Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/version.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/debugfs.h>
45 #include <linux/ethtool.h>
46
47 #include "t4vf_common.h"
48 #include "t4vf_defs.h"
49
50 #include "../cxgb4/t4_regs.h"
51 #include "../cxgb4/t4_msg.h"
52
53 /*
54 * Generic information about the driver.
55 */
56 #define DRV_VERSION "1.0.0"
57 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59 /*
60 * Module Parameters.
61 * ==================
62 */
63
64 /*
65 * Default ethtool "message level" for adapters.
66 */
67 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71 static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73 module_param(dflt_msg_enable, int, 0644);
74 MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77 /*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89 #define MSI_MSIX 2
90 #define MSI_MSI 1
91 #define MSI_DEFAULT MSI_MSIX
92
93 static int msi = MSI_DEFAULT;
94
95 module_param(msi, int, 0644);
96 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98 /*
99 * Fundamental constants.
100 * ======================
101 */
102
103 enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125 };
126
127 /*
128 * Global driver state.
129 * ====================
130 */
131
132 static struct dentry *cxgb4vf_debugfs_root;
133
134 /*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139 /*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143 {
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206 }
207
208 /*
209 * Net device operations.
210 * ======================
211 */
212
213 /*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217 static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219 {
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224 }
225
226 /*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230 static int link_start(struct net_device *dev)
231 {
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258 }
259
260 /*
261 * Name the MSI-X interrupts.
262 */
263 static void name_msix_vecs(struct adapter *adapter)
264 {
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
287 }
288 }
289 }
290
291 /*
292 * Request all of our MSI-X resources.
293 */
294 static int request_msix_queue_irqs(struct adapter *adapter)
295 {
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
298
299 /*
300 * Firmware events.
301 */
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
306
307 /*
308 * Ethernet queues.
309 */
310 msi = MSIX_IQFLINT;
311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
319 }
320 return 0;
321
322 err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
327 }
328
329 /*
330 * Free our MSI-X resources.
331 */
332 static void free_msix_queue_irqs(struct adapter *adapter)
333 {
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
336
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
338 msi = MSIX_IQFLINT;
339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
342 }
343
344 /*
345 * Turn on NAPI and start up interrupts on a response queue.
346 */
347 static void qenable(struct sge_rspq *rspq)
348 {
349 napi_enable(&rspq->napi);
350
351 /*
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
354 */
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
359 }
360
361 /*
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
363 */
364 static void enable_rx(struct adapter *adapter)
365 {
366 int rxq;
367 struct sge *s = &adapter->sge;
368
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
372
373 /*
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
376 */
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
382
383 }
384
385 /*
386 * Wait until all NAPI handlers are descheduled.
387 */
388 static void quiesce_rx(struct adapter *adapter)
389 {
390 struct sge *s = &adapter->sge;
391 int rxq;
392
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
396 }
397
398 /*
399 * Response queue handler for the firmware event queue.
400 */
401 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
403 {
404 /*
405 * Extract response opcode and get pointer to CPL message body.
406 */
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
410
411 switch (opcode) {
412 case CPL_FW6_MSG: {
413 /*
414 * We've received an asynchronous message from the firmware.
415 */
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
420 }
421
422 case CPL_SGE_EGR_UPDATE: {
423 /*
424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
431 */
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
438
439 /*
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
445 */
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
451 }
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
457 }
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
464 }
465
466 /*
467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
469 */
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
473 }
474
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
478 }
479
480 return 0;
481 }
482
483 /*
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
487 */
488 static int setup_sge_queues(struct adapter *adapter)
489 {
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
492
493 /*
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
496 */
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
498
499 /*
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
506 */
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
512 }
513
514 /*
515 * Allocate our ingress queue for asynchronous firmware messages.
516 */
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
521
522 /*
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
527 */
528 msix = MSIX_IQFLINT;
529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
534 int qs;
535
536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
542
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
548
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
551 }
552 }
553
554 /*
555 * Create the reverse mappings for the queues.
556 */
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
565 int qs;
566
567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
570
571 /*
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
579 */
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
582 }
583 }
584 return 0;
585
586 err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
589 }
590
591 /*
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
598 */
599 static int setup_rss(struct adapter *adapter)
600 {
601 int pidx;
602
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
608
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
611
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
616
617 /*
618 * Perform Global RSS Mode-specific initialization.
619 */
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
622 /*
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
628 */
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
643 }
644 break;
645 }
646 }
647
648 return 0;
649 }
650
651 /*
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
657 */
658 static int adapter_up(struct adapter *adapter)
659 {
660 int err;
661
662 /*
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
666 */
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
675 }
676
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
680 }
681
682 /*
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
684 */
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
696 }
697
698 /*
699 * Enable NAPI ingress processing and return success.
700 */
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
704 }
705
706 /*
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
710 */
711 static void adapter_down(struct adapter *adapter)
712 {
713 /*
714 * Free interrupt resources.
715 */
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
720
721 /*
722 * Wait for NAPI handlers to finish.
723 */
724 quiesce_rx(adapter);
725 }
726
727 /*
728 * Start up a net device.
729 */
730 static int cxgb4vf_open(struct net_device *dev)
731 {
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
735
736 /*
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
739 */
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
744 }
745
746 /*
747 * Note that this interface is up and start everything up ...
748 */
749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
752 goto err_unwind;
753 err = link_start(dev);
754 if (err)
755 goto err_unwind;
756
757 netif_tx_start_all_queues(dev);
758 set_bit(pi->port_id, &adapter->open_device_map);
759 return 0;
760
761 err_unwind:
762 if (adapter->open_device_map == 0)
763 adapter_down(adapter);
764 return err;
765 }
766
767 /*
768 * Shut down a net device. This routine is called "cxgb_close" in the PF
769 * Driver ...
770 */
771 static int cxgb4vf_stop(struct net_device *dev)
772 {
773 struct port_info *pi = netdev_priv(dev);
774 struct adapter *adapter = pi->adapter;
775
776 netif_tx_stop_all_queues(dev);
777 netif_carrier_off(dev);
778 t4vf_enable_vi(adapter, pi->viid, false, false);
779 pi->link_cfg.link_ok = 0;
780
781 clear_bit(pi->port_id, &adapter->open_device_map);
782 if (adapter->open_device_map == 0)
783 adapter_down(adapter);
784 return 0;
785 }
786
787 /*
788 * Translate our basic statistics into the standard "ifconfig" statistics.
789 */
790 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
791 {
792 struct t4vf_port_stats stats;
793 struct port_info *pi = netdev2pinfo(dev);
794 struct adapter *adapter = pi->adapter;
795 struct net_device_stats *ns = &dev->stats;
796 int err;
797
798 spin_lock(&adapter->stats_lock);
799 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
800 spin_unlock(&adapter->stats_lock);
801
802 memset(ns, 0, sizeof(*ns));
803 if (err)
804 return ns;
805
806 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
807 stats.tx_ucast_bytes + stats.tx_offload_bytes);
808 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
809 stats.tx_ucast_frames + stats.tx_offload_frames);
810 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
811 stats.rx_ucast_bytes);
812 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
813 stats.rx_ucast_frames);
814 ns->multicast = stats.rx_mcast_frames;
815 ns->tx_errors = stats.tx_drop_frames;
816 ns->rx_errors = stats.rx_err_frames;
817
818 return ns;
819 }
820
821 /*
822 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
823 * at a specified offset within the list, into an array of addrss pointers and
824 * return the number collected.
825 */
826 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
827 const u8 **addr,
828 unsigned int offset,
829 unsigned int maxaddrs)
830 {
831 unsigned int index = 0;
832 unsigned int naddr = 0;
833 const struct netdev_hw_addr *ha;
834
835 for_each_dev_addr(dev, ha)
836 if (index++ >= offset) {
837 addr[naddr++] = ha->addr;
838 if (naddr >= maxaddrs)
839 break;
840 }
841 return naddr;
842 }
843
844 /*
845 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
846 * at a specified offset within the list, into an array of addrss pointers and
847 * return the number collected.
848 */
849 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
850 const u8 **addr,
851 unsigned int offset,
852 unsigned int maxaddrs)
853 {
854 unsigned int index = 0;
855 unsigned int naddr = 0;
856 const struct netdev_hw_addr *ha;
857
858 netdev_for_each_mc_addr(ha, dev)
859 if (index++ >= offset) {
860 addr[naddr++] = ha->addr;
861 if (naddr >= maxaddrs)
862 break;
863 }
864 return naddr;
865 }
866
867 /*
868 * Configure the exact and hash address filters to handle a port's multicast
869 * and secondary unicast MAC addresses.
870 */
871 static int set_addr_filters(const struct net_device *dev, bool sleep)
872 {
873 u64 mhash = 0;
874 u64 uhash = 0;
875 bool free = true;
876 unsigned int offset, naddr;
877 const u8 *addr[7];
878 int ret;
879 const struct port_info *pi = netdev_priv(dev);
880
881 /* first do the secondary unicast addresses */
882 for (offset = 0; ; offset += naddr) {
883 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
884 ARRAY_SIZE(addr));
885 if (naddr == 0)
886 break;
887
888 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
889 naddr, addr, NULL, &uhash, sleep);
890 if (ret < 0)
891 return ret;
892
893 free = false;
894 }
895
896 /* next set up the multicast addresses */
897 for (offset = 0; ; offset += naddr) {
898 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
899 ARRAY_SIZE(addr));
900 if (naddr == 0)
901 break;
902
903 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
904 naddr, addr, NULL, &mhash, sleep);
905 if (ret < 0)
906 return ret;
907 free = false;
908 }
909
910 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
911 uhash | mhash, sleep);
912 }
913
914 /*
915 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
916 * If @mtu is -1 it is left unchanged.
917 */
918 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
919 {
920 int ret;
921 struct port_info *pi = netdev_priv(dev);
922
923 ret = set_addr_filters(dev, sleep_ok);
924 if (ret == 0)
925 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
926 (dev->flags & IFF_PROMISC) != 0,
927 (dev->flags & IFF_ALLMULTI) != 0,
928 1, -1, sleep_ok);
929 return ret;
930 }
931
932 /*
933 * Set the current receive modes on the device.
934 */
935 static void cxgb4vf_set_rxmode(struct net_device *dev)
936 {
937 /* unfortunately we can't return errors to the stack */
938 set_rxmode(dev, -1, false);
939 }
940
941 /*
942 * Find the entry in the interrupt holdoff timer value array which comes
943 * closest to the specified interrupt holdoff value.
944 */
945 static int closest_timer(const struct sge *s, int us)
946 {
947 int i, timer_idx = 0, min_delta = INT_MAX;
948
949 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
950 int delta = us - s->timer_val[i];
951 if (delta < 0)
952 delta = -delta;
953 if (delta < min_delta) {
954 min_delta = delta;
955 timer_idx = i;
956 }
957 }
958 return timer_idx;
959 }
960
961 static int closest_thres(const struct sge *s, int thres)
962 {
963 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
964
965 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
966 delta = thres - s->counter_val[i];
967 if (delta < 0)
968 delta = -delta;
969 if (delta < min_delta) {
970 min_delta = delta;
971 pktcnt_idx = i;
972 }
973 }
974 return pktcnt_idx;
975 }
976
977 /*
978 * Return a queue's interrupt hold-off time in us. 0 means no timer.
979 */
980 static unsigned int qtimer_val(const struct adapter *adapter,
981 const struct sge_rspq *rspq)
982 {
983 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
984
985 return timer_idx < SGE_NTIMERS
986 ? adapter->sge.timer_val[timer_idx]
987 : 0;
988 }
989
990 /**
991 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
992 * @adapter: the adapter
993 * @rspq: the RX response queue
994 * @us: the hold-off time in us, or 0 to disable timer
995 * @cnt: the hold-off packet count, or 0 to disable counter
996 *
997 * Sets an RX response queue's interrupt hold-off time and packet count.
998 * At least one of the two needs to be enabled for the queue to generate
999 * interrupts.
1000 */
1001 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1002 unsigned int us, unsigned int cnt)
1003 {
1004 unsigned int timer_idx;
1005
1006 /*
1007 * If both the interrupt holdoff timer and count are specified as
1008 * zero, default to a holdoff count of 1 ...
1009 */
1010 if ((us | cnt) == 0)
1011 cnt = 1;
1012
1013 /*
1014 * If an interrupt holdoff count has been specified, then find the
1015 * closest configured holdoff count and use that. If the response
1016 * queue has already been created, then update its queue context
1017 * parameters ...
1018 */
1019 if (cnt) {
1020 int err;
1021 u32 v, pktcnt_idx;
1022
1023 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1024 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1025 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1026 FW_PARAMS_PARAM_X(
1027 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1028 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1029 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1030 if (err)
1031 return err;
1032 }
1033 rspq->pktcnt_idx = pktcnt_idx;
1034 }
1035
1036 /*
1037 * Compute the closest holdoff timer index from the supplied holdoff
1038 * timer value.
1039 */
1040 timer_idx = (us == 0
1041 ? SGE_TIMER_RSTRT_CNTR
1042 : closest_timer(&adapter->sge, us));
1043
1044 /*
1045 * Update the response queue's interrupt coalescing parameters and
1046 * return success.
1047 */
1048 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1049 (cnt > 0 ? QINTR_CNT_EN : 0));
1050 return 0;
1051 }
1052
1053 /*
1054 * Return a version number to identify the type of adapter. The scheme is:
1055 * - bits 0..9: chip version
1056 * - bits 10..15: chip revision
1057 */
1058 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1059 {
1060 /*
1061 * Chip version 4, revision 0x3f (cxgb4vf).
1062 */
1063 return 4 | (0x3f << 10);
1064 }
1065
1066 /*
1067 * Execute the specified ioctl command.
1068 */
1069 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1070 {
1071 int ret = 0;
1072
1073 switch (cmd) {
1074 /*
1075 * The VF Driver doesn't have access to any of the other
1076 * common Ethernet device ioctl()'s (like reading/writing
1077 * PHY registers, etc.
1078 */
1079
1080 default:
1081 ret = -EOPNOTSUPP;
1082 break;
1083 }
1084 return ret;
1085 }
1086
1087 /*
1088 * Change the device's MTU.
1089 */
1090 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1091 {
1092 int ret;
1093 struct port_info *pi = netdev_priv(dev);
1094
1095 /* accommodate SACK */
1096 if (new_mtu < 81)
1097 return -EINVAL;
1098
1099 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1100 -1, -1, -1, -1, true);
1101 if (!ret)
1102 dev->mtu = new_mtu;
1103 return ret;
1104 }
1105
1106 /*
1107 * Change the devices MAC address.
1108 */
1109 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1110 {
1111 int ret;
1112 struct sockaddr *addr = _addr;
1113 struct port_info *pi = netdev_priv(dev);
1114
1115 if (!is_valid_ether_addr(addr->sa_data))
1116 return -EINVAL;
1117
1118 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1119 addr->sa_data, true);
1120 if (ret < 0)
1121 return ret;
1122
1123 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1124 pi->xact_addr_filt = ret;
1125 return 0;
1126 }
1127
1128 #ifdef CONFIG_NET_POLL_CONTROLLER
1129 /*
1130 * Poll all of our receive queues. This is called outside of normal interrupt
1131 * context.
1132 */
1133 static void cxgb4vf_poll_controller(struct net_device *dev)
1134 {
1135 struct port_info *pi = netdev_priv(dev);
1136 struct adapter *adapter = pi->adapter;
1137
1138 if (adapter->flags & USING_MSIX) {
1139 struct sge_eth_rxq *rxq;
1140 int nqsets;
1141
1142 rxq = &adapter->sge.ethrxq[pi->first_qset];
1143 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1144 t4vf_sge_intr_msix(0, &rxq->rspq);
1145 rxq++;
1146 }
1147 } else
1148 t4vf_intr_handler(adapter)(0, adapter);
1149 }
1150 #endif
1151
1152 /*
1153 * Ethtool operations.
1154 * ===================
1155 *
1156 * Note that we don't support any ethtool operations which change the physical
1157 * state of the port to which we're linked.
1158 */
1159
1160 /*
1161 * Return current port link settings.
1162 */
1163 static int cxgb4vf_get_settings(struct net_device *dev,
1164 struct ethtool_cmd *cmd)
1165 {
1166 const struct port_info *pi = netdev_priv(dev);
1167
1168 cmd->supported = pi->link_cfg.supported;
1169 cmd->advertising = pi->link_cfg.advertising;
1170 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1171 cmd->duplex = DUPLEX_FULL;
1172
1173 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1174 cmd->phy_address = pi->port_id;
1175 cmd->transceiver = XCVR_EXTERNAL;
1176 cmd->autoneg = pi->link_cfg.autoneg;
1177 cmd->maxtxpkt = 0;
1178 cmd->maxrxpkt = 0;
1179 return 0;
1180 }
1181
1182 /*
1183 * Return our driver information.
1184 */
1185 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1186 struct ethtool_drvinfo *drvinfo)
1187 {
1188 struct adapter *adapter = netdev2adap(dev);
1189
1190 strcpy(drvinfo->driver, KBUILD_MODNAME);
1191 strcpy(drvinfo->version, DRV_VERSION);
1192 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1193 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1194 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1195 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1196 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1197 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1198 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1199 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1200 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1201 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1202 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1203 }
1204
1205 /*
1206 * Return current adapter message level.
1207 */
1208 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1209 {
1210 return netdev2adap(dev)->msg_enable;
1211 }
1212
1213 /*
1214 * Set current adapter message level.
1215 */
1216 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1217 {
1218 netdev2adap(dev)->msg_enable = msglevel;
1219 }
1220
1221 /*
1222 * Return the device's current Queue Set ring size parameters along with the
1223 * allowed maximum values. Since ethtool doesn't understand the concept of
1224 * multi-queue devices, we just return the current values associated with the
1225 * first Queue Set.
1226 */
1227 static void cxgb4vf_get_ringparam(struct net_device *dev,
1228 struct ethtool_ringparam *rp)
1229 {
1230 const struct port_info *pi = netdev_priv(dev);
1231 const struct sge *s = &pi->adapter->sge;
1232
1233 rp->rx_max_pending = MAX_RX_BUFFERS;
1234 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1235 rp->rx_jumbo_max_pending = 0;
1236 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1237
1238 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1239 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1240 rp->rx_jumbo_pending = 0;
1241 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1242 }
1243
1244 /*
1245 * Set the Queue Set ring size parameters for the device. Again, since
1246 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1247 * apply these new values across all of the Queue Sets associated with the
1248 * device -- after vetting them of course!
1249 */
1250 static int cxgb4vf_set_ringparam(struct net_device *dev,
1251 struct ethtool_ringparam *rp)
1252 {
1253 const struct port_info *pi = netdev_priv(dev);
1254 struct adapter *adapter = pi->adapter;
1255 struct sge *s = &adapter->sge;
1256 int qs;
1257
1258 if (rp->rx_pending > MAX_RX_BUFFERS ||
1259 rp->rx_jumbo_pending ||
1260 rp->tx_pending > MAX_TXQ_ENTRIES ||
1261 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1262 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1263 rp->rx_pending < MIN_FL_ENTRIES ||
1264 rp->tx_pending < MIN_TXQ_ENTRIES)
1265 return -EINVAL;
1266
1267 if (adapter->flags & FULL_INIT_DONE)
1268 return -EBUSY;
1269
1270 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1271 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1272 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1273 s->ethtxq[qs].q.size = rp->tx_pending;
1274 }
1275 return 0;
1276 }
1277
1278 /*
1279 * Return the interrupt holdoff timer and count for the first Queue Set on the
1280 * device. Our extension ioctl() (the cxgbtool interface) allows the
1281 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1282 */
1283 static int cxgb4vf_get_coalesce(struct net_device *dev,
1284 struct ethtool_coalesce *coalesce)
1285 {
1286 const struct port_info *pi = netdev_priv(dev);
1287 const struct adapter *adapter = pi->adapter;
1288 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1289
1290 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1291 coalesce->rx_max_coalesced_frames =
1292 ((rspq->intr_params & QINTR_CNT_EN)
1293 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1294 : 0);
1295 return 0;
1296 }
1297
1298 /*
1299 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1300 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1301 * the interrupt holdoff timer on any of the device's Queue Sets.
1302 */
1303 static int cxgb4vf_set_coalesce(struct net_device *dev,
1304 struct ethtool_coalesce *coalesce)
1305 {
1306 const struct port_info *pi = netdev_priv(dev);
1307 struct adapter *adapter = pi->adapter;
1308
1309 return set_rxq_intr_params(adapter,
1310 &adapter->sge.ethrxq[pi->first_qset].rspq,
1311 coalesce->rx_coalesce_usecs,
1312 coalesce->rx_max_coalesced_frames);
1313 }
1314
1315 /*
1316 * Report current port link pause parameter settings.
1317 */
1318 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1319 struct ethtool_pauseparam *pauseparam)
1320 {
1321 struct port_info *pi = netdev_priv(dev);
1322
1323 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1324 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1325 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1326 }
1327
1328 /*
1329 * Return whether RX Checksum Offloading is currently enabled for the device.
1330 */
1331 static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1332 {
1333 struct port_info *pi = netdev_priv(dev);
1334
1335 return (pi->rx_offload & RX_CSO) != 0;
1336 }
1337
1338 /*
1339 * Turn RX Checksum Offloading on or off for the device.
1340 */
1341 static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1342 {
1343 struct port_info *pi = netdev_priv(dev);
1344
1345 if (csum)
1346 pi->rx_offload |= RX_CSO;
1347 else
1348 pi->rx_offload &= ~RX_CSO;
1349 return 0;
1350 }
1351
1352 /*
1353 * Identify the port by blinking the port's LED.
1354 */
1355 static int cxgb4vf_phys_id(struct net_device *dev, u32 id)
1356 {
1357 struct port_info *pi = netdev_priv(dev);
1358
1359 return t4vf_identify_port(pi->adapter, pi->viid, 5);
1360 }
1361
1362 /*
1363 * Port stats maintained per queue of the port.
1364 */
1365 struct queue_port_stats {
1366 u64 tso;
1367 u64 tx_csum;
1368 u64 rx_csum;
1369 u64 vlan_ex;
1370 u64 vlan_ins;
1371 u64 lro_pkts;
1372 u64 lro_merged;
1373 };
1374
1375 /*
1376 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1377 * these need to match the order of statistics returned by
1378 * t4vf_get_port_stats().
1379 */
1380 static const char stats_strings[][ETH_GSTRING_LEN] = {
1381 /*
1382 * These must match the layout of the t4vf_port_stats structure.
1383 */
1384 "TxBroadcastBytes ",
1385 "TxBroadcastFrames ",
1386 "TxMulticastBytes ",
1387 "TxMulticastFrames ",
1388 "TxUnicastBytes ",
1389 "TxUnicastFrames ",
1390 "TxDroppedFrames ",
1391 "TxOffloadBytes ",
1392 "TxOffloadFrames ",
1393 "RxBroadcastBytes ",
1394 "RxBroadcastFrames ",
1395 "RxMulticastBytes ",
1396 "RxMulticastFrames ",
1397 "RxUnicastBytes ",
1398 "RxUnicastFrames ",
1399 "RxErrorFrames ",
1400
1401 /*
1402 * These are accumulated per-queue statistics and must match the
1403 * order of the fields in the queue_port_stats structure.
1404 */
1405 "TSO ",
1406 "TxCsumOffload ",
1407 "RxCsumGood ",
1408 "VLANextractions ",
1409 "VLANinsertions ",
1410 "GROPackets ",
1411 "GROMerged ",
1412 };
1413
1414 /*
1415 * Return the number of statistics in the specified statistics set.
1416 */
1417 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1418 {
1419 switch (sset) {
1420 case ETH_SS_STATS:
1421 return ARRAY_SIZE(stats_strings);
1422 default:
1423 return -EOPNOTSUPP;
1424 }
1425 /*NOTREACHED*/
1426 }
1427
1428 /*
1429 * Return the strings for the specified statistics set.
1430 */
1431 static void cxgb4vf_get_strings(struct net_device *dev,
1432 u32 sset,
1433 u8 *data)
1434 {
1435 switch (sset) {
1436 case ETH_SS_STATS:
1437 memcpy(data, stats_strings, sizeof(stats_strings));
1438 break;
1439 }
1440 }
1441
1442 /*
1443 * Small utility routine to accumulate queue statistics across the queues of
1444 * a "port".
1445 */
1446 static void collect_sge_port_stats(const struct adapter *adapter,
1447 const struct port_info *pi,
1448 struct queue_port_stats *stats)
1449 {
1450 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1451 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1452 int qs;
1453
1454 memset(stats, 0, sizeof(*stats));
1455 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1456 stats->tso += txq->tso;
1457 stats->tx_csum += txq->tx_cso;
1458 stats->rx_csum += rxq->stats.rx_cso;
1459 stats->vlan_ex += rxq->stats.vlan_ex;
1460 stats->vlan_ins += txq->vlan_ins;
1461 stats->lro_pkts += rxq->stats.lro_pkts;
1462 stats->lro_merged += rxq->stats.lro_merged;
1463 }
1464 }
1465
1466 /*
1467 * Return the ETH_SS_STATS statistics set.
1468 */
1469 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1470 struct ethtool_stats *stats,
1471 u64 *data)
1472 {
1473 struct port_info *pi = netdev2pinfo(dev);
1474 struct adapter *adapter = pi->adapter;
1475 int err = t4vf_get_port_stats(adapter, pi->pidx,
1476 (struct t4vf_port_stats *)data);
1477 if (err)
1478 memset(data, 0, sizeof(struct t4vf_port_stats));
1479
1480 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1481 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1482 }
1483
1484 /*
1485 * Return the size of our register map.
1486 */
1487 static int cxgb4vf_get_regs_len(struct net_device *dev)
1488 {
1489 return T4VF_REGMAP_SIZE;
1490 }
1491
1492 /*
1493 * Dump a block of registers, start to end inclusive, into a buffer.
1494 */
1495 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1496 unsigned int start, unsigned int end)
1497 {
1498 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1499
1500 for ( ; start <= end; start += sizeof(u32)) {
1501 /*
1502 * Avoid reading the Mailbox Control register since that
1503 * can trigger a Mailbox Ownership Arbitration cycle and
1504 * interfere with communication with the firmware.
1505 */
1506 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1507 *bp++ = 0xffff;
1508 else
1509 *bp++ = t4_read_reg(adapter, start);
1510 }
1511 }
1512
1513 /*
1514 * Copy our entire register map into the provided buffer.
1515 */
1516 static void cxgb4vf_get_regs(struct net_device *dev,
1517 struct ethtool_regs *regs,
1518 void *regbuf)
1519 {
1520 struct adapter *adapter = netdev2adap(dev);
1521
1522 regs->version = mk_adap_vers(adapter);
1523
1524 /*
1525 * Fill in register buffer with our register map.
1526 */
1527 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1528
1529 reg_block_dump(adapter, regbuf,
1530 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1531 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1532 reg_block_dump(adapter, regbuf,
1533 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1534 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1535 reg_block_dump(adapter, regbuf,
1536 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1537 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1538 reg_block_dump(adapter, regbuf,
1539 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1540 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1541
1542 reg_block_dump(adapter, regbuf,
1543 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1544 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1545 }
1546
1547 /*
1548 * Report current Wake On LAN settings.
1549 */
1550 static void cxgb4vf_get_wol(struct net_device *dev,
1551 struct ethtool_wolinfo *wol)
1552 {
1553 wol->supported = 0;
1554 wol->wolopts = 0;
1555 memset(&wol->sopass, 0, sizeof(wol->sopass));
1556 }
1557
1558 /*
1559 * TCP Segmentation Offload flags which we support.
1560 */
1561 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1562
1563 /*
1564 * Set TCP Segmentation Offloading feature capabilities.
1565 */
1566 static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1567 {
1568 if (tso)
1569 dev->features |= TSO_FLAGS;
1570 else
1571 dev->features &= ~TSO_FLAGS;
1572 return 0;
1573 }
1574
1575 static struct ethtool_ops cxgb4vf_ethtool_ops = {
1576 .get_settings = cxgb4vf_get_settings,
1577 .get_drvinfo = cxgb4vf_get_drvinfo,
1578 .get_msglevel = cxgb4vf_get_msglevel,
1579 .set_msglevel = cxgb4vf_set_msglevel,
1580 .get_ringparam = cxgb4vf_get_ringparam,
1581 .set_ringparam = cxgb4vf_set_ringparam,
1582 .get_coalesce = cxgb4vf_get_coalesce,
1583 .set_coalesce = cxgb4vf_set_coalesce,
1584 .get_pauseparam = cxgb4vf_get_pauseparam,
1585 .get_rx_csum = cxgb4vf_get_rx_csum,
1586 .set_rx_csum = cxgb4vf_set_rx_csum,
1587 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1588 .set_sg = ethtool_op_set_sg,
1589 .get_link = ethtool_op_get_link,
1590 .get_strings = cxgb4vf_get_strings,
1591 .phys_id = cxgb4vf_phys_id,
1592 .get_sset_count = cxgb4vf_get_sset_count,
1593 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1594 .get_regs_len = cxgb4vf_get_regs_len,
1595 .get_regs = cxgb4vf_get_regs,
1596 .get_wol = cxgb4vf_get_wol,
1597 .set_tso = cxgb4vf_set_tso,
1598 };
1599
1600 /*
1601 * /sys/kernel/debug/cxgb4vf support code and data.
1602 * ================================================
1603 */
1604
1605 /*
1606 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1607 */
1608 #define QPL 4
1609
1610 static int sge_qinfo_show(struct seq_file *seq, void *v)
1611 {
1612 struct adapter *adapter = seq->private;
1613 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1614 int qs, r = (uintptr_t)v - 1;
1615
1616 if (r)
1617 seq_putc(seq, '\n');
1618
1619 #define S3(fmt_spec, s, v) \
1620 do {\
1621 seq_printf(seq, "%-12s", s); \
1622 for (qs = 0; qs < n; ++qs) \
1623 seq_printf(seq, " %16" fmt_spec, v); \
1624 seq_putc(seq, '\n'); \
1625 } while (0)
1626 #define S(s, v) S3("s", s, v)
1627 #define T(s, v) S3("u", s, txq[qs].v)
1628 #define R(s, v) S3("u", s, rxq[qs].v)
1629
1630 if (r < eth_entries) {
1631 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1632 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1633 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1634
1635 S("QType:", "Ethernet");
1636 S("Interface:",
1637 (rxq[qs].rspq.netdev
1638 ? rxq[qs].rspq.netdev->name
1639 : "N/A"));
1640 S3("d", "Port:",
1641 (rxq[qs].rspq.netdev
1642 ? ((struct port_info *)
1643 netdev_priv(rxq[qs].rspq.netdev))->port_id
1644 : -1));
1645 T("TxQ ID:", q.abs_id);
1646 T("TxQ size:", q.size);
1647 T("TxQ inuse:", q.in_use);
1648 T("TxQ PIdx:", q.pidx);
1649 T("TxQ CIdx:", q.cidx);
1650 R("RspQ ID:", rspq.abs_id);
1651 R("RspQ size:", rspq.size);
1652 R("RspQE size:", rspq.iqe_len);
1653 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1654 S3("u", "Intr pktcnt:",
1655 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1656 R("RspQ CIdx:", rspq.cidx);
1657 R("RspQ Gen:", rspq.gen);
1658 R("FL ID:", fl.abs_id);
1659 R("FL size:", fl.size - MIN_FL_RESID);
1660 R("FL avail:", fl.avail);
1661 R("FL PIdx:", fl.pidx);
1662 R("FL CIdx:", fl.cidx);
1663 return 0;
1664 }
1665
1666 r -= eth_entries;
1667 if (r == 0) {
1668 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1669
1670 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1671 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1672 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1673 qtimer_val(adapter, evtq));
1674 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1675 adapter->sge.counter_val[evtq->pktcnt_idx]);
1676 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1677 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1678 } else if (r == 1) {
1679 const struct sge_rspq *intrq = &adapter->sge.intrq;
1680
1681 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1682 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1683 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1684 qtimer_val(adapter, intrq));
1685 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1686 adapter->sge.counter_val[intrq->pktcnt_idx]);
1687 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1688 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1689 }
1690
1691 #undef R
1692 #undef T
1693 #undef S
1694 #undef S3
1695
1696 return 0;
1697 }
1698
1699 /*
1700 * Return the number of "entries" in our "file". We group the multi-Queue
1701 * sections with QPL Queue Sets per "entry". The sections of the output are:
1702 *
1703 * Ethernet RX/TX Queue Sets
1704 * Firmware Event Queue
1705 * Forwarded Interrupt Queue (if in MSI mode)
1706 */
1707 static int sge_queue_entries(const struct adapter *adapter)
1708 {
1709 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1710 ((adapter->flags & USING_MSI) != 0);
1711 }
1712
1713 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1714 {
1715 int entries = sge_queue_entries(seq->private);
1716
1717 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1718 }
1719
1720 static void sge_queue_stop(struct seq_file *seq, void *v)
1721 {
1722 }
1723
1724 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1725 {
1726 int entries = sge_queue_entries(seq->private);
1727
1728 ++*pos;
1729 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1730 }
1731
1732 static const struct seq_operations sge_qinfo_seq_ops = {
1733 .start = sge_queue_start,
1734 .next = sge_queue_next,
1735 .stop = sge_queue_stop,
1736 .show = sge_qinfo_show
1737 };
1738
1739 static int sge_qinfo_open(struct inode *inode, struct file *file)
1740 {
1741 int res = seq_open(file, &sge_qinfo_seq_ops);
1742
1743 if (!res) {
1744 struct seq_file *seq = file->private_data;
1745 seq->private = inode->i_private;
1746 }
1747 return res;
1748 }
1749
1750 static const struct file_operations sge_qinfo_debugfs_fops = {
1751 .owner = THIS_MODULE,
1752 .open = sge_qinfo_open,
1753 .read = seq_read,
1754 .llseek = seq_lseek,
1755 .release = seq_release,
1756 };
1757
1758 /*
1759 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1760 */
1761 #define QPL 4
1762
1763 static int sge_qstats_show(struct seq_file *seq, void *v)
1764 {
1765 struct adapter *adapter = seq->private;
1766 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1767 int qs, r = (uintptr_t)v - 1;
1768
1769 if (r)
1770 seq_putc(seq, '\n');
1771
1772 #define S3(fmt, s, v) \
1773 do { \
1774 seq_printf(seq, "%-16s", s); \
1775 for (qs = 0; qs < n; ++qs) \
1776 seq_printf(seq, " %8" fmt, v); \
1777 seq_putc(seq, '\n'); \
1778 } while (0)
1779 #define S(s, v) S3("s", s, v)
1780
1781 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1782 #define T(s, v) T3("lu", s, v)
1783
1784 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1785 #define R(s, v) R3("lu", s, v)
1786
1787 if (r < eth_entries) {
1788 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1789 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1790 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1791
1792 S("QType:", "Ethernet");
1793 S("Interface:",
1794 (rxq[qs].rspq.netdev
1795 ? rxq[qs].rspq.netdev->name
1796 : "N/A"));
1797 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1798 R("RxPackets:", stats.pkts);
1799 R("RxCSO:", stats.rx_cso);
1800 R("VLANxtract:", stats.vlan_ex);
1801 R("LROmerged:", stats.lro_merged);
1802 R("LROpackets:", stats.lro_pkts);
1803 R("RxDrops:", stats.rx_drops);
1804 T("TSO:", tso);
1805 T("TxCSO:", tx_cso);
1806 T("VLANins:", vlan_ins);
1807 T("TxQFull:", q.stops);
1808 T("TxQRestarts:", q.restarts);
1809 T("TxMapErr:", mapping_err);
1810 R("FLAllocErr:", fl.alloc_failed);
1811 R("FLLrgAlcErr:", fl.large_alloc_failed);
1812 R("FLStarving:", fl.starving);
1813 return 0;
1814 }
1815
1816 r -= eth_entries;
1817 if (r == 0) {
1818 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1819
1820 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1821 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1822 evtq->unhandled_irqs);
1823 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1824 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1825 } else if (r == 1) {
1826 const struct sge_rspq *intrq = &adapter->sge.intrq;
1827
1828 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1829 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1830 intrq->unhandled_irqs);
1831 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1832 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1833 }
1834
1835 #undef R
1836 #undef T
1837 #undef S
1838 #undef R3
1839 #undef T3
1840 #undef S3
1841
1842 return 0;
1843 }
1844
1845 /*
1846 * Return the number of "entries" in our "file". We group the multi-Queue
1847 * sections with QPL Queue Sets per "entry". The sections of the output are:
1848 *
1849 * Ethernet RX/TX Queue Sets
1850 * Firmware Event Queue
1851 * Forwarded Interrupt Queue (if in MSI mode)
1852 */
1853 static int sge_qstats_entries(const struct adapter *adapter)
1854 {
1855 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1856 ((adapter->flags & USING_MSI) != 0);
1857 }
1858
1859 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1860 {
1861 int entries = sge_qstats_entries(seq->private);
1862
1863 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1864 }
1865
1866 static void sge_qstats_stop(struct seq_file *seq, void *v)
1867 {
1868 }
1869
1870 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1871 {
1872 int entries = sge_qstats_entries(seq->private);
1873
1874 (*pos)++;
1875 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1876 }
1877
1878 static const struct seq_operations sge_qstats_seq_ops = {
1879 .start = sge_qstats_start,
1880 .next = sge_qstats_next,
1881 .stop = sge_qstats_stop,
1882 .show = sge_qstats_show
1883 };
1884
1885 static int sge_qstats_open(struct inode *inode, struct file *file)
1886 {
1887 int res = seq_open(file, &sge_qstats_seq_ops);
1888
1889 if (res == 0) {
1890 struct seq_file *seq = file->private_data;
1891 seq->private = inode->i_private;
1892 }
1893 return res;
1894 }
1895
1896 static const struct file_operations sge_qstats_proc_fops = {
1897 .owner = THIS_MODULE,
1898 .open = sge_qstats_open,
1899 .read = seq_read,
1900 .llseek = seq_lseek,
1901 .release = seq_release,
1902 };
1903
1904 /*
1905 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1906 */
1907 static int resources_show(struct seq_file *seq, void *v)
1908 {
1909 struct adapter *adapter = seq->private;
1910 struct vf_resources *vfres = &adapter->params.vfres;
1911
1912 #define S(desc, fmt, var) \
1913 seq_printf(seq, "%-60s " fmt "\n", \
1914 desc " (" #var "):", vfres->var)
1915
1916 S("Virtual Interfaces", "%d", nvi);
1917 S("Egress Queues", "%d", neq);
1918 S("Ethernet Control", "%d", nethctrl);
1919 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1920 S("Ingress Queues", "%d", niq);
1921 S("Traffic Class", "%d", tc);
1922 S("Port Access Rights Mask", "%#x", pmask);
1923 S("MAC Address Filters", "%d", nexactf);
1924 S("Firmware Command Read Capabilities", "%#x", r_caps);
1925 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1926
1927 #undef S
1928
1929 return 0;
1930 }
1931
1932 static int resources_open(struct inode *inode, struct file *file)
1933 {
1934 return single_open(file, resources_show, inode->i_private);
1935 }
1936
1937 static const struct file_operations resources_proc_fops = {
1938 .owner = THIS_MODULE,
1939 .open = resources_open,
1940 .read = seq_read,
1941 .llseek = seq_lseek,
1942 .release = single_release,
1943 };
1944
1945 /*
1946 * Show Virtual Interfaces.
1947 */
1948 static int interfaces_show(struct seq_file *seq, void *v)
1949 {
1950 if (v == SEQ_START_TOKEN) {
1951 seq_puts(seq, "Interface Port VIID\n");
1952 } else {
1953 struct adapter *adapter = seq->private;
1954 int pidx = (uintptr_t)v - 2;
1955 struct net_device *dev = adapter->port[pidx];
1956 struct port_info *pi = netdev_priv(dev);
1957
1958 seq_printf(seq, "%9s %4d %#5x\n",
1959 dev->name, pi->port_id, pi->viid);
1960 }
1961 return 0;
1962 }
1963
1964 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1965 {
1966 return pos <= adapter->params.nports
1967 ? (void *)(uintptr_t)(pos + 1)
1968 : NULL;
1969 }
1970
1971 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1972 {
1973 return *pos
1974 ? interfaces_get_idx(seq->private, *pos)
1975 : SEQ_START_TOKEN;
1976 }
1977
1978 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1979 {
1980 (*pos)++;
1981 return interfaces_get_idx(seq->private, *pos);
1982 }
1983
1984 static void interfaces_stop(struct seq_file *seq, void *v)
1985 {
1986 }
1987
1988 static const struct seq_operations interfaces_seq_ops = {
1989 .start = interfaces_start,
1990 .next = interfaces_next,
1991 .stop = interfaces_stop,
1992 .show = interfaces_show
1993 };
1994
1995 static int interfaces_open(struct inode *inode, struct file *file)
1996 {
1997 int res = seq_open(file, &interfaces_seq_ops);
1998
1999 if (res == 0) {
2000 struct seq_file *seq = file->private_data;
2001 seq->private = inode->i_private;
2002 }
2003 return res;
2004 }
2005
2006 static const struct file_operations interfaces_proc_fops = {
2007 .owner = THIS_MODULE,
2008 .open = interfaces_open,
2009 .read = seq_read,
2010 .llseek = seq_lseek,
2011 .release = seq_release,
2012 };
2013
2014 /*
2015 * /sys/kernel/debugfs/cxgb4vf/ files list.
2016 */
2017 struct cxgb4vf_debugfs_entry {
2018 const char *name; /* name of debugfs node */
2019 mode_t mode; /* file system mode */
2020 const struct file_operations *fops;
2021 };
2022
2023 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2024 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2025 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2026 { "resources", S_IRUGO, &resources_proc_fops },
2027 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2028 };
2029
2030 /*
2031 * Module and device initialization and cleanup code.
2032 * ==================================================
2033 */
2034
2035 /*
2036 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2037 * directory (debugfs_root) has already been set up.
2038 */
2039 static int __devinit setup_debugfs(struct adapter *adapter)
2040 {
2041 int i;
2042
2043 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2044
2045 /*
2046 * Debugfs support is best effort.
2047 */
2048 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2049 (void)debugfs_create_file(debugfs_files[i].name,
2050 debugfs_files[i].mode,
2051 adapter->debugfs_root,
2052 (void *)adapter,
2053 debugfs_files[i].fops);
2054
2055 return 0;
2056 }
2057
2058 /*
2059 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2060 * it to our caller to tear down the directory (debugfs_root).
2061 */
2062 static void cleanup_debugfs(struct adapter *adapter)
2063 {
2064 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2065
2066 /*
2067 * Unlike our sister routine cleanup_proc(), we don't need to remove
2068 * individual entries because a call will be made to
2069 * debugfs_remove_recursive(). We just need to clean up any ancillary
2070 * persistent state.
2071 */
2072 /* nothing to do */
2073 }
2074
2075 /*
2076 * Perform early "adapter" initialization. This is where we discover what
2077 * adapter parameters we're going to be using and initialize basic adapter
2078 * hardware support.
2079 */
2080 static int __devinit adap_init0(struct adapter *adapter)
2081 {
2082 struct vf_resources *vfres = &adapter->params.vfres;
2083 struct sge_params *sge_params = &adapter->params.sge;
2084 struct sge *s = &adapter->sge;
2085 unsigned int ethqsets;
2086 int err;
2087
2088 /*
2089 * Wait for the device to become ready before proceeding ...
2090 */
2091 err = t4vf_wait_dev_ready(adapter);
2092 if (err) {
2093 dev_err(adapter->pdev_dev, "device didn't become ready:"
2094 " err=%d\n", err);
2095 return err;
2096 }
2097
2098 /*
2099 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2100 * 2.6.31 and later we can't call pci_reset_function() in order to
2101 * issue an FLR because of a self- deadlock on the device semaphore.
2102 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2103 * cases where they're needed -- for instance, some versions of KVM
2104 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2105 * use the firmware based reset in order to reset any per function
2106 * state.
2107 */
2108 err = t4vf_fw_reset(adapter);
2109 if (err < 0) {
2110 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2111 return err;
2112 }
2113
2114 /*
2115 * Grab basic operational parameters. These will predominantly have
2116 * been set up by the Physical Function Driver or will be hard coded
2117 * into the adapter. We just have to live with them ... Note that
2118 * we _must_ get our VPD parameters before our SGE parameters because
2119 * we need to know the adapter's core clock from the VPD in order to
2120 * properly decode the SGE Timer Values.
2121 */
2122 err = t4vf_get_dev_params(adapter);
2123 if (err) {
2124 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2125 " device parameters: err=%d\n", err);
2126 return err;
2127 }
2128 err = t4vf_get_vpd_params(adapter);
2129 if (err) {
2130 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2131 " VPD parameters: err=%d\n", err);
2132 return err;
2133 }
2134 err = t4vf_get_sge_params(adapter);
2135 if (err) {
2136 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2137 " SGE parameters: err=%d\n", err);
2138 return err;
2139 }
2140 err = t4vf_get_rss_glb_config(adapter);
2141 if (err) {
2142 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2143 " RSS parameters: err=%d\n", err);
2144 return err;
2145 }
2146 if (adapter->params.rss.mode !=
2147 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2148 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2149 " mode %d\n", adapter->params.rss.mode);
2150 return -EINVAL;
2151 }
2152 err = t4vf_sge_init(adapter);
2153 if (err) {
2154 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2155 " err=%d\n", err);
2156 return err;
2157 }
2158
2159 /*
2160 * Retrieve our RX interrupt holdoff timer values and counter
2161 * threshold values from the SGE parameters.
2162 */
2163 s->timer_val[0] = core_ticks_to_us(adapter,
2164 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2165 s->timer_val[1] = core_ticks_to_us(adapter,
2166 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2167 s->timer_val[2] = core_ticks_to_us(adapter,
2168 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2169 s->timer_val[3] = core_ticks_to_us(adapter,
2170 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2171 s->timer_val[4] = core_ticks_to_us(adapter,
2172 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2173 s->timer_val[5] = core_ticks_to_us(adapter,
2174 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2175
2176 s->counter_val[0] =
2177 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2178 s->counter_val[1] =
2179 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2180 s->counter_val[2] =
2181 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2182 s->counter_val[3] =
2183 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2184
2185 /*
2186 * Grab our Virtual Interface resource allocation, extract the
2187 * features that we're interested in and do a bit of sanity testing on
2188 * what we discover.
2189 */
2190 err = t4vf_get_vfres(adapter);
2191 if (err) {
2192 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2193 " resources: err=%d\n", err);
2194 return err;
2195 }
2196
2197 /*
2198 * The number of "ports" which we support is equal to the number of
2199 * Virtual Interfaces with which we've been provisioned.
2200 */
2201 adapter->params.nports = vfres->nvi;
2202 if (adapter->params.nports > MAX_NPORTS) {
2203 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2204 " virtual interfaces\n", MAX_NPORTS,
2205 adapter->params.nports);
2206 adapter->params.nports = MAX_NPORTS;
2207 }
2208
2209 /*
2210 * We need to reserve a number of the ingress queues with Free List
2211 * and Interrupt capabilities for special interrupt purposes (like
2212 * asynchronous firmware messages, or forwarded interrupts if we're
2213 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2214 * matched up one-for-one with Ethernet/Control egress queues in order
2215 * to form "Queue Sets" which will be aportioned between the "ports".
2216 * For each Queue Set, we'll need the ability to allocate two Egress
2217 * Contexts -- one for the Ingress Queue Free List and one for the TX
2218 * Ethernet Queue.
2219 */
2220 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2221 if (vfres->nethctrl != ethqsets) {
2222 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2223 " ingress/egress queues (%d/%d); using minimum for"
2224 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2225 ethqsets = min(vfres->nethctrl, ethqsets);
2226 }
2227 if (vfres->neq < ethqsets*2) {
2228 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2229 " to support Queue Sets (%d); reducing allowed Queue"
2230 " Sets\n", vfres->neq, ethqsets);
2231 ethqsets = vfres->neq/2;
2232 }
2233 if (ethqsets > MAX_ETH_QSETS) {
2234 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2235 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2236 ethqsets = MAX_ETH_QSETS;
2237 }
2238 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2239 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2240 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2241 }
2242 adapter->sge.max_ethqsets = ethqsets;
2243
2244 /*
2245 * Check for various parameter sanity issues. Most checks simply
2246 * result in us using fewer resources than our provissioning but we
2247 * do need at least one "port" with which to work ...
2248 */
2249 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2250 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2251 " virtual interfaces (too few Queue Sets)\n",
2252 adapter->sge.max_ethqsets, adapter->params.nports);
2253 adapter->params.nports = adapter->sge.max_ethqsets;
2254 }
2255 if (adapter->params.nports == 0) {
2256 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2257 "usable!\n");
2258 return -EINVAL;
2259 }
2260 return 0;
2261 }
2262
2263 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2264 u8 pkt_cnt_idx, unsigned int size,
2265 unsigned int iqe_size)
2266 {
2267 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2268 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2269 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2270 ? pkt_cnt_idx
2271 : 0);
2272 rspq->iqe_len = iqe_size;
2273 rspq->size = size;
2274 }
2275
2276 /*
2277 * Perform default configuration of DMA queues depending on the number and
2278 * type of ports we found and the number of available CPUs. Most settings can
2279 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2280 * being brought up for the first time.
2281 */
2282 static void __devinit cfg_queues(struct adapter *adapter)
2283 {
2284 struct sge *s = &adapter->sge;
2285 int q10g, n10g, qidx, pidx, qs;
2286 size_t iqe_size;
2287
2288 /*
2289 * We should not be called till we know how many Queue Sets we can
2290 * support. In particular, this means that we need to know what kind
2291 * of interrupts we'll be using ...
2292 */
2293 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2294
2295 /*
2296 * Count the number of 10GbE Virtual Interfaces that we have.
2297 */
2298 n10g = 0;
2299 for_each_port(adapter, pidx)
2300 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2301
2302 /*
2303 * We default to 1 queue per non-10G port and up to # of cores queues
2304 * per 10G port.
2305 */
2306 if (n10g == 0)
2307 q10g = 0;
2308 else {
2309 int n1g = (adapter->params.nports - n10g);
2310 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2311 if (q10g > num_online_cpus())
2312 q10g = num_online_cpus();
2313 }
2314
2315 /*
2316 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2317 * The layout will be established in setup_sge_queues() when the
2318 * adapter is brough up for the first time.
2319 */
2320 qidx = 0;
2321 for_each_port(adapter, pidx) {
2322 struct port_info *pi = adap2pinfo(adapter, pidx);
2323
2324 pi->first_qset = qidx;
2325 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2326 qidx += pi->nqsets;
2327 }
2328 s->ethqsets = qidx;
2329
2330 /*
2331 * The Ingress Queue Entry Size for our various Response Queues needs
2332 * to be big enough to accommodate the largest message we can receive
2333 * from the chip/firmware; which is 64 bytes ...
2334 */
2335 iqe_size = 64;
2336
2337 /*
2338 * Set up default Queue Set parameters ... Start off with the
2339 * shortest interrupt holdoff timer.
2340 */
2341 for (qs = 0; qs < s->max_ethqsets; qs++) {
2342 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2343 struct sge_eth_txq *txq = &s->ethtxq[qs];
2344
2345 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2346 rxq->fl.size = 72;
2347 txq->q.size = 1024;
2348 }
2349
2350 /*
2351 * The firmware event queue is used for link state changes and
2352 * notifications of TX DMA completions.
2353 */
2354 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2355
2356 /*
2357 * The forwarded interrupt queue is used when we're in MSI interrupt
2358 * mode. In this mode all interrupts associated with RX queues will
2359 * be forwarded to a single queue which we'll associate with our MSI
2360 * interrupt vector. The messages dropped in the forwarded interrupt
2361 * queue will indicate which ingress queue needs servicing ... This
2362 * queue needs to be large enough to accommodate all of the ingress
2363 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2364 * from equalling the CIDX if every ingress queue has an outstanding
2365 * interrupt). The queue doesn't need to be any larger because no
2366 * ingress queue will ever have more than one outstanding interrupt at
2367 * any time ...
2368 */
2369 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2370 iqe_size);
2371 }
2372
2373 /*
2374 * Reduce the number of Ethernet queues across all ports to at most n.
2375 * n provides at least one queue per port.
2376 */
2377 static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2378 {
2379 int i;
2380 struct port_info *pi;
2381
2382 /*
2383 * While we have too many active Ether Queue Sets, interate across the
2384 * "ports" and reduce their individual Queue Set allocations.
2385 */
2386 BUG_ON(n < adapter->params.nports);
2387 while (n < adapter->sge.ethqsets)
2388 for_each_port(adapter, i) {
2389 pi = adap2pinfo(adapter, i);
2390 if (pi->nqsets > 1) {
2391 pi->nqsets--;
2392 adapter->sge.ethqsets--;
2393 if (adapter->sge.ethqsets <= n)
2394 break;
2395 }
2396 }
2397
2398 /*
2399 * Reassign the starting Queue Sets for each of the "ports" ...
2400 */
2401 n = 0;
2402 for_each_port(adapter, i) {
2403 pi = adap2pinfo(adapter, i);
2404 pi->first_qset = n;
2405 n += pi->nqsets;
2406 }
2407 }
2408
2409 /*
2410 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2411 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2412 * need. Minimally we need one for every Virtual Interface plus those needed
2413 * for our "extras". Note that this process may lower the maximum number of
2414 * allowed Queue Sets ...
2415 */
2416 static int __devinit enable_msix(struct adapter *adapter)
2417 {
2418 int i, err, want, need;
2419 struct msix_entry entries[MSIX_ENTRIES];
2420 struct sge *s = &adapter->sge;
2421
2422 for (i = 0; i < MSIX_ENTRIES; ++i)
2423 entries[i].entry = i;
2424
2425 /*
2426 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2427 * plus those needed for our "extras" (for example, the firmware
2428 * message queue). We _need_ at least one "Queue Set" per Virtual
2429 * Interface plus those needed for our "extras". So now we get to see
2430 * if the song is right ...
2431 */
2432 want = s->max_ethqsets + MSIX_EXTRAS;
2433 need = adapter->params.nports + MSIX_EXTRAS;
2434 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2435 want = err;
2436
2437 if (err == 0) {
2438 int nqsets = want - MSIX_EXTRAS;
2439 if (nqsets < s->max_ethqsets) {
2440 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2441 " for %d Queue Sets\n", nqsets);
2442 s->max_ethqsets = nqsets;
2443 if (nqsets < s->ethqsets)
2444 reduce_ethqs(adapter, nqsets);
2445 }
2446 for (i = 0; i < want; ++i)
2447 adapter->msix_info[i].vec = entries[i].vector;
2448 } else if (err > 0) {
2449 pci_disable_msix(adapter->pdev);
2450 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2451 " not using MSI-X\n", err);
2452 }
2453 return err;
2454 }
2455
2456 #ifdef HAVE_NET_DEVICE_OPS
2457 static const struct net_device_ops cxgb4vf_netdev_ops = {
2458 .ndo_open = cxgb4vf_open,
2459 .ndo_stop = cxgb4vf_stop,
2460 .ndo_start_xmit = t4vf_eth_xmit,
2461 .ndo_get_stats = cxgb4vf_get_stats,
2462 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2463 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2464 .ndo_validate_addr = eth_validate_addr,
2465 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2466 .ndo_change_mtu = cxgb4vf_change_mtu,
2467 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2468 #ifdef CONFIG_NET_POLL_CONTROLLER
2469 .ndo_poll_controller = cxgb4vf_poll_controller,
2470 #endif
2471 };
2472 #endif
2473
2474 /*
2475 * "Probe" a device: initialize a device and construct all kernel and driver
2476 * state needed to manage the device. This routine is called "init_one" in
2477 * the PF Driver ...
2478 */
2479 static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2480 const struct pci_device_id *ent)
2481 {
2482 static int version_printed;
2483
2484 int pci_using_dac;
2485 int err, pidx;
2486 unsigned int pmask;
2487 struct adapter *adapter;
2488 struct port_info *pi;
2489 struct net_device *netdev;
2490
2491 /*
2492 * Print our driver banner the first time we're called to initialize a
2493 * device.
2494 */
2495 if (version_printed == 0) {
2496 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2497 version_printed = 1;
2498 }
2499
2500 /*
2501 * Initialize generic PCI device state.
2502 */
2503 err = pci_enable_device(pdev);
2504 if (err) {
2505 dev_err(&pdev->dev, "cannot enable PCI device\n");
2506 return err;
2507 }
2508
2509 /*
2510 * Reserve PCI resources for the device. If we can't get them some
2511 * other driver may have already claimed the device ...
2512 */
2513 err = pci_request_regions(pdev, KBUILD_MODNAME);
2514 if (err) {
2515 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2516 goto err_disable_device;
2517 }
2518
2519 /*
2520 * Set up our DMA mask: try for 64-bit address masking first and
2521 * fall back to 32-bit if we can't get 64 bits ...
2522 */
2523 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2524 if (err == 0) {
2525 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2526 if (err) {
2527 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2528 " coherent allocations\n");
2529 goto err_release_regions;
2530 }
2531 pci_using_dac = 1;
2532 } else {
2533 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2534 if (err != 0) {
2535 dev_err(&pdev->dev, "no usable DMA configuration\n");
2536 goto err_release_regions;
2537 }
2538 pci_using_dac = 0;
2539 }
2540
2541 /*
2542 * Enable bus mastering for the device ...
2543 */
2544 pci_set_master(pdev);
2545
2546 /*
2547 * Allocate our adapter data structure and attach it to the device.
2548 */
2549 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2550 if (!adapter) {
2551 err = -ENOMEM;
2552 goto err_release_regions;
2553 }
2554 pci_set_drvdata(pdev, adapter);
2555 adapter->pdev = pdev;
2556 adapter->pdev_dev = &pdev->dev;
2557
2558 /*
2559 * Initialize SMP data synchronization resources.
2560 */
2561 spin_lock_init(&adapter->stats_lock);
2562
2563 /*
2564 * Map our I/O registers in BAR0.
2565 */
2566 adapter->regs = pci_ioremap_bar(pdev, 0);
2567 if (!adapter->regs) {
2568 dev_err(&pdev->dev, "cannot map device registers\n");
2569 err = -ENOMEM;
2570 goto err_free_adapter;
2571 }
2572
2573 /*
2574 * Initialize adapter level features.
2575 */
2576 adapter->name = pci_name(pdev);
2577 adapter->msg_enable = dflt_msg_enable;
2578 err = adap_init0(adapter);
2579 if (err)
2580 goto err_unmap_bar;
2581
2582 /*
2583 * Allocate our "adapter ports" and stitch everything together.
2584 */
2585 pmask = adapter->params.vfres.pmask;
2586 for_each_port(adapter, pidx) {
2587 int port_id, viid;
2588
2589 /*
2590 * We simplistically allocate our virtual interfaces
2591 * sequentially across the port numbers to which we have
2592 * access rights. This should be configurable in some manner
2593 * ...
2594 */
2595 if (pmask == 0)
2596 break;
2597 port_id = ffs(pmask) - 1;
2598 pmask &= ~(1 << port_id);
2599 viid = t4vf_alloc_vi(adapter, port_id);
2600 if (viid < 0) {
2601 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2602 " err=%d\n", port_id, viid);
2603 err = viid;
2604 goto err_free_dev;
2605 }
2606
2607 /*
2608 * Allocate our network device and stitch things together.
2609 */
2610 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2611 MAX_PORT_QSETS);
2612 if (netdev == NULL) {
2613 dev_err(&pdev->dev, "cannot allocate netdev for"
2614 " port %d\n", port_id);
2615 t4vf_free_vi(adapter, viid);
2616 err = -ENOMEM;
2617 goto err_free_dev;
2618 }
2619 adapter->port[pidx] = netdev;
2620 SET_NETDEV_DEV(netdev, &pdev->dev);
2621 pi = netdev_priv(netdev);
2622 pi->adapter = adapter;
2623 pi->pidx = pidx;
2624 pi->port_id = port_id;
2625 pi->viid = viid;
2626
2627 /*
2628 * Initialize the starting state of our "port" and register
2629 * it.
2630 */
2631 pi->xact_addr_filt = -1;
2632 pi->rx_offload = RX_CSO;
2633 netif_carrier_off(netdev);
2634 netdev->irq = pdev->irq;
2635
2636 netdev->features = (NETIF_F_SG | TSO_FLAGS |
2637 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2638 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2639 NETIF_F_GRO);
2640 if (pci_using_dac)
2641 netdev->features |= NETIF_F_HIGHDMA;
2642 netdev->vlan_features =
2643 (netdev->features &
2644 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2645
2646 #ifdef HAVE_NET_DEVICE_OPS
2647 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2648 #else
2649 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2650 netdev->open = cxgb4vf_open;
2651 netdev->stop = cxgb4vf_stop;
2652 netdev->hard_start_xmit = t4vf_eth_xmit;
2653 netdev->get_stats = cxgb4vf_get_stats;
2654 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2655 netdev->do_ioctl = cxgb4vf_do_ioctl;
2656 netdev->change_mtu = cxgb4vf_change_mtu;
2657 netdev->set_mac_address = cxgb4vf_set_mac_addr;
2658 #ifdef CONFIG_NET_POLL_CONTROLLER
2659 netdev->poll_controller = cxgb4vf_poll_controller;
2660 #endif
2661 #endif
2662 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2663
2664 /*
2665 * Initialize the hardware/software state for the port.
2666 */
2667 err = t4vf_port_init(adapter, pidx);
2668 if (err) {
2669 dev_err(&pdev->dev, "cannot initialize port %d\n",
2670 pidx);
2671 goto err_free_dev;
2672 }
2673 }
2674
2675 /*
2676 * The "card" is now ready to go. If any errors occur during device
2677 * registration we do not fail the whole "card" but rather proceed
2678 * only with the ports we manage to register successfully. However we
2679 * must register at least one net device.
2680 */
2681 for_each_port(adapter, pidx) {
2682 netdev = adapter->port[pidx];
2683 if (netdev == NULL)
2684 continue;
2685
2686 err = register_netdev(netdev);
2687 if (err) {
2688 dev_warn(&pdev->dev, "cannot register net device %s,"
2689 " skipping\n", netdev->name);
2690 continue;
2691 }
2692
2693 set_bit(pidx, &adapter->registered_device_map);
2694 }
2695 if (adapter->registered_device_map == 0) {
2696 dev_err(&pdev->dev, "could not register any net devices\n");
2697 goto err_free_dev;
2698 }
2699
2700 /*
2701 * Set up our debugfs entries.
2702 */
2703 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2704 adapter->debugfs_root =
2705 debugfs_create_dir(pci_name(pdev),
2706 cxgb4vf_debugfs_root);
2707 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2708 dev_warn(&pdev->dev, "could not create debugfs"
2709 " directory");
2710 else
2711 setup_debugfs(adapter);
2712 }
2713
2714 /*
2715 * See what interrupts we'll be using. If we've been configured to
2716 * use MSI-X interrupts, try to enable them but fall back to using
2717 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2718 * get MSI interrupts we bail with the error.
2719 */
2720 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2721 adapter->flags |= USING_MSIX;
2722 else {
2723 err = pci_enable_msi(pdev);
2724 if (err) {
2725 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2726 " err=%d\n",
2727 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2728 goto err_free_debugfs;
2729 }
2730 adapter->flags |= USING_MSI;
2731 }
2732
2733 /*
2734 * Now that we know how many "ports" we have and what their types are,
2735 * and how many Queue Sets we can support, we can configure our queue
2736 * resources.
2737 */
2738 cfg_queues(adapter);
2739
2740 /*
2741 * Print a short notice on the existance and configuration of the new
2742 * VF network device ...
2743 */
2744 for_each_port(adapter, pidx) {
2745 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2746 adapter->port[pidx]->name,
2747 (adapter->flags & USING_MSIX) ? "MSI-X" :
2748 (adapter->flags & USING_MSI) ? "MSI" : "");
2749 }
2750
2751 /*
2752 * Return success!
2753 */
2754 return 0;
2755
2756 /*
2757 * Error recovery and exit code. Unwind state that's been created
2758 * so far and return the error.
2759 */
2760
2761 err_free_debugfs:
2762 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2763 cleanup_debugfs(adapter);
2764 debugfs_remove_recursive(adapter->debugfs_root);
2765 }
2766
2767 err_free_dev:
2768 for_each_port(adapter, pidx) {
2769 netdev = adapter->port[pidx];
2770 if (netdev == NULL)
2771 continue;
2772 pi = netdev_priv(netdev);
2773 t4vf_free_vi(adapter, pi->viid);
2774 if (test_bit(pidx, &adapter->registered_device_map))
2775 unregister_netdev(netdev);
2776 free_netdev(netdev);
2777 }
2778
2779 err_unmap_bar:
2780 iounmap(adapter->regs);
2781
2782 err_free_adapter:
2783 kfree(adapter);
2784 pci_set_drvdata(pdev, NULL);
2785
2786 err_release_regions:
2787 pci_release_regions(pdev);
2788 pci_set_drvdata(pdev, NULL);
2789 pci_clear_master(pdev);
2790
2791 err_disable_device:
2792 pci_disable_device(pdev);
2793
2794 return err;
2795 }
2796
2797 /*
2798 * "Remove" a device: tear down all kernel and driver state created in the
2799 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2800 * that this is called "remove_one" in the PF Driver.)
2801 */
2802 static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2803 {
2804 struct adapter *adapter = pci_get_drvdata(pdev);
2805
2806 /*
2807 * Tear down driver state associated with device.
2808 */
2809 if (adapter) {
2810 int pidx;
2811
2812 /*
2813 * Stop all of our activity. Unregister network port,
2814 * disable interrupts, etc.
2815 */
2816 for_each_port(adapter, pidx)
2817 if (test_bit(pidx, &adapter->registered_device_map))
2818 unregister_netdev(adapter->port[pidx]);
2819 t4vf_sge_stop(adapter);
2820 if (adapter->flags & USING_MSIX) {
2821 pci_disable_msix(adapter->pdev);
2822 adapter->flags &= ~USING_MSIX;
2823 } else if (adapter->flags & USING_MSI) {
2824 pci_disable_msi(adapter->pdev);
2825 adapter->flags &= ~USING_MSI;
2826 }
2827
2828 /*
2829 * Tear down our debugfs entries.
2830 */
2831 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2832 cleanup_debugfs(adapter);
2833 debugfs_remove_recursive(adapter->debugfs_root);
2834 }
2835
2836 /*
2837 * Free all of the various resources which we've acquired ...
2838 */
2839 t4vf_free_sge_resources(adapter);
2840 for_each_port(adapter, pidx) {
2841 struct net_device *netdev = adapter->port[pidx];
2842 struct port_info *pi;
2843
2844 if (netdev == NULL)
2845 continue;
2846
2847 pi = netdev_priv(netdev);
2848 t4vf_free_vi(adapter, pi->viid);
2849 free_netdev(netdev);
2850 }
2851 iounmap(adapter->regs);
2852 kfree(adapter);
2853 pci_set_drvdata(pdev, NULL);
2854 }
2855
2856 /*
2857 * Disable the device and release its PCI resources.
2858 */
2859 pci_disable_device(pdev);
2860 pci_clear_master(pdev);
2861 pci_release_regions(pdev);
2862 }
2863
2864 /*
2865 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2866 * delivery.
2867 */
2868 static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2869 {
2870 struct adapter *adapter;
2871 int pidx;
2872
2873 adapter = pci_get_drvdata(pdev);
2874 if (!adapter)
2875 return;
2876
2877 /*
2878 * Disable all Virtual Interfaces. This will shut down the
2879 * delivery of all ingress packets into the chip for these
2880 * Virtual Interfaces.
2881 */
2882 for_each_port(adapter, pidx) {
2883 struct net_device *netdev;
2884 struct port_info *pi;
2885
2886 if (!test_bit(pidx, &adapter->registered_device_map))
2887 continue;
2888
2889 netdev = adapter->port[pidx];
2890 if (!netdev)
2891 continue;
2892
2893 pi = netdev_priv(netdev);
2894 t4vf_enable_vi(adapter, pi->viid, false, false);
2895 }
2896
2897 /*
2898 * Free up all Queues which will prevent further DMA and
2899 * Interrupts allowing various internal pathways to drain.
2900 */
2901 t4vf_free_sge_resources(adapter);
2902 }
2903
2904 /*
2905 * PCI Device registration data structures.
2906 */
2907 #define CH_DEVICE(devid, idx) \
2908 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2909
2910 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2911 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2912 CH_DEVICE(0x4800, 0), /* T440-dbg */
2913 CH_DEVICE(0x4801, 0), /* T420-cr */
2914 CH_DEVICE(0x4802, 0), /* T422-cr */
2915 CH_DEVICE(0x4803, 0), /* T440-cr */
2916 CH_DEVICE(0x4804, 0), /* T420-bch */
2917 CH_DEVICE(0x4805, 0), /* T440-bch */
2918 CH_DEVICE(0x4806, 0), /* T460-ch */
2919 CH_DEVICE(0x4807, 0), /* T420-so */
2920 CH_DEVICE(0x4808, 0), /* T420-cx */
2921 CH_DEVICE(0x4809, 0), /* T420-bt */
2922 CH_DEVICE(0x480a, 0), /* T404-bt */
2923 { 0, }
2924 };
2925
2926 MODULE_DESCRIPTION(DRV_DESC);
2927 MODULE_AUTHOR("Chelsio Communications");
2928 MODULE_LICENSE("Dual BSD/GPL");
2929 MODULE_VERSION(DRV_VERSION);
2930 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2931
2932 static struct pci_driver cxgb4vf_driver = {
2933 .name = KBUILD_MODNAME,
2934 .id_table = cxgb4vf_pci_tbl,
2935 .probe = cxgb4vf_pci_probe,
2936 .remove = __devexit_p(cxgb4vf_pci_remove),
2937 .shutdown = __devexit_p(cxgb4vf_pci_shutdown),
2938 };
2939
2940 /*
2941 * Initialize global driver state.
2942 */
2943 static int __init cxgb4vf_module_init(void)
2944 {
2945 int ret;
2946
2947 /*
2948 * Vet our module parameters.
2949 */
2950 if (msi != MSI_MSIX && msi != MSI_MSI) {
2951 printk(KERN_WARNING KBUILD_MODNAME
2952 ": bad module parameter msi=%d; must be %d"
2953 " (MSI-X or MSI) or %d (MSI)\n",
2954 msi, MSI_MSIX, MSI_MSI);
2955 return -EINVAL;
2956 }
2957
2958 /* Debugfs support is optional, just warn if this fails */
2959 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2960 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2961 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2962 " debugfs entry, continuing\n");
2963
2964 ret = pci_register_driver(&cxgb4vf_driver);
2965 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2966 debugfs_remove(cxgb4vf_debugfs_root);
2967 return ret;
2968 }
2969
2970 /*
2971 * Tear down global driver state.
2972 */
2973 static void __exit cxgb4vf_module_exit(void)
2974 {
2975 pci_unregister_driver(&cxgb4vf_driver);
2976 debugfs_remove(cxgb4vf_debugfs_root);
2977 }
2978
2979 module_init(cxgb4vf_module_init);
2980 module_exit(cxgb4vf_module_exit);