Merge branches 'devel-stable', 'entry', 'fixes', 'mach-types', 'misc' and 'smp-hotplu...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / e100.c
1 /*******************************************************************************
2
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Receive
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
115 *
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
124 * placed.
125 *
126 * V. Miscellaneous
127 *
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
133 *
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135 *
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
138 *
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
142 *
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
148 */
149
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
151
152 #include <linux/hardirq.h>
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/moduleparam.h>
156 #include <linux/kernel.h>
157 #include <linux/types.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/delay.h>
161 #include <linux/init.h>
162 #include <linux/pci.h>
163 #include <linux/dma-mapping.h>
164 #include <linux/dmapool.h>
165 #include <linux/netdevice.h>
166 #include <linux/etherdevice.h>
167 #include <linux/mii.h>
168 #include <linux/if_vlan.h>
169 #include <linux/skbuff.h>
170 #include <linux/ethtool.h>
171 #include <linux/string.h>
172 #include <linux/firmware.h>
173 #include <linux/rtnetlink.h>
174 #include <asm/unaligned.h>
175
176
177 #define DRV_NAME "e100"
178 #define DRV_EXT "-NAPI"
179 #define DRV_VERSION "3.5.24-k2"DRV_EXT
180 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
181 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
182
183 #define E100_WATCHDOG_PERIOD (2 * HZ)
184 #define E100_NAPI_WEIGHT 16
185
186 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
187 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
188 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
189
190 MODULE_DESCRIPTION(DRV_DESCRIPTION);
191 MODULE_AUTHOR(DRV_COPYRIGHT);
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
194 MODULE_FIRMWARE(FIRMWARE_D101M);
195 MODULE_FIRMWARE(FIRMWARE_D101S);
196 MODULE_FIRMWARE(FIRMWARE_D102E);
197
198 static int debug = 3;
199 static int eeprom_bad_csum_allow = 0;
200 static int use_io = 0;
201 module_param(debug, int, 0);
202 module_param(eeprom_bad_csum_allow, int, 0);
203 module_param(use_io, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
207
208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
211 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 { 0, }
255 };
256 MODULE_DEVICE_TABLE(pci, e100_id_table);
257
258 enum mac {
259 mac_82557_D100_A = 0,
260 mac_82557_D100_B = 1,
261 mac_82557_D100_C = 2,
262 mac_82558_D101_A4 = 4,
263 mac_82558_D101_B0 = 5,
264 mac_82559_D101M = 8,
265 mac_82559_D101S = 9,
266 mac_82550_D102 = 12,
267 mac_82550_D102_C = 13,
268 mac_82551_E = 14,
269 mac_82551_F = 15,
270 mac_82551_10 = 16,
271 mac_unknown = 0xFF,
272 };
273
274 enum phy {
275 phy_100a = 0x000003E0,
276 phy_100c = 0x035002A8,
277 phy_82555_tx = 0x015002A8,
278 phy_nsc_tx = 0x5C002000,
279 phy_82562_et = 0x033002A8,
280 phy_82562_em = 0x032002A8,
281 phy_82562_ek = 0x031002A8,
282 phy_82562_eh = 0x017002A8,
283 phy_82552_v = 0xd061004d,
284 phy_unknown = 0xFFFFFFFF,
285 };
286
287 /* CSR (Control/Status Registers) */
288 struct csr {
289 struct {
290 u8 status;
291 u8 stat_ack;
292 u8 cmd_lo;
293 u8 cmd_hi;
294 u32 gen_ptr;
295 } scb;
296 u32 port;
297 u16 flash_ctrl;
298 u8 eeprom_ctrl_lo;
299 u8 eeprom_ctrl_hi;
300 u32 mdi_ctrl;
301 u32 rx_dma_count;
302 };
303
304 enum scb_status {
305 rus_no_res = 0x08,
306 rus_ready = 0x10,
307 rus_mask = 0x3C,
308 };
309
310 enum ru_state {
311 RU_SUSPENDED = 0,
312 RU_RUNNING = 1,
313 RU_UNINITIALIZED = -1,
314 };
315
316 enum scb_stat_ack {
317 stat_ack_not_ours = 0x00,
318 stat_ack_sw_gen = 0x04,
319 stat_ack_rnr = 0x10,
320 stat_ack_cu_idle = 0x20,
321 stat_ack_frame_rx = 0x40,
322 stat_ack_cu_cmd_done = 0x80,
323 stat_ack_not_present = 0xFF,
324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
326 };
327
328 enum scb_cmd_hi {
329 irq_mask_none = 0x00,
330 irq_mask_all = 0x01,
331 irq_sw_gen = 0x02,
332 };
333
334 enum scb_cmd_lo {
335 cuc_nop = 0x00,
336 ruc_start = 0x01,
337 ruc_load_base = 0x06,
338 cuc_start = 0x10,
339 cuc_resume = 0x20,
340 cuc_dump_addr = 0x40,
341 cuc_dump_stats = 0x50,
342 cuc_load_base = 0x60,
343 cuc_dump_reset = 0x70,
344 };
345
346 enum cuc_dump {
347 cuc_dump_complete = 0x0000A005,
348 cuc_dump_reset_complete = 0x0000A007,
349 };
350
351 enum port {
352 software_reset = 0x0000,
353 selftest = 0x0001,
354 selective_reset = 0x0002,
355 };
356
357 enum eeprom_ctrl_lo {
358 eesk = 0x01,
359 eecs = 0x02,
360 eedi = 0x04,
361 eedo = 0x08,
362 };
363
364 enum mdi_ctrl {
365 mdi_write = 0x04000000,
366 mdi_read = 0x08000000,
367 mdi_ready = 0x10000000,
368 };
369
370 enum eeprom_op {
371 op_write = 0x05,
372 op_read = 0x06,
373 op_ewds = 0x10,
374 op_ewen = 0x13,
375 };
376
377 enum eeprom_offsets {
378 eeprom_cnfg_mdix = 0x03,
379 eeprom_phy_iface = 0x06,
380 eeprom_id = 0x0A,
381 eeprom_config_asf = 0x0D,
382 eeprom_smbus_addr = 0x90,
383 };
384
385 enum eeprom_cnfg_mdix {
386 eeprom_mdix_enabled = 0x0080,
387 };
388
389 enum eeprom_phy_iface {
390 NoSuchPhy = 0,
391 I82553AB,
392 I82553C,
393 I82503,
394 DP83840,
395 S80C240,
396 S80C24,
397 I82555,
398 DP83840A = 10,
399 };
400
401 enum eeprom_id {
402 eeprom_id_wol = 0x0020,
403 };
404
405 enum eeprom_config_asf {
406 eeprom_asf = 0x8000,
407 eeprom_gcl = 0x4000,
408 };
409
410 enum cb_status {
411 cb_complete = 0x8000,
412 cb_ok = 0x2000,
413 };
414
415 /**
416 * cb_command - Command Block flags
417 * @cb_tx_nc: 0: controler does CRC (normal), 1: CRC from skb memory
418 */
419 enum cb_command {
420 cb_nop = 0x0000,
421 cb_iaaddr = 0x0001,
422 cb_config = 0x0002,
423 cb_multi = 0x0003,
424 cb_tx = 0x0004,
425 cb_ucode = 0x0005,
426 cb_dump = 0x0006,
427 cb_tx_sf = 0x0008,
428 cb_tx_nc = 0x0010,
429 cb_cid = 0x1f00,
430 cb_i = 0x2000,
431 cb_s = 0x4000,
432 cb_el = 0x8000,
433 };
434
435 struct rfd {
436 __le16 status;
437 __le16 command;
438 __le32 link;
439 __le32 rbd;
440 __le16 actual_size;
441 __le16 size;
442 };
443
444 struct rx {
445 struct rx *next, *prev;
446 struct sk_buff *skb;
447 dma_addr_t dma_addr;
448 };
449
450 #if defined(__BIG_ENDIAN_BITFIELD)
451 #define X(a,b) b,a
452 #else
453 #define X(a,b) a,b
454 #endif
455 struct config {
456 /*0*/ u8 X(byte_count:6, pad0:2);
457 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
458 /*2*/ u8 adaptive_ifs;
459 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
460 term_write_cache_line:1), pad3:4);
461 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
462 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
463 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
464 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
465 rx_save_overruns : 1), rx_save_bad_frames : 1);
466 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
467 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
468 tx_dynamic_tbd:1);
469 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
470 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
471 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
472 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
473 loopback:2);
474 /*11*/ u8 X(linear_priority:3, pad11:5);
475 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
476 /*13*/ u8 ip_addr_lo;
477 /*14*/ u8 ip_addr_hi;
478 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
479 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
480 pad15_2:1), crs_or_cdt:1);
481 /*16*/ u8 fc_delay_lo;
482 /*17*/ u8 fc_delay_hi;
483 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
484 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
485 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
486 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
487 full_duplex_force:1), full_duplex_pin:1);
488 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
489 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
490 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
491 u8 pad_d102[9];
492 };
493
494 #define E100_MAX_MULTICAST_ADDRS 64
495 struct multi {
496 __le16 count;
497 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
498 };
499
500 /* Important: keep total struct u32-aligned */
501 #define UCODE_SIZE 134
502 struct cb {
503 __le16 status;
504 __le16 command;
505 __le32 link;
506 union {
507 u8 iaaddr[ETH_ALEN];
508 __le32 ucode[UCODE_SIZE];
509 struct config config;
510 struct multi multi;
511 struct {
512 u32 tbd_array;
513 u16 tcb_byte_count;
514 u8 threshold;
515 u8 tbd_count;
516 struct {
517 __le32 buf_addr;
518 __le16 size;
519 u16 eol;
520 } tbd;
521 } tcb;
522 __le32 dump_buffer_addr;
523 } u;
524 struct cb *next, *prev;
525 dma_addr_t dma_addr;
526 struct sk_buff *skb;
527 };
528
529 enum loopback {
530 lb_none = 0, lb_mac = 1, lb_phy = 3,
531 };
532
533 struct stats {
534 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
535 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
536 tx_multiple_collisions, tx_total_collisions;
537 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
538 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
539 rx_short_frame_errors;
540 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
541 __le16 xmt_tco_frames, rcv_tco_frames;
542 __le32 complete;
543 };
544
545 struct mem {
546 struct {
547 u32 signature;
548 u32 result;
549 } selftest;
550 struct stats stats;
551 u8 dump_buf[596];
552 };
553
554 struct param_range {
555 u32 min;
556 u32 max;
557 u32 count;
558 };
559
560 struct params {
561 struct param_range rfds;
562 struct param_range cbs;
563 };
564
565 struct nic {
566 /* Begin: frequently used values: keep adjacent for cache effect */
567 u32 msg_enable ____cacheline_aligned;
568 struct net_device *netdev;
569 struct pci_dev *pdev;
570 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
571
572 struct rx *rxs ____cacheline_aligned;
573 struct rx *rx_to_use;
574 struct rx *rx_to_clean;
575 struct rfd blank_rfd;
576 enum ru_state ru_running;
577
578 spinlock_t cb_lock ____cacheline_aligned;
579 spinlock_t cmd_lock;
580 struct csr __iomem *csr;
581 enum scb_cmd_lo cuc_cmd;
582 unsigned int cbs_avail;
583 struct napi_struct napi;
584 struct cb *cbs;
585 struct cb *cb_to_use;
586 struct cb *cb_to_send;
587 struct cb *cb_to_clean;
588 __le16 tx_command;
589 /* End: frequently used values: keep adjacent for cache effect */
590
591 enum {
592 ich = (1 << 0),
593 promiscuous = (1 << 1),
594 multicast_all = (1 << 2),
595 wol_magic = (1 << 3),
596 ich_10h_workaround = (1 << 4),
597 } flags ____cacheline_aligned;
598
599 enum mac mac;
600 enum phy phy;
601 struct params params;
602 struct timer_list watchdog;
603 struct mii_if_info mii;
604 struct work_struct tx_timeout_task;
605 enum loopback loopback;
606
607 struct mem *mem;
608 dma_addr_t dma_addr;
609
610 struct pci_pool *cbs_pool;
611 dma_addr_t cbs_dma_addr;
612 u8 adaptive_ifs;
613 u8 tx_threshold;
614 u32 tx_frames;
615 u32 tx_collisions;
616 u32 tx_deferred;
617 u32 tx_single_collisions;
618 u32 tx_multiple_collisions;
619 u32 tx_fc_pause;
620 u32 tx_tco_frames;
621
622 u32 rx_fc_pause;
623 u32 rx_fc_unsupported;
624 u32 rx_tco_frames;
625 u32 rx_short_frame_errors;
626 u32 rx_over_length_errors;
627
628 u16 eeprom_wc;
629 __le16 eeprom[256];
630 spinlock_t mdio_lock;
631 const struct firmware *fw;
632 };
633
634 static inline void e100_write_flush(struct nic *nic)
635 {
636 /* Flush previous PCI writes through intermediate bridges
637 * by doing a benign read */
638 (void)ioread8(&nic->csr->scb.status);
639 }
640
641 static void e100_enable_irq(struct nic *nic)
642 {
643 unsigned long flags;
644
645 spin_lock_irqsave(&nic->cmd_lock, flags);
646 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
647 e100_write_flush(nic);
648 spin_unlock_irqrestore(&nic->cmd_lock, flags);
649 }
650
651 static void e100_disable_irq(struct nic *nic)
652 {
653 unsigned long flags;
654
655 spin_lock_irqsave(&nic->cmd_lock, flags);
656 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
657 e100_write_flush(nic);
658 spin_unlock_irqrestore(&nic->cmd_lock, flags);
659 }
660
661 static void e100_hw_reset(struct nic *nic)
662 {
663 /* Put CU and RU into idle with a selective reset to get
664 * device off of PCI bus */
665 iowrite32(selective_reset, &nic->csr->port);
666 e100_write_flush(nic); udelay(20);
667
668 /* Now fully reset device */
669 iowrite32(software_reset, &nic->csr->port);
670 e100_write_flush(nic); udelay(20);
671
672 /* Mask off our interrupt line - it's unmasked after reset */
673 e100_disable_irq(nic);
674 }
675
676 static int e100_self_test(struct nic *nic)
677 {
678 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
679
680 /* Passing the self-test is a pretty good indication
681 * that the device can DMA to/from host memory */
682
683 nic->mem->selftest.signature = 0;
684 nic->mem->selftest.result = 0xFFFFFFFF;
685
686 iowrite32(selftest | dma_addr, &nic->csr->port);
687 e100_write_flush(nic);
688 /* Wait 10 msec for self-test to complete */
689 msleep(10);
690
691 /* Interrupts are enabled after self-test */
692 e100_disable_irq(nic);
693
694 /* Check results of self-test */
695 if (nic->mem->selftest.result != 0) {
696 netif_err(nic, hw, nic->netdev,
697 "Self-test failed: result=0x%08X\n",
698 nic->mem->selftest.result);
699 return -ETIMEDOUT;
700 }
701 if (nic->mem->selftest.signature == 0) {
702 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
703 return -ETIMEDOUT;
704 }
705
706 return 0;
707 }
708
709 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
710 {
711 u32 cmd_addr_data[3];
712 u8 ctrl;
713 int i, j;
714
715 /* Three cmds: write/erase enable, write data, write/erase disable */
716 cmd_addr_data[0] = op_ewen << (addr_len - 2);
717 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
718 le16_to_cpu(data);
719 cmd_addr_data[2] = op_ewds << (addr_len - 2);
720
721 /* Bit-bang cmds to write word to eeprom */
722 for (j = 0; j < 3; j++) {
723
724 /* Chip select */
725 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
726 e100_write_flush(nic); udelay(4);
727
728 for (i = 31; i >= 0; i--) {
729 ctrl = (cmd_addr_data[j] & (1 << i)) ?
730 eecs | eedi : eecs;
731 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
732 e100_write_flush(nic); udelay(4);
733
734 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
735 e100_write_flush(nic); udelay(4);
736 }
737 /* Wait 10 msec for cmd to complete */
738 msleep(10);
739
740 /* Chip deselect */
741 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
742 e100_write_flush(nic); udelay(4);
743 }
744 };
745
746 /* General technique stolen from the eepro100 driver - very clever */
747 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
748 {
749 u32 cmd_addr_data;
750 u16 data = 0;
751 u8 ctrl;
752 int i;
753
754 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
755
756 /* Chip select */
757 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
758 e100_write_flush(nic); udelay(4);
759
760 /* Bit-bang to read word from eeprom */
761 for (i = 31; i >= 0; i--) {
762 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
763 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
764 e100_write_flush(nic); udelay(4);
765
766 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
767 e100_write_flush(nic); udelay(4);
768
769 /* Eeprom drives a dummy zero to EEDO after receiving
770 * complete address. Use this to adjust addr_len. */
771 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
772 if (!(ctrl & eedo) && i > 16) {
773 *addr_len -= (i - 16);
774 i = 17;
775 }
776
777 data = (data << 1) | (ctrl & eedo ? 1 : 0);
778 }
779
780 /* Chip deselect */
781 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
782 e100_write_flush(nic); udelay(4);
783
784 return cpu_to_le16(data);
785 };
786
787 /* Load entire EEPROM image into driver cache and validate checksum */
788 static int e100_eeprom_load(struct nic *nic)
789 {
790 u16 addr, addr_len = 8, checksum = 0;
791
792 /* Try reading with an 8-bit addr len to discover actual addr len */
793 e100_eeprom_read(nic, &addr_len, 0);
794 nic->eeprom_wc = 1 << addr_len;
795
796 for (addr = 0; addr < nic->eeprom_wc; addr++) {
797 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
798 if (addr < nic->eeprom_wc - 1)
799 checksum += le16_to_cpu(nic->eeprom[addr]);
800 }
801
802 /* The checksum, stored in the last word, is calculated such that
803 * the sum of words should be 0xBABA */
804 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
805 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
806 if (!eeprom_bad_csum_allow)
807 return -EAGAIN;
808 }
809
810 return 0;
811 }
812
813 /* Save (portion of) driver EEPROM cache to device and update checksum */
814 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
815 {
816 u16 addr, addr_len = 8, checksum = 0;
817
818 /* Try reading with an 8-bit addr len to discover actual addr len */
819 e100_eeprom_read(nic, &addr_len, 0);
820 nic->eeprom_wc = 1 << addr_len;
821
822 if (start + count >= nic->eeprom_wc)
823 return -EINVAL;
824
825 for (addr = start; addr < start + count; addr++)
826 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
827
828 /* The checksum, stored in the last word, is calculated such that
829 * the sum of words should be 0xBABA */
830 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
831 checksum += le16_to_cpu(nic->eeprom[addr]);
832 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
833 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
834 nic->eeprom[nic->eeprom_wc - 1]);
835
836 return 0;
837 }
838
839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
840 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
841 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
842 {
843 unsigned long flags;
844 unsigned int i;
845 int err = 0;
846
847 spin_lock_irqsave(&nic->cmd_lock, flags);
848
849 /* Previous command is accepted when SCB clears */
850 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
851 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
852 break;
853 cpu_relax();
854 if (unlikely(i > E100_WAIT_SCB_FAST))
855 udelay(5);
856 }
857 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
858 err = -EAGAIN;
859 goto err_unlock;
860 }
861
862 if (unlikely(cmd != cuc_resume))
863 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
864 iowrite8(cmd, &nic->csr->scb.cmd_lo);
865
866 err_unlock:
867 spin_unlock_irqrestore(&nic->cmd_lock, flags);
868
869 return err;
870 }
871
872 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
873 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
874 {
875 struct cb *cb;
876 unsigned long flags;
877 int err = 0;
878
879 spin_lock_irqsave(&nic->cb_lock, flags);
880
881 if (unlikely(!nic->cbs_avail)) {
882 err = -ENOMEM;
883 goto err_unlock;
884 }
885
886 cb = nic->cb_to_use;
887 nic->cb_to_use = cb->next;
888 nic->cbs_avail--;
889 cb->skb = skb;
890
891 err = cb_prepare(nic, cb, skb);
892 if (err)
893 goto err_unlock;
894
895 if (unlikely(!nic->cbs_avail))
896 err = -ENOSPC;
897
898
899 /* Order is important otherwise we'll be in a race with h/w:
900 * set S-bit in current first, then clear S-bit in previous. */
901 cb->command |= cpu_to_le16(cb_s);
902 wmb();
903 cb->prev->command &= cpu_to_le16(~cb_s);
904
905 while (nic->cb_to_send != nic->cb_to_use) {
906 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
907 nic->cb_to_send->dma_addr))) {
908 /* Ok, here's where things get sticky. It's
909 * possible that we can't schedule the command
910 * because the controller is too busy, so
911 * let's just queue the command and try again
912 * when another command is scheduled. */
913 if (err == -ENOSPC) {
914 //request a reset
915 schedule_work(&nic->tx_timeout_task);
916 }
917 break;
918 } else {
919 nic->cuc_cmd = cuc_resume;
920 nic->cb_to_send = nic->cb_to_send->next;
921 }
922 }
923
924 err_unlock:
925 spin_unlock_irqrestore(&nic->cb_lock, flags);
926
927 return err;
928 }
929
930 static int mdio_read(struct net_device *netdev, int addr, int reg)
931 {
932 struct nic *nic = netdev_priv(netdev);
933 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
934 }
935
936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
937 {
938 struct nic *nic = netdev_priv(netdev);
939
940 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
941 }
942
943 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
944 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
945 {
946 u32 data_out = 0;
947 unsigned int i;
948 unsigned long flags;
949
950
951 /*
952 * Stratus87247: we shouldn't be writing the MDI control
953 * register until the Ready bit shows True. Also, since
954 * manipulation of the MDI control registers is a multi-step
955 * procedure it should be done under lock.
956 */
957 spin_lock_irqsave(&nic->mdio_lock, flags);
958 for (i = 100; i; --i) {
959 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
960 break;
961 udelay(20);
962 }
963 if (unlikely(!i)) {
964 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
965 spin_unlock_irqrestore(&nic->mdio_lock, flags);
966 return 0; /* No way to indicate timeout error */
967 }
968 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
969
970 for (i = 0; i < 100; i++) {
971 udelay(20);
972 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
973 break;
974 }
975 spin_unlock_irqrestore(&nic->mdio_lock, flags);
976 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
977 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
978 dir == mdi_read ? "READ" : "WRITE",
979 addr, reg, data, data_out);
980 return (u16)data_out;
981 }
982
983 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
984 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
985 u32 addr,
986 u32 dir,
987 u32 reg,
988 u16 data)
989 {
990 if ((reg == MII_BMCR) && (dir == mdi_write)) {
991 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
992 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
993 MII_ADVERTISE);
994
995 /*
996 * Workaround Si issue where sometimes the part will not
997 * autoneg to 100Mbps even when advertised.
998 */
999 if (advert & ADVERTISE_100FULL)
1000 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1001 else if (advert & ADVERTISE_100HALF)
1002 data |= BMCR_SPEED100;
1003 }
1004 }
1005 return mdio_ctrl_hw(nic, addr, dir, reg, data);
1006 }
1007
1008 /* Fully software-emulated mdio_ctrl() function for cards without
1009 * MII-compliant PHYs.
1010 * For now, this is mainly geared towards 80c24 support; in case of further
1011 * requirements for other types (i82503, ...?) either extend this mechanism
1012 * or split it, whichever is cleaner.
1013 */
1014 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1015 u32 addr,
1016 u32 dir,
1017 u32 reg,
1018 u16 data)
1019 {
1020 /* might need to allocate a netdev_priv'ed register array eventually
1021 * to be able to record state changes, but for now
1022 * some fully hardcoded register handling ought to be ok I guess. */
1023
1024 if (dir == mdi_read) {
1025 switch (reg) {
1026 case MII_BMCR:
1027 /* Auto-negotiation, right? */
1028 return BMCR_ANENABLE |
1029 BMCR_FULLDPLX;
1030 case MII_BMSR:
1031 return BMSR_LSTATUS /* for mii_link_ok() */ |
1032 BMSR_ANEGCAPABLE |
1033 BMSR_10FULL;
1034 case MII_ADVERTISE:
1035 /* 80c24 is a "combo card" PHY, right? */
1036 return ADVERTISE_10HALF |
1037 ADVERTISE_10FULL;
1038 default:
1039 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 dir == mdi_read ? "READ" : "WRITE",
1042 addr, reg, data);
1043 return 0xFFFF;
1044 }
1045 } else {
1046 switch (reg) {
1047 default:
1048 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1049 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1050 dir == mdi_read ? "READ" : "WRITE",
1051 addr, reg, data);
1052 return 0xFFFF;
1053 }
1054 }
1055 }
1056 static inline int e100_phy_supports_mii(struct nic *nic)
1057 {
1058 /* for now, just check it by comparing whether we
1059 are using MII software emulation.
1060 */
1061 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1062 }
1063
1064 static void e100_get_defaults(struct nic *nic)
1065 {
1066 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1067 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1068
1069 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1070 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1071 if (nic->mac == mac_unknown)
1072 nic->mac = mac_82557_D100_A;
1073
1074 nic->params.rfds = rfds;
1075 nic->params.cbs = cbs;
1076
1077 /* Quadwords to DMA into FIFO before starting frame transmit */
1078 nic->tx_threshold = 0xE0;
1079
1080 /* no interrupt for every tx completion, delay = 256us if not 557 */
1081 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1082 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1083
1084 /* Template for a freshly allocated RFD */
1085 nic->blank_rfd.command = 0;
1086 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1087 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1088
1089 /* MII setup */
1090 nic->mii.phy_id_mask = 0x1F;
1091 nic->mii.reg_num_mask = 0x1F;
1092 nic->mii.dev = nic->netdev;
1093 nic->mii.mdio_read = mdio_read;
1094 nic->mii.mdio_write = mdio_write;
1095 }
1096
1097 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1098 {
1099 struct config *config = &cb->u.config;
1100 u8 *c = (u8 *)config;
1101 struct net_device *netdev = nic->netdev;
1102
1103 cb->command = cpu_to_le16(cb_config);
1104
1105 memset(config, 0, sizeof(struct config));
1106
1107 config->byte_count = 0x16; /* bytes in this struct */
1108 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1109 config->direct_rx_dma = 0x1; /* reserved */
1110 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1111 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1112 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1113 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1114 if (e100_phy_supports_mii(nic))
1115 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1116 config->pad10 = 0x6;
1117 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1118 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1119 config->ifs = 0x6; /* x16 = inter frame spacing */
1120 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1121 config->pad15_1 = 0x1;
1122 config->pad15_2 = 0x1;
1123 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1124 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1125 config->tx_padding = 0x1; /* 1=pad short frames */
1126 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1127 config->pad18 = 0x1;
1128 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1129 config->pad20_1 = 0x1F;
1130 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1131 config->pad21_1 = 0x5;
1132
1133 config->adaptive_ifs = nic->adaptive_ifs;
1134 config->loopback = nic->loopback;
1135
1136 if (nic->mii.force_media && nic->mii.full_duplex)
1137 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1138
1139 if (nic->flags & promiscuous || nic->loopback) {
1140 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1141 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1142 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1143 }
1144
1145 if (unlikely(netdev->features & NETIF_F_RXFCS))
1146 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */
1147
1148 if (nic->flags & multicast_all)
1149 config->multicast_all = 0x1; /* 1=accept, 0=no */
1150
1151 /* disable WoL when up */
1152 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1153 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1154
1155 if (nic->mac >= mac_82558_D101_A4) {
1156 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1157 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1158 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1159 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1160 if (nic->mac >= mac_82559_D101M) {
1161 config->tno_intr = 0x1; /* TCO stats enable */
1162 /* Enable TCO in extended config */
1163 if (nic->mac >= mac_82551_10) {
1164 config->byte_count = 0x20; /* extended bytes */
1165 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1166 }
1167 } else {
1168 config->standard_stat_counter = 0x0;
1169 }
1170 }
1171
1172 if (netdev->features & NETIF_F_RXALL) {
1173 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1174 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1175 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1176 }
1177
1178 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1179 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1180 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1181 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1182 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1183 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1184 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1185 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1186 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1187 return 0;
1188 }
1189
1190 /*************************************************************************
1191 * CPUSaver parameters
1192 *
1193 * All CPUSaver parameters are 16-bit literals that are part of a
1194 * "move immediate value" instruction. By changing the value of
1195 * the literal in the instruction before the code is loaded, the
1196 * driver can change the algorithm.
1197 *
1198 * INTDELAY - This loads the dead-man timer with its initial value.
1199 * When this timer expires the interrupt is asserted, and the
1200 * timer is reset each time a new packet is received. (see
1201 * BUNDLEMAX below to set the limit on number of chained packets)
1202 * The current default is 0x600 or 1536. Experiments show that
1203 * the value should probably stay within the 0x200 - 0x1000.
1204 *
1205 * BUNDLEMAX -
1206 * This sets the maximum number of frames that will be bundled. In
1207 * some situations, such as the TCP windowing algorithm, it may be
1208 * better to limit the growth of the bundle size than let it go as
1209 * high as it can, because that could cause too much added latency.
1210 * The default is six, because this is the number of packets in the
1211 * default TCP window size. A value of 1 would make CPUSaver indicate
1212 * an interrupt for every frame received. If you do not want to put
1213 * a limit on the bundle size, set this value to xFFFF.
1214 *
1215 * BUNDLESMALL -
1216 * This contains a bit-mask describing the minimum size frame that
1217 * will be bundled. The default masks the lower 7 bits, which means
1218 * that any frame less than 128 bytes in length will not be bundled,
1219 * but will instead immediately generate an interrupt. This does
1220 * not affect the current bundle in any way. Any frame that is 128
1221 * bytes or large will be bundled normally. This feature is meant
1222 * to provide immediate indication of ACK frames in a TCP environment.
1223 * Customers were seeing poor performance when a machine with CPUSaver
1224 * enabled was sending but not receiving. The delay introduced when
1225 * the ACKs were received was enough to reduce total throughput, because
1226 * the sender would sit idle until the ACK was finally seen.
1227 *
1228 * The current default is 0xFF80, which masks out the lower 7 bits.
1229 * This means that any frame which is x7F (127) bytes or smaller
1230 * will cause an immediate interrupt. Because this value must be a
1231 * bit mask, there are only a few valid values that can be used. To
1232 * turn this feature off, the driver can write the value xFFFF to the
1233 * lower word of this instruction (in the same way that the other
1234 * parameters are used). Likewise, a value of 0xF800 (2047) would
1235 * cause an interrupt to be generated for every frame, because all
1236 * standard Ethernet frames are <= 2047 bytes in length.
1237 *************************************************************************/
1238
1239 /* if you wish to disable the ucode functionality, while maintaining the
1240 * workarounds it provides, set the following defines to:
1241 * BUNDLESMALL 0
1242 * BUNDLEMAX 1
1243 * INTDELAY 1
1244 */
1245 #define BUNDLESMALL 1
1246 #define BUNDLEMAX (u16)6
1247 #define INTDELAY (u16)1536 /* 0x600 */
1248
1249 /* Initialize firmware */
1250 static const struct firmware *e100_request_firmware(struct nic *nic)
1251 {
1252 const char *fw_name;
1253 const struct firmware *fw = nic->fw;
1254 u8 timer, bundle, min_size;
1255 int err = 0;
1256 bool required = false;
1257
1258 /* do not load u-code for ICH devices */
1259 if (nic->flags & ich)
1260 return NULL;
1261
1262 /* Search for ucode match against h/w revision
1263 *
1264 * Based on comments in the source code for the FreeBSD fxp
1265 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1266 *
1267 * "fixes for bugs in the B-step hardware (specifically, bugs
1268 * with Inline Receive)."
1269 *
1270 * So we must fail if it cannot be loaded.
1271 *
1272 * The other microcode files are only required for the optional
1273 * CPUSaver feature. Nice to have, but no reason to fail.
1274 */
1275 if (nic->mac == mac_82559_D101M) {
1276 fw_name = FIRMWARE_D101M;
1277 } else if (nic->mac == mac_82559_D101S) {
1278 fw_name = FIRMWARE_D101S;
1279 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1280 fw_name = FIRMWARE_D102E;
1281 required = true;
1282 } else { /* No ucode on other devices */
1283 return NULL;
1284 }
1285
1286 /* If the firmware has not previously been loaded, request a pointer
1287 * to it. If it was previously loaded, we are reinitializing the
1288 * adapter, possibly in a resume from hibernate, in which case
1289 * request_firmware() cannot be used.
1290 */
1291 if (!fw)
1292 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1293
1294 if (err) {
1295 if (required) {
1296 netif_err(nic, probe, nic->netdev,
1297 "Failed to load firmware \"%s\": %d\n",
1298 fw_name, err);
1299 return ERR_PTR(err);
1300 } else {
1301 netif_info(nic, probe, nic->netdev,
1302 "CPUSaver disabled. Needs \"%s\": %d\n",
1303 fw_name, err);
1304 return NULL;
1305 }
1306 }
1307
1308 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1309 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1310 if (fw->size != UCODE_SIZE * 4 + 3) {
1311 netif_err(nic, probe, nic->netdev,
1312 "Firmware \"%s\" has wrong size %zu\n",
1313 fw_name, fw->size);
1314 release_firmware(fw);
1315 return ERR_PTR(-EINVAL);
1316 }
1317
1318 /* Read timer, bundle and min_size from end of firmware blob */
1319 timer = fw->data[UCODE_SIZE * 4];
1320 bundle = fw->data[UCODE_SIZE * 4 + 1];
1321 min_size = fw->data[UCODE_SIZE * 4 + 2];
1322
1323 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1324 min_size >= UCODE_SIZE) {
1325 netif_err(nic, probe, nic->netdev,
1326 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1327 fw_name, timer, bundle, min_size);
1328 release_firmware(fw);
1329 return ERR_PTR(-EINVAL);
1330 }
1331
1332 /* OK, firmware is validated and ready to use. Save a pointer
1333 * to it in the nic */
1334 nic->fw = fw;
1335 return fw;
1336 }
1337
1338 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1339 struct sk_buff *skb)
1340 {
1341 const struct firmware *fw = (void *)skb;
1342 u8 timer, bundle, min_size;
1343
1344 /* It's not a real skb; we just abused the fact that e100_exec_cb
1345 will pass it through to here... */
1346 cb->skb = NULL;
1347
1348 /* firmware is stored as little endian already */
1349 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1350
1351 /* Read timer, bundle and min_size from end of firmware blob */
1352 timer = fw->data[UCODE_SIZE * 4];
1353 bundle = fw->data[UCODE_SIZE * 4 + 1];
1354 min_size = fw->data[UCODE_SIZE * 4 + 2];
1355
1356 /* Insert user-tunable settings in cb->u.ucode */
1357 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1358 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1359 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1360 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1361 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1362 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1363
1364 cb->command = cpu_to_le16(cb_ucode | cb_el);
1365 return 0;
1366 }
1367
1368 static inline int e100_load_ucode_wait(struct nic *nic)
1369 {
1370 const struct firmware *fw;
1371 int err = 0, counter = 50;
1372 struct cb *cb = nic->cb_to_clean;
1373
1374 fw = e100_request_firmware(nic);
1375 /* If it's NULL, then no ucode is required */
1376 if (!fw || IS_ERR(fw))
1377 return PTR_ERR(fw);
1378
1379 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1380 netif_err(nic, probe, nic->netdev,
1381 "ucode cmd failed with error %d\n", err);
1382
1383 /* must restart cuc */
1384 nic->cuc_cmd = cuc_start;
1385
1386 /* wait for completion */
1387 e100_write_flush(nic);
1388 udelay(10);
1389
1390 /* wait for possibly (ouch) 500ms */
1391 while (!(cb->status & cpu_to_le16(cb_complete))) {
1392 msleep(10);
1393 if (!--counter) break;
1394 }
1395
1396 /* ack any interrupts, something could have been set */
1397 iowrite8(~0, &nic->csr->scb.stat_ack);
1398
1399 /* if the command failed, or is not OK, notify and return */
1400 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1401 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1402 err = -EPERM;
1403 }
1404
1405 return err;
1406 }
1407
1408 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1409 struct sk_buff *skb)
1410 {
1411 cb->command = cpu_to_le16(cb_iaaddr);
1412 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1413 return 0;
1414 }
1415
1416 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1417 {
1418 cb->command = cpu_to_le16(cb_dump);
1419 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1420 offsetof(struct mem, dump_buf));
1421 return 0;
1422 }
1423
1424 static int e100_phy_check_without_mii(struct nic *nic)
1425 {
1426 u8 phy_type;
1427 int without_mii;
1428
1429 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1430
1431 switch (phy_type) {
1432 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1433 case I82503: /* Non-MII PHY; UNTESTED! */
1434 case S80C24: /* Non-MII PHY; tested and working */
1435 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1436 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1437 * doesn't have a programming interface of any sort. The
1438 * media is sensed automatically based on how the link partner
1439 * is configured. This is, in essence, manual configuration.
1440 */
1441 netif_info(nic, probe, nic->netdev,
1442 "found MII-less i82503 or 80c24 or other PHY\n");
1443
1444 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1445 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1446
1447 /* these might be needed for certain MII-less cards...
1448 * nic->flags |= ich;
1449 * nic->flags |= ich_10h_workaround; */
1450
1451 without_mii = 1;
1452 break;
1453 default:
1454 without_mii = 0;
1455 break;
1456 }
1457 return without_mii;
1458 }
1459
1460 #define NCONFIG_AUTO_SWITCH 0x0080
1461 #define MII_NSC_CONG MII_RESV1
1462 #define NSC_CONG_ENABLE 0x0100
1463 #define NSC_CONG_TXREADY 0x0400
1464 #define ADVERTISE_FC_SUPPORTED 0x0400
1465 static int e100_phy_init(struct nic *nic)
1466 {
1467 struct net_device *netdev = nic->netdev;
1468 u32 addr;
1469 u16 bmcr, stat, id_lo, id_hi, cong;
1470
1471 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1472 for (addr = 0; addr < 32; addr++) {
1473 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1474 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1475 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1476 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1477 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1478 break;
1479 }
1480 if (addr == 32) {
1481 /* uhoh, no PHY detected: check whether we seem to be some
1482 * weird, rare variant which is *known* to not have any MII.
1483 * But do this AFTER MII checking only, since this does
1484 * lookup of EEPROM values which may easily be unreliable. */
1485 if (e100_phy_check_without_mii(nic))
1486 return 0; /* simply return and hope for the best */
1487 else {
1488 /* for unknown cases log a fatal error */
1489 netif_err(nic, hw, nic->netdev,
1490 "Failed to locate any known PHY, aborting\n");
1491 return -EAGAIN;
1492 }
1493 } else
1494 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1495 "phy_addr = %d\n", nic->mii.phy_id);
1496
1497 /* Get phy ID */
1498 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1499 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1500 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1501 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1502 "phy ID = 0x%08X\n", nic->phy);
1503
1504 /* Select the phy and isolate the rest */
1505 for (addr = 0; addr < 32; addr++) {
1506 if (addr != nic->mii.phy_id) {
1507 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1508 } else if (nic->phy != phy_82552_v) {
1509 bmcr = mdio_read(netdev, addr, MII_BMCR);
1510 mdio_write(netdev, addr, MII_BMCR,
1511 bmcr & ~BMCR_ISOLATE);
1512 }
1513 }
1514 /*
1515 * Workaround for 82552:
1516 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1517 * other phy_id's) using bmcr value from addr discovery loop above.
1518 */
1519 if (nic->phy == phy_82552_v)
1520 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1521 bmcr & ~BMCR_ISOLATE);
1522
1523 /* Handle National tx phys */
1524 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1525 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1526 /* Disable congestion control */
1527 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1528 cong |= NSC_CONG_TXREADY;
1529 cong &= ~NSC_CONG_ENABLE;
1530 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1531 }
1532
1533 if (nic->phy == phy_82552_v) {
1534 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1535
1536 /* assign special tweaked mdio_ctrl() function */
1537 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1538
1539 /* Workaround Si not advertising flow-control during autoneg */
1540 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1541 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1542
1543 /* Reset for the above changes to take effect */
1544 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1545 bmcr |= BMCR_RESET;
1546 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1547 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1548 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1549 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1550 /* enable/disable MDI/MDI-X auto-switching. */
1551 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1552 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1553 }
1554
1555 return 0;
1556 }
1557
1558 static int e100_hw_init(struct nic *nic)
1559 {
1560 int err = 0;
1561
1562 e100_hw_reset(nic);
1563
1564 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1565 if (!in_interrupt() && (err = e100_self_test(nic)))
1566 return err;
1567
1568 if ((err = e100_phy_init(nic)))
1569 return err;
1570 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1571 return err;
1572 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1573 return err;
1574 if ((err = e100_load_ucode_wait(nic)))
1575 return err;
1576 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1577 return err;
1578 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1579 return err;
1580 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1581 nic->dma_addr + offsetof(struct mem, stats))))
1582 return err;
1583 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1584 return err;
1585
1586 e100_disable_irq(nic);
1587
1588 return 0;
1589 }
1590
1591 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1592 {
1593 struct net_device *netdev = nic->netdev;
1594 struct netdev_hw_addr *ha;
1595 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1596
1597 cb->command = cpu_to_le16(cb_multi);
1598 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1599 i = 0;
1600 netdev_for_each_mc_addr(ha, netdev) {
1601 if (i == count)
1602 break;
1603 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1604 ETH_ALEN);
1605 }
1606 return 0;
1607 }
1608
1609 static void e100_set_multicast_list(struct net_device *netdev)
1610 {
1611 struct nic *nic = netdev_priv(netdev);
1612
1613 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1614 "mc_count=%d, flags=0x%04X\n",
1615 netdev_mc_count(netdev), netdev->flags);
1616
1617 if (netdev->flags & IFF_PROMISC)
1618 nic->flags |= promiscuous;
1619 else
1620 nic->flags &= ~promiscuous;
1621
1622 if (netdev->flags & IFF_ALLMULTI ||
1623 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1624 nic->flags |= multicast_all;
1625 else
1626 nic->flags &= ~multicast_all;
1627
1628 e100_exec_cb(nic, NULL, e100_configure);
1629 e100_exec_cb(nic, NULL, e100_multi);
1630 }
1631
1632 static void e100_update_stats(struct nic *nic)
1633 {
1634 struct net_device *dev = nic->netdev;
1635 struct net_device_stats *ns = &dev->stats;
1636 struct stats *s = &nic->mem->stats;
1637 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1638 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1639 &s->complete;
1640
1641 /* Device's stats reporting may take several microseconds to
1642 * complete, so we're always waiting for results of the
1643 * previous command. */
1644
1645 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1646 *complete = 0;
1647 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1648 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1649 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1650 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1651 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1652 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1653 ns->collisions += nic->tx_collisions;
1654 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1655 le32_to_cpu(s->tx_lost_crs);
1656 nic->rx_short_frame_errors +=
1657 le32_to_cpu(s->rx_short_frame_errors);
1658 ns->rx_length_errors = nic->rx_short_frame_errors +
1659 nic->rx_over_length_errors;
1660 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1661 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1662 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1663 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1664 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1665 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1666 le32_to_cpu(s->rx_alignment_errors) +
1667 le32_to_cpu(s->rx_short_frame_errors) +
1668 le32_to_cpu(s->rx_cdt_errors);
1669 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1670 nic->tx_single_collisions +=
1671 le32_to_cpu(s->tx_single_collisions);
1672 nic->tx_multiple_collisions +=
1673 le32_to_cpu(s->tx_multiple_collisions);
1674 if (nic->mac >= mac_82558_D101_A4) {
1675 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1676 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1677 nic->rx_fc_unsupported +=
1678 le32_to_cpu(s->fc_rcv_unsupported);
1679 if (nic->mac >= mac_82559_D101M) {
1680 nic->tx_tco_frames +=
1681 le16_to_cpu(s->xmt_tco_frames);
1682 nic->rx_tco_frames +=
1683 le16_to_cpu(s->rcv_tco_frames);
1684 }
1685 }
1686 }
1687
1688
1689 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1690 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1691 "exec cuc_dump_reset failed\n");
1692 }
1693
1694 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1695 {
1696 /* Adjust inter-frame-spacing (IFS) between two transmits if
1697 * we're getting collisions on a half-duplex connection. */
1698
1699 if (duplex == DUPLEX_HALF) {
1700 u32 prev = nic->adaptive_ifs;
1701 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1702
1703 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1704 (nic->tx_frames > min_frames)) {
1705 if (nic->adaptive_ifs < 60)
1706 nic->adaptive_ifs += 5;
1707 } else if (nic->tx_frames < min_frames) {
1708 if (nic->adaptive_ifs >= 5)
1709 nic->adaptive_ifs -= 5;
1710 }
1711 if (nic->adaptive_ifs != prev)
1712 e100_exec_cb(nic, NULL, e100_configure);
1713 }
1714 }
1715
1716 static void e100_watchdog(unsigned long data)
1717 {
1718 struct nic *nic = (struct nic *)data;
1719 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1720 u32 speed;
1721
1722 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1723 "right now = %ld\n", jiffies);
1724
1725 /* mii library handles link maintenance tasks */
1726
1727 mii_ethtool_gset(&nic->mii, &cmd);
1728 speed = ethtool_cmd_speed(&cmd);
1729
1730 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1731 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1732 speed == SPEED_100 ? 100 : 10,
1733 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1734 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1735 netdev_info(nic->netdev, "NIC Link is Down\n");
1736 }
1737
1738 mii_check_link(&nic->mii);
1739
1740 /* Software generated interrupt to recover from (rare) Rx
1741 * allocation failure.
1742 * Unfortunately have to use a spinlock to not re-enable interrupts
1743 * accidentally, due to hardware that shares a register between the
1744 * interrupt mask bit and the SW Interrupt generation bit */
1745 spin_lock_irq(&nic->cmd_lock);
1746 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1747 e100_write_flush(nic);
1748 spin_unlock_irq(&nic->cmd_lock);
1749
1750 e100_update_stats(nic);
1751 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1752
1753 if (nic->mac <= mac_82557_D100_C)
1754 /* Issue a multicast command to workaround a 557 lock up */
1755 e100_set_multicast_list(nic->netdev);
1756
1757 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1758 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1759 nic->flags |= ich_10h_workaround;
1760 else
1761 nic->flags &= ~ich_10h_workaround;
1762
1763 mod_timer(&nic->watchdog,
1764 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1765 }
1766
1767 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1768 struct sk_buff *skb)
1769 {
1770 dma_addr_t dma_addr;
1771 cb->command = nic->tx_command;
1772
1773 dma_addr = pci_map_single(nic->pdev,
1774 skb->data, skb->len, PCI_DMA_TODEVICE);
1775 /* If we can't map the skb, have the upper layer try later */
1776 if (pci_dma_mapping_error(nic->pdev, dma_addr))
1777 return -ENOMEM;
1778
1779 /*
1780 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1781 * testing, ie sending frames with bad CRC.
1782 */
1783 if (unlikely(skb->no_fcs))
1784 cb->command |= __constant_cpu_to_le16(cb_tx_nc);
1785 else
1786 cb->command &= ~__constant_cpu_to_le16(cb_tx_nc);
1787
1788 /* interrupt every 16 packets regardless of delay */
1789 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1790 cb->command |= cpu_to_le16(cb_i);
1791 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1792 cb->u.tcb.tcb_byte_count = 0;
1793 cb->u.tcb.threshold = nic->tx_threshold;
1794 cb->u.tcb.tbd_count = 1;
1795 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1796 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1797 skb_tx_timestamp(skb);
1798 return 0;
1799 }
1800
1801 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1802 struct net_device *netdev)
1803 {
1804 struct nic *nic = netdev_priv(netdev);
1805 int err;
1806
1807 if (nic->flags & ich_10h_workaround) {
1808 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1809 Issue a NOP command followed by a 1us delay before
1810 issuing the Tx command. */
1811 if (e100_exec_cmd(nic, cuc_nop, 0))
1812 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1813 "exec cuc_nop failed\n");
1814 udelay(1);
1815 }
1816
1817 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1818
1819 switch (err) {
1820 case -ENOSPC:
1821 /* We queued the skb, but now we're out of space. */
1822 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1823 "No space for CB\n");
1824 netif_stop_queue(netdev);
1825 break;
1826 case -ENOMEM:
1827 /* This is a hard error - log it. */
1828 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1829 "Out of Tx resources, returning skb\n");
1830 netif_stop_queue(netdev);
1831 return NETDEV_TX_BUSY;
1832 }
1833
1834 return NETDEV_TX_OK;
1835 }
1836
1837 static int e100_tx_clean(struct nic *nic)
1838 {
1839 struct net_device *dev = nic->netdev;
1840 struct cb *cb;
1841 int tx_cleaned = 0;
1842
1843 spin_lock(&nic->cb_lock);
1844
1845 /* Clean CBs marked complete */
1846 for (cb = nic->cb_to_clean;
1847 cb->status & cpu_to_le16(cb_complete);
1848 cb = nic->cb_to_clean = cb->next) {
1849 rmb(); /* read skb after status */
1850 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1851 "cb[%d]->status = 0x%04X\n",
1852 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1853 cb->status);
1854
1855 if (likely(cb->skb != NULL)) {
1856 dev->stats.tx_packets++;
1857 dev->stats.tx_bytes += cb->skb->len;
1858
1859 pci_unmap_single(nic->pdev,
1860 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1861 le16_to_cpu(cb->u.tcb.tbd.size),
1862 PCI_DMA_TODEVICE);
1863 dev_kfree_skb_any(cb->skb);
1864 cb->skb = NULL;
1865 tx_cleaned = 1;
1866 }
1867 cb->status = 0;
1868 nic->cbs_avail++;
1869 }
1870
1871 spin_unlock(&nic->cb_lock);
1872
1873 /* Recover from running out of Tx resources in xmit_frame */
1874 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1875 netif_wake_queue(nic->netdev);
1876
1877 return tx_cleaned;
1878 }
1879
1880 static void e100_clean_cbs(struct nic *nic)
1881 {
1882 if (nic->cbs) {
1883 while (nic->cbs_avail != nic->params.cbs.count) {
1884 struct cb *cb = nic->cb_to_clean;
1885 if (cb->skb) {
1886 pci_unmap_single(nic->pdev,
1887 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1888 le16_to_cpu(cb->u.tcb.tbd.size),
1889 PCI_DMA_TODEVICE);
1890 dev_kfree_skb(cb->skb);
1891 }
1892 nic->cb_to_clean = nic->cb_to_clean->next;
1893 nic->cbs_avail++;
1894 }
1895 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1896 nic->cbs = NULL;
1897 nic->cbs_avail = 0;
1898 }
1899 nic->cuc_cmd = cuc_start;
1900 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1901 nic->cbs;
1902 }
1903
1904 static int e100_alloc_cbs(struct nic *nic)
1905 {
1906 struct cb *cb;
1907 unsigned int i, count = nic->params.cbs.count;
1908
1909 nic->cuc_cmd = cuc_start;
1910 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1911 nic->cbs_avail = 0;
1912
1913 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1914 &nic->cbs_dma_addr);
1915 if (!nic->cbs)
1916 return -ENOMEM;
1917 memset(nic->cbs, 0, count * sizeof(struct cb));
1918
1919 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1920 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1921 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1922
1923 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1924 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1925 ((i+1) % count) * sizeof(struct cb));
1926 }
1927
1928 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1929 nic->cbs_avail = count;
1930
1931 return 0;
1932 }
1933
1934 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1935 {
1936 if (!nic->rxs) return;
1937 if (RU_SUSPENDED != nic->ru_running) return;
1938
1939 /* handle init time starts */
1940 if (!rx) rx = nic->rxs;
1941
1942 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1943 if (rx->skb) {
1944 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1945 nic->ru_running = RU_RUNNING;
1946 }
1947 }
1948
1949 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1950 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1951 {
1952 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1953 return -ENOMEM;
1954
1955 /* Init, and map the RFD. */
1956 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1957 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1958 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959
1960 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1961 dev_kfree_skb_any(rx->skb);
1962 rx->skb = NULL;
1963 rx->dma_addr = 0;
1964 return -ENOMEM;
1965 }
1966
1967 /* Link the RFD to end of RFA by linking previous RFD to
1968 * this one. We are safe to touch the previous RFD because
1969 * it is protected by the before last buffer's el bit being set */
1970 if (rx->prev->skb) {
1971 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1972 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1973 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1974 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1975 }
1976
1977 return 0;
1978 }
1979
1980 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1981 unsigned int *work_done, unsigned int work_to_do)
1982 {
1983 struct net_device *dev = nic->netdev;
1984 struct sk_buff *skb = rx->skb;
1985 struct rfd *rfd = (struct rfd *)skb->data;
1986 u16 rfd_status, actual_size;
1987 u16 fcs_pad = 0;
1988
1989 if (unlikely(work_done && *work_done >= work_to_do))
1990 return -EAGAIN;
1991
1992 /* Need to sync before taking a peek at cb_complete bit */
1993 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1994 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1995 rfd_status = le16_to_cpu(rfd->status);
1996
1997 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1998 "status=0x%04X\n", rfd_status);
1999 rmb(); /* read size after status bit */
2000
2001 /* If data isn't ready, nothing to indicate */
2002 if (unlikely(!(rfd_status & cb_complete))) {
2003 /* If the next buffer has the el bit, but we think the receiver
2004 * is still running, check to see if it really stopped while
2005 * we had interrupts off.
2006 * This allows for a fast restart without re-enabling
2007 * interrupts */
2008 if ((le16_to_cpu(rfd->command) & cb_el) &&
2009 (RU_RUNNING == nic->ru_running))
2010
2011 if (ioread8(&nic->csr->scb.status) & rus_no_res)
2012 nic->ru_running = RU_SUSPENDED;
2013 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2014 sizeof(struct rfd),
2015 PCI_DMA_FROMDEVICE);
2016 return -ENODATA;
2017 }
2018
2019 /* Get actual data size */
2020 if (unlikely(dev->features & NETIF_F_RXFCS))
2021 fcs_pad = 4;
2022 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2023 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2024 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2025
2026 /* Get data */
2027 pci_unmap_single(nic->pdev, rx->dma_addr,
2028 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2029
2030 /* If this buffer has the el bit, but we think the receiver
2031 * is still running, check to see if it really stopped while
2032 * we had interrupts off.
2033 * This allows for a fast restart without re-enabling interrupts.
2034 * This can happen when the RU sees the size change but also sees
2035 * the el bit set. */
2036 if ((le16_to_cpu(rfd->command) & cb_el) &&
2037 (RU_RUNNING == nic->ru_running)) {
2038
2039 if (ioread8(&nic->csr->scb.status) & rus_no_res)
2040 nic->ru_running = RU_SUSPENDED;
2041 }
2042
2043 /* Pull off the RFD and put the actual data (minus eth hdr) */
2044 skb_reserve(skb, sizeof(struct rfd));
2045 skb_put(skb, actual_size);
2046 skb->protocol = eth_type_trans(skb, nic->netdev);
2047
2048 /* If we are receiving all frames, then don't bother
2049 * checking for errors.
2050 */
2051 if (unlikely(dev->features & NETIF_F_RXALL)) {
2052 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2053 /* Received oversized frame, but keep it. */
2054 nic->rx_over_length_errors++;
2055 goto process_skb;
2056 }
2057
2058 if (unlikely(!(rfd_status & cb_ok))) {
2059 /* Don't indicate if hardware indicates errors */
2060 dev_kfree_skb_any(skb);
2061 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2062 /* Don't indicate oversized frames */
2063 nic->rx_over_length_errors++;
2064 dev_kfree_skb_any(skb);
2065 } else {
2066 process_skb:
2067 dev->stats.rx_packets++;
2068 dev->stats.rx_bytes += (actual_size - fcs_pad);
2069 netif_receive_skb(skb);
2070 if (work_done)
2071 (*work_done)++;
2072 }
2073
2074 rx->skb = NULL;
2075
2076 return 0;
2077 }
2078
2079 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2080 unsigned int work_to_do)
2081 {
2082 struct rx *rx;
2083 int restart_required = 0, err = 0;
2084 struct rx *old_before_last_rx, *new_before_last_rx;
2085 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2086
2087 /* Indicate newly arrived packets */
2088 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2089 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2090 /* Hit quota or no more to clean */
2091 if (-EAGAIN == err || -ENODATA == err)
2092 break;
2093 }
2094
2095
2096 /* On EAGAIN, hit quota so have more work to do, restart once
2097 * cleanup is complete.
2098 * Else, are we already rnr? then pay attention!!! this ensures that
2099 * the state machine progression never allows a start with a
2100 * partially cleaned list, avoiding a race between hardware
2101 * and rx_to_clean when in NAPI mode */
2102 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2103 restart_required = 1;
2104
2105 old_before_last_rx = nic->rx_to_use->prev->prev;
2106 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2107
2108 /* Alloc new skbs to refill list */
2109 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2110 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2111 break; /* Better luck next time (see watchdog) */
2112 }
2113
2114 new_before_last_rx = nic->rx_to_use->prev->prev;
2115 if (new_before_last_rx != old_before_last_rx) {
2116 /* Set the el-bit on the buffer that is before the last buffer.
2117 * This lets us update the next pointer on the last buffer
2118 * without worrying about hardware touching it.
2119 * We set the size to 0 to prevent hardware from touching this
2120 * buffer.
2121 * When the hardware hits the before last buffer with el-bit
2122 * and size of 0, it will RNR interrupt, the RUS will go into
2123 * the No Resources state. It will not complete nor write to
2124 * this buffer. */
2125 new_before_last_rfd =
2126 (struct rfd *)new_before_last_rx->skb->data;
2127 new_before_last_rfd->size = 0;
2128 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2129 pci_dma_sync_single_for_device(nic->pdev,
2130 new_before_last_rx->dma_addr, sizeof(struct rfd),
2131 PCI_DMA_BIDIRECTIONAL);
2132
2133 /* Now that we have a new stopping point, we can clear the old
2134 * stopping point. We must sync twice to get the proper
2135 * ordering on the hardware side of things. */
2136 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2137 pci_dma_sync_single_for_device(nic->pdev,
2138 old_before_last_rx->dma_addr, sizeof(struct rfd),
2139 PCI_DMA_BIDIRECTIONAL);
2140 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2141 + ETH_FCS_LEN);
2142 pci_dma_sync_single_for_device(nic->pdev,
2143 old_before_last_rx->dma_addr, sizeof(struct rfd),
2144 PCI_DMA_BIDIRECTIONAL);
2145 }
2146
2147 if (restart_required) {
2148 // ack the rnr?
2149 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2150 e100_start_receiver(nic, nic->rx_to_clean);
2151 if (work_done)
2152 (*work_done)++;
2153 }
2154 }
2155
2156 static void e100_rx_clean_list(struct nic *nic)
2157 {
2158 struct rx *rx;
2159 unsigned int i, count = nic->params.rfds.count;
2160
2161 nic->ru_running = RU_UNINITIALIZED;
2162
2163 if (nic->rxs) {
2164 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165 if (rx->skb) {
2166 pci_unmap_single(nic->pdev, rx->dma_addr,
2167 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2168 dev_kfree_skb(rx->skb);
2169 }
2170 }
2171 kfree(nic->rxs);
2172 nic->rxs = NULL;
2173 }
2174
2175 nic->rx_to_use = nic->rx_to_clean = NULL;
2176 }
2177
2178 static int e100_rx_alloc_list(struct nic *nic)
2179 {
2180 struct rx *rx;
2181 unsigned int i, count = nic->params.rfds.count;
2182 struct rfd *before_last;
2183
2184 nic->rx_to_use = nic->rx_to_clean = NULL;
2185 nic->ru_running = RU_UNINITIALIZED;
2186
2187 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2188 return -ENOMEM;
2189
2190 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2191 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2192 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2193 if (e100_rx_alloc_skb(nic, rx)) {
2194 e100_rx_clean_list(nic);
2195 return -ENOMEM;
2196 }
2197 }
2198 /* Set the el-bit on the buffer that is before the last buffer.
2199 * This lets us update the next pointer on the last buffer without
2200 * worrying about hardware touching it.
2201 * We set the size to 0 to prevent hardware from touching this buffer.
2202 * When the hardware hits the before last buffer with el-bit and size
2203 * of 0, it will RNR interrupt, the RU will go into the No Resources
2204 * state. It will not complete nor write to this buffer. */
2205 rx = nic->rxs->prev->prev;
2206 before_last = (struct rfd *)rx->skb->data;
2207 before_last->command |= cpu_to_le16(cb_el);
2208 before_last->size = 0;
2209 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2210 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2211
2212 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2213 nic->ru_running = RU_SUSPENDED;
2214
2215 return 0;
2216 }
2217
2218 static irqreturn_t e100_intr(int irq, void *dev_id)
2219 {
2220 struct net_device *netdev = dev_id;
2221 struct nic *nic = netdev_priv(netdev);
2222 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2223
2224 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2225 "stat_ack = 0x%02X\n", stat_ack);
2226
2227 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2228 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2229 return IRQ_NONE;
2230
2231 /* Ack interrupt(s) */
2232 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2233
2234 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2235 if (stat_ack & stat_ack_rnr)
2236 nic->ru_running = RU_SUSPENDED;
2237
2238 if (likely(napi_schedule_prep(&nic->napi))) {
2239 e100_disable_irq(nic);
2240 __napi_schedule(&nic->napi);
2241 }
2242
2243 return IRQ_HANDLED;
2244 }
2245
2246 static int e100_poll(struct napi_struct *napi, int budget)
2247 {
2248 struct nic *nic = container_of(napi, struct nic, napi);
2249 unsigned int work_done = 0;
2250
2251 e100_rx_clean(nic, &work_done, budget);
2252 e100_tx_clean(nic);
2253
2254 /* If budget not fully consumed, exit the polling mode */
2255 if (work_done < budget) {
2256 napi_complete(napi);
2257 e100_enable_irq(nic);
2258 }
2259
2260 return work_done;
2261 }
2262
2263 #ifdef CONFIG_NET_POLL_CONTROLLER
2264 static void e100_netpoll(struct net_device *netdev)
2265 {
2266 struct nic *nic = netdev_priv(netdev);
2267
2268 e100_disable_irq(nic);
2269 e100_intr(nic->pdev->irq, netdev);
2270 e100_tx_clean(nic);
2271 e100_enable_irq(nic);
2272 }
2273 #endif
2274
2275 static int e100_set_mac_address(struct net_device *netdev, void *p)
2276 {
2277 struct nic *nic = netdev_priv(netdev);
2278 struct sockaddr *addr = p;
2279
2280 if (!is_valid_ether_addr(addr->sa_data))
2281 return -EADDRNOTAVAIL;
2282
2283 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2284 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2285
2286 return 0;
2287 }
2288
2289 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2290 {
2291 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2292 return -EINVAL;
2293 netdev->mtu = new_mtu;
2294 return 0;
2295 }
2296
2297 static int e100_asf(struct nic *nic)
2298 {
2299 /* ASF can be enabled from eeprom */
2300 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2301 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2302 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2303 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2304 }
2305
2306 static int e100_up(struct nic *nic)
2307 {
2308 int err;
2309
2310 if ((err = e100_rx_alloc_list(nic)))
2311 return err;
2312 if ((err = e100_alloc_cbs(nic)))
2313 goto err_rx_clean_list;
2314 if ((err = e100_hw_init(nic)))
2315 goto err_clean_cbs;
2316 e100_set_multicast_list(nic->netdev);
2317 e100_start_receiver(nic, NULL);
2318 mod_timer(&nic->watchdog, jiffies);
2319 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2320 nic->netdev->name, nic->netdev)))
2321 goto err_no_irq;
2322 netif_wake_queue(nic->netdev);
2323 napi_enable(&nic->napi);
2324 /* enable ints _after_ enabling poll, preventing a race between
2325 * disable ints+schedule */
2326 e100_enable_irq(nic);
2327 return 0;
2328
2329 err_no_irq:
2330 del_timer_sync(&nic->watchdog);
2331 err_clean_cbs:
2332 e100_clean_cbs(nic);
2333 err_rx_clean_list:
2334 e100_rx_clean_list(nic);
2335 return err;
2336 }
2337
2338 static void e100_down(struct nic *nic)
2339 {
2340 /* wait here for poll to complete */
2341 napi_disable(&nic->napi);
2342 netif_stop_queue(nic->netdev);
2343 e100_hw_reset(nic);
2344 free_irq(nic->pdev->irq, nic->netdev);
2345 del_timer_sync(&nic->watchdog);
2346 netif_carrier_off(nic->netdev);
2347 e100_clean_cbs(nic);
2348 e100_rx_clean_list(nic);
2349 }
2350
2351 static void e100_tx_timeout(struct net_device *netdev)
2352 {
2353 struct nic *nic = netdev_priv(netdev);
2354
2355 /* Reset outside of interrupt context, to avoid request_irq
2356 * in interrupt context */
2357 schedule_work(&nic->tx_timeout_task);
2358 }
2359
2360 static void e100_tx_timeout_task(struct work_struct *work)
2361 {
2362 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2363 struct net_device *netdev = nic->netdev;
2364
2365 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2366 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2367
2368 rtnl_lock();
2369 if (netif_running(netdev)) {
2370 e100_down(netdev_priv(netdev));
2371 e100_up(netdev_priv(netdev));
2372 }
2373 rtnl_unlock();
2374 }
2375
2376 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2377 {
2378 int err;
2379 struct sk_buff *skb;
2380
2381 /* Use driver resources to perform internal MAC or PHY
2382 * loopback test. A single packet is prepared and transmitted
2383 * in loopback mode, and the test passes if the received
2384 * packet compares byte-for-byte to the transmitted packet. */
2385
2386 if ((err = e100_rx_alloc_list(nic)))
2387 return err;
2388 if ((err = e100_alloc_cbs(nic)))
2389 goto err_clean_rx;
2390
2391 /* ICH PHY loopback is broken so do MAC loopback instead */
2392 if (nic->flags & ich && loopback_mode == lb_phy)
2393 loopback_mode = lb_mac;
2394
2395 nic->loopback = loopback_mode;
2396 if ((err = e100_hw_init(nic)))
2397 goto err_loopback_none;
2398
2399 if (loopback_mode == lb_phy)
2400 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2401 BMCR_LOOPBACK);
2402
2403 e100_start_receiver(nic, NULL);
2404
2405 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2406 err = -ENOMEM;
2407 goto err_loopback_none;
2408 }
2409 skb_put(skb, ETH_DATA_LEN);
2410 memset(skb->data, 0xFF, ETH_DATA_LEN);
2411 e100_xmit_frame(skb, nic->netdev);
2412
2413 msleep(10);
2414
2415 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2416 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2417
2418 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2419 skb->data, ETH_DATA_LEN))
2420 err = -EAGAIN;
2421
2422 err_loopback_none:
2423 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2424 nic->loopback = lb_none;
2425 e100_clean_cbs(nic);
2426 e100_hw_reset(nic);
2427 err_clean_rx:
2428 e100_rx_clean_list(nic);
2429 return err;
2430 }
2431
2432 #define MII_LED_CONTROL 0x1B
2433 #define E100_82552_LED_OVERRIDE 0x19
2434 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2435 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2436
2437 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2438 {
2439 struct nic *nic = netdev_priv(netdev);
2440 return mii_ethtool_gset(&nic->mii, cmd);
2441 }
2442
2443 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2444 {
2445 struct nic *nic = netdev_priv(netdev);
2446 int err;
2447
2448 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2449 err = mii_ethtool_sset(&nic->mii, cmd);
2450 e100_exec_cb(nic, NULL, e100_configure);
2451
2452 return err;
2453 }
2454
2455 static void e100_get_drvinfo(struct net_device *netdev,
2456 struct ethtool_drvinfo *info)
2457 {
2458 struct nic *nic = netdev_priv(netdev);
2459 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2460 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2461 strlcpy(info->bus_info, pci_name(nic->pdev),
2462 sizeof(info->bus_info));
2463 }
2464
2465 #define E100_PHY_REGS 0x1C
2466 static int e100_get_regs_len(struct net_device *netdev)
2467 {
2468 struct nic *nic = netdev_priv(netdev);
2469 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2470 }
2471
2472 static void e100_get_regs(struct net_device *netdev,
2473 struct ethtool_regs *regs, void *p)
2474 {
2475 struct nic *nic = netdev_priv(netdev);
2476 u32 *buff = p;
2477 int i;
2478
2479 regs->version = (1 << 24) | nic->pdev->revision;
2480 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2481 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2482 ioread16(&nic->csr->scb.status);
2483 for (i = E100_PHY_REGS; i >= 0; i--)
2484 buff[1 + E100_PHY_REGS - i] =
2485 mdio_read(netdev, nic->mii.phy_id, i);
2486 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2487 e100_exec_cb(nic, NULL, e100_dump);
2488 msleep(10);
2489 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2490 sizeof(nic->mem->dump_buf));
2491 }
2492
2493 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2494 {
2495 struct nic *nic = netdev_priv(netdev);
2496 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2497 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2498 }
2499
2500 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2501 {
2502 struct nic *nic = netdev_priv(netdev);
2503
2504 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2505 !device_can_wakeup(&nic->pdev->dev))
2506 return -EOPNOTSUPP;
2507
2508 if (wol->wolopts)
2509 nic->flags |= wol_magic;
2510 else
2511 nic->flags &= ~wol_magic;
2512
2513 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2514
2515 e100_exec_cb(nic, NULL, e100_configure);
2516
2517 return 0;
2518 }
2519
2520 static u32 e100_get_msglevel(struct net_device *netdev)
2521 {
2522 struct nic *nic = netdev_priv(netdev);
2523 return nic->msg_enable;
2524 }
2525
2526 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2527 {
2528 struct nic *nic = netdev_priv(netdev);
2529 nic->msg_enable = value;
2530 }
2531
2532 static int e100_nway_reset(struct net_device *netdev)
2533 {
2534 struct nic *nic = netdev_priv(netdev);
2535 return mii_nway_restart(&nic->mii);
2536 }
2537
2538 static u32 e100_get_link(struct net_device *netdev)
2539 {
2540 struct nic *nic = netdev_priv(netdev);
2541 return mii_link_ok(&nic->mii);
2542 }
2543
2544 static int e100_get_eeprom_len(struct net_device *netdev)
2545 {
2546 struct nic *nic = netdev_priv(netdev);
2547 return nic->eeprom_wc << 1;
2548 }
2549
2550 #define E100_EEPROM_MAGIC 0x1234
2551 static int e100_get_eeprom(struct net_device *netdev,
2552 struct ethtool_eeprom *eeprom, u8 *bytes)
2553 {
2554 struct nic *nic = netdev_priv(netdev);
2555
2556 eeprom->magic = E100_EEPROM_MAGIC;
2557 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2558
2559 return 0;
2560 }
2561
2562 static int e100_set_eeprom(struct net_device *netdev,
2563 struct ethtool_eeprom *eeprom, u8 *bytes)
2564 {
2565 struct nic *nic = netdev_priv(netdev);
2566
2567 if (eeprom->magic != E100_EEPROM_MAGIC)
2568 return -EINVAL;
2569
2570 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2571
2572 return e100_eeprom_save(nic, eeprom->offset >> 1,
2573 (eeprom->len >> 1) + 1);
2574 }
2575
2576 static void e100_get_ringparam(struct net_device *netdev,
2577 struct ethtool_ringparam *ring)
2578 {
2579 struct nic *nic = netdev_priv(netdev);
2580 struct param_range *rfds = &nic->params.rfds;
2581 struct param_range *cbs = &nic->params.cbs;
2582
2583 ring->rx_max_pending = rfds->max;
2584 ring->tx_max_pending = cbs->max;
2585 ring->rx_pending = rfds->count;
2586 ring->tx_pending = cbs->count;
2587 }
2588
2589 static int e100_set_ringparam(struct net_device *netdev,
2590 struct ethtool_ringparam *ring)
2591 {
2592 struct nic *nic = netdev_priv(netdev);
2593 struct param_range *rfds = &nic->params.rfds;
2594 struct param_range *cbs = &nic->params.cbs;
2595
2596 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2597 return -EINVAL;
2598
2599 if (netif_running(netdev))
2600 e100_down(nic);
2601 rfds->count = max(ring->rx_pending, rfds->min);
2602 rfds->count = min(rfds->count, rfds->max);
2603 cbs->count = max(ring->tx_pending, cbs->min);
2604 cbs->count = min(cbs->count, cbs->max);
2605 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2606 rfds->count, cbs->count);
2607 if (netif_running(netdev))
2608 e100_up(nic);
2609
2610 return 0;
2611 }
2612
2613 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2614 "Link test (on/offline)",
2615 "Eeprom test (on/offline)",
2616 "Self test (offline)",
2617 "Mac loopback (offline)",
2618 "Phy loopback (offline)",
2619 };
2620 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2621
2622 static void e100_diag_test(struct net_device *netdev,
2623 struct ethtool_test *test, u64 *data)
2624 {
2625 struct ethtool_cmd cmd;
2626 struct nic *nic = netdev_priv(netdev);
2627 int i, err;
2628
2629 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2630 data[0] = !mii_link_ok(&nic->mii);
2631 data[1] = e100_eeprom_load(nic);
2632 if (test->flags & ETH_TEST_FL_OFFLINE) {
2633
2634 /* save speed, duplex & autoneg settings */
2635 err = mii_ethtool_gset(&nic->mii, &cmd);
2636
2637 if (netif_running(netdev))
2638 e100_down(nic);
2639 data[2] = e100_self_test(nic);
2640 data[3] = e100_loopback_test(nic, lb_mac);
2641 data[4] = e100_loopback_test(nic, lb_phy);
2642
2643 /* restore speed, duplex & autoneg settings */
2644 err = mii_ethtool_sset(&nic->mii, &cmd);
2645
2646 if (netif_running(netdev))
2647 e100_up(nic);
2648 }
2649 for (i = 0; i < E100_TEST_LEN; i++)
2650 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2651
2652 msleep_interruptible(4 * 1000);
2653 }
2654
2655 static int e100_set_phys_id(struct net_device *netdev,
2656 enum ethtool_phys_id_state state)
2657 {
2658 struct nic *nic = netdev_priv(netdev);
2659 enum led_state {
2660 led_on = 0x01,
2661 led_off = 0x04,
2662 led_on_559 = 0x05,
2663 led_on_557 = 0x07,
2664 };
2665 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2666 MII_LED_CONTROL;
2667 u16 leds = 0;
2668
2669 switch (state) {
2670 case ETHTOOL_ID_ACTIVE:
2671 return 2;
2672
2673 case ETHTOOL_ID_ON:
2674 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2675 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2676 break;
2677
2678 case ETHTOOL_ID_OFF:
2679 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2680 break;
2681
2682 case ETHTOOL_ID_INACTIVE:
2683 break;
2684 }
2685
2686 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2687 return 0;
2688 }
2689
2690 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2691 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2692 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2693 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2694 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2695 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2696 "tx_heartbeat_errors", "tx_window_errors",
2697 /* device-specific stats */
2698 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2699 "tx_flow_control_pause", "rx_flow_control_pause",
2700 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2701 "rx_short_frame_errors", "rx_over_length_errors",
2702 };
2703 #define E100_NET_STATS_LEN 21
2704 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2705
2706 static int e100_get_sset_count(struct net_device *netdev, int sset)
2707 {
2708 switch (sset) {
2709 case ETH_SS_TEST:
2710 return E100_TEST_LEN;
2711 case ETH_SS_STATS:
2712 return E100_STATS_LEN;
2713 default:
2714 return -EOPNOTSUPP;
2715 }
2716 }
2717
2718 static void e100_get_ethtool_stats(struct net_device *netdev,
2719 struct ethtool_stats *stats, u64 *data)
2720 {
2721 struct nic *nic = netdev_priv(netdev);
2722 int i;
2723
2724 for (i = 0; i < E100_NET_STATS_LEN; i++)
2725 data[i] = ((unsigned long *)&netdev->stats)[i];
2726
2727 data[i++] = nic->tx_deferred;
2728 data[i++] = nic->tx_single_collisions;
2729 data[i++] = nic->tx_multiple_collisions;
2730 data[i++] = nic->tx_fc_pause;
2731 data[i++] = nic->rx_fc_pause;
2732 data[i++] = nic->rx_fc_unsupported;
2733 data[i++] = nic->tx_tco_frames;
2734 data[i++] = nic->rx_tco_frames;
2735 data[i++] = nic->rx_short_frame_errors;
2736 data[i++] = nic->rx_over_length_errors;
2737 }
2738
2739 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2740 {
2741 switch (stringset) {
2742 case ETH_SS_TEST:
2743 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2744 break;
2745 case ETH_SS_STATS:
2746 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2747 break;
2748 }
2749 }
2750
2751 static const struct ethtool_ops e100_ethtool_ops = {
2752 .get_settings = e100_get_settings,
2753 .set_settings = e100_set_settings,
2754 .get_drvinfo = e100_get_drvinfo,
2755 .get_regs_len = e100_get_regs_len,
2756 .get_regs = e100_get_regs,
2757 .get_wol = e100_get_wol,
2758 .set_wol = e100_set_wol,
2759 .get_msglevel = e100_get_msglevel,
2760 .set_msglevel = e100_set_msglevel,
2761 .nway_reset = e100_nway_reset,
2762 .get_link = e100_get_link,
2763 .get_eeprom_len = e100_get_eeprom_len,
2764 .get_eeprom = e100_get_eeprom,
2765 .set_eeprom = e100_set_eeprom,
2766 .get_ringparam = e100_get_ringparam,
2767 .set_ringparam = e100_set_ringparam,
2768 .self_test = e100_diag_test,
2769 .get_strings = e100_get_strings,
2770 .set_phys_id = e100_set_phys_id,
2771 .get_ethtool_stats = e100_get_ethtool_stats,
2772 .get_sset_count = e100_get_sset_count,
2773 .get_ts_info = ethtool_op_get_ts_info,
2774 };
2775
2776 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2777 {
2778 struct nic *nic = netdev_priv(netdev);
2779
2780 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2781 }
2782
2783 static int e100_alloc(struct nic *nic)
2784 {
2785 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2786 &nic->dma_addr);
2787 return nic->mem ? 0 : -ENOMEM;
2788 }
2789
2790 static void e100_free(struct nic *nic)
2791 {
2792 if (nic->mem) {
2793 pci_free_consistent(nic->pdev, sizeof(struct mem),
2794 nic->mem, nic->dma_addr);
2795 nic->mem = NULL;
2796 }
2797 }
2798
2799 static int e100_open(struct net_device *netdev)
2800 {
2801 struct nic *nic = netdev_priv(netdev);
2802 int err = 0;
2803
2804 netif_carrier_off(netdev);
2805 if ((err = e100_up(nic)))
2806 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2807 return err;
2808 }
2809
2810 static int e100_close(struct net_device *netdev)
2811 {
2812 e100_down(netdev_priv(netdev));
2813 return 0;
2814 }
2815
2816 static int e100_set_features(struct net_device *netdev,
2817 netdev_features_t features)
2818 {
2819 struct nic *nic = netdev_priv(netdev);
2820 netdev_features_t changed = features ^ netdev->features;
2821
2822 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2823 return 0;
2824
2825 netdev->features = features;
2826 e100_exec_cb(nic, NULL, e100_configure);
2827 return 0;
2828 }
2829
2830 static const struct net_device_ops e100_netdev_ops = {
2831 .ndo_open = e100_open,
2832 .ndo_stop = e100_close,
2833 .ndo_start_xmit = e100_xmit_frame,
2834 .ndo_validate_addr = eth_validate_addr,
2835 .ndo_set_rx_mode = e100_set_multicast_list,
2836 .ndo_set_mac_address = e100_set_mac_address,
2837 .ndo_change_mtu = e100_change_mtu,
2838 .ndo_do_ioctl = e100_do_ioctl,
2839 .ndo_tx_timeout = e100_tx_timeout,
2840 #ifdef CONFIG_NET_POLL_CONTROLLER
2841 .ndo_poll_controller = e100_netpoll,
2842 #endif
2843 .ndo_set_features = e100_set_features,
2844 };
2845
2846 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2847 {
2848 struct net_device *netdev;
2849 struct nic *nic;
2850 int err;
2851
2852 if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2853 return -ENOMEM;
2854
2855 netdev->hw_features |= NETIF_F_RXFCS;
2856 netdev->priv_flags |= IFF_SUPP_NOFCS;
2857 netdev->hw_features |= NETIF_F_RXALL;
2858
2859 netdev->netdev_ops = &e100_netdev_ops;
2860 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2861 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2862 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2863
2864 nic = netdev_priv(netdev);
2865 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2866 nic->netdev = netdev;
2867 nic->pdev = pdev;
2868 nic->msg_enable = (1 << debug) - 1;
2869 nic->mdio_ctrl = mdio_ctrl_hw;
2870 pci_set_drvdata(pdev, netdev);
2871
2872 if ((err = pci_enable_device(pdev))) {
2873 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2874 goto err_out_free_dev;
2875 }
2876
2877 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2878 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2879 err = -ENODEV;
2880 goto err_out_disable_pdev;
2881 }
2882
2883 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2884 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2885 goto err_out_disable_pdev;
2886 }
2887
2888 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2889 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2890 goto err_out_free_res;
2891 }
2892
2893 SET_NETDEV_DEV(netdev, &pdev->dev);
2894
2895 if (use_io)
2896 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2897
2898 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2899 if (!nic->csr) {
2900 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2901 err = -ENOMEM;
2902 goto err_out_free_res;
2903 }
2904
2905 if (ent->driver_data)
2906 nic->flags |= ich;
2907 else
2908 nic->flags &= ~ich;
2909
2910 e100_get_defaults(nic);
2911
2912 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2913 if (nic->mac < mac_82558_D101_A4)
2914 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2915
2916 /* locks must be initialized before calling hw_reset */
2917 spin_lock_init(&nic->cb_lock);
2918 spin_lock_init(&nic->cmd_lock);
2919 spin_lock_init(&nic->mdio_lock);
2920
2921 /* Reset the device before pci_set_master() in case device is in some
2922 * funky state and has an interrupt pending - hint: we don't have the
2923 * interrupt handler registered yet. */
2924 e100_hw_reset(nic);
2925
2926 pci_set_master(pdev);
2927
2928 init_timer(&nic->watchdog);
2929 nic->watchdog.function = e100_watchdog;
2930 nic->watchdog.data = (unsigned long)nic;
2931
2932 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2933
2934 if ((err = e100_alloc(nic))) {
2935 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2936 goto err_out_iounmap;
2937 }
2938
2939 if ((err = e100_eeprom_load(nic)))
2940 goto err_out_free;
2941
2942 e100_phy_init(nic);
2943
2944 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2945 if (!is_valid_ether_addr(netdev->dev_addr)) {
2946 if (!eeprom_bad_csum_allow) {
2947 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2948 err = -EAGAIN;
2949 goto err_out_free;
2950 } else {
2951 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2952 }
2953 }
2954
2955 /* Wol magic packet can be enabled from eeprom */
2956 if ((nic->mac >= mac_82558_D101_A4) &&
2957 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2958 nic->flags |= wol_magic;
2959 device_set_wakeup_enable(&pdev->dev, true);
2960 }
2961
2962 /* ack any pending wake events, disable PME */
2963 pci_pme_active(pdev, false);
2964
2965 strcpy(netdev->name, "eth%d");
2966 if ((err = register_netdev(netdev))) {
2967 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2968 goto err_out_free;
2969 }
2970 nic->cbs_pool = pci_pool_create(netdev->name,
2971 nic->pdev,
2972 nic->params.cbs.max * sizeof(struct cb),
2973 sizeof(u32),
2974 0);
2975 netif_info(nic, probe, nic->netdev,
2976 "addr 0x%llx, irq %d, MAC addr %pM\n",
2977 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2978 pdev->irq, netdev->dev_addr);
2979
2980 return 0;
2981
2982 err_out_free:
2983 e100_free(nic);
2984 err_out_iounmap:
2985 pci_iounmap(pdev, nic->csr);
2986 err_out_free_res:
2987 pci_release_regions(pdev);
2988 err_out_disable_pdev:
2989 pci_disable_device(pdev);
2990 err_out_free_dev:
2991 pci_set_drvdata(pdev, NULL);
2992 free_netdev(netdev);
2993 return err;
2994 }
2995
2996 static void e100_remove(struct pci_dev *pdev)
2997 {
2998 struct net_device *netdev = pci_get_drvdata(pdev);
2999
3000 if (netdev) {
3001 struct nic *nic = netdev_priv(netdev);
3002 unregister_netdev(netdev);
3003 e100_free(nic);
3004 pci_iounmap(pdev, nic->csr);
3005 pci_pool_destroy(nic->cbs_pool);
3006 free_netdev(netdev);
3007 pci_release_regions(pdev);
3008 pci_disable_device(pdev);
3009 pci_set_drvdata(pdev, NULL);
3010 }
3011 }
3012
3013 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
3014 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
3015 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
3016 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3017 {
3018 struct net_device *netdev = pci_get_drvdata(pdev);
3019 struct nic *nic = netdev_priv(netdev);
3020
3021 if (netif_running(netdev))
3022 e100_down(nic);
3023 netif_device_detach(netdev);
3024
3025 pci_save_state(pdev);
3026
3027 if ((nic->flags & wol_magic) | e100_asf(nic)) {
3028 /* enable reverse auto-negotiation */
3029 if (nic->phy == phy_82552_v) {
3030 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3031 E100_82552_SMARTSPEED);
3032
3033 mdio_write(netdev, nic->mii.phy_id,
3034 E100_82552_SMARTSPEED, smartspeed |
3035 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3036 }
3037 *enable_wake = true;
3038 } else {
3039 *enable_wake = false;
3040 }
3041
3042 pci_disable_device(pdev);
3043 }
3044
3045 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3046 {
3047 if (wake)
3048 return pci_prepare_to_sleep(pdev);
3049
3050 pci_wake_from_d3(pdev, false);
3051 pci_set_power_state(pdev, PCI_D3hot);
3052
3053 return 0;
3054 }
3055
3056 #ifdef CONFIG_PM
3057 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3058 {
3059 bool wake;
3060 __e100_shutdown(pdev, &wake);
3061 return __e100_power_off(pdev, wake);
3062 }
3063
3064 static int e100_resume(struct pci_dev *pdev)
3065 {
3066 struct net_device *netdev = pci_get_drvdata(pdev);
3067 struct nic *nic = netdev_priv(netdev);
3068
3069 pci_set_power_state(pdev, PCI_D0);
3070 pci_restore_state(pdev);
3071 /* ack any pending wake events, disable PME */
3072 pci_enable_wake(pdev, 0, 0);
3073
3074 /* disable reverse auto-negotiation */
3075 if (nic->phy == phy_82552_v) {
3076 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3077 E100_82552_SMARTSPEED);
3078
3079 mdio_write(netdev, nic->mii.phy_id,
3080 E100_82552_SMARTSPEED,
3081 smartspeed & ~(E100_82552_REV_ANEG));
3082 }
3083
3084 netif_device_attach(netdev);
3085 if (netif_running(netdev))
3086 e100_up(nic);
3087
3088 return 0;
3089 }
3090 #endif /* CONFIG_PM */
3091
3092 static void e100_shutdown(struct pci_dev *pdev)
3093 {
3094 bool wake;
3095 __e100_shutdown(pdev, &wake);
3096 if (system_state == SYSTEM_POWER_OFF)
3097 __e100_power_off(pdev, wake);
3098 }
3099
3100 /* ------------------ PCI Error Recovery infrastructure -------------- */
3101 /**
3102 * e100_io_error_detected - called when PCI error is detected.
3103 * @pdev: Pointer to PCI device
3104 * @state: The current pci connection state
3105 */
3106 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3107 {
3108 struct net_device *netdev = pci_get_drvdata(pdev);
3109 struct nic *nic = netdev_priv(netdev);
3110
3111 netif_device_detach(netdev);
3112
3113 if (state == pci_channel_io_perm_failure)
3114 return PCI_ERS_RESULT_DISCONNECT;
3115
3116 if (netif_running(netdev))
3117 e100_down(nic);
3118 pci_disable_device(pdev);
3119
3120 /* Request a slot reset. */
3121 return PCI_ERS_RESULT_NEED_RESET;
3122 }
3123
3124 /**
3125 * e100_io_slot_reset - called after the pci bus has been reset.
3126 * @pdev: Pointer to PCI device
3127 *
3128 * Restart the card from scratch.
3129 */
3130 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3131 {
3132 struct net_device *netdev = pci_get_drvdata(pdev);
3133 struct nic *nic = netdev_priv(netdev);
3134
3135 if (pci_enable_device(pdev)) {
3136 pr_err("Cannot re-enable PCI device after reset\n");
3137 return PCI_ERS_RESULT_DISCONNECT;
3138 }
3139 pci_set_master(pdev);
3140
3141 /* Only one device per card can do a reset */
3142 if (0 != PCI_FUNC(pdev->devfn))
3143 return PCI_ERS_RESULT_RECOVERED;
3144 e100_hw_reset(nic);
3145 e100_phy_init(nic);
3146
3147 return PCI_ERS_RESULT_RECOVERED;
3148 }
3149
3150 /**
3151 * e100_io_resume - resume normal operations
3152 * @pdev: Pointer to PCI device
3153 *
3154 * Resume normal operations after an error recovery
3155 * sequence has been completed.
3156 */
3157 static void e100_io_resume(struct pci_dev *pdev)
3158 {
3159 struct net_device *netdev = pci_get_drvdata(pdev);
3160 struct nic *nic = netdev_priv(netdev);
3161
3162 /* ack any pending wake events, disable PME */
3163 pci_enable_wake(pdev, 0, 0);
3164
3165 netif_device_attach(netdev);
3166 if (netif_running(netdev)) {
3167 e100_open(netdev);
3168 mod_timer(&nic->watchdog, jiffies);
3169 }
3170 }
3171
3172 static const struct pci_error_handlers e100_err_handler = {
3173 .error_detected = e100_io_error_detected,
3174 .slot_reset = e100_io_slot_reset,
3175 .resume = e100_io_resume,
3176 };
3177
3178 static struct pci_driver e100_driver = {
3179 .name = DRV_NAME,
3180 .id_table = e100_id_table,
3181 .probe = e100_probe,
3182 .remove = e100_remove,
3183 #ifdef CONFIG_PM
3184 /* Power Management hooks */
3185 .suspend = e100_suspend,
3186 .resume = e100_resume,
3187 #endif
3188 .shutdown = e100_shutdown,
3189 .err_handler = &e100_err_handler,
3190 };
3191
3192 static int __init e100_init_module(void)
3193 {
3194 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3195 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3196 pr_info("%s\n", DRV_COPYRIGHT);
3197 }
3198 return pci_register_driver(&e100_driver);
3199 }
3200
3201 static void __exit e100_cleanup_module(void)
3202 {
3203 pci_unregister_driver(&e100_driver);
3204 }
3205
3206 module_init(e100_init_module);
3207 module_exit(e100_cleanup_module);