offset, addr_len);
1769 data[i] = (u8)val;
1770 }
1771
1772 spin_unlock_irq(&cp->lock);
1773 return 0;
1774 }
1775
1776 static int cp_set_eeprom(struct net_device *dev,
1777 struct ethtool_eeprom *eeprom, u8 *data)
1778 {
1779 struct cp_private *cp = netdev_priv(dev);
1780 unsigned int addr_len;
1781 u16 val;
1782 u32 offset = eeprom->offset >> 1;
1783 u32 len = eeprom->len;
1784 u32 i = 0;
1785
1786 if (eeprom->magic != CP_EEPROM_MAGIC)
1787 return -EINVAL;
1788
1789 spin_lock_irq(&cp->lock);
1790
1791 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1792
1793 if (eeprom->offset & 1) {
1794 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1795 val |= (u16)data[i++] << 8;
1796 write_eeprom(cp->regs, offset, val, addr_len);
1797 offset++;
1798 }
1799
1800 while (i < len - 1) {
1801 val = (u16)data[i++];
1802 val |= (u16)data[i++] << 8;
1803 write_eeprom(cp->regs, offset, val, addr_len);
1804 offset++;
1805 }
1806
1807 if (i < len) {
1808 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1809 val |= (u16)data[i];
1810 write_eeprom(cp->regs, offset, val, addr_len);
1811 }
1812
1813 spin_unlock_irq(&cp->lock);
1814 return 0;
1815 }
1816
1817 /* Put the board into D3cold state and wait for WakeUp signal */
1818 static void cp_set_d3_state (struct cp_private *cp)
1819 {
1820 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1821 pci_set_power_state (cp->pdev, PCI_D3hot);
1822 }
1823
1824 static const struct net_device_ops cp_netdev_ops = {
1825 .ndo_open = cp_open,
1826 .ndo_stop = cp_close,
1827 .ndo_validate_addr = eth_validate_addr,
1828 .ndo_set_mac_address = cp_set_mac_address,
1829 .ndo_set_rx_mode = cp_set_rx_mode,
1830 .ndo_get_stats = cp_get_stats,
1831 .ndo_do_ioctl = cp_ioctl,
1832 .ndo_start_xmit = cp_start_xmit,
1833 .ndo_tx_timeout = cp_tx_timeout,
1834 .ndo_set_features = cp_set_features,
1835 .ndo_change_mtu = cp_change_mtu,
1836
1837 #ifdef CONFIG_NET_POLL_CONTROLLER
1838 .ndo_poll_controller = cp_poll_controller,
1839 #endif
1840 };
1841
1842 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1843 {
1844 struct net_device *dev;
1845 struct cp_private *cp;
1846 int rc;
1847 void __iomem *regs;
1848 resource_size_t pciaddr;
1849 unsigned int addr_len, i, pci_using_dac;
1850
1851 #ifndef MODULE
1852 static int version_printed;
1853 if (version_printed++ == 0)
1854 pr_info("%s", version);
1855 #endif
1856
1857 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1858 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1859 dev_info(&pdev->dev,
1860 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1861 pdev->vendor, pdev->device, pdev->revision);
1862 return -ENODEV;
1863 }
1864
1865 dev = alloc_etherdev(sizeof(struct cp_private));
1866 if (!dev)
1867 return -ENOMEM;
1868 SET_NETDEV_DEV(dev, &pdev->dev);
1869
1870 cp = netdev_priv(dev);
1871 cp->pdev = pdev;
1872 cp->dev = dev;
1873 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1874 spin_lock_init (&cp->lock);
1875 cp->mii_if.dev = dev;
1876 cp->mii_if.mdio_read = mdio_read;
1877 cp->mii_if.mdio_write = mdio_write;
1878 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1879 cp->mii_if.phy_id_mask = 0x1f;
1880 cp->mii_if.reg_num_mask = 0x1f;
1881 cp_set_rxbufsize(cp);
1882
1883 rc = pci_enable_device(pdev);
1884 if (rc)
1885 goto err_out_free;
1886
1887 rc = pci_set_mwi(pdev);
1888 if (rc)
1889 goto err_out_disable;
1890
1891 rc = pci_request_regions(pdev, DRV_NAME);
1892 if (rc)
1893 goto err_out_mwi;
1894
1895 pciaddr = pci_resource_start(pdev, 1);
1896 if (!pciaddr) {
1897 rc = -EIO;
1898 dev_err(&pdev->dev, "no MMIO resource\n");
1899 goto err_out_res;
1900 }
1901 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1902 rc = -EIO;
1903 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1904 (unsigned long long)pci_resource_len(pdev, 1));
1905 goto err_out_res;
1906 }
1907
1908 /* Configure DMA attributes. */
1909 if ((sizeof(dma_addr_t) > 4) &&
1910 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1911 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1912 pci_using_dac = 1;
1913 } else {
1914 pci_using_dac = 0;
1915
1916 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1917 if (rc) {
1918 dev_err(&pdev->dev,
1919 "No usable DMA configuration, aborting\n");
1920 goto err_out_res;
1921 }
1922 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1923 if (rc) {
1924 dev_err(&pdev->dev,
1925 "No usable consistent DMA configuration, aborting\n");
1926 goto err_out_res;
1927 }
1928 }
1929
1930 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1931 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1932
1933 dev->features |= NETIF_F_RXCSUM;
1934 dev->hw_features |= NETIF_F_RXCSUM;
1935
1936 regs = ioremap(pciaddr, CP_REGS_SIZE);
1937 if (!regs) {
1938 rc = -EIO;
1939 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1940 (unsigned long long)pci_resource_len(pdev, 1),
1941 (unsigned long long)pciaddr);
1942 goto err_out_res;
1943 }
1944 cp->regs = regs;
1945
1946 cp_stop_hw(cp);
1947
1948 /* read MAC address from EEPROM */
1949 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1950 for (i = 0; i < 3; i++)
1951 ((__le16 *) (dev->dev_addr))[i] =
1952 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1953
1954 dev->netdev_ops = &cp_netdev_ops;
1955 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1956 dev->ethtool_ops = &cp_ethtool_ops;
1957 dev->watchdog_timeo = TX_TIMEOUT;
1958
1959 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1960
1961 if (pci_using_dac)
1962 dev->features |= NETIF_F_HIGHDMA;
1963
1964 /* disabled by default until verified */
1965 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1966 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1967 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1968 NETIF_F_HIGHDMA;
1969
1970 rc = register_netdev(dev);
1971 if (rc)
1972 goto err_out_iomap;
1973
1974 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
1975 regs, dev->dev_addr, pdev->irq);
1976
1977 pci_set_drvdata(pdev, dev);
1978
1979 /* enable busmastering and memory-write-invalidate */
1980 pci_set_master(pdev);
1981
1982 if (cp->wol_enabled)
1983 cp_set_d3_state (cp);
1984
1985 return 0;
1986
1987 err_out_iomap:
1988 iounmap(regs);
1989 err_out_res:
1990 pci_release_regions(pdev);
1991 err_out_mwi:
1992 pci_clear_mwi(pdev);
1993 err_out_disable:
1994 pci_disable_device(pdev);
1995 err_out_free:
1996 free_netdev(dev);
1997 return rc;
1998 }
1999
2000 static void cp_remove_one (struct pci_dev *pdev)
2001 {
2002 struct net_device *dev = pci_get_drvdata(pdev);
2003 struct cp_private *cp = netdev_priv(dev);
2004
2005 unregister_netdev(dev);
2006 iounmap(cp->regs);
2007 if (cp->wol_enabled)
2008 pci_set_power_state (pdev, PCI_D0);
2009 pci_release_regions(pdev);
2010 pci_clear_mwi(pdev);
2011 pci_disable_device(pdev);
2012 pci_set_drvdata(pdev, NULL);
2013 free_netdev(dev);
2014 }
2015
2016 #ifdef CONFIG_PM
2017 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2018 {
2019 struct net_device *dev = pci_get_drvdata(pdev);
2020 struct cp_private *cp = netdev_priv(dev);
2021 unsigned long flags;
2022
2023 if (!netif_running(dev))
2024 return 0;
2025
2026 netif_device_detach (dev);
2027 netif_stop_queue (dev);
2028
2029 spin_lock_irqsave (&cp->lock, flags);
2030
2031 /* Disable Rx and Tx */
2032 cpw16 (IntrMask, 0);
2033 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2034
2035 spin_unlock_irqrestore (&cp->lock, flags);
2036
2037 pci_save_state(pdev);
2038 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2039 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2040
2041 return 0;
2042 }
2043
2044 static int cp_resume (struct pci_dev *pdev)
2045 {
2046 struct net_device *dev = pci_get_drvdata (pdev);
2047 struct cp_private *cp = netdev_priv(dev);
2048 unsigned long flags;
2049
2050 if (!netif_running(dev))
2051 return 0;
2052
2053 netif_device_attach (dev);
2054
2055 pci_set_power_state(pdev, PCI_D0);
2056 pci_restore_state(pdev);
2057 pci_enable_wake(pdev, PCI_D0, 0);
2058
2059 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2060 cp_init_rings_index (cp);
2061 cp_init_hw (cp);
2062 cp_enable_irq(cp);
2063 netif_start_queue (dev);
2064
2065 spin_lock_irqsave (&cp->lock, flags);
2066
2067 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2068
2069 spin_unlock_irqrestore (&cp->lock, flags);
2070
2071 return 0;
2072 }
2073 #endif /* CONFIG_PM */
2074
2075 static struct pci_driver cp_driver = {
2076 .name = DRV_NAME,
2077 .id_table = cp_pci_tbl,
2078 .probe = cp_init_one,
2079 .remove = cp_remove_one,
2080 #ifdef CONFIG_PM
2081 .resume = cp_resume,
2082 .suspend = cp_suspend,
2083 #endif
2084 };
2085
2086 static int __init cp_init (void)
2087 {
2088 #ifdef MODULE
2089 pr_info("%s", version);
2090 #endif
2091 return pci_register_driver(&cp_driver);
2092 }
2093
2094 static void __exit cp_exit (void)
2095 {
2096 pci_unregister_driver (&cp_driver);
2097 }
2098
2099 module_init(cp_init);
2100 module_exit(cp_exit);