chelsio: Move the Chelsio drivers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_offload.c
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <linux/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
43
44 #include "common.h"
45 #include "regs.h"
46 #include "cxgb3_ioctl.h"
47 #include "cxgb3_ctl_defs.h"
48 #include "cxgb3_defs.h"
49 #include "l2t.h"
50 #include "firmware_exports.h"
51 #include "cxgb3_offload.h"
52
53 static LIST_HEAD(client_list);
54 static LIST_HEAD(ofld_dev_list);
55 static DEFINE_MUTEX(cxgb3_db_lock);
56
57 static DEFINE_RWLOCK(adapter_list_lock);
58 static LIST_HEAD(adapter_list);
59
60 static const unsigned int MAX_ATIDS = 64 * 1024;
61 static const unsigned int ATID_BASE = 0x10000;
62
63 static void cxgb_neigh_update(struct neighbour *neigh);
64 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new);
65
66 static inline int offload_activated(struct t3cdev *tdev)
67 {
68 const struct adapter *adapter = tdev2adap(tdev);
69
70 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
71 }
72
73 /**
74 * cxgb3_register_client - register an offload client
75 * @client: the client
76 *
77 * Add the client to the client list,
78 * and call backs the client for each activated offload device
79 */
80 void cxgb3_register_client(struct cxgb3_client *client)
81 {
82 struct t3cdev *tdev;
83
84 mutex_lock(&cxgb3_db_lock);
85 list_add_tail(&client->client_list, &client_list);
86
87 if (client->add) {
88 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
89 if (offload_activated(tdev))
90 client->add(tdev);
91 }
92 }
93 mutex_unlock(&cxgb3_db_lock);
94 }
95
96 EXPORT_SYMBOL(cxgb3_register_client);
97
98 /**
99 * cxgb3_unregister_client - unregister an offload client
100 * @client: the client
101 *
102 * Remove the client to the client list,
103 * and call backs the client for each activated offload device.
104 */
105 void cxgb3_unregister_client(struct cxgb3_client *client)
106 {
107 struct t3cdev *tdev;
108
109 mutex_lock(&cxgb3_db_lock);
110 list_del(&client->client_list);
111
112 if (client->remove) {
113 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
114 if (offload_activated(tdev))
115 client->remove(tdev);
116 }
117 }
118 mutex_unlock(&cxgb3_db_lock);
119 }
120
121 EXPORT_SYMBOL(cxgb3_unregister_client);
122
123 /**
124 * cxgb3_add_clients - activate registered clients for an offload device
125 * @tdev: the offload device
126 *
127 * Call backs all registered clients once a offload device is activated
128 */
129 void cxgb3_add_clients(struct t3cdev *tdev)
130 {
131 struct cxgb3_client *client;
132
133 mutex_lock(&cxgb3_db_lock);
134 list_for_each_entry(client, &client_list, client_list) {
135 if (client->add)
136 client->add(tdev);
137 }
138 mutex_unlock(&cxgb3_db_lock);
139 }
140
141 /**
142 * cxgb3_remove_clients - deactivates registered clients
143 * for an offload device
144 * @tdev: the offload device
145 *
146 * Call backs all registered clients once a offload device is deactivated
147 */
148 void cxgb3_remove_clients(struct t3cdev *tdev)
149 {
150 struct cxgb3_client *client;
151
152 mutex_lock(&cxgb3_db_lock);
153 list_for_each_entry(client, &client_list, client_list) {
154 if (client->remove)
155 client->remove(tdev);
156 }
157 mutex_unlock(&cxgb3_db_lock);
158 }
159
160 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
161 {
162 struct cxgb3_client *client;
163
164 mutex_lock(&cxgb3_db_lock);
165 list_for_each_entry(client, &client_list, client_list) {
166 if (client->event_handler)
167 client->event_handler(tdev, event, port);
168 }
169 mutex_unlock(&cxgb3_db_lock);
170 }
171
172 static struct net_device *get_iff_from_mac(struct adapter *adapter,
173 const unsigned char *mac,
174 unsigned int vlan)
175 {
176 int i;
177
178 for_each_port(adapter, i) {
179 struct net_device *dev = adapter->port[i];
180
181 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
182 if (vlan && vlan != VLAN_VID_MASK) {
183 rcu_read_lock();
184 dev = __vlan_find_dev_deep(dev, vlan);
185 rcu_read_unlock();
186 } else if (netif_is_bond_slave(dev)) {
187 while (dev->master)
188 dev = dev->master;
189 }
190 return dev;
191 }
192 }
193 return NULL;
194 }
195
196 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
197 void *data)
198 {
199 int i;
200 int ret = 0;
201 unsigned int val = 0;
202 struct ulp_iscsi_info *uiip = data;
203
204 switch (req) {
205 case ULP_ISCSI_GET_PARAMS:
206 uiip->pdev = adapter->pdev;
207 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
208 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
209 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
210
211 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
212 for (i = 0; i < 4; i++, val >>= 8)
213 uiip->pgsz_factor[i] = val & 0xFF;
214
215 val = t3_read_reg(adapter, A_TP_PARA_REG7);
216 uiip->max_txsz =
217 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
218 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
219 /*
220 * On tx, the iscsi pdu has to be <= tx page size and has to
221 * fit into the Tx PM FIFO.
222 */
223 val = min(adapter->params.tp.tx_pg_size,
224 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
225 uiip->max_txsz = min(val, uiip->max_txsz);
226
227 /* set MaxRxData to 16224 */
228 val = t3_read_reg(adapter, A_TP_PARA_REG2);
229 if ((val >> S_MAXRXDATA) != 0x3f60) {
230 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
231 val |= V_MAXRXDATA(0x3f60);
232 printk(KERN_INFO
233 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
234 adapter->name, val);
235 t3_write_reg(adapter, A_TP_PARA_REG2, val);
236 }
237
238 /*
239 * on rx, the iscsi pdu has to be < rx page size and the
240 * the max rx data length programmed in TP
241 */
242 val = min(adapter->params.tp.rx_pg_size,
243 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
244 S_MAXRXDATA) & M_MAXRXDATA);
245 uiip->max_rxsz = min(val, uiip->max_rxsz);
246 break;
247 case ULP_ISCSI_SET_PARAMS:
248 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
249 /* program the ddp page sizes */
250 for (i = 0; i < 4; i++)
251 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
252 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
253 printk(KERN_INFO
254 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
255 adapter->name, val, uiip->pgsz_factor[0],
256 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
257 uiip->pgsz_factor[3]);
258 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
259 }
260 break;
261 default:
262 ret = -EOPNOTSUPP;
263 }
264 return ret;
265 }
266
267 /* Response queue used for RDMA events. */
268 #define ASYNC_NOTIF_RSPQ 0
269
270 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
271 {
272 int ret = 0;
273
274 switch (req) {
275 case RDMA_GET_PARAMS: {
276 struct rdma_info *rdma = data;
277 struct pci_dev *pdev = adapter->pdev;
278
279 rdma->udbell_physbase = pci_resource_start(pdev, 2);
280 rdma->udbell_len = pci_resource_len(pdev, 2);
281 rdma->tpt_base =
282 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
283 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
284 rdma->pbl_base =
285 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
286 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
287 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
288 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
289 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
290 rdma->pdev = pdev;
291 break;
292 }
293 case RDMA_CQ_OP:{
294 unsigned long flags;
295 struct rdma_cq_op *rdma = data;
296
297 /* may be called in any context */
298 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
299 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
300 rdma->credits);
301 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
302 break;
303 }
304 case RDMA_GET_MEM:{
305 struct ch_mem_range *t = data;
306 struct mc7 *mem;
307
308 if ((t->addr & 7) || (t->len & 7))
309 return -EINVAL;
310 if (t->mem_id == MEM_CM)
311 mem = &adapter->cm;
312 else if (t->mem_id == MEM_PMRX)
313 mem = &adapter->pmrx;
314 else if (t->mem_id == MEM_PMTX)
315 mem = &adapter->pmtx;
316 else
317 return -EINVAL;
318
319 ret =
320 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
321 (u64 *) t->buf);
322 if (ret)
323 return ret;
324 break;
325 }
326 case RDMA_CQ_SETUP:{
327 struct rdma_cq_setup *rdma = data;
328
329 spin_lock_irq(&adapter->sge.reg_lock);
330 ret =
331 t3_sge_init_cqcntxt(adapter, rdma->id,
332 rdma->base_addr, rdma->size,
333 ASYNC_NOTIF_RSPQ,
334 rdma->ovfl_mode, rdma->credits,
335 rdma->credit_thres);
336 spin_unlock_irq(&adapter->sge.reg_lock);
337 break;
338 }
339 case RDMA_CQ_DISABLE:
340 spin_lock_irq(&adapter->sge.reg_lock);
341 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
342 spin_unlock_irq(&adapter->sge.reg_lock);
343 break;
344 case RDMA_CTRL_QP_SETUP:{
345 struct rdma_ctrlqp_setup *rdma = data;
346
347 spin_lock_irq(&adapter->sge.reg_lock);
348 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
349 SGE_CNTXT_RDMA,
350 ASYNC_NOTIF_RSPQ,
351 rdma->base_addr, rdma->size,
352 FW_RI_TID_START, 1, 0);
353 spin_unlock_irq(&adapter->sge.reg_lock);
354 break;
355 }
356 case RDMA_GET_MIB: {
357 spin_lock(&adapter->stats_lock);
358 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
359 spin_unlock(&adapter->stats_lock);
360 break;
361 }
362 default:
363 ret = -EOPNOTSUPP;
364 }
365 return ret;
366 }
367
368 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
369 {
370 struct adapter *adapter = tdev2adap(tdev);
371 struct tid_range *tid;
372 struct mtutab *mtup;
373 struct iff_mac *iffmacp;
374 struct ddp_params *ddpp;
375 struct adap_ports *ports;
376 struct ofld_page_info *rx_page_info;
377 struct tp_params *tp = &adapter->params.tp;
378 int i;
379
380 switch (req) {
381 case GET_MAX_OUTSTANDING_WR:
382 *(unsigned int *)data = FW_WR_NUM;
383 break;
384 case GET_WR_LEN:
385 *(unsigned int *)data = WR_FLITS;
386 break;
387 case GET_TX_MAX_CHUNK:
388 *(unsigned int *)data = 1 << 20; /* 1MB */
389 break;
390 case GET_TID_RANGE:
391 tid = data;
392 tid->num = t3_mc5_size(&adapter->mc5) -
393 adapter->params.mc5.nroutes -
394 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
395 tid->base = 0;
396 break;
397 case GET_STID_RANGE:
398 tid = data;
399 tid->num = adapter->params.mc5.nservers;
400 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
401 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
402 break;
403 case GET_L2T_CAPACITY:
404 *(unsigned int *)data = 2048;
405 break;
406 case GET_MTUS:
407 mtup = data;
408 mtup->size = NMTUS;
409 mtup->mtus = adapter->params.mtus;
410 break;
411 case GET_IFF_FROM_MAC:
412 iffmacp = data;
413 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
414 iffmacp->vlan_tag &
415 VLAN_VID_MASK);
416 break;
417 case GET_DDP_PARAMS:
418 ddpp = data;
419 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
420 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
421 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
422 break;
423 case GET_PORTS:
424 ports = data;
425 ports->nports = adapter->params.nports;
426 for_each_port(adapter, i)
427 ports->lldevs[i] = adapter->port[i];
428 break;
429 case ULP_ISCSI_GET_PARAMS:
430 case ULP_ISCSI_SET_PARAMS:
431 if (!offload_running(adapter))
432 return -EAGAIN;
433 return cxgb_ulp_iscsi_ctl(adapter, req, data);
434 case RDMA_GET_PARAMS:
435 case RDMA_CQ_OP:
436 case RDMA_CQ_SETUP:
437 case RDMA_CQ_DISABLE:
438 case RDMA_CTRL_QP_SETUP:
439 case RDMA_GET_MEM:
440 case RDMA_GET_MIB:
441 if (!offload_running(adapter))
442 return -EAGAIN;
443 return cxgb_rdma_ctl(adapter, req, data);
444 case GET_RX_PAGE_INFO:
445 rx_page_info = data;
446 rx_page_info->page_size = tp->rx_pg_size;
447 rx_page_info->num = tp->rx_num_pgs;
448 break;
449 case GET_ISCSI_IPV4ADDR: {
450 struct iscsi_ipv4addr *p = data;
451 struct port_info *pi = netdev_priv(p->dev);
452 p->ipv4addr = pi->iscsi_ipv4addr;
453 break;
454 }
455 case GET_EMBEDDED_INFO: {
456 struct ch_embedded_info *e = data;
457
458 spin_lock(&adapter->stats_lock);
459 t3_get_fw_version(adapter, &e->fw_vers);
460 t3_get_tp_version(adapter, &e->tp_vers);
461 spin_unlock(&adapter->stats_lock);
462 break;
463 }
464 default:
465 return -EOPNOTSUPP;
466 }
467 return 0;
468 }
469
470 /*
471 * Dummy handler for Rx offload packets in case we get an offload packet before
472 * proper processing is setup. This complains and drops the packet as it isn't
473 * normal to get offload packets at this stage.
474 */
475 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
476 int n)
477 {
478 while (n--)
479 dev_kfree_skb_any(skbs[n]);
480 return 0;
481 }
482
483 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
484 {
485 }
486
487 void cxgb3_set_dummy_ops(struct t3cdev *dev)
488 {
489 dev->recv = rx_offload_blackhole;
490 dev->neigh_update = dummy_neigh_update;
491 }
492
493 /*
494 * Free an active-open TID.
495 */
496 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
497 {
498 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
499 union active_open_entry *p = atid2entry(t, atid);
500 void *ctx = p->t3c_tid.ctx;
501
502 spin_lock_bh(&t->atid_lock);
503 p->next = t->afree;
504 t->afree = p;
505 t->atids_in_use--;
506 spin_unlock_bh(&t->atid_lock);
507
508 return ctx;
509 }
510
511 EXPORT_SYMBOL(cxgb3_free_atid);
512
513 /*
514 * Free a server TID and return it to the free pool.
515 */
516 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
517 {
518 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
519 union listen_entry *p = stid2entry(t, stid);
520
521 spin_lock_bh(&t->stid_lock);
522 p->next = t->sfree;
523 t->sfree = p;
524 t->stids_in_use--;
525 spin_unlock_bh(&t->stid_lock);
526 }
527
528 EXPORT_SYMBOL(cxgb3_free_stid);
529
530 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
531 void *ctx, unsigned int tid)
532 {
533 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
534
535 t->tid_tab[tid].client = client;
536 t->tid_tab[tid].ctx = ctx;
537 atomic_inc(&t->tids_in_use);
538 }
539
540 EXPORT_SYMBOL(cxgb3_insert_tid);
541
542 /*
543 * Populate a TID_RELEASE WR. The skb must be already propely sized.
544 */
545 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
546 {
547 struct cpl_tid_release *req;
548
549 skb->priority = CPL_PRIORITY_SETUP;
550 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
551 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
552 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
553 }
554
555 static void t3_process_tid_release_list(struct work_struct *work)
556 {
557 struct t3c_data *td = container_of(work, struct t3c_data,
558 tid_release_task);
559 struct sk_buff *skb;
560 struct t3cdev *tdev = td->dev;
561
562
563 spin_lock_bh(&td->tid_release_lock);
564 while (td->tid_release_list) {
565 struct t3c_tid_entry *p = td->tid_release_list;
566
567 td->tid_release_list = p->ctx;
568 spin_unlock_bh(&td->tid_release_lock);
569
570 skb = alloc_skb(sizeof(struct cpl_tid_release),
571 GFP_KERNEL);
572 if (!skb)
573 skb = td->nofail_skb;
574 if (!skb) {
575 spin_lock_bh(&td->tid_release_lock);
576 p->ctx = (void *)td->tid_release_list;
577 td->tid_release_list = (struct t3c_tid_entry *)p;
578 break;
579 }
580 mk_tid_release(skb, p - td->tid_maps.tid_tab);
581 cxgb3_ofld_send(tdev, skb);
582 p->ctx = NULL;
583 if (skb == td->nofail_skb)
584 td->nofail_skb =
585 alloc_skb(sizeof(struct cpl_tid_release),
586 GFP_KERNEL);
587 spin_lock_bh(&td->tid_release_lock);
588 }
589 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
590 spin_unlock_bh(&td->tid_release_lock);
591
592 if (!td->nofail_skb)
593 td->nofail_skb =
594 alloc_skb(sizeof(struct cpl_tid_release),
595 GFP_KERNEL);
596 }
597
598 /* use ctx as a next pointer in the tid release list */
599 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
600 {
601 struct t3c_data *td = T3C_DATA(tdev);
602 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
603
604 spin_lock_bh(&td->tid_release_lock);
605 p->ctx = (void *)td->tid_release_list;
606 p->client = NULL;
607 td->tid_release_list = p;
608 if (!p->ctx || td->release_list_incomplete)
609 schedule_work(&td->tid_release_task);
610 spin_unlock_bh(&td->tid_release_lock);
611 }
612
613 EXPORT_SYMBOL(cxgb3_queue_tid_release);
614
615 /*
616 * Remove a tid from the TID table. A client may defer processing its last
617 * CPL message if it is locked at the time it arrives, and while the message
618 * sits in the client's backlog the TID may be reused for another connection.
619 * To handle this we atomically switch the TID association if it still points
620 * to the original client context.
621 */
622 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
623 {
624 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
625
626 BUG_ON(tid >= t->ntids);
627 if (tdev->type == T3A)
628 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
629 else {
630 struct sk_buff *skb;
631
632 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
633 if (likely(skb)) {
634 mk_tid_release(skb, tid);
635 cxgb3_ofld_send(tdev, skb);
636 t->tid_tab[tid].ctx = NULL;
637 } else
638 cxgb3_queue_tid_release(tdev, tid);
639 }
640 atomic_dec(&t->tids_in_use);
641 }
642
643 EXPORT_SYMBOL(cxgb3_remove_tid);
644
645 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
646 void *ctx)
647 {
648 int atid = -1;
649 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
650
651 spin_lock_bh(&t->atid_lock);
652 if (t->afree &&
653 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
654 t->ntids) {
655 union active_open_entry *p = t->afree;
656
657 atid = (p - t->atid_tab) + t->atid_base;
658 t->afree = p->next;
659 p->t3c_tid.ctx = ctx;
660 p->t3c_tid.client = client;
661 t->atids_in_use++;
662 }
663 spin_unlock_bh(&t->atid_lock);
664 return atid;
665 }
666
667 EXPORT_SYMBOL(cxgb3_alloc_atid);
668
669 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
670 void *ctx)
671 {
672 int stid = -1;
673 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
674
675 spin_lock_bh(&t->stid_lock);
676 if (t->sfree) {
677 union listen_entry *p = t->sfree;
678
679 stid = (p - t->stid_tab) + t->stid_base;
680 t->sfree = p->next;
681 p->t3c_tid.ctx = ctx;
682 p->t3c_tid.client = client;
683 t->stids_in_use++;
684 }
685 spin_unlock_bh(&t->stid_lock);
686 return stid;
687 }
688
689 EXPORT_SYMBOL(cxgb3_alloc_stid);
690
691 /* Get the t3cdev associated with a net_device */
692 struct t3cdev *dev2t3cdev(struct net_device *dev)
693 {
694 const struct port_info *pi = netdev_priv(dev);
695
696 return (struct t3cdev *)pi->adapter;
697 }
698
699 EXPORT_SYMBOL(dev2t3cdev);
700
701 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
702 {
703 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
704
705 if (rpl->status != CPL_ERR_NONE)
706 printk(KERN_ERR
707 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
708 rpl->status, GET_TID(rpl));
709
710 return CPL_RET_BUF_DONE;
711 }
712
713 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
714 {
715 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
716
717 if (rpl->status != CPL_ERR_NONE)
718 printk(KERN_ERR
719 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
720 rpl->status, GET_TID(rpl));
721
722 return CPL_RET_BUF_DONE;
723 }
724
725 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
726 {
727 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
728
729 if (rpl->status != CPL_ERR_NONE)
730 printk(KERN_ERR
731 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
732 rpl->status, GET_TID(rpl));
733
734 return CPL_RET_BUF_DONE;
735 }
736
737 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
738 {
739 struct cpl_act_open_rpl *rpl = cplhdr(skb);
740 unsigned int atid = G_TID(ntohl(rpl->atid));
741 struct t3c_tid_entry *t3c_tid;
742
743 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
744 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
745 t3c_tid->client->handlers &&
746 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
747 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
748 t3c_tid->
749 ctx);
750 } else {
751 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
752 dev->name, CPL_ACT_OPEN_RPL);
753 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
754 }
755 }
756
757 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
758 {
759 union opcode_tid *p = cplhdr(skb);
760 unsigned int stid = G_TID(ntohl(p->opcode_tid));
761 struct t3c_tid_entry *t3c_tid;
762
763 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
764 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
765 t3c_tid->client->handlers[p->opcode]) {
766 return t3c_tid->client->handlers[p->opcode] (dev, skb,
767 t3c_tid->ctx);
768 } else {
769 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
770 dev->name, p->opcode);
771 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
772 }
773 }
774
775 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
776 {
777 union opcode_tid *p = cplhdr(skb);
778 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
779 struct t3c_tid_entry *t3c_tid;
780
781 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
782 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
783 t3c_tid->client->handlers[p->opcode]) {
784 return t3c_tid->client->handlers[p->opcode]
785 (dev, skb, t3c_tid->ctx);
786 } else {
787 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
788 dev->name, p->opcode);
789 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
790 }
791 }
792
793 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
794 {
795 struct cpl_pass_accept_req *req = cplhdr(skb);
796 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
797 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
798 struct t3c_tid_entry *t3c_tid;
799 unsigned int tid = GET_TID(req);
800
801 if (unlikely(tid >= t->ntids)) {
802 printk("%s: passive open TID %u too large\n",
803 dev->name, tid);
804 t3_fatal_err(tdev2adap(dev));
805 return CPL_RET_BUF_DONE;
806 }
807
808 t3c_tid = lookup_stid(t, stid);
809 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
810 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
811 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
812 (dev, skb, t3c_tid->ctx);
813 } else {
814 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
815 dev->name, CPL_PASS_ACCEPT_REQ);
816 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
817 }
818 }
819
820 /*
821 * Returns an sk_buff for a reply CPL message of size len. If the input
822 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
823 * is allocated. The input skb must be of size at least len. Note that this
824 * operation does not destroy the original skb data even if it decides to reuse
825 * the buffer.
826 */
827 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
828 gfp_t gfp)
829 {
830 if (likely(!skb_cloned(skb))) {
831 BUG_ON(skb->len < len);
832 __skb_trim(skb, len);
833 skb_get(skb);
834 } else {
835 skb = alloc_skb(len, gfp);
836 if (skb)
837 __skb_put(skb, len);
838 }
839 return skb;
840 }
841
842 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
843 {
844 union opcode_tid *p = cplhdr(skb);
845 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
846 struct t3c_tid_entry *t3c_tid;
847
848 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
849 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
850 t3c_tid->client->handlers[p->opcode]) {
851 return t3c_tid->client->handlers[p->opcode]
852 (dev, skb, t3c_tid->ctx);
853 } else {
854 struct cpl_abort_req_rss *req = cplhdr(skb);
855 struct cpl_abort_rpl *rpl;
856 struct sk_buff *reply_skb;
857 unsigned int tid = GET_TID(req);
858 u8 cmd = req->status;
859
860 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
861 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
862 goto out;
863
864 reply_skb = cxgb3_get_cpl_reply_skb(skb,
865 sizeof(struct
866 cpl_abort_rpl),
867 GFP_ATOMIC);
868
869 if (!reply_skb) {
870 printk("do_abort_req_rss: couldn't get skb!\n");
871 goto out;
872 }
873 reply_skb->priority = CPL_PRIORITY_DATA;
874 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
875 rpl = cplhdr(reply_skb);
876 rpl->wr.wr_hi =
877 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
878 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
879 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
880 rpl->cmd = cmd;
881 cxgb3_ofld_send(dev, reply_skb);
882 out:
883 return CPL_RET_BUF_DONE;
884 }
885 }
886
887 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
888 {
889 struct cpl_act_establish *req = cplhdr(skb);
890 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
891 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
892 struct t3c_tid_entry *t3c_tid;
893 unsigned int tid = GET_TID(req);
894
895 if (unlikely(tid >= t->ntids)) {
896 printk("%s: active establish TID %u too large\n",
897 dev->name, tid);
898 t3_fatal_err(tdev2adap(dev));
899 return CPL_RET_BUF_DONE;
900 }
901
902 t3c_tid = lookup_atid(t, atid);
903 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
904 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
905 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
906 (dev, skb, t3c_tid->ctx);
907 } else {
908 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
909 dev->name, CPL_ACT_ESTABLISH);
910 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
911 }
912 }
913
914 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
915 {
916 struct cpl_trace_pkt *p = cplhdr(skb);
917
918 skb->protocol = htons(0xffff);
919 skb->dev = dev->lldev;
920 skb_pull(skb, sizeof(*p));
921 skb_reset_mac_header(skb);
922 netif_receive_skb(skb);
923 return 0;
924 }
925
926 /*
927 * That skb would better have come from process_responses() where we abuse
928 * ->priority and ->csum to carry our data. NB: if we get to per-arch
929 * ->csum, the things might get really interesting here.
930 */
931
932 static inline u32 get_hwtid(struct sk_buff *skb)
933 {
934 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
935 }
936
937 static inline u32 get_opcode(struct sk_buff *skb)
938 {
939 return G_OPCODE(ntohl((__force __be32)skb->csum));
940 }
941
942 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
943 {
944 unsigned int hwtid = get_hwtid(skb);
945 unsigned int opcode = get_opcode(skb);
946 struct t3c_tid_entry *t3c_tid;
947
948 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
949 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
950 t3c_tid->client->handlers[opcode]) {
951 return t3c_tid->client->handlers[opcode] (dev, skb,
952 t3c_tid->ctx);
953 } else {
954 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
955 dev->name, opcode);
956 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
957 }
958 }
959
960 static int nb_callback(struct notifier_block *self, unsigned long event,
961 void *ctx)
962 {
963 switch (event) {
964 case (NETEVENT_NEIGH_UPDATE):{
965 cxgb_neigh_update((struct neighbour *)ctx);
966 break;
967 }
968 case (NETEVENT_REDIRECT):{
969 struct netevent_redirect *nr = ctx;
970 cxgb_redirect(nr->old, nr->new);
971 cxgb_neigh_update(dst_get_neighbour(nr->new));
972 break;
973 }
974 default:
975 break;
976 }
977 return 0;
978 }
979
980 static struct notifier_block nb = {
981 .notifier_call = nb_callback
982 };
983
984 /*
985 * Process a received packet with an unknown/unexpected CPL opcode.
986 */
987 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
988 {
989 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
990 *skb->data);
991 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
992 }
993
994 /*
995 * Handlers for each CPL opcode
996 */
997 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
998
999 /*
1000 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1001 * to unregister an existing handler.
1002 */
1003 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1004 {
1005 if (opcode < NUM_CPL_CMDS)
1006 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1007 else
1008 printk(KERN_ERR "T3C: handler registration for "
1009 "opcode %x failed\n", opcode);
1010 }
1011
1012 EXPORT_SYMBOL(t3_register_cpl_handler);
1013
1014 /*
1015 * T3CDEV's receive method.
1016 */
1017 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1018 {
1019 while (n--) {
1020 struct sk_buff *skb = *skbs++;
1021 unsigned int opcode = get_opcode(skb);
1022 int ret = cpl_handlers[opcode] (dev, skb);
1023
1024 #if VALIDATE_TID
1025 if (ret & CPL_RET_UNKNOWN_TID) {
1026 union opcode_tid *p = cplhdr(skb);
1027
1028 printk(KERN_ERR "%s: CPL message (opcode %u) had "
1029 "unknown TID %u\n", dev->name, opcode,
1030 G_TID(ntohl(p->opcode_tid)));
1031 }
1032 #endif
1033 if (ret & CPL_RET_BUF_DONE)
1034 kfree_skb(skb);
1035 }
1036 return 0;
1037 }
1038
1039 /*
1040 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1041 */
1042 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1043 {
1044 int r;
1045
1046 local_bh_disable();
1047 r = dev->send(dev, skb);
1048 local_bh_enable();
1049 return r;
1050 }
1051
1052 EXPORT_SYMBOL(cxgb3_ofld_send);
1053
1054 static int is_offloading(struct net_device *dev)
1055 {
1056 struct adapter *adapter;
1057 int i;
1058
1059 read_lock_bh(&adapter_list_lock);
1060 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1061 for_each_port(adapter, i) {
1062 if (dev == adapter->port[i]) {
1063 read_unlock_bh(&adapter_list_lock);
1064 return 1;
1065 }
1066 }
1067 }
1068 read_unlock_bh(&adapter_list_lock);
1069 return 0;
1070 }
1071
1072 static void cxgb_neigh_update(struct neighbour *neigh)
1073 {
1074 struct net_device *dev = neigh->dev;
1075
1076 if (dev && (is_offloading(dev))) {
1077 struct t3cdev *tdev = dev2t3cdev(dev);
1078
1079 BUG_ON(!tdev);
1080 t3_l2t_update(tdev, neigh);
1081 }
1082 }
1083
1084 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1085 {
1086 struct sk_buff *skb;
1087 struct cpl_set_tcb_field *req;
1088
1089 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1090 if (!skb) {
1091 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1092 return;
1093 }
1094 skb->priority = CPL_PRIORITY_CONTROL;
1095 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1096 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1097 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1098 req->reply = 0;
1099 req->cpu_idx = 0;
1100 req->word = htons(W_TCB_L2T_IX);
1101 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1102 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1103 tdev->send(tdev, skb);
1104 }
1105
1106 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1107 {
1108 struct net_device *olddev, *newdev;
1109 struct tid_info *ti;
1110 struct t3cdev *tdev;
1111 u32 tid;
1112 int update_tcb;
1113 struct l2t_entry *e;
1114 struct t3c_tid_entry *te;
1115
1116 olddev = dst_get_neighbour(old)->dev;
1117 newdev = dst_get_neighbour(new)->dev;
1118 if (!is_offloading(olddev))
1119 return;
1120 if (!is_offloading(newdev)) {
1121 printk(KERN_WARNING "%s: Redirect to non-offload "
1122 "device ignored.\n", __func__);
1123 return;
1124 }
1125 tdev = dev2t3cdev(olddev);
1126 BUG_ON(!tdev);
1127 if (tdev != dev2t3cdev(newdev)) {
1128 printk(KERN_WARNING "%s: Redirect to different "
1129 "offload device ignored.\n", __func__);
1130 return;
1131 }
1132
1133 /* Add new L2T entry */
1134 e = t3_l2t_get(tdev, dst_get_neighbour(new), newdev);
1135 if (!e) {
1136 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1137 __func__);
1138 return;
1139 }
1140
1141 /* Walk tid table and notify clients of dst change. */
1142 ti = &(T3C_DATA(tdev))->tid_maps;
1143 for (tid = 0; tid < ti->ntids; tid++) {
1144 te = lookup_tid(ti, tid);
1145 BUG_ON(!te);
1146 if (te && te->ctx && te->client && te->client->redirect) {
1147 update_tcb = te->client->redirect(te->ctx, old, new, e);
1148 if (update_tcb) {
1149 l2t_hold(L2DATA(tdev), e);
1150 set_l2t_ix(tdev, tid, e);
1151 }
1152 }
1153 }
1154 l2t_release(L2DATA(tdev), e);
1155 }
1156
1157 /*
1158 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1159 * The allocated memory is cleared.
1160 */
1161 void *cxgb_alloc_mem(unsigned long size)
1162 {
1163 void *p = kzalloc(size, GFP_KERNEL);
1164
1165 if (!p)
1166 p = vzalloc(size);
1167 return p;
1168 }
1169
1170 /*
1171 * Free memory allocated through t3_alloc_mem().
1172 */
1173 void cxgb_free_mem(void *addr)
1174 {
1175 if (is_vmalloc_addr(addr))
1176 vfree(addr);
1177 else
1178 kfree(addr);
1179 }
1180
1181 /*
1182 * Allocate and initialize the TID tables. Returns 0 on success.
1183 */
1184 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1185 unsigned int natids, unsigned int nstids,
1186 unsigned int atid_base, unsigned int stid_base)
1187 {
1188 unsigned long size = ntids * sizeof(*t->tid_tab) +
1189 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1190
1191 t->tid_tab = cxgb_alloc_mem(size);
1192 if (!t->tid_tab)
1193 return -ENOMEM;
1194
1195 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1196 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1197 t->ntids = ntids;
1198 t->nstids = nstids;
1199 t->stid_base = stid_base;
1200 t->sfree = NULL;
1201 t->natids = natids;
1202 t->atid_base = atid_base;
1203 t->afree = NULL;
1204 t->stids_in_use = t->atids_in_use = 0;
1205 atomic_set(&t->tids_in_use, 0);
1206 spin_lock_init(&t->stid_lock);
1207 spin_lock_init(&t->atid_lock);
1208
1209 /*
1210 * Setup the free lists for stid_tab and atid_tab.
1211 */
1212 if (nstids) {
1213 while (--nstids)
1214 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1215 t->sfree = t->stid_tab;
1216 }
1217 if (natids) {
1218 while (--natids)
1219 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1220 t->afree = t->atid_tab;
1221 }
1222 return 0;
1223 }
1224
1225 static void free_tid_maps(struct tid_info *t)
1226 {
1227 cxgb_free_mem(t->tid_tab);
1228 }
1229
1230 static inline void add_adapter(struct adapter *adap)
1231 {
1232 write_lock_bh(&adapter_list_lock);
1233 list_add_tail(&adap->adapter_list, &adapter_list);
1234 write_unlock_bh(&adapter_list_lock);
1235 }
1236
1237 static inline void remove_adapter(struct adapter *adap)
1238 {
1239 write_lock_bh(&adapter_list_lock);
1240 list_del(&adap->adapter_list);
1241 write_unlock_bh(&adapter_list_lock);
1242 }
1243
1244 int cxgb3_offload_activate(struct adapter *adapter)
1245 {
1246 struct t3cdev *dev = &adapter->tdev;
1247 int natids, err;
1248 struct t3c_data *t;
1249 struct tid_range stid_range, tid_range;
1250 struct mtutab mtutab;
1251 unsigned int l2t_capacity;
1252
1253 t = kzalloc(sizeof(*t), GFP_KERNEL);
1254 if (!t)
1255 return -ENOMEM;
1256
1257 err = -EOPNOTSUPP;
1258 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1259 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1260 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1261 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1262 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1263 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1264 goto out_free;
1265
1266 err = -ENOMEM;
1267 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1268 if (!L2DATA(dev))
1269 goto out_free;
1270
1271 natids = min(tid_range.num / 2, MAX_ATIDS);
1272 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1273 stid_range.num, ATID_BASE, stid_range.base);
1274 if (err)
1275 goto out_free_l2t;
1276
1277 t->mtus = mtutab.mtus;
1278 t->nmtus = mtutab.size;
1279
1280 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1281 spin_lock_init(&t->tid_release_lock);
1282 INIT_LIST_HEAD(&t->list_node);
1283 t->dev = dev;
1284
1285 T3C_DATA(dev) = t;
1286 dev->recv = process_rx;
1287 dev->neigh_update = t3_l2t_update;
1288
1289 /* Register netevent handler once */
1290 if (list_empty(&adapter_list))
1291 register_netevent_notifier(&nb);
1292
1293 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1294 t->release_list_incomplete = 0;
1295
1296 add_adapter(adapter);
1297 return 0;
1298
1299 out_free_l2t:
1300 t3_free_l2t(L2DATA(dev));
1301 L2DATA(dev) = NULL;
1302 out_free:
1303 kfree(t);
1304 return err;
1305 }
1306
1307 void cxgb3_offload_deactivate(struct adapter *adapter)
1308 {
1309 struct t3cdev *tdev = &adapter->tdev;
1310 struct t3c_data *t = T3C_DATA(tdev);
1311
1312 remove_adapter(adapter);
1313 if (list_empty(&adapter_list))
1314 unregister_netevent_notifier(&nb);
1315
1316 free_tid_maps(&t->tid_maps);
1317 T3C_DATA(tdev) = NULL;
1318 t3_free_l2t(L2DATA(tdev));
1319 L2DATA(tdev) = NULL;
1320 if (t->nofail_skb)
1321 kfree_skb(t->nofail_skb);
1322 kfree(t);
1323 }
1324
1325 static inline void register_tdev(struct t3cdev *tdev)
1326 {
1327 static int unit;
1328
1329 mutex_lock(&cxgb3_db_lock);
1330 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1331 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1332 mutex_unlock(&cxgb3_db_lock);
1333 }
1334
1335 static inline void unregister_tdev(struct t3cdev *tdev)
1336 {
1337 mutex_lock(&cxgb3_db_lock);
1338 list_del(&tdev->ofld_dev_list);
1339 mutex_unlock(&cxgb3_db_lock);
1340 }
1341
1342 static inline int adap2type(struct adapter *adapter)
1343 {
1344 int type = 0;
1345
1346 switch (adapter->params.rev) {
1347 case T3_REV_A:
1348 type = T3A;
1349 break;
1350 case T3_REV_B:
1351 case T3_REV_B2:
1352 type = T3B;
1353 break;
1354 case T3_REV_C:
1355 type = T3C;
1356 break;
1357 }
1358 return type;
1359 }
1360
1361 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1362 {
1363 struct t3cdev *tdev = &adapter->tdev;
1364
1365 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1366
1367 cxgb3_set_dummy_ops(tdev);
1368 tdev->send = t3_offload_tx;
1369 tdev->ctl = cxgb_offload_ctl;
1370 tdev->type = adap2type(adapter);
1371
1372 register_tdev(tdev);
1373 }
1374
1375 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1376 {
1377 struct t3cdev *tdev = &adapter->tdev;
1378
1379 tdev->recv = NULL;
1380 tdev->neigh_update = NULL;
1381
1382 unregister_tdev(tdev);
1383 }
1384
1385 void __init cxgb3_offload_init(void)
1386 {
1387 int i;
1388
1389 for (i = 0; i < NUM_CPL_CMDS; ++i)
1390 cpl_handlers[i] = do_bad_cpl;
1391
1392 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1393 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1394 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1395 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1396 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1397 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1398 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1399 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1400 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1401 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1402 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1403 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1404 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1405 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1406 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1407 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1408 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1409 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1410 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1411 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1412 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1413 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1414 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1415 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1416 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1417 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1418 }