broadcom: Move the Broadcom drivers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 *
20 * This driver is designed for the Broadcom SiByte SOC built-in
21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 *
23 * Updated to the driver model and the PHY abstraction layer
24 * by Maciej W. Rozycki.
25 */
26
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46 #include <linux/prefetch.h>
47
48 #include <asm/cache.h>
49 #include <asm/io.h>
50 #include <asm/processor.h> /* Processor type for cache alignment. */
51
52 /* Operational parameters that usually are not changed. */
53
54 #define CONFIG_SBMAC_COALESCE
55
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT (2*HZ)
58
59
60 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
61 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
62
63 /* A few user-configurable values which may be modified when a driver
64 module is loaded. */
65
66 /* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int debug = 1;
68 module_param(debug, int, S_IRUGO);
69 MODULE_PARM_DESC(debug, "Debug messages");
70
71 #ifdef CONFIG_SBMAC_COALESCE
72 static int int_pktcnt_tx = 255;
73 module_param(int_pktcnt_tx, int, S_IRUGO);
74 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
75
76 static int int_timeout_tx = 255;
77 module_param(int_timeout_tx, int, S_IRUGO);
78 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
79
80 static int int_pktcnt_rx = 64;
81 module_param(int_pktcnt_rx, int, S_IRUGO);
82 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
83
84 static int int_timeout_rx = 64;
85 module_param(int_timeout_rx, int, S_IRUGO);
86 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
87 #endif
88
89 #include <asm/sibyte/board.h>
90 #include <asm/sibyte/sb1250.h>
91 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
92 #include <asm/sibyte/bcm1480_regs.h>
93 #include <asm/sibyte/bcm1480_int.h>
94 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
95 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
96 #include <asm/sibyte/sb1250_regs.h>
97 #include <asm/sibyte/sb1250_int.h>
98 #else
99 #error invalid SiByte MAC configuration
100 #endif
101 #include <asm/sibyte/sb1250_scd.h>
102 #include <asm/sibyte/sb1250_mac.h>
103 #include <asm/sibyte/sb1250_dma.h>
104
105 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
106 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
107 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
108 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
109 #else
110 #error invalid SiByte MAC configuration
111 #endif
112
113 #ifdef K_INT_PHY
114 #define SBMAC_PHY_INT K_INT_PHY
115 #else
116 #define SBMAC_PHY_INT PHY_POLL
117 #endif
118
119 /**********************************************************************
120 * Simple types
121 ********************************************************************* */
122
123 enum sbmac_speed {
124 sbmac_speed_none = 0,
125 sbmac_speed_10 = SPEED_10,
126 sbmac_speed_100 = SPEED_100,
127 sbmac_speed_1000 = SPEED_1000,
128 };
129
130 enum sbmac_duplex {
131 sbmac_duplex_none = -1,
132 sbmac_duplex_half = DUPLEX_HALF,
133 sbmac_duplex_full = DUPLEX_FULL,
134 };
135
136 enum sbmac_fc {
137 sbmac_fc_none,
138 sbmac_fc_disabled,
139 sbmac_fc_frame,
140 sbmac_fc_collision,
141 sbmac_fc_carrier,
142 };
143
144 enum sbmac_state {
145 sbmac_state_uninit,
146 sbmac_state_off,
147 sbmac_state_on,
148 sbmac_state_broken,
149 };
150
151
152 /**********************************************************************
153 * Macros
154 ********************************************************************* */
155
156
157 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
158 (d)->sbdma_dscrtable : (d)->f+1)
159
160
161 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
162
163 #define SBMAC_MAX_TXDESCR 256
164 #define SBMAC_MAX_RXDESCR 256
165
166 #define ETHER_ADDR_LEN 6
167 #define ENET_PACKET_SIZE 1518
168 /*#define ENET_PACKET_SIZE 9216 */
169
170 /**********************************************************************
171 * DMA Descriptor structure
172 ********************************************************************* */
173
174 struct sbdmadscr {
175 uint64_t dscr_a;
176 uint64_t dscr_b;
177 };
178
179 /**********************************************************************
180 * DMA Controller structure
181 ********************************************************************* */
182
183 struct sbmacdma {
184
185 /*
186 * This stuff is used to identify the channel and the registers
187 * associated with it.
188 */
189 struct sbmac_softc *sbdma_eth; /* back pointer to associated
190 MAC */
191 int sbdma_channel; /* channel number */
192 int sbdma_txdir; /* direction (1=transmit) */
193 int sbdma_maxdescr; /* total # of descriptors
194 in ring */
195 #ifdef CONFIG_SBMAC_COALESCE
196 int sbdma_int_pktcnt;
197 /* # descriptors rx/tx
198 before interrupt */
199 int sbdma_int_timeout;
200 /* # usec rx/tx interrupt */
201 #endif
202 void __iomem *sbdma_config0; /* DMA config register 0 */
203 void __iomem *sbdma_config1; /* DMA config register 1 */
204 void __iomem *sbdma_dscrbase;
205 /* descriptor base address */
206 void __iomem *sbdma_dscrcnt; /* descriptor count register */
207 void __iomem *sbdma_curdscr; /* current descriptor
208 address */
209 void __iomem *sbdma_oodpktlost;
210 /* pkt drop (rx only) */
211
212 /*
213 * This stuff is for maintenance of the ring
214 */
215 void *sbdma_dscrtable_unaligned;
216 struct sbdmadscr *sbdma_dscrtable;
217 /* base of descriptor table */
218 struct sbdmadscr *sbdma_dscrtable_end;
219 /* end of descriptor table */
220 struct sk_buff **sbdma_ctxtable;
221 /* context table, one
222 per descr */
223 dma_addr_t sbdma_dscrtable_phys;
224 /* and also the phys addr */
225 struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
226 struct sbdmadscr *sbdma_remptr; /* next dscr for sw
227 to remove */
228 };
229
230
231 /**********************************************************************
232 * Ethernet softc structure
233 ********************************************************************* */
234
235 struct sbmac_softc {
236
237 /*
238 * Linux-specific things
239 */
240 struct net_device *sbm_dev; /* pointer to linux device */
241 struct napi_struct napi;
242 struct phy_device *phy_dev; /* the associated PHY device */
243 struct mii_bus *mii_bus; /* the MII bus */
244 int phy_irq[PHY_MAX_ADDR];
245 spinlock_t sbm_lock; /* spin lock */
246 int sbm_devflags; /* current device flags */
247
248 /*
249 * Controller-specific things
250 */
251 void __iomem *sbm_base; /* MAC's base address */
252 enum sbmac_state sbm_state; /* current state */
253
254 void __iomem *sbm_macenable; /* MAC Enable Register */
255 void __iomem *sbm_maccfg; /* MAC Config Register */
256 void __iomem *sbm_fifocfg; /* FIFO Config Register */
257 void __iomem *sbm_framecfg; /* Frame Config Register */
258 void __iomem *sbm_rxfilter; /* Receive Filter Register */
259 void __iomem *sbm_isr; /* Interrupt Status Register */
260 void __iomem *sbm_imr; /* Interrupt Mask Register */
261 void __iomem *sbm_mdio; /* MDIO Register */
262
263 enum sbmac_speed sbm_speed; /* current speed */
264 enum sbmac_duplex sbm_duplex; /* current duplex */
265 enum sbmac_fc sbm_fc; /* cur. flow control setting */
266 int sbm_pause; /* current pause setting */
267 int sbm_link; /* current link state */
268
269 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
270
271 struct sbmacdma sbm_txdma; /* only channel 0 for now */
272 struct sbmacdma sbm_rxdma;
273 int rx_hw_checksum;
274 int sbe_idx;
275 };
276
277
278 /**********************************************************************
279 * Externs
280 ********************************************************************* */
281
282 /**********************************************************************
283 * Prototypes
284 ********************************************************************* */
285
286 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
287 int txrx, int maxdescr);
288 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
289 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
290 struct sk_buff *m);
291 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
292 static void sbdma_emptyring(struct sbmacdma *d);
293 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
294 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
295 int work_to_do, int poll);
296 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
297 int poll);
298 static int sbmac_initctx(struct sbmac_softc *s);
299 static void sbmac_channel_start(struct sbmac_softc *s);
300 static void sbmac_channel_stop(struct sbmac_softc *s);
301 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
302 enum sbmac_state);
303 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
304 static uint64_t sbmac_addr2reg(unsigned char *ptr);
305 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
306 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
307 static void sbmac_setmulti(struct sbmac_softc *sc);
308 static int sbmac_init(struct platform_device *pldev, long long base);
309 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
310 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
311 enum sbmac_fc fc);
312
313 static int sbmac_open(struct net_device *dev);
314 static void sbmac_tx_timeout (struct net_device *dev);
315 static void sbmac_set_rx_mode(struct net_device *dev);
316 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
317 static int sbmac_close(struct net_device *dev);
318 static int sbmac_poll(struct napi_struct *napi, int budget);
319
320 static void sbmac_mii_poll(struct net_device *dev);
321 static int sbmac_mii_probe(struct net_device *dev);
322
323 static void sbmac_mii_sync(void __iomem *sbm_mdio);
324 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
325 int bitcnt);
326 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
327 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
328 u16 val);
329
330
331 /**********************************************************************
332 * Globals
333 ********************************************************************* */
334
335 static char sbmac_string[] = "sb1250-mac";
336
337 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
338
339
340 /**********************************************************************
341 * MDIO constants
342 ********************************************************************* */
343
344 #define MII_COMMAND_START 0x01
345 #define MII_COMMAND_READ 0x02
346 #define MII_COMMAND_WRITE 0x01
347 #define MII_COMMAND_ACK 0x02
348
349 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
350
351 #define ENABLE 1
352 #define DISABLE 0
353
354 /**********************************************************************
355 * SBMAC_MII_SYNC(sbm_mdio)
356 *
357 * Synchronize with the MII - send a pattern of bits to the MII
358 * that will guarantee that it is ready to accept a command.
359 *
360 * Input parameters:
361 * sbm_mdio - address of the MAC's MDIO register
362 *
363 * Return value:
364 * nothing
365 ********************************************************************* */
366
367 static void sbmac_mii_sync(void __iomem *sbm_mdio)
368 {
369 int cnt;
370 uint64_t bits;
371 int mac_mdio_genc;
372
373 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
374
375 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
376
377 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378
379 for (cnt = 0; cnt < 32; cnt++) {
380 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
381 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
382 }
383 }
384
385 /**********************************************************************
386 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
387 *
388 * Send some bits to the MII. The bits to be sent are right-
389 * justified in the 'data' parameter.
390 *
391 * Input parameters:
392 * sbm_mdio - address of the MAC's MDIO register
393 * data - data to send
394 * bitcnt - number of bits to send
395 ********************************************************************* */
396
397 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
398 int bitcnt)
399 {
400 int i;
401 uint64_t bits;
402 unsigned int curmask;
403 int mac_mdio_genc;
404
405 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
406
407 bits = M_MAC_MDIO_DIR_OUTPUT;
408 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
409
410 curmask = 1 << (bitcnt - 1);
411
412 for (i = 0; i < bitcnt; i++) {
413 if (data & curmask)
414 bits |= M_MAC_MDIO_OUT;
415 else bits &= ~M_MAC_MDIO_OUT;
416 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
417 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
418 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
419 curmask >>= 1;
420 }
421 }
422
423
424
425 /**********************************************************************
426 * SBMAC_MII_READ(bus, phyaddr, regidx)
427 * Read a PHY register.
428 *
429 * Input parameters:
430 * bus - MDIO bus handle
431 * phyaddr - PHY's address
432 * regnum - index of register to read
433 *
434 * Return value:
435 * value read, or 0xffff if an error occurred.
436 ********************************************************************* */
437
438 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
439 {
440 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
441 void __iomem *sbm_mdio = sc->sbm_mdio;
442 int idx;
443 int error;
444 int regval;
445 int mac_mdio_genc;
446
447 /*
448 * Synchronize ourselves so that the PHY knows the next
449 * thing coming down is a command
450 */
451 sbmac_mii_sync(sbm_mdio);
452
453 /*
454 * Send the data to the PHY. The sequence is
455 * a "start" command (2 bits)
456 * a "read" command (2 bits)
457 * the PHY addr (5 bits)
458 * the register index (5 bits)
459 */
460 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
461 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
462 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
463 sbmac_mii_senddata(sbm_mdio, regidx, 5);
464
465 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
466
467 /*
468 * Switch the port around without a clock transition.
469 */
470 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
471
472 /*
473 * Send out a clock pulse to signal we want the status
474 */
475 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
476 sbm_mdio);
477 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
478
479 /*
480 * If an error occurred, the PHY will signal '1' back
481 */
482 error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
483
484 /*
485 * Issue an 'idle' clock pulse, but keep the direction
486 * the same.
487 */
488 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
489 sbm_mdio);
490 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
491
492 regval = 0;
493
494 for (idx = 0; idx < 16; idx++) {
495 regval <<= 1;
496
497 if (error == 0) {
498 if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
499 regval |= 1;
500 }
501
502 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
503 sbm_mdio);
504 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
505 }
506
507 /* Switch back to output */
508 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
509
510 if (error == 0)
511 return regval;
512 return 0xffff;
513 }
514
515
516 /**********************************************************************
517 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
518 *
519 * Write a value to a PHY register.
520 *
521 * Input parameters:
522 * bus - MDIO bus handle
523 * phyaddr - PHY to use
524 * regidx - register within the PHY
525 * regval - data to write to register
526 *
527 * Return value:
528 * 0 for success
529 ********************************************************************* */
530
531 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
532 u16 regval)
533 {
534 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
535 void __iomem *sbm_mdio = sc->sbm_mdio;
536 int mac_mdio_genc;
537
538 sbmac_mii_sync(sbm_mdio);
539
540 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
541 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
542 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
543 sbmac_mii_senddata(sbm_mdio, regidx, 5);
544 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
545 sbmac_mii_senddata(sbm_mdio, regval, 16);
546
547 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
548
549 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
550
551 return 0;
552 }
553
554
555
556 /**********************************************************************
557 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
558 *
559 * Initialize a DMA channel context. Since there are potentially
560 * eight DMA channels per MAC, it's nice to do this in a standard
561 * way.
562 *
563 * Input parameters:
564 * d - struct sbmacdma (DMA channel context)
565 * s - struct sbmac_softc (pointer to a MAC)
566 * chan - channel number (0..1 right now)
567 * txrx - Identifies DMA_TX or DMA_RX for channel direction
568 * maxdescr - number of descriptors
569 *
570 * Return value:
571 * nothing
572 ********************************************************************* */
573
574 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
575 int txrx, int maxdescr)
576 {
577 #ifdef CONFIG_SBMAC_COALESCE
578 int int_pktcnt, int_timeout;
579 #endif
580
581 /*
582 * Save away interesting stuff in the structure
583 */
584
585 d->sbdma_eth = s;
586 d->sbdma_channel = chan;
587 d->sbdma_txdir = txrx;
588
589 #if 0
590 /* RMON clearing */
591 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
592 #endif
593
594 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
595 __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
596 __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
597 __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
598 __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
599 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
600 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
601 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
602 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
603 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
604 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
605 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
606 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
607 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
608 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
609 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
610 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
611 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
612 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
613 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
614 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
615
616 /*
617 * initialize register pointers
618 */
619
620 d->sbdma_config0 =
621 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
622 d->sbdma_config1 =
623 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
624 d->sbdma_dscrbase =
625 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
626 d->sbdma_dscrcnt =
627 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
628 d->sbdma_curdscr =
629 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
630 if (d->sbdma_txdir)
631 d->sbdma_oodpktlost = NULL;
632 else
633 d->sbdma_oodpktlost =
634 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
635
636 /*
637 * Allocate memory for the ring
638 */
639
640 d->sbdma_maxdescr = maxdescr;
641
642 d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
643 sizeof(*d->sbdma_dscrtable),
644 GFP_KERNEL);
645
646 /*
647 * The descriptor table must be aligned to at least 16 bytes or the
648 * MAC will corrupt it.
649 */
650 d->sbdma_dscrtable = (struct sbdmadscr *)
651 ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
652 sizeof(*d->sbdma_dscrtable));
653
654 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
655
656 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
657
658 /*
659 * And context table
660 */
661
662 d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
663 sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
664
665 #ifdef CONFIG_SBMAC_COALESCE
666 /*
667 * Setup Rx/Tx DMA coalescing defaults
668 */
669
670 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
671 if ( int_pktcnt ) {
672 d->sbdma_int_pktcnt = int_pktcnt;
673 } else {
674 d->sbdma_int_pktcnt = 1;
675 }
676
677 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
678 if ( int_timeout ) {
679 d->sbdma_int_timeout = int_timeout;
680 } else {
681 d->sbdma_int_timeout = 0;
682 }
683 #endif
684
685 }
686
687 /**********************************************************************
688 * SBDMA_CHANNEL_START(d)
689 *
690 * Initialize the hardware registers for a DMA channel.
691 *
692 * Input parameters:
693 * d - DMA channel to init (context must be previously init'd
694 * rxtx - DMA_RX or DMA_TX depending on what type of channel
695 *
696 * Return value:
697 * nothing
698 ********************************************************************* */
699
700 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
701 {
702 /*
703 * Turn on the DMA channel
704 */
705
706 #ifdef CONFIG_SBMAC_COALESCE
707 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
708 0, d->sbdma_config1);
709 __raw_writeq(M_DMA_EOP_INT_EN |
710 V_DMA_RINGSZ(d->sbdma_maxdescr) |
711 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
712 0, d->sbdma_config0);
713 #else
714 __raw_writeq(0, d->sbdma_config1);
715 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
716 0, d->sbdma_config0);
717 #endif
718
719 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
720
721 /*
722 * Initialize ring pointers
723 */
724
725 d->sbdma_addptr = d->sbdma_dscrtable;
726 d->sbdma_remptr = d->sbdma_dscrtable;
727 }
728
729 /**********************************************************************
730 * SBDMA_CHANNEL_STOP(d)
731 *
732 * Initialize the hardware registers for a DMA channel.
733 *
734 * Input parameters:
735 * d - DMA channel to init (context must be previously init'd
736 *
737 * Return value:
738 * nothing
739 ********************************************************************* */
740
741 static void sbdma_channel_stop(struct sbmacdma *d)
742 {
743 /*
744 * Turn off the DMA channel
745 */
746
747 __raw_writeq(0, d->sbdma_config1);
748
749 __raw_writeq(0, d->sbdma_dscrbase);
750
751 __raw_writeq(0, d->sbdma_config0);
752
753 /*
754 * Zero ring pointers
755 */
756
757 d->sbdma_addptr = NULL;
758 d->sbdma_remptr = NULL;
759 }
760
761 static inline void sbdma_align_skb(struct sk_buff *skb,
762 unsigned int power2, unsigned int offset)
763 {
764 unsigned char *addr = skb->data;
765 unsigned char *newaddr = PTR_ALIGN(addr, power2);
766
767 skb_reserve(skb, newaddr - addr + offset);
768 }
769
770
771 /**********************************************************************
772 * SBDMA_ADD_RCVBUFFER(d,sb)
773 *
774 * Add a buffer to the specified DMA channel. For receive channels,
775 * this queues a buffer for inbound packets.
776 *
777 * Input parameters:
778 * sc - softc structure
779 * d - DMA channel descriptor
780 * sb - sk_buff to add, or NULL if we should allocate one
781 *
782 * Return value:
783 * 0 if buffer could not be added (ring is full)
784 * 1 if buffer added successfully
785 ********************************************************************* */
786
787
788 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
789 struct sk_buff *sb)
790 {
791 struct net_device *dev = sc->sbm_dev;
792 struct sbdmadscr *dsc;
793 struct sbdmadscr *nextdsc;
794 struct sk_buff *sb_new = NULL;
795 int pktsize = ENET_PACKET_SIZE;
796
797 /* get pointer to our current place in the ring */
798
799 dsc = d->sbdma_addptr;
800 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
801
802 /*
803 * figure out if the ring is full - if the next descriptor
804 * is the same as the one that we're going to remove from
805 * the ring, the ring is full
806 */
807
808 if (nextdsc == d->sbdma_remptr) {
809 return -ENOSPC;
810 }
811
812 /*
813 * Allocate a sk_buff if we don't already have one.
814 * If we do have an sk_buff, reset it so that it's empty.
815 *
816 * Note: sk_buffs don't seem to be guaranteed to have any sort
817 * of alignment when they are allocated. Therefore, allocate enough
818 * extra space to make sure that:
819 *
820 * 1. the data does not start in the middle of a cache line.
821 * 2. The data does not end in the middle of a cache line
822 * 3. The buffer can be aligned such that the IP addresses are
823 * naturally aligned.
824 *
825 * Remember, the SOCs MAC writes whole cache lines at a time,
826 * without reading the old contents first. So, if the sk_buff's
827 * data portion starts in the middle of a cache line, the SOC
828 * DMA will trash the beginning (and ending) portions.
829 */
830
831 if (sb == NULL) {
832 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
833 SMP_CACHE_BYTES * 2 +
834 NET_IP_ALIGN);
835 if (sb_new == NULL) {
836 pr_info("%s: sk_buff allocation failed\n",
837 d->sbdma_eth->sbm_dev->name);
838 return -ENOBUFS;
839 }
840
841 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
842 }
843 else {
844 sb_new = sb;
845 /*
846 * nothing special to reinit buffer, it's already aligned
847 * and sb->data already points to a good place.
848 */
849 }
850
851 /*
852 * fill in the descriptor
853 */
854
855 #ifdef CONFIG_SBMAC_COALESCE
856 /*
857 * Do not interrupt per DMA transfer.
858 */
859 dsc->dscr_a = virt_to_phys(sb_new->data) |
860 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
861 #else
862 dsc->dscr_a = virt_to_phys(sb_new->data) |
863 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
864 M_DMA_DSCRA_INTERRUPT;
865 #endif
866
867 /* receiving: no options */
868 dsc->dscr_b = 0;
869
870 /*
871 * fill in the context
872 */
873
874 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
875
876 /*
877 * point at next packet
878 */
879
880 d->sbdma_addptr = nextdsc;
881
882 /*
883 * Give the buffer to the DMA engine.
884 */
885
886 __raw_writeq(1, d->sbdma_dscrcnt);
887
888 return 0; /* we did it */
889 }
890
891 /**********************************************************************
892 * SBDMA_ADD_TXBUFFER(d,sb)
893 *
894 * Add a transmit buffer to the specified DMA channel, causing a
895 * transmit to start.
896 *
897 * Input parameters:
898 * d - DMA channel descriptor
899 * sb - sk_buff to add
900 *
901 * Return value:
902 * 0 transmit queued successfully
903 * otherwise error code
904 ********************************************************************* */
905
906
907 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
908 {
909 struct sbdmadscr *dsc;
910 struct sbdmadscr *nextdsc;
911 uint64_t phys;
912 uint64_t ncb;
913 int length;
914
915 /* get pointer to our current place in the ring */
916
917 dsc = d->sbdma_addptr;
918 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
919
920 /*
921 * figure out if the ring is full - if the next descriptor
922 * is the same as the one that we're going to remove from
923 * the ring, the ring is full
924 */
925
926 if (nextdsc == d->sbdma_remptr) {
927 return -ENOSPC;
928 }
929
930 /*
931 * Under Linux, it's not necessary to copy/coalesce buffers
932 * like it is on NetBSD. We think they're all contiguous,
933 * but that may not be true for GBE.
934 */
935
936 length = sb->len;
937
938 /*
939 * fill in the descriptor. Note that the number of cache
940 * blocks in the descriptor is the number of blocks
941 * *spanned*, so we need to add in the offset (if any)
942 * while doing the calculation.
943 */
944
945 phys = virt_to_phys(sb->data);
946 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
947
948 dsc->dscr_a = phys |
949 V_DMA_DSCRA_A_SIZE(ncb) |
950 #ifndef CONFIG_SBMAC_COALESCE
951 M_DMA_DSCRA_INTERRUPT |
952 #endif
953 M_DMA_ETHTX_SOP;
954
955 /* transmitting: set outbound options and length */
956
957 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
958 V_DMA_DSCRB_PKT_SIZE(length);
959
960 /*
961 * fill in the context
962 */
963
964 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
965
966 /*
967 * point at next packet
968 */
969
970 d->sbdma_addptr = nextdsc;
971
972 /*
973 * Give the buffer to the DMA engine.
974 */
975
976 __raw_writeq(1, d->sbdma_dscrcnt);
977
978 return 0; /* we did it */
979 }
980
981
982
983
984 /**********************************************************************
985 * SBDMA_EMPTYRING(d)
986 *
987 * Free all allocated sk_buffs on the specified DMA channel;
988 *
989 * Input parameters:
990 * d - DMA channel
991 *
992 * Return value:
993 * nothing
994 ********************************************************************* */
995
996 static void sbdma_emptyring(struct sbmacdma *d)
997 {
998 int idx;
999 struct sk_buff *sb;
1000
1001 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1002 sb = d->sbdma_ctxtable[idx];
1003 if (sb) {
1004 dev_kfree_skb(sb);
1005 d->sbdma_ctxtable[idx] = NULL;
1006 }
1007 }
1008 }
1009
1010
1011 /**********************************************************************
1012 * SBDMA_FILLRING(d)
1013 *
1014 * Fill the specified DMA channel (must be receive channel)
1015 * with sk_buffs
1016 *
1017 * Input parameters:
1018 * sc - softc structure
1019 * d - DMA channel
1020 *
1021 * Return value:
1022 * nothing
1023 ********************************************************************* */
1024
1025 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1026 {
1027 int idx;
1028
1029 for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1030 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1031 break;
1032 }
1033 }
1034
1035 #ifdef CONFIG_NET_POLL_CONTROLLER
1036 static void sbmac_netpoll(struct net_device *netdev)
1037 {
1038 struct sbmac_softc *sc = netdev_priv(netdev);
1039 int irq = sc->sbm_dev->irq;
1040
1041 __raw_writeq(0, sc->sbm_imr);
1042
1043 sbmac_intr(irq, netdev);
1044
1045 #ifdef CONFIG_SBMAC_COALESCE
1046 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1047 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1048 sc->sbm_imr);
1049 #else
1050 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1051 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1052 #endif
1053 }
1054 #endif
1055
1056 /**********************************************************************
1057 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1058 *
1059 * Process "completed" receive buffers on the specified DMA channel.
1060 *
1061 * Input parameters:
1062 * sc - softc structure
1063 * d - DMA channel context
1064 * work_to_do - no. of packets to process before enabling interrupt
1065 * again (for NAPI)
1066 * poll - 1: using polling (for NAPI)
1067 *
1068 * Return value:
1069 * nothing
1070 ********************************************************************* */
1071
1072 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1073 int work_to_do, int poll)
1074 {
1075 struct net_device *dev = sc->sbm_dev;
1076 int curidx;
1077 int hwidx;
1078 struct sbdmadscr *dsc;
1079 struct sk_buff *sb;
1080 int len;
1081 int work_done = 0;
1082 int dropped = 0;
1083
1084 prefetch(d);
1085
1086 again:
1087 /* Check if the HW dropped any frames */
1088 dev->stats.rx_fifo_errors
1089 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1090 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1091
1092 while (work_to_do-- > 0) {
1093 /*
1094 * figure out where we are (as an index) and where
1095 * the hardware is (also as an index)
1096 *
1097 * This could be done faster if (for example) the
1098 * descriptor table was page-aligned and contiguous in
1099 * both virtual and physical memory -- you could then
1100 * just compare the low-order bits of the virtual address
1101 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1102 */
1103
1104 dsc = d->sbdma_remptr;
1105 curidx = dsc - d->sbdma_dscrtable;
1106
1107 prefetch(dsc);
1108 prefetch(&d->sbdma_ctxtable[curidx]);
1109
1110 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1111 d->sbdma_dscrtable_phys) /
1112 sizeof(*d->sbdma_dscrtable);
1113
1114 /*
1115 * If they're the same, that means we've processed all
1116 * of the descriptors up to (but not including) the one that
1117 * the hardware is working on right now.
1118 */
1119
1120 if (curidx == hwidx)
1121 goto done;
1122
1123 /*
1124 * Otherwise, get the packet's sk_buff ptr back
1125 */
1126
1127 sb = d->sbdma_ctxtable[curidx];
1128 d->sbdma_ctxtable[curidx] = NULL;
1129
1130 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1131
1132 /*
1133 * Check packet status. If good, process it.
1134 * If not, silently drop it and put it back on the
1135 * receive ring.
1136 */
1137
1138 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1139
1140 /*
1141 * Add a new buffer to replace the old one. If we fail
1142 * to allocate a buffer, we're going to drop this
1143 * packet and put it right back on the receive ring.
1144 */
1145
1146 if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1147 -ENOBUFS)) {
1148 dev->stats.rx_dropped++;
1149 /* Re-add old buffer */
1150 sbdma_add_rcvbuffer(sc, d, sb);
1151 /* No point in continuing at the moment */
1152 printk(KERN_ERR "dropped packet (1)\n");
1153 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1154 goto done;
1155 } else {
1156 /*
1157 * Set length into the packet
1158 */
1159 skb_put(sb,len);
1160
1161 /*
1162 * Buffer has been replaced on the
1163 * receive ring. Pass the buffer to
1164 * the kernel
1165 */
1166 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1167 /* Check hw IPv4/TCP checksum if supported */
1168 if (sc->rx_hw_checksum == ENABLE) {
1169 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1170 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1171 sb->ip_summed = CHECKSUM_UNNECESSARY;
1172 /* don't need to set sb->csum */
1173 } else {
1174 skb_checksum_none_assert(sb);
1175 }
1176 }
1177 prefetch(sb->data);
1178 prefetch((const void *)(((char *)sb->data)+32));
1179 if (poll)
1180 dropped = netif_receive_skb(sb);
1181 else
1182 dropped = netif_rx(sb);
1183
1184 if (dropped == NET_RX_DROP) {
1185 dev->stats.rx_dropped++;
1186 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1187 goto done;
1188 }
1189 else {
1190 dev->stats.rx_bytes += len;
1191 dev->stats.rx_packets++;
1192 }
1193 }
1194 } else {
1195 /*
1196 * Packet was mangled somehow. Just drop it and
1197 * put it back on the receive ring.
1198 */
1199 dev->stats.rx_errors++;
1200 sbdma_add_rcvbuffer(sc, d, sb);
1201 }
1202
1203
1204 /*
1205 * .. and advance to the next buffer.
1206 */
1207
1208 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1209 work_done++;
1210 }
1211 if (!poll) {
1212 work_to_do = 32;
1213 goto again; /* collect fifo drop statistics again */
1214 }
1215 done:
1216 return work_done;
1217 }
1218
1219 /**********************************************************************
1220 * SBDMA_TX_PROCESS(sc,d)
1221 *
1222 * Process "completed" transmit buffers on the specified DMA channel.
1223 * This is normally called within the interrupt service routine.
1224 * Note that this isn't really ideal for priority channels, since
1225 * it processes all of the packets on a given channel before
1226 * returning.
1227 *
1228 * Input parameters:
1229 * sc - softc structure
1230 * d - DMA channel context
1231 * poll - 1: using polling (for NAPI)
1232 *
1233 * Return value:
1234 * nothing
1235 ********************************************************************* */
1236
1237 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1238 int poll)
1239 {
1240 struct net_device *dev = sc->sbm_dev;
1241 int curidx;
1242 int hwidx;
1243 struct sbdmadscr *dsc;
1244 struct sk_buff *sb;
1245 unsigned long flags;
1246 int packets_handled = 0;
1247
1248 spin_lock_irqsave(&(sc->sbm_lock), flags);
1249
1250 if (d->sbdma_remptr == d->sbdma_addptr)
1251 goto end_unlock;
1252
1253 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1254 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1255
1256 for (;;) {
1257 /*
1258 * figure out where we are (as an index) and where
1259 * the hardware is (also as an index)
1260 *
1261 * This could be done faster if (for example) the
1262 * descriptor table was page-aligned and contiguous in
1263 * both virtual and physical memory -- you could then
1264 * just compare the low-order bits of the virtual address
1265 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1266 */
1267
1268 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1269
1270 /*
1271 * If they're the same, that means we've processed all
1272 * of the descriptors up to (but not including) the one that
1273 * the hardware is working on right now.
1274 */
1275
1276 if (curidx == hwidx)
1277 break;
1278
1279 /*
1280 * Otherwise, get the packet's sk_buff ptr back
1281 */
1282
1283 dsc = &(d->sbdma_dscrtable[curidx]);
1284 sb = d->sbdma_ctxtable[curidx];
1285 d->sbdma_ctxtable[curidx] = NULL;
1286
1287 /*
1288 * Stats
1289 */
1290
1291 dev->stats.tx_bytes += sb->len;
1292 dev->stats.tx_packets++;
1293
1294 /*
1295 * for transmits, we just free buffers.
1296 */
1297
1298 dev_kfree_skb_irq(sb);
1299
1300 /*
1301 * .. and advance to the next buffer.
1302 */
1303
1304 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1305
1306 packets_handled++;
1307
1308 }
1309
1310 /*
1311 * Decide if we should wake up the protocol or not.
1312 * Other drivers seem to do this when we reach a low
1313 * watermark on the transmit queue.
1314 */
1315
1316 if (packets_handled)
1317 netif_wake_queue(d->sbdma_eth->sbm_dev);
1318
1319 end_unlock:
1320 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1321
1322 }
1323
1324
1325
1326 /**********************************************************************
1327 * SBMAC_INITCTX(s)
1328 *
1329 * Initialize an Ethernet context structure - this is called
1330 * once per MAC on the 1250. Memory is allocated here, so don't
1331 * call it again from inside the ioctl routines that bring the
1332 * interface up/down
1333 *
1334 * Input parameters:
1335 * s - sbmac context structure
1336 *
1337 * Return value:
1338 * 0
1339 ********************************************************************* */
1340
1341 static int sbmac_initctx(struct sbmac_softc *s)
1342 {
1343
1344 /*
1345 * figure out the addresses of some ports
1346 */
1347
1348 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1349 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1350 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1351 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1352 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1353 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1354 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1355 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1356
1357 /*
1358 * Initialize the DMA channels. Right now, only one per MAC is used
1359 * Note: Only do this _once_, as it allocates memory from the kernel!
1360 */
1361
1362 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1363 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1364
1365 /*
1366 * initial state is OFF
1367 */
1368
1369 s->sbm_state = sbmac_state_off;
1370
1371 return 0;
1372 }
1373
1374
1375 static void sbdma_uninitctx(struct sbmacdma *d)
1376 {
1377 if (d->sbdma_dscrtable_unaligned) {
1378 kfree(d->sbdma_dscrtable_unaligned);
1379 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1380 }
1381
1382 if (d->sbdma_ctxtable) {
1383 kfree(d->sbdma_ctxtable);
1384 d->sbdma_ctxtable = NULL;
1385 }
1386 }
1387
1388
1389 static void sbmac_uninitctx(struct sbmac_softc *sc)
1390 {
1391 sbdma_uninitctx(&(sc->sbm_txdma));
1392 sbdma_uninitctx(&(sc->sbm_rxdma));
1393 }
1394
1395
1396 /**********************************************************************
1397 * SBMAC_CHANNEL_START(s)
1398 *
1399 * Start packet processing on this MAC.
1400 *
1401 * Input parameters:
1402 * s - sbmac structure
1403 *
1404 * Return value:
1405 * nothing
1406 ********************************************************************* */
1407
1408 static void sbmac_channel_start(struct sbmac_softc *s)
1409 {
1410 uint64_t reg;
1411 void __iomem *port;
1412 uint64_t cfg,fifo,framecfg;
1413 int idx, th_value;
1414
1415 /*
1416 * Don't do this if running
1417 */
1418
1419 if (s->sbm_state == sbmac_state_on)
1420 return;
1421
1422 /*
1423 * Bring the controller out of reset, but leave it off.
1424 */
1425
1426 __raw_writeq(0, s->sbm_macenable);
1427
1428 /*
1429 * Ignore all received packets
1430 */
1431
1432 __raw_writeq(0, s->sbm_rxfilter);
1433
1434 /*
1435 * Calculate values for various control registers.
1436 */
1437
1438 cfg = M_MAC_RETRY_EN |
1439 M_MAC_TX_HOLD_SOP_EN |
1440 V_MAC_TX_PAUSE_CNT_16K |
1441 M_MAC_AP_STAT_EN |
1442 M_MAC_FAST_SYNC |
1443 M_MAC_SS_EN |
1444 0;
1445
1446 /*
1447 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1448 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1449 * Use a larger RD_THRSH for gigabit
1450 */
1451 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1452 th_value = 28;
1453 else
1454 th_value = 64;
1455
1456 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1457 ((s->sbm_speed == sbmac_speed_1000)
1458 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1459 V_MAC_TX_RL_THRSH(4) |
1460 V_MAC_RX_PL_THRSH(4) |
1461 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1462 V_MAC_RX_RL_THRSH(8) |
1463 0;
1464
1465 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1466 V_MAC_MAX_FRAMESZ_DEFAULT |
1467 V_MAC_BACKOFF_SEL(1);
1468
1469 /*
1470 * Clear out the hash address map
1471 */
1472
1473 port = s->sbm_base + R_MAC_HASH_BASE;
1474 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1475 __raw_writeq(0, port);
1476 port += sizeof(uint64_t);
1477 }
1478
1479 /*
1480 * Clear out the exact-match table
1481 */
1482
1483 port = s->sbm_base + R_MAC_ADDR_BASE;
1484 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1485 __raw_writeq(0, port);
1486 port += sizeof(uint64_t);
1487 }
1488
1489 /*
1490 * Clear out the DMA Channel mapping table registers
1491 */
1492
1493 port = s->sbm_base + R_MAC_CHUP0_BASE;
1494 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495 __raw_writeq(0, port);
1496 port += sizeof(uint64_t);
1497 }
1498
1499
1500 port = s->sbm_base + R_MAC_CHLO0_BASE;
1501 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1502 __raw_writeq(0, port);
1503 port += sizeof(uint64_t);
1504 }
1505
1506 /*
1507 * Program the hardware address. It goes into the hardware-address
1508 * register as well as the first filter register.
1509 */
1510
1511 reg = sbmac_addr2reg(s->sbm_hwaddr);
1512
1513 port = s->sbm_base + R_MAC_ADDR_BASE;
1514 __raw_writeq(reg, port);
1515 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1516
1517 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1518 /*
1519 * Pass1 SOCs do not receive packets addressed to the
1520 * destination address in the R_MAC_ETHERNET_ADDR register.
1521 * Set the value to zero.
1522 */
1523 __raw_writeq(0, port);
1524 #else
1525 __raw_writeq(reg, port);
1526 #endif
1527
1528 /*
1529 * Set the receive filter for no packets, and write values
1530 * to the various config registers
1531 */
1532
1533 __raw_writeq(0, s->sbm_rxfilter);
1534 __raw_writeq(0, s->sbm_imr);
1535 __raw_writeq(framecfg, s->sbm_framecfg);
1536 __raw_writeq(fifo, s->sbm_fifocfg);
1537 __raw_writeq(cfg, s->sbm_maccfg);
1538
1539 /*
1540 * Initialize DMA channels (rings should be ok now)
1541 */
1542
1543 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1544 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1545
1546 /*
1547 * Configure the speed, duplex, and flow control
1548 */
1549
1550 sbmac_set_speed(s,s->sbm_speed);
1551 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1552
1553 /*
1554 * Fill the receive ring
1555 */
1556
1557 sbdma_fillring(s, &(s->sbm_rxdma));
1558
1559 /*
1560 * Turn on the rest of the bits in the enable register
1561 */
1562
1563 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1564 __raw_writeq(M_MAC_RXDMA_EN0 |
1565 M_MAC_TXDMA_EN0, s->sbm_macenable);
1566 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1567 __raw_writeq(M_MAC_RXDMA_EN0 |
1568 M_MAC_TXDMA_EN0 |
1569 M_MAC_RX_ENABLE |
1570 M_MAC_TX_ENABLE, s->sbm_macenable);
1571 #else
1572 #error invalid SiByte MAC configuration
1573 #endif
1574
1575 #ifdef CONFIG_SBMAC_COALESCE
1576 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1577 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1578 #else
1579 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1580 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1581 #endif
1582
1583 /*
1584 * Enable receiving unicasts and broadcasts
1585 */
1586
1587 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1588
1589 /*
1590 * we're running now.
1591 */
1592
1593 s->sbm_state = sbmac_state_on;
1594
1595 /*
1596 * Program multicast addresses
1597 */
1598
1599 sbmac_setmulti(s);
1600
1601 /*
1602 * If channel was in promiscuous mode before, turn that on
1603 */
1604
1605 if (s->sbm_devflags & IFF_PROMISC) {
1606 sbmac_promiscuous_mode(s,1);
1607 }
1608
1609 }
1610
1611
1612 /**********************************************************************
1613 * SBMAC_CHANNEL_STOP(s)
1614 *
1615 * Stop packet processing on this MAC.
1616 *
1617 * Input parameters:
1618 * s - sbmac structure
1619 *
1620 * Return value:
1621 * nothing
1622 ********************************************************************* */
1623
1624 static void sbmac_channel_stop(struct sbmac_softc *s)
1625 {
1626 /* don't do this if already stopped */
1627
1628 if (s->sbm_state == sbmac_state_off)
1629 return;
1630
1631 /* don't accept any packets, disable all interrupts */
1632
1633 __raw_writeq(0, s->sbm_rxfilter);
1634 __raw_writeq(0, s->sbm_imr);
1635
1636 /* Turn off ticker */
1637
1638 /* XXX */
1639
1640 /* turn off receiver and transmitter */
1641
1642 __raw_writeq(0, s->sbm_macenable);
1643
1644 /* We're stopped now. */
1645
1646 s->sbm_state = sbmac_state_off;
1647
1648 /*
1649 * Stop DMA channels (rings should be ok now)
1650 */
1651
1652 sbdma_channel_stop(&(s->sbm_rxdma));
1653 sbdma_channel_stop(&(s->sbm_txdma));
1654
1655 /* Empty the receive and transmit rings */
1656
1657 sbdma_emptyring(&(s->sbm_rxdma));
1658 sbdma_emptyring(&(s->sbm_txdma));
1659
1660 }
1661
1662 /**********************************************************************
1663 * SBMAC_SET_CHANNEL_STATE(state)
1664 *
1665 * Set the channel's state ON or OFF
1666 *
1667 * Input parameters:
1668 * state - new state
1669 *
1670 * Return value:
1671 * old state
1672 ********************************************************************* */
1673 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1674 enum sbmac_state state)
1675 {
1676 enum sbmac_state oldstate = sc->sbm_state;
1677
1678 /*
1679 * If same as previous state, return
1680 */
1681
1682 if (state == oldstate) {
1683 return oldstate;
1684 }
1685
1686 /*
1687 * If new state is ON, turn channel on
1688 */
1689
1690 if (state == sbmac_state_on) {
1691 sbmac_channel_start(sc);
1692 }
1693 else {
1694 sbmac_channel_stop(sc);
1695 }
1696
1697 /*
1698 * Return previous state
1699 */
1700
1701 return oldstate;
1702 }
1703
1704
1705 /**********************************************************************
1706 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1707 *
1708 * Turn on or off promiscuous mode
1709 *
1710 * Input parameters:
1711 * sc - softc
1712 * onoff - 1 to turn on, 0 to turn off
1713 *
1714 * Return value:
1715 * nothing
1716 ********************************************************************* */
1717
1718 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1719 {
1720 uint64_t reg;
1721
1722 if (sc->sbm_state != sbmac_state_on)
1723 return;
1724
1725 if (onoff) {
1726 reg = __raw_readq(sc->sbm_rxfilter);
1727 reg |= M_MAC_ALLPKT_EN;
1728 __raw_writeq(reg, sc->sbm_rxfilter);
1729 }
1730 else {
1731 reg = __raw_readq(sc->sbm_rxfilter);
1732 reg &= ~M_MAC_ALLPKT_EN;
1733 __raw_writeq(reg, sc->sbm_rxfilter);
1734 }
1735 }
1736
1737 /**********************************************************************
1738 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1739 *
1740 * Set the iphdr offset as 15 assuming ethernet encapsulation
1741 *
1742 * Input parameters:
1743 * sc - softc
1744 *
1745 * Return value:
1746 * nothing
1747 ********************************************************************* */
1748
1749 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1750 {
1751 uint64_t reg;
1752
1753 /* Hard code the off set to 15 for now */
1754 reg = __raw_readq(sc->sbm_rxfilter);
1755 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1756 __raw_writeq(reg, sc->sbm_rxfilter);
1757
1758 /* BCM1250 pass1 didn't have hardware checksum. Everything
1759 later does. */
1760 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1761 sc->rx_hw_checksum = DISABLE;
1762 } else {
1763 sc->rx_hw_checksum = ENABLE;
1764 }
1765 }
1766
1767
1768 /**********************************************************************
1769 * SBMAC_ADDR2REG(ptr)
1770 *
1771 * Convert six bytes into the 64-bit register value that
1772 * we typically write into the SBMAC's address/mcast registers
1773 *
1774 * Input parameters:
1775 * ptr - pointer to 6 bytes
1776 *
1777 * Return value:
1778 * register value
1779 ********************************************************************* */
1780
1781 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1782 {
1783 uint64_t reg = 0;
1784
1785 ptr += 6;
1786
1787 reg |= (uint64_t) *(--ptr);
1788 reg <<= 8;
1789 reg |= (uint64_t) *(--ptr);
1790 reg <<= 8;
1791 reg |= (uint64_t) *(--ptr);
1792 reg <<= 8;
1793 reg |= (uint64_t) *(--ptr);
1794 reg <<= 8;
1795 reg |= (uint64_t) *(--ptr);
1796 reg <<= 8;
1797 reg |= (uint64_t) *(--ptr);
1798
1799 return reg;
1800 }
1801
1802
1803 /**********************************************************************
1804 * SBMAC_SET_SPEED(s,speed)
1805 *
1806 * Configure LAN speed for the specified MAC.
1807 * Warning: must be called when MAC is off!
1808 *
1809 * Input parameters:
1810 * s - sbmac structure
1811 * speed - speed to set MAC to (see enum sbmac_speed)
1812 *
1813 * Return value:
1814 * 1 if successful
1815 * 0 indicates invalid parameters
1816 ********************************************************************* */
1817
1818 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1819 {
1820 uint64_t cfg;
1821 uint64_t framecfg;
1822
1823 /*
1824 * Save new current values
1825 */
1826
1827 s->sbm_speed = speed;
1828
1829 if (s->sbm_state == sbmac_state_on)
1830 return 0; /* save for next restart */
1831
1832 /*
1833 * Read current register values
1834 */
1835
1836 cfg = __raw_readq(s->sbm_maccfg);
1837 framecfg = __raw_readq(s->sbm_framecfg);
1838
1839 /*
1840 * Mask out the stuff we want to change
1841 */
1842
1843 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1844 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1845 M_MAC_SLOT_SIZE);
1846
1847 /*
1848 * Now add in the new bits
1849 */
1850
1851 switch (speed) {
1852 case sbmac_speed_10:
1853 framecfg |= V_MAC_IFG_RX_10 |
1854 V_MAC_IFG_TX_10 |
1855 K_MAC_IFG_THRSH_10 |
1856 V_MAC_SLOT_SIZE_10;
1857 cfg |= V_MAC_SPEED_SEL_10MBPS;
1858 break;
1859
1860 case sbmac_speed_100:
1861 framecfg |= V_MAC_IFG_RX_100 |
1862 V_MAC_IFG_TX_100 |
1863 V_MAC_IFG_THRSH_100 |
1864 V_MAC_SLOT_SIZE_100;
1865 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1866 break;
1867
1868 case sbmac_speed_1000:
1869 framecfg |= V_MAC_IFG_RX_1000 |
1870 V_MAC_IFG_TX_1000 |
1871 V_MAC_IFG_THRSH_1000 |
1872 V_MAC_SLOT_SIZE_1000;
1873 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1874 break;
1875
1876 default:
1877 return 0;
1878 }
1879
1880 /*
1881 * Send the bits back to the hardware
1882 */
1883
1884 __raw_writeq(framecfg, s->sbm_framecfg);
1885 __raw_writeq(cfg, s->sbm_maccfg);
1886
1887 return 1;
1888 }
1889
1890 /**********************************************************************
1891 * SBMAC_SET_DUPLEX(s,duplex,fc)
1892 *
1893 * Set Ethernet duplex and flow control options for this MAC
1894 * Warning: must be called when MAC is off!
1895 *
1896 * Input parameters:
1897 * s - sbmac structure
1898 * duplex - duplex setting (see enum sbmac_duplex)
1899 * fc - flow control setting (see enum sbmac_fc)
1900 *
1901 * Return value:
1902 * 1 if ok
1903 * 0 if an invalid parameter combination was specified
1904 ********************************************************************* */
1905
1906 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1907 enum sbmac_fc fc)
1908 {
1909 uint64_t cfg;
1910
1911 /*
1912 * Save new current values
1913 */
1914
1915 s->sbm_duplex = duplex;
1916 s->sbm_fc = fc;
1917
1918 if (s->sbm_state == sbmac_state_on)
1919 return 0; /* save for next restart */
1920
1921 /*
1922 * Read current register values
1923 */
1924
1925 cfg = __raw_readq(s->sbm_maccfg);
1926
1927 /*
1928 * Mask off the stuff we're about to change
1929 */
1930
1931 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1932
1933
1934 switch (duplex) {
1935 case sbmac_duplex_half:
1936 switch (fc) {
1937 case sbmac_fc_disabled:
1938 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1939 break;
1940
1941 case sbmac_fc_collision:
1942 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1943 break;
1944
1945 case sbmac_fc_carrier:
1946 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1947 break;
1948
1949 case sbmac_fc_frame: /* not valid in half duplex */
1950 default: /* invalid selection */
1951 return 0;
1952 }
1953 break;
1954
1955 case sbmac_duplex_full:
1956 switch (fc) {
1957 case sbmac_fc_disabled:
1958 cfg |= V_MAC_FC_CMD_DISABLED;
1959 break;
1960
1961 case sbmac_fc_frame:
1962 cfg |= V_MAC_FC_CMD_ENABLED;
1963 break;
1964
1965 case sbmac_fc_collision: /* not valid in full duplex */
1966 case sbmac_fc_carrier: /* not valid in full duplex */
1967 default:
1968 return 0;
1969 }
1970 break;
1971 default:
1972 return 0;
1973 }
1974
1975 /*
1976 * Send the bits back to the hardware
1977 */
1978
1979 __raw_writeq(cfg, s->sbm_maccfg);
1980
1981 return 1;
1982 }
1983
1984
1985
1986
1987 /**********************************************************************
1988 * SBMAC_INTR()
1989 *
1990 * Interrupt handler for MAC interrupts
1991 *
1992 * Input parameters:
1993 * MAC structure
1994 *
1995 * Return value:
1996 * nothing
1997 ********************************************************************* */
1998 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1999 {
2000 struct net_device *dev = (struct net_device *) dev_instance;
2001 struct sbmac_softc *sc = netdev_priv(dev);
2002 uint64_t isr;
2003 int handled = 0;
2004
2005 /*
2006 * Read the ISR (this clears the bits in the real
2007 * register, except for counter addr)
2008 */
2009
2010 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2011
2012 if (isr == 0)
2013 return IRQ_RETVAL(0);
2014 handled = 1;
2015
2016 /*
2017 * Transmits on channel 0
2018 */
2019
2020 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2021 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2022
2023 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2024 if (napi_schedule_prep(&sc->napi)) {
2025 __raw_writeq(0, sc->sbm_imr);
2026 __napi_schedule(&sc->napi);
2027 /* Depend on the exit from poll to reenable intr */
2028 }
2029 else {
2030 /* may leave some packets behind */
2031 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2032 SBMAC_MAX_RXDESCR * 2, 0);
2033 }
2034 }
2035 return IRQ_RETVAL(handled);
2036 }
2037
2038 /**********************************************************************
2039 * SBMAC_START_TX(skb,dev)
2040 *
2041 * Start output on the specified interface. Basically, we
2042 * queue as many buffers as we can until the ring fills up, or
2043 * we run off the end of the queue, whichever comes first.
2044 *
2045 * Input parameters:
2046 *
2047 *
2048 * Return value:
2049 * nothing
2050 ********************************************************************* */
2051 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2052 {
2053 struct sbmac_softc *sc = netdev_priv(dev);
2054 unsigned long flags;
2055
2056 /* lock eth irq */
2057 spin_lock_irqsave(&sc->sbm_lock, flags);
2058
2059 /*
2060 * Put the buffer on the transmit ring. If we
2061 * don't have room, stop the queue.
2062 */
2063
2064 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2065 /* XXX save skb that we could not send */
2066 netif_stop_queue(dev);
2067 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2068
2069 return NETDEV_TX_BUSY;
2070 }
2071
2072 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2073
2074 return NETDEV_TX_OK;
2075 }
2076
2077 /**********************************************************************
2078 * SBMAC_SETMULTI(sc)
2079 *
2080 * Reprogram the multicast table into the hardware, given
2081 * the list of multicasts associated with the interface
2082 * structure.
2083 *
2084 * Input parameters:
2085 * sc - softc
2086 *
2087 * Return value:
2088 * nothing
2089 ********************************************************************* */
2090
2091 static void sbmac_setmulti(struct sbmac_softc *sc)
2092 {
2093 uint64_t reg;
2094 void __iomem *port;
2095 int idx;
2096 struct netdev_hw_addr *ha;
2097 struct net_device *dev = sc->sbm_dev;
2098
2099 /*
2100 * Clear out entire multicast table. We do this by nuking
2101 * the entire hash table and all the direct matches except
2102 * the first one, which is used for our station address
2103 */
2104
2105 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2106 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2107 __raw_writeq(0, port);
2108 }
2109
2110 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2111 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2112 __raw_writeq(0, port);
2113 }
2114
2115 /*
2116 * Clear the filter to say we don't want any multicasts.
2117 */
2118
2119 reg = __raw_readq(sc->sbm_rxfilter);
2120 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2121 __raw_writeq(reg, sc->sbm_rxfilter);
2122
2123 if (dev->flags & IFF_ALLMULTI) {
2124 /*
2125 * Enable ALL multicasts. Do this by inverting the
2126 * multicast enable bit.
2127 */
2128 reg = __raw_readq(sc->sbm_rxfilter);
2129 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2130 __raw_writeq(reg, sc->sbm_rxfilter);
2131 return;
2132 }
2133
2134
2135 /*
2136 * Progam new multicast entries. For now, only use the
2137 * perfect filter. In the future we'll need to use the
2138 * hash filter if the perfect filter overflows
2139 */
2140
2141 /* XXX only using perfect filter for now, need to use hash
2142 * XXX if the table overflows */
2143
2144 idx = 1; /* skip station address */
2145 netdev_for_each_mc_addr(ha, dev) {
2146 if (idx == MAC_ADDR_COUNT)
2147 break;
2148 reg = sbmac_addr2reg(ha->addr);
2149 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2150 __raw_writeq(reg, port);
2151 idx++;
2152 }
2153
2154 /*
2155 * Enable the "accept multicast bits" if we programmed at least one
2156 * multicast.
2157 */
2158
2159 if (idx > 1) {
2160 reg = __raw_readq(sc->sbm_rxfilter);
2161 reg |= M_MAC_MCAST_EN;
2162 __raw_writeq(reg, sc->sbm_rxfilter);
2163 }
2164 }
2165
2166 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2167 {
2168 if (new_mtu > ENET_PACKET_SIZE)
2169 return -EINVAL;
2170 _dev->mtu = new_mtu;
2171 pr_info("changing the mtu to %d\n", new_mtu);
2172 return 0;
2173 }
2174
2175 static const struct net_device_ops sbmac_netdev_ops = {
2176 .ndo_open = sbmac_open,
2177 .ndo_stop = sbmac_close,
2178 .ndo_start_xmit = sbmac_start_tx,
2179 .ndo_set_multicast_list = sbmac_set_rx_mode,
2180 .ndo_tx_timeout = sbmac_tx_timeout,
2181 .ndo_do_ioctl = sbmac_mii_ioctl,
2182 .ndo_change_mtu = sb1250_change_mtu,
2183 .ndo_validate_addr = eth_validate_addr,
2184 .ndo_set_mac_address = eth_mac_addr,
2185 #ifdef CONFIG_NET_POLL_CONTROLLER
2186 .ndo_poll_controller = sbmac_netpoll,
2187 #endif
2188 };
2189
2190 /**********************************************************************
2191 * SBMAC_INIT(dev)
2192 *
2193 * Attach routine - init hardware and hook ourselves into linux
2194 *
2195 * Input parameters:
2196 * dev - net_device structure
2197 *
2198 * Return value:
2199 * status
2200 ********************************************************************* */
2201
2202 static int sbmac_init(struct platform_device *pldev, long long base)
2203 {
2204 struct net_device *dev = dev_get_drvdata(&pldev->dev);
2205 int idx = pldev->id;
2206 struct sbmac_softc *sc = netdev_priv(dev);
2207 unsigned char *eaddr;
2208 uint64_t ea_reg;
2209 int i;
2210 int err;
2211
2212 sc->sbm_dev = dev;
2213 sc->sbe_idx = idx;
2214
2215 eaddr = sc->sbm_hwaddr;
2216
2217 /*
2218 * Read the ethernet address. The firmware left this programmed
2219 * for us in the ethernet address register for each mac.
2220 */
2221
2222 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2224 for (i = 0; i < 6; i++) {
2225 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2226 ea_reg >>= 8;
2227 }
2228
2229 for (i = 0; i < 6; i++) {
2230 dev->dev_addr[i] = eaddr[i];
2231 }
2232
2233 /*
2234 * Initialize context (get pointers to registers and stuff), then
2235 * allocate the memory for the descriptor tables.
2236 */
2237
2238 sbmac_initctx(sc);
2239
2240 /*
2241 * Set up Linux device callins
2242 */
2243
2244 spin_lock_init(&(sc->sbm_lock));
2245
2246 dev->netdev_ops = &sbmac_netdev_ops;
2247 dev->watchdog_timeo = TX_TIMEOUT;
2248
2249 netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2250
2251 dev->irq = UNIT_INT(idx);
2252
2253 /* This is needed for PASS2 for Rx H/W checksum feature */
2254 sbmac_set_iphdr_offset(sc);
2255
2256 sc->mii_bus = mdiobus_alloc();
2257 if (sc->mii_bus == NULL) {
2258 err = -ENOMEM;
2259 goto uninit_ctx;
2260 }
2261
2262 sc->mii_bus->name = sbmac_mdio_string;
2263 snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2264 sc->mii_bus->priv = sc;
2265 sc->mii_bus->read = sbmac_mii_read;
2266 sc->mii_bus->write = sbmac_mii_write;
2267 sc->mii_bus->irq = sc->phy_irq;
2268 for (i = 0; i < PHY_MAX_ADDR; ++i)
2269 sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270
2271 sc->mii_bus->parent = &pldev->dev;
2272 /*
2273 * Probe PHY address
2274 */
2275 err = mdiobus_register(sc->mii_bus);
2276 if (err) {
2277 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278 dev->name);
2279 goto free_mdio;
2280 }
2281 dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282
2283 err = register_netdev(dev);
2284 if (err) {
2285 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286 sbmac_string, idx);
2287 goto unreg_mdio;
2288 }
2289
2290 pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291
2292 if (sc->rx_hw_checksum == ENABLE)
2293 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294
2295 /*
2296 * Display Ethernet address (this is called during the config
2297 * process so we need to finish off the config message that
2298 * was being displayed)
2299 */
2300 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301 dev->name, base, eaddr);
2302
2303 return 0;
2304 unreg_mdio:
2305 mdiobus_unregister(sc->mii_bus);
2306 dev_set_drvdata(&pldev->dev, NULL);
2307 free_mdio:
2308 mdiobus_free(sc->mii_bus);
2309 uninit_ctx:
2310 sbmac_uninitctx(sc);
2311 return err;
2312 }
2313
2314
2315 static int sbmac_open(struct net_device *dev)
2316 {
2317 struct sbmac_softc *sc = netdev_priv(dev);
2318 int err;
2319
2320 if (debug > 1)
2321 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322
2323 /*
2324 * map/route interrupt (clear status first, in case something
2325 * weird is pending; we haven't initialized the mac registers
2326 * yet)
2327 */
2328
2329 __raw_readq(sc->sbm_isr);
2330 err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331 if (err) {
2332 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333 dev->irq);
2334 goto out_err;
2335 }
2336
2337 sc->sbm_speed = sbmac_speed_none;
2338 sc->sbm_duplex = sbmac_duplex_none;
2339 sc->sbm_fc = sbmac_fc_none;
2340 sc->sbm_pause = -1;
2341 sc->sbm_link = 0;
2342
2343 /*
2344 * Attach to the PHY
2345 */
2346 err = sbmac_mii_probe(dev);
2347 if (err)
2348 goto out_unregister;
2349
2350 /*
2351 * Turn on the channel
2352 */
2353
2354 sbmac_set_channel_state(sc,sbmac_state_on);
2355
2356 netif_start_queue(dev);
2357
2358 sbmac_set_rx_mode(dev);
2359
2360 phy_start(sc->phy_dev);
2361
2362 napi_enable(&sc->napi);
2363
2364 return 0;
2365
2366 out_unregister:
2367 free_irq(dev->irq, dev);
2368 out_err:
2369 return err;
2370 }
2371
2372 static int sbmac_mii_probe(struct net_device *dev)
2373 {
2374 struct sbmac_softc *sc = netdev_priv(dev);
2375 struct phy_device *phy_dev;
2376 int i;
2377
2378 for (i = 0; i < PHY_MAX_ADDR; i++) {
2379 phy_dev = sc->mii_bus->phy_map[i];
2380 if (phy_dev)
2381 break;
2382 }
2383 if (!phy_dev) {
2384 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385 return -ENXIO;
2386 }
2387
2388 phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2389 PHY_INTERFACE_MODE_GMII);
2390 if (IS_ERR(phy_dev)) {
2391 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392 return PTR_ERR(phy_dev);
2393 }
2394
2395 /* Remove any features not supported by the controller */
2396 phy_dev->supported &= SUPPORTED_10baseT_Half |
2397 SUPPORTED_10baseT_Full |
2398 SUPPORTED_100baseT_Half |
2399 SUPPORTED_100baseT_Full |
2400 SUPPORTED_1000baseT_Half |
2401 SUPPORTED_1000baseT_Full |
2402 SUPPORTED_Autoneg |
2403 SUPPORTED_MII |
2404 SUPPORTED_Pause |
2405 SUPPORTED_Asym_Pause;
2406 phy_dev->advertising = phy_dev->supported;
2407
2408 pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409 dev->name, phy_dev->drv->name,
2410 dev_name(&phy_dev->dev), phy_dev->irq);
2411
2412 sc->phy_dev = phy_dev;
2413
2414 return 0;
2415 }
2416
2417
2418 static void sbmac_mii_poll(struct net_device *dev)
2419 {
2420 struct sbmac_softc *sc = netdev_priv(dev);
2421 struct phy_device *phy_dev = sc->phy_dev;
2422 unsigned long flags;
2423 enum sbmac_fc fc;
2424 int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425
2426 link_chg = (sc->sbm_link != phy_dev->link);
2427 speed_chg = (sc->sbm_speed != phy_dev->speed);
2428 duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429 pause_chg = (sc->sbm_pause != phy_dev->pause);
2430
2431 if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432 return; /* Hmmm... */
2433
2434 if (!phy_dev->link) {
2435 if (link_chg) {
2436 sc->sbm_link = phy_dev->link;
2437 sc->sbm_speed = sbmac_speed_none;
2438 sc->sbm_duplex = sbmac_duplex_none;
2439 sc->sbm_fc = sbmac_fc_disabled;
2440 sc->sbm_pause = -1;
2441 pr_info("%s: link unavailable\n", dev->name);
2442 }
2443 return;
2444 }
2445
2446 if (phy_dev->duplex == DUPLEX_FULL) {
2447 if (phy_dev->pause)
2448 fc = sbmac_fc_frame;
2449 else
2450 fc = sbmac_fc_disabled;
2451 } else
2452 fc = sbmac_fc_collision;
2453 fc_chg = (sc->sbm_fc != fc);
2454
2455 pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457
2458 spin_lock_irqsave(&sc->sbm_lock, flags);
2459
2460 sc->sbm_speed = phy_dev->speed;
2461 sc->sbm_duplex = phy_dev->duplex;
2462 sc->sbm_fc = fc;
2463 sc->sbm_pause = phy_dev->pause;
2464 sc->sbm_link = phy_dev->link;
2465
2466 if ((speed_chg || duplex_chg || fc_chg) &&
2467 sc->sbm_state != sbmac_state_off) {
2468 /*
2469 * something changed, restart the channel
2470 */
2471 if (debug > 1)
2472 pr_debug("%s: restarting channel "
2473 "because PHY state changed\n", dev->name);
2474 sbmac_channel_stop(sc);
2475 sbmac_channel_start(sc);
2476 }
2477
2478 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479 }
2480
2481
2482 static void sbmac_tx_timeout (struct net_device *dev)
2483 {
2484 struct sbmac_softc *sc = netdev_priv(dev);
2485 unsigned long flags;
2486
2487 spin_lock_irqsave(&sc->sbm_lock, flags);
2488
2489
2490 dev->trans_start = jiffies; /* prevent tx timeout */
2491 dev->stats.tx_errors++;
2492
2493 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494
2495 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496 }
2497
2498
2499
2500
2501 static void sbmac_set_rx_mode(struct net_device *dev)
2502 {
2503 unsigned long flags;
2504 struct sbmac_softc *sc = netdev_priv(dev);
2505
2506 spin_lock_irqsave(&sc->sbm_lock, flags);
2507 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508 /*
2509 * Promiscuous changed.
2510 */
2511
2512 if (dev->flags & IFF_PROMISC) {
2513 sbmac_promiscuous_mode(sc,1);
2514 }
2515 else {
2516 sbmac_promiscuous_mode(sc,0);
2517 }
2518 }
2519 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520
2521 /*
2522 * Program the multicasts. Do this every time.
2523 */
2524
2525 sbmac_setmulti(sc);
2526
2527 }
2528
2529 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530 {
2531 struct sbmac_softc *sc = netdev_priv(dev);
2532
2533 if (!netif_running(dev) || !sc->phy_dev)
2534 return -EINVAL;
2535
2536 return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537 }
2538
2539 static int sbmac_close(struct net_device *dev)
2540 {
2541 struct sbmac_softc *sc = netdev_priv(dev);
2542
2543 napi_disable(&sc->napi);
2544
2545 phy_stop(sc->phy_dev);
2546
2547 sbmac_set_channel_state(sc, sbmac_state_off);
2548
2549 netif_stop_queue(dev);
2550
2551 if (debug > 1)
2552 pr_debug("%s: Shutting down ethercard\n", dev->name);
2553
2554 phy_disconnect(sc->phy_dev);
2555 sc->phy_dev = NULL;
2556 free_irq(dev->irq, dev);
2557
2558 sbdma_emptyring(&(sc->sbm_txdma));
2559 sbdma_emptyring(&(sc->sbm_rxdma));
2560
2561 return 0;
2562 }
2563
2564 static int sbmac_poll(struct napi_struct *napi, int budget)
2565 {
2566 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567 int work_done;
2568
2569 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571
2572 if (work_done < budget) {
2573 napi_complete(napi);
2574
2575 #ifdef CONFIG_SBMAC_COALESCE
2576 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578 sc->sbm_imr);
2579 #else
2580 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582 #endif
2583 }
2584
2585 return work_done;
2586 }
2587
2588
2589 static int __devinit sbmac_probe(struct platform_device *pldev)
2590 {
2591 struct net_device *dev;
2592 struct sbmac_softc *sc;
2593 void __iomem *sbm_base;
2594 struct resource *res;
2595 u64 sbmac_orig_hwaddr;
2596 int err;
2597
2598 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599 BUG_ON(!res);
2600 sbm_base = ioremap_nocache(res->start, resource_size(res));
2601 if (!sbm_base) {
2602 printk(KERN_ERR "%s: unable to map device registers\n",
2603 dev_name(&pldev->dev));
2604 err = -ENOMEM;
2605 goto out_out;
2606 }
2607
2608 /*
2609 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610 * value for us by the firmware if we're going to use this MAC.
2611 * If we find a zero, skip this MAC.
2612 */
2613 sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616 if (sbmac_orig_hwaddr == 0) {
2617 err = 0;
2618 goto out_unmap;
2619 }
2620
2621 /*
2622 * Okay, cool. Initialize this MAC.
2623 */
2624 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625 if (!dev) {
2626 printk(KERN_ERR "%s: unable to allocate etherdev\n",
2627 dev_name(&pldev->dev));
2628 err = -ENOMEM;
2629 goto out_unmap;
2630 }
2631
2632 dev_set_drvdata(&pldev->dev, dev);
2633 SET_NETDEV_DEV(dev, &pldev->dev);
2634
2635 sc = netdev_priv(dev);
2636 sc->sbm_base = sbm_base;
2637
2638 err = sbmac_init(pldev, res->start);
2639 if (err)
2640 goto out_kfree;
2641
2642 return 0;
2643
2644 out_kfree:
2645 free_netdev(dev);
2646 __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2647
2648 out_unmap:
2649 iounmap(sbm_base);
2650
2651 out_out:
2652 return err;
2653 }
2654
2655 static int __exit sbmac_remove(struct platform_device *pldev)
2656 {
2657 struct net_device *dev = dev_get_drvdata(&pldev->dev);
2658 struct sbmac_softc *sc = netdev_priv(dev);
2659
2660 unregister_netdev(dev);
2661 sbmac_uninitctx(sc);
2662 mdiobus_unregister(sc->mii_bus);
2663 mdiobus_free(sc->mii_bus);
2664 iounmap(sc->sbm_base);
2665 free_netdev(dev);
2666
2667 return 0;
2668 }
2669
2670 static struct platform_driver sbmac_driver = {
2671 .probe = sbmac_probe,
2672 .remove = __exit_p(sbmac_remove),
2673 .driver = {
2674 .name = sbmac_string,
2675 .owner = THIS_MODULE,
2676 },
2677 };
2678
2679 static int __init sbmac_init_module(void)
2680 {
2681 return platform_driver_register(&sbmac_driver);
2682 }
2683
2684 static void __exit sbmac_cleanup_module(void)
2685 {
2686 platform_driver_unregister(&sbmac_driver);
2687 }
2688
2689 module_init(sbmac_init_module);
2690 module_exit(sbmac_cleanup_module);