broadcom: Move the Broadcom drivers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cxgb4vf / cxgb4vf_main.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/module.h>
37 #include <linux/moduleparam.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/debugfs.h>
44 #include <linux/ethtool.h>
45
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_msg.h"
51
52 /*
53 * Generic information about the driver.
54 */
55 #define DRV_VERSION "1.0.0"
56 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
57
58 /*
59 * Module Parameters.
60 * ==================
61 */
62
63 /*
64 * Default ethtool "message level" for adapters.
65 */
66 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
67 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
68 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
69
70 static int dflt_msg_enable = DFLT_MSG_ENABLE;
71
72 module_param(dflt_msg_enable, int, 0644);
73 MODULE_PARM_DESC(dflt_msg_enable,
74 "default adapter ethtool message level bitmap");
75
76 /*
77 * The driver uses the best interrupt scheme available on a platform in the
78 * order MSI-X then MSI. This parameter determines which of these schemes the
79 * driver may consider as follows:
80 *
81 * msi = 2: choose from among MSI-X and MSI
82 * msi = 1: only consider MSI interrupts
83 *
84 * Note that unlike the Physical Function driver, this Virtual Function driver
85 * does _not_ support legacy INTx interrupts (this limitation is mandated by
86 * the PCI-E SR-IOV standard).
87 */
88 #define MSI_MSIX 2
89 #define MSI_MSI 1
90 #define MSI_DEFAULT MSI_MSIX
91
92 static int msi = MSI_DEFAULT;
93
94 module_param(msi, int, 0644);
95 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
96
97 /*
98 * Fundamental constants.
99 * ======================
100 */
101
102 enum {
103 MAX_TXQ_ENTRIES = 16384,
104 MAX_RSPQ_ENTRIES = 16384,
105 MAX_RX_BUFFERS = 16384,
106
107 MIN_TXQ_ENTRIES = 32,
108 MIN_RSPQ_ENTRIES = 128,
109 MIN_FL_ENTRIES = 16,
110
111 /*
112 * For purposes of manipulating the Free List size we need to
113 * recognize that Free Lists are actually Egress Queues (the host
114 * produces free buffers which the hardware consumes), Egress Queues
115 * indices are all in units of Egress Context Units bytes, and free
116 * list entries are 64-bit PCI DMA addresses. And since the state of
117 * the Producer Index == the Consumer Index implies an EMPTY list, we
118 * always have at least one Egress Unit's worth of Free List entries
119 * unused. See sge.c for more details ...
120 */
121 EQ_UNIT = SGE_EQ_IDXSIZE,
122 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
123 MIN_FL_RESID = FL_PER_EQ_UNIT,
124 };
125
126 /*
127 * Global driver state.
128 * ====================
129 */
130
131 static struct dentry *cxgb4vf_debugfs_root;
132
133 /*
134 * OS "Callback" functions.
135 * ========================
136 */
137
138 /*
139 * The link status has changed on the indicated "port" (Virtual Interface).
140 */
141 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
142 {
143 struct net_device *dev = adapter->port[pidx];
144
145 /*
146 * If the port is disabled or the current recorded "link up"
147 * status matches the new status, just return.
148 */
149 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
150 return;
151
152 /*
153 * Tell the OS that the link status has changed and print a short
154 * informative message on the console about the event.
155 */
156 if (link_ok) {
157 const char *s;
158 const char *fc;
159 const struct port_info *pi = netdev_priv(dev);
160
161 netif_carrier_on(dev);
162
163 switch (pi->link_cfg.speed) {
164 case SPEED_10000:
165 s = "10Gbps";
166 break;
167
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
171
172 case SPEED_100:
173 s = "100Mbps";
174 break;
175
176 default:
177 s = "unknown";
178 break;
179 }
180
181 switch (pi->link_cfg.fc) {
182 case PAUSE_RX:
183 fc = "RX";
184 break;
185
186 case PAUSE_TX:
187 fc = "TX";
188 break;
189
190 case PAUSE_RX|PAUSE_TX:
191 fc = "RX/TX";
192 break;
193
194 default:
195 fc = "no";
196 break;
197 }
198
199 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
200 dev->name, s, fc);
201 } else {
202 netif_carrier_off(dev);
203 printk(KERN_INFO "%s: link down\n", dev->name);
204 }
205 }
206
207 /*
208 * Net device operations.
209 * ======================
210 */
211
212
213
214
215 /*
216 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
217 * Interface).
218 */
219 static int link_start(struct net_device *dev)
220 {
221 int ret;
222 struct port_info *pi = netdev_priv(dev);
223
224 /*
225 * We do not set address filters and promiscuity here, the stack does
226 * that step explicitly. Enable vlan accel.
227 */
228 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
229 true);
230 if (ret == 0) {
231 ret = t4vf_change_mac(pi->adapter, pi->viid,
232 pi->xact_addr_filt, dev->dev_addr, true);
233 if (ret >= 0) {
234 pi->xact_addr_filt = ret;
235 ret = 0;
236 }
237 }
238
239 /*
240 * We don't need to actually "start the link" itself since the
241 * firmware will do that for us when the first Virtual Interface
242 * is enabled on a port.
243 */
244 if (ret == 0)
245 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
246 return ret;
247 }
248
249 /*
250 * Name the MSI-X interrupts.
251 */
252 static void name_msix_vecs(struct adapter *adapter)
253 {
254 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
255 int pidx;
256
257 /*
258 * Firmware events.
259 */
260 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
261 "%s-FWeventq", adapter->name);
262 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
263
264 /*
265 * Ethernet queues.
266 */
267 for_each_port(adapter, pidx) {
268 struct net_device *dev = adapter->port[pidx];
269 const struct port_info *pi = netdev_priv(dev);
270 int qs, msi;
271
272 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
273 snprintf(adapter->msix_info[msi].desc, namelen,
274 "%s-%d", dev->name, qs);
275 adapter->msix_info[msi].desc[namelen] = 0;
276 }
277 }
278 }
279
280 /*
281 * Request all of our MSI-X resources.
282 */
283 static int request_msix_queue_irqs(struct adapter *adapter)
284 {
285 struct sge *s = &adapter->sge;
286 int rxq, msi, err;
287
288 /*
289 * Firmware events.
290 */
291 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
292 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
293 if (err)
294 return err;
295
296 /*
297 * Ethernet queues.
298 */
299 msi = MSIX_IQFLINT;
300 for_each_ethrxq(s, rxq) {
301 err = request_irq(adapter->msix_info[msi].vec,
302 t4vf_sge_intr_msix, 0,
303 adapter->msix_info[msi].desc,
304 &s->ethrxq[rxq].rspq);
305 if (err)
306 goto err_free_irqs;
307 msi++;
308 }
309 return 0;
310
311 err_free_irqs:
312 while (--rxq >= 0)
313 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
314 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
315 return err;
316 }
317
318 /*
319 * Free our MSI-X resources.
320 */
321 static void free_msix_queue_irqs(struct adapter *adapter)
322 {
323 struct sge *s = &adapter->sge;
324 int rxq, msi;
325
326 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
327 msi = MSIX_IQFLINT;
328 for_each_ethrxq(s, rxq)
329 free_irq(adapter->msix_info[msi++].vec,
330 &s->ethrxq[rxq].rspq);
331 }
332
333 /*
334 * Turn on NAPI and start up interrupts on a response queue.
335 */
336 static void qenable(struct sge_rspq *rspq)
337 {
338 napi_enable(&rspq->napi);
339
340 /*
341 * 0-increment the Going To Sleep register to start the timer and
342 * enable interrupts.
343 */
344 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
345 CIDXINC(0) |
346 SEINTARM(rspq->intr_params) |
347 INGRESSQID(rspq->cntxt_id));
348 }
349
350 /*
351 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
352 */
353 static void enable_rx(struct adapter *adapter)
354 {
355 int rxq;
356 struct sge *s = &adapter->sge;
357
358 for_each_ethrxq(s, rxq)
359 qenable(&s->ethrxq[rxq].rspq);
360 qenable(&s->fw_evtq);
361
362 /*
363 * The interrupt queue doesn't use NAPI so we do the 0-increment of
364 * its Going To Sleep register here to get it started.
365 */
366 if (adapter->flags & USING_MSI)
367 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
368 CIDXINC(0) |
369 SEINTARM(s->intrq.intr_params) |
370 INGRESSQID(s->intrq.cntxt_id));
371
372 }
373
374 /*
375 * Wait until all NAPI handlers are descheduled.
376 */
377 static void quiesce_rx(struct adapter *adapter)
378 {
379 struct sge *s = &adapter->sge;
380 int rxq;
381
382 for_each_ethrxq(s, rxq)
383 napi_disable(&s->ethrxq[rxq].rspq.napi);
384 napi_disable(&s->fw_evtq.napi);
385 }
386
387 /*
388 * Response queue handler for the firmware event queue.
389 */
390 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
391 const struct pkt_gl *gl)
392 {
393 /*
394 * Extract response opcode and get pointer to CPL message body.
395 */
396 struct adapter *adapter = rspq->adapter;
397 u8 opcode = ((const struct rss_header *)rsp)->opcode;
398 void *cpl = (void *)(rsp + 1);
399
400 switch (opcode) {
401 case CPL_FW6_MSG: {
402 /*
403 * We've received an asynchronous message from the firmware.
404 */
405 const struct cpl_fw6_msg *fw_msg = cpl;
406 if (fw_msg->type == FW6_TYPE_CMD_RPL)
407 t4vf_handle_fw_rpl(adapter, fw_msg->data);
408 break;
409 }
410
411 case CPL_SGE_EGR_UPDATE: {
412 /*
413 * We've received an Egress Queue Status Update message. We
414 * get these, if the SGE is configured to send these when the
415 * firmware passes certain points in processing our TX
416 * Ethernet Queue or if we make an explicit request for one.
417 * We use these updates to determine when we may need to
418 * restart a TX Ethernet Queue which was stopped for lack of
419 * free TX Queue Descriptors ...
420 */
421 const struct cpl_sge_egr_update *p = (void *)cpl;
422 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
423 struct sge *s = &adapter->sge;
424 struct sge_txq *tq;
425 struct sge_eth_txq *txq;
426 unsigned int eq_idx;
427
428 /*
429 * Perform sanity checking on the Queue ID to make sure it
430 * really refers to one of our TX Ethernet Egress Queues which
431 * is active and matches the queue's ID. None of these error
432 * conditions should ever happen so we may want to either make
433 * them fatal and/or conditionalized under DEBUG.
434 */
435 eq_idx = EQ_IDX(s, qid);
436 if (unlikely(eq_idx >= MAX_EGRQ)) {
437 dev_err(adapter->pdev_dev,
438 "Egress Update QID %d out of range\n", qid);
439 break;
440 }
441 tq = s->egr_map[eq_idx];
442 if (unlikely(tq == NULL)) {
443 dev_err(adapter->pdev_dev,
444 "Egress Update QID %d TXQ=NULL\n", qid);
445 break;
446 }
447 txq = container_of(tq, struct sge_eth_txq, q);
448 if (unlikely(tq->abs_id != qid)) {
449 dev_err(adapter->pdev_dev,
450 "Egress Update QID %d refers to TXQ %d\n",
451 qid, tq->abs_id);
452 break;
453 }
454
455 /*
456 * Restart a stopped TX Queue which has less than half of its
457 * TX ring in use ...
458 */
459 txq->q.restarts++;
460 netif_tx_wake_queue(txq->txq);
461 break;
462 }
463
464 default:
465 dev_err(adapter->pdev_dev,
466 "unexpected CPL %#x on FW event queue\n", opcode);
467 }
468
469 return 0;
470 }
471
472 /*
473 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
474 * to use and initializes them. We support multiple "Queue Sets" per port if
475 * we have MSI-X, otherwise just one queue set per port.
476 */
477 static int setup_sge_queues(struct adapter *adapter)
478 {
479 struct sge *s = &adapter->sge;
480 int err, pidx, msix;
481
482 /*
483 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
484 * state.
485 */
486 bitmap_zero(s->starving_fl, MAX_EGRQ);
487
488 /*
489 * If we're using MSI interrupt mode we need to set up a "forwarded
490 * interrupt" queue which we'll set up with our MSI vector. The rest
491 * of the ingress queues will be set up to forward their interrupts to
492 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
493 * the intrq's queue ID as the interrupt forwarding queue for the
494 * subsequent calls ...
495 */
496 if (adapter->flags & USING_MSI) {
497 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
498 adapter->port[0], 0, NULL, NULL);
499 if (err)
500 goto err_free_queues;
501 }
502
503 /*
504 * Allocate our ingress queue for asynchronous firmware messages.
505 */
506 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
507 MSIX_FW, NULL, fwevtq_handler);
508 if (err)
509 goto err_free_queues;
510
511 /*
512 * Allocate each "port"'s initial Queue Sets. These can be changed
513 * later on ... up to the point where any interface on the adapter is
514 * brought up at which point lots of things get nailed down
515 * permanently ...
516 */
517 msix = MSIX_IQFLINT;
518 for_each_port(adapter, pidx) {
519 struct net_device *dev = adapter->port[pidx];
520 struct port_info *pi = netdev_priv(dev);
521 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
522 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
523 int qs;
524
525 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
526 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
527 dev, msix++,
528 &rxq->fl, t4vf_ethrx_handler);
529 if (err)
530 goto err_free_queues;
531
532 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
533 netdev_get_tx_queue(dev, qs),
534 s->fw_evtq.cntxt_id);
535 if (err)
536 goto err_free_queues;
537
538 rxq->rspq.idx = qs;
539 memset(&rxq->stats, 0, sizeof(rxq->stats));
540 }
541 }
542
543 /*
544 * Create the reverse mappings for the queues.
545 */
546 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
547 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
548 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
549 for_each_port(adapter, pidx) {
550 struct net_device *dev = adapter->port[pidx];
551 struct port_info *pi = netdev_priv(dev);
552 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
553 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
554 int qs;
555
556 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
557 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
558 EQ_MAP(s, txq->q.abs_id) = &txq->q;
559
560 /*
561 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
562 * for Free Lists but since all of the Egress Queues
563 * (including Free Lists) have Relative Queue IDs
564 * which are computed as Absolute - Base Queue ID, we
565 * can synthesize the Absolute Queue IDs for the Free
566 * Lists. This is useful for debugging purposes when
567 * we want to dump Queue Contexts via the PF Driver.
568 */
569 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
570 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
571 }
572 }
573 return 0;
574
575 err_free_queues:
576 t4vf_free_sge_resources(adapter);
577 return err;
578 }
579
580 /*
581 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
582 * queues. We configure the RSS CPU lookup table to distribute to the number
583 * of HW receive queues, and the response queue lookup table to narrow that
584 * down to the response queues actually configured for each "port" (Virtual
585 * Interface). We always configure the RSS mapping for all ports since the
586 * mapping table has plenty of entries.
587 */
588 static int setup_rss(struct adapter *adapter)
589 {
590 int pidx;
591
592 for_each_port(adapter, pidx) {
593 struct port_info *pi = adap2pinfo(adapter, pidx);
594 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
595 u16 rss[MAX_PORT_QSETS];
596 int qs, err;
597
598 for (qs = 0; qs < pi->nqsets; qs++)
599 rss[qs] = rxq[qs].rspq.abs_id;
600
601 err = t4vf_config_rss_range(adapter, pi->viid,
602 0, pi->rss_size, rss, pi->nqsets);
603 if (err)
604 return err;
605
606 /*
607 * Perform Global RSS Mode-specific initialization.
608 */
609 switch (adapter->params.rss.mode) {
610 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
611 /*
612 * If Tunnel All Lookup isn't specified in the global
613 * RSS Configuration, then we need to specify a
614 * default Ingress Queue for any ingress packets which
615 * aren't hashed. We'll use our first ingress queue
616 * ...
617 */
618 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
619 union rss_vi_config config;
620 err = t4vf_read_rss_vi_config(adapter,
621 pi->viid,
622 &config);
623 if (err)
624 return err;
625 config.basicvirtual.defaultq =
626 rxq[0].rspq.abs_id;
627 err = t4vf_write_rss_vi_config(adapter,
628 pi->viid,
629 &config);
630 if (err)
631 return err;
632 }
633 break;
634 }
635 }
636
637 return 0;
638 }
639
640 /*
641 * Bring the adapter up. Called whenever we go from no "ports" open to having
642 * one open. This function performs the actions necessary to make an adapter
643 * operational, such as completing the initialization of HW modules, and
644 * enabling interrupts. Must be called with the rtnl lock held. (Note that
645 * this is called "cxgb_up" in the PF Driver.)
646 */
647 static int adapter_up(struct adapter *adapter)
648 {
649 int err;
650
651 /*
652 * If this is the first time we've been called, perform basic
653 * adapter setup. Once we've done this, many of our adapter
654 * parameters can no longer be changed ...
655 */
656 if ((adapter->flags & FULL_INIT_DONE) == 0) {
657 err = setup_sge_queues(adapter);
658 if (err)
659 return err;
660 err = setup_rss(adapter);
661 if (err) {
662 t4vf_free_sge_resources(adapter);
663 return err;
664 }
665
666 if (adapter->flags & USING_MSIX)
667 name_msix_vecs(adapter);
668 adapter->flags |= FULL_INIT_DONE;
669 }
670
671 /*
672 * Acquire our interrupt resources. We only support MSI-X and MSI.
673 */
674 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
675 if (adapter->flags & USING_MSIX)
676 err = request_msix_queue_irqs(adapter);
677 else
678 err = request_irq(adapter->pdev->irq,
679 t4vf_intr_handler(adapter), 0,
680 adapter->name, adapter);
681 if (err) {
682 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
683 err);
684 return err;
685 }
686
687 /*
688 * Enable NAPI ingress processing and return success.
689 */
690 enable_rx(adapter);
691 t4vf_sge_start(adapter);
692 return 0;
693 }
694
695 /*
696 * Bring the adapter down. Called whenever the last "port" (Virtual
697 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
698 * Driver.)
699 */
700 static void adapter_down(struct adapter *adapter)
701 {
702 /*
703 * Free interrupt resources.
704 */
705 if (adapter->flags & USING_MSIX)
706 free_msix_queue_irqs(adapter);
707 else
708 free_irq(adapter->pdev->irq, adapter);
709
710 /*
711 * Wait for NAPI handlers to finish.
712 */
713 quiesce_rx(adapter);
714 }
715
716 /*
717 * Start up a net device.
718 */
719 static int cxgb4vf_open(struct net_device *dev)
720 {
721 int err;
722 struct port_info *pi = netdev_priv(dev);
723 struct adapter *adapter = pi->adapter;
724
725 /*
726 * If this is the first interface that we're opening on the "adapter",
727 * bring the "adapter" up now.
728 */
729 if (adapter->open_device_map == 0) {
730 err = adapter_up(adapter);
731 if (err)
732 return err;
733 }
734
735 /*
736 * Note that this interface is up and start everything up ...
737 */
738 netif_set_real_num_tx_queues(dev, pi->nqsets);
739 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
740 if (err)
741 goto err_unwind;
742 err = link_start(dev);
743 if (err)
744 goto err_unwind;
745
746 netif_tx_start_all_queues(dev);
747 set_bit(pi->port_id, &adapter->open_device_map);
748 return 0;
749
750 err_unwind:
751 if (adapter->open_device_map == 0)
752 adapter_down(adapter);
753 return err;
754 }
755
756 /*
757 * Shut down a net device. This routine is called "cxgb_close" in the PF
758 * Driver ...
759 */
760 static int cxgb4vf_stop(struct net_device *dev)
761 {
762 struct port_info *pi = netdev_priv(dev);
763 struct adapter *adapter = pi->adapter;
764
765 netif_tx_stop_all_queues(dev);
766 netif_carrier_off(dev);
767 t4vf_enable_vi(adapter, pi->viid, false, false);
768 pi->link_cfg.link_ok = 0;
769
770 clear_bit(pi->port_id, &adapter->open_device_map);
771 if (adapter->open_device_map == 0)
772 adapter_down(adapter);
773 return 0;
774 }
775
776 /*
777 * Translate our basic statistics into the standard "ifconfig" statistics.
778 */
779 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
780 {
781 struct t4vf_port_stats stats;
782 struct port_info *pi = netdev2pinfo(dev);
783 struct adapter *adapter = pi->adapter;
784 struct net_device_stats *ns = &dev->stats;
785 int err;
786
787 spin_lock(&adapter->stats_lock);
788 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
789 spin_unlock(&adapter->stats_lock);
790
791 memset(ns, 0, sizeof(*ns));
792 if (err)
793 return ns;
794
795 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
796 stats.tx_ucast_bytes + stats.tx_offload_bytes);
797 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
798 stats.tx_ucast_frames + stats.tx_offload_frames);
799 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
800 stats.rx_ucast_bytes);
801 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
802 stats.rx_ucast_frames);
803 ns->multicast = stats.rx_mcast_frames;
804 ns->tx_errors = stats.tx_drop_frames;
805 ns->rx_errors = stats.rx_err_frames;
806
807 return ns;
808 }
809
810 /*
811 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
812 * at a specified offset within the list, into an array of addrss pointers and
813 * return the number collected.
814 */
815 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
816 const u8 **addr,
817 unsigned int offset,
818 unsigned int maxaddrs)
819 {
820 unsigned int index = 0;
821 unsigned int naddr = 0;
822 const struct netdev_hw_addr *ha;
823
824 for_each_dev_addr(dev, ha)
825 if (index++ >= offset) {
826 addr[naddr++] = ha->addr;
827 if (naddr >= maxaddrs)
828 break;
829 }
830 return naddr;
831 }
832
833 /*
834 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
835 * at a specified offset within the list, into an array of addrss pointers and
836 * return the number collected.
837 */
838 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
839 const u8 **addr,
840 unsigned int offset,
841 unsigned int maxaddrs)
842 {
843 unsigned int index = 0;
844 unsigned int naddr = 0;
845 const struct netdev_hw_addr *ha;
846
847 netdev_for_each_mc_addr(ha, dev)
848 if (index++ >= offset) {
849 addr[naddr++] = ha->addr;
850 if (naddr >= maxaddrs)
851 break;
852 }
853 return naddr;
854 }
855
856 /*
857 * Configure the exact and hash address filters to handle a port's multicast
858 * and secondary unicast MAC addresses.
859 */
860 static int set_addr_filters(const struct net_device *dev, bool sleep)
861 {
862 u64 mhash = 0;
863 u64 uhash = 0;
864 bool free = true;
865 unsigned int offset, naddr;
866 const u8 *addr[7];
867 int ret;
868 const struct port_info *pi = netdev_priv(dev);
869
870 /* first do the secondary unicast addresses */
871 for (offset = 0; ; offset += naddr) {
872 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
873 ARRAY_SIZE(addr));
874 if (naddr == 0)
875 break;
876
877 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
878 naddr, addr, NULL, &uhash, sleep);
879 if (ret < 0)
880 return ret;
881
882 free = false;
883 }
884
885 /* next set up the multicast addresses */
886 for (offset = 0; ; offset += naddr) {
887 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
888 ARRAY_SIZE(addr));
889 if (naddr == 0)
890 break;
891
892 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
893 naddr, addr, NULL, &mhash, sleep);
894 if (ret < 0)
895 return ret;
896 free = false;
897 }
898
899 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
900 uhash | mhash, sleep);
901 }
902
903 /*
904 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
905 * If @mtu is -1 it is left unchanged.
906 */
907 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
908 {
909 int ret;
910 struct port_info *pi = netdev_priv(dev);
911
912 ret = set_addr_filters(dev, sleep_ok);
913 if (ret == 0)
914 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
915 (dev->flags & IFF_PROMISC) != 0,
916 (dev->flags & IFF_ALLMULTI) != 0,
917 1, -1, sleep_ok);
918 return ret;
919 }
920
921 /*
922 * Set the current receive modes on the device.
923 */
924 static void cxgb4vf_set_rxmode(struct net_device *dev)
925 {
926 /* unfortunately we can't return errors to the stack */
927 set_rxmode(dev, -1, false);
928 }
929
930 /*
931 * Find the entry in the interrupt holdoff timer value array which comes
932 * closest to the specified interrupt holdoff value.
933 */
934 static int closest_timer(const struct sge *s, int us)
935 {
936 int i, timer_idx = 0, min_delta = INT_MAX;
937
938 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
939 int delta = us - s->timer_val[i];
940 if (delta < 0)
941 delta = -delta;
942 if (delta < min_delta) {
943 min_delta = delta;
944 timer_idx = i;
945 }
946 }
947 return timer_idx;
948 }
949
950 static int closest_thres(const struct sge *s, int thres)
951 {
952 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
953
954 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
955 delta = thres - s->counter_val[i];
956 if (delta < 0)
957 delta = -delta;
958 if (delta < min_delta) {
959 min_delta = delta;
960 pktcnt_idx = i;
961 }
962 }
963 return pktcnt_idx;
964 }
965
966 /*
967 * Return a queue's interrupt hold-off time in us. 0 means no timer.
968 */
969 static unsigned int qtimer_val(const struct adapter *adapter,
970 const struct sge_rspq *rspq)
971 {
972 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
973
974 return timer_idx < SGE_NTIMERS
975 ? adapter->sge.timer_val[timer_idx]
976 : 0;
977 }
978
979 /**
980 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
981 * @adapter: the adapter
982 * @rspq: the RX response queue
983 * @us: the hold-off time in us, or 0 to disable timer
984 * @cnt: the hold-off packet count, or 0 to disable counter
985 *
986 * Sets an RX response queue's interrupt hold-off time and packet count.
987 * At least one of the two needs to be enabled for the queue to generate
988 * interrupts.
989 */
990 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
991 unsigned int us, unsigned int cnt)
992 {
993 unsigned int timer_idx;
994
995 /*
996 * If both the interrupt holdoff timer and count are specified as
997 * zero, default to a holdoff count of 1 ...
998 */
999 if ((us | cnt) == 0)
1000 cnt = 1;
1001
1002 /*
1003 * If an interrupt holdoff count has been specified, then find the
1004 * closest configured holdoff count and use that. If the response
1005 * queue has already been created, then update its queue context
1006 * parameters ...
1007 */
1008 if (cnt) {
1009 int err;
1010 u32 v, pktcnt_idx;
1011
1012 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1013 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1014 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1015 FW_PARAMS_PARAM_X(
1016 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1017 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1018 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1019 if (err)
1020 return err;
1021 }
1022 rspq->pktcnt_idx = pktcnt_idx;
1023 }
1024
1025 /*
1026 * Compute the closest holdoff timer index from the supplied holdoff
1027 * timer value.
1028 */
1029 timer_idx = (us == 0
1030 ? SGE_TIMER_RSTRT_CNTR
1031 : closest_timer(&adapter->sge, us));
1032
1033 /*
1034 * Update the response queue's interrupt coalescing parameters and
1035 * return success.
1036 */
1037 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1038 (cnt > 0 ? QINTR_CNT_EN : 0));
1039 return 0;
1040 }
1041
1042 /*
1043 * Return a version number to identify the type of adapter. The scheme is:
1044 * - bits 0..9: chip version
1045 * - bits 10..15: chip revision
1046 */
1047 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1048 {
1049 /*
1050 * Chip version 4, revision 0x3f (cxgb4vf).
1051 */
1052 return 4 | (0x3f << 10);
1053 }
1054
1055 /*
1056 * Execute the specified ioctl command.
1057 */
1058 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1059 {
1060 int ret = 0;
1061
1062 switch (cmd) {
1063 /*
1064 * The VF Driver doesn't have access to any of the other
1065 * common Ethernet device ioctl()'s (like reading/writing
1066 * PHY registers, etc.
1067 */
1068
1069 default:
1070 ret = -EOPNOTSUPP;
1071 break;
1072 }
1073 return ret;
1074 }
1075
1076 /*
1077 * Change the device's MTU.
1078 */
1079 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1080 {
1081 int ret;
1082 struct port_info *pi = netdev_priv(dev);
1083
1084 /* accommodate SACK */
1085 if (new_mtu < 81)
1086 return -EINVAL;
1087
1088 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1089 -1, -1, -1, -1, true);
1090 if (!ret)
1091 dev->mtu = new_mtu;
1092 return ret;
1093 }
1094
1095 static u32 cxgb4vf_fix_features(struct net_device *dev, u32 features)
1096 {
1097 /*
1098 * Since there is no support for separate rx/tx vlan accel
1099 * enable/disable make sure tx flag is always in same state as rx.
1100 */
1101 if (features & NETIF_F_HW_VLAN_RX)
1102 features |= NETIF_F_HW_VLAN_TX;
1103 else
1104 features &= ~NETIF_F_HW_VLAN_TX;
1105
1106 return features;
1107 }
1108
1109 static int cxgb4vf_set_features(struct net_device *dev, u32 features)
1110 {
1111 struct port_info *pi = netdev_priv(dev);
1112 u32 changed = dev->features ^ features;
1113
1114 if (changed & NETIF_F_HW_VLAN_RX)
1115 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1116 features & NETIF_F_HW_VLAN_TX, 0);
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * Change the devices MAC address.
1123 */
1124 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1125 {
1126 int ret;
1127 struct sockaddr *addr = _addr;
1128 struct port_info *pi = netdev_priv(dev);
1129
1130 if (!is_valid_ether_addr(addr->sa_data))
1131 return -EINVAL;
1132
1133 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1134 addr->sa_data, true);
1135 if (ret < 0)
1136 return ret;
1137
1138 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1139 pi->xact_addr_filt = ret;
1140 return 0;
1141 }
1142
1143 #ifdef CONFIG_NET_POLL_CONTROLLER
1144 /*
1145 * Poll all of our receive queues. This is called outside of normal interrupt
1146 * context.
1147 */
1148 static void cxgb4vf_poll_controller(struct net_device *dev)
1149 {
1150 struct port_info *pi = netdev_priv(dev);
1151 struct adapter *adapter = pi->adapter;
1152
1153 if (adapter->flags & USING_MSIX) {
1154 struct sge_eth_rxq *rxq;
1155 int nqsets;
1156
1157 rxq = &adapter->sge.ethrxq[pi->first_qset];
1158 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1159 t4vf_sge_intr_msix(0, &rxq->rspq);
1160 rxq++;
1161 }
1162 } else
1163 t4vf_intr_handler(adapter)(0, adapter);
1164 }
1165 #endif
1166
1167 /*
1168 * Ethtool operations.
1169 * ===================
1170 *
1171 * Note that we don't support any ethtool operations which change the physical
1172 * state of the port to which we're linked.
1173 */
1174
1175 /*
1176 * Return current port link settings.
1177 */
1178 static int cxgb4vf_get_settings(struct net_device *dev,
1179 struct ethtool_cmd *cmd)
1180 {
1181 const struct port_info *pi = netdev_priv(dev);
1182
1183 cmd->supported = pi->link_cfg.supported;
1184 cmd->advertising = pi->link_cfg.advertising;
1185 ethtool_cmd_speed_set(cmd,
1186 netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1187 cmd->duplex = DUPLEX_FULL;
1188
1189 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1190 cmd->phy_address = pi->port_id;
1191 cmd->transceiver = XCVR_EXTERNAL;
1192 cmd->autoneg = pi->link_cfg.autoneg;
1193 cmd->maxtxpkt = 0;
1194 cmd->maxrxpkt = 0;
1195 return 0;
1196 }
1197
1198 /*
1199 * Return our driver information.
1200 */
1201 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1202 struct ethtool_drvinfo *drvinfo)
1203 {
1204 struct adapter *adapter = netdev2adap(dev);
1205
1206 strcpy(drvinfo->driver, KBUILD_MODNAME);
1207 strcpy(drvinfo->version, DRV_VERSION);
1208 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1209 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1210 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1211 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1212 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1213 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1214 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1215 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1216 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1217 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1218 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1219 }
1220
1221 /*
1222 * Return current adapter message level.
1223 */
1224 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1225 {
1226 return netdev2adap(dev)->msg_enable;
1227 }
1228
1229 /*
1230 * Set current adapter message level.
1231 */
1232 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1233 {
1234 netdev2adap(dev)->msg_enable = msglevel;
1235 }
1236
1237 /*
1238 * Return the device's current Queue Set ring size parameters along with the
1239 * allowed maximum values. Since ethtool doesn't understand the concept of
1240 * multi-queue devices, we just return the current values associated with the
1241 * first Queue Set.
1242 */
1243 static void cxgb4vf_get_ringparam(struct net_device *dev,
1244 struct ethtool_ringparam *rp)
1245 {
1246 const struct port_info *pi = netdev_priv(dev);
1247 const struct sge *s = &pi->adapter->sge;
1248
1249 rp->rx_max_pending = MAX_RX_BUFFERS;
1250 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1251 rp->rx_jumbo_max_pending = 0;
1252 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1253
1254 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1255 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1256 rp->rx_jumbo_pending = 0;
1257 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1258 }
1259
1260 /*
1261 * Set the Queue Set ring size parameters for the device. Again, since
1262 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1263 * apply these new values across all of the Queue Sets associated with the
1264 * device -- after vetting them of course!
1265 */
1266 static int cxgb4vf_set_ringparam(struct net_device *dev,
1267 struct ethtool_ringparam *rp)
1268 {
1269 const struct port_info *pi = netdev_priv(dev);
1270 struct adapter *adapter = pi->adapter;
1271 struct sge *s = &adapter->sge;
1272 int qs;
1273
1274 if (rp->rx_pending > MAX_RX_BUFFERS ||
1275 rp->rx_jumbo_pending ||
1276 rp->tx_pending > MAX_TXQ_ENTRIES ||
1277 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1278 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1279 rp->rx_pending < MIN_FL_ENTRIES ||
1280 rp->tx_pending < MIN_TXQ_ENTRIES)
1281 return -EINVAL;
1282
1283 if (adapter->flags & FULL_INIT_DONE)
1284 return -EBUSY;
1285
1286 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1287 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1288 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1289 s->ethtxq[qs].q.size = rp->tx_pending;
1290 }
1291 return 0;
1292 }
1293
1294 /*
1295 * Return the interrupt holdoff timer and count for the first Queue Set on the
1296 * device. Our extension ioctl() (the cxgbtool interface) allows the
1297 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1298 */
1299 static int cxgb4vf_get_coalesce(struct net_device *dev,
1300 struct ethtool_coalesce *coalesce)
1301 {
1302 const struct port_info *pi = netdev_priv(dev);
1303 const struct adapter *adapter = pi->adapter;
1304 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1305
1306 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1307 coalesce->rx_max_coalesced_frames =
1308 ((rspq->intr_params & QINTR_CNT_EN)
1309 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1310 : 0);
1311 return 0;
1312 }
1313
1314 /*
1315 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1316 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1317 * the interrupt holdoff timer on any of the device's Queue Sets.
1318 */
1319 static int cxgb4vf_set_coalesce(struct net_device *dev,
1320 struct ethtool_coalesce *coalesce)
1321 {
1322 const struct port_info *pi = netdev_priv(dev);
1323 struct adapter *adapter = pi->adapter;
1324
1325 return set_rxq_intr_params(adapter,
1326 &adapter->sge.ethrxq[pi->first_qset].rspq,
1327 coalesce->rx_coalesce_usecs,
1328 coalesce->rx_max_coalesced_frames);
1329 }
1330
1331 /*
1332 * Report current port link pause parameter settings.
1333 */
1334 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1335 struct ethtool_pauseparam *pauseparam)
1336 {
1337 struct port_info *pi = netdev_priv(dev);
1338
1339 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1340 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1341 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1342 }
1343
1344 /*
1345 * Identify the port by blinking the port's LED.
1346 */
1347 static int cxgb4vf_phys_id(struct net_device *dev,
1348 enum ethtool_phys_id_state state)
1349 {
1350 unsigned int val;
1351 struct port_info *pi = netdev_priv(dev);
1352
1353 if (state == ETHTOOL_ID_ACTIVE)
1354 val = 0xffff;
1355 else if (state == ETHTOOL_ID_INACTIVE)
1356 val = 0;
1357 else
1358 return -EINVAL;
1359
1360 return t4vf_identify_port(pi->adapter, pi->viid, val);
1361 }
1362
1363 /*
1364 * Port stats maintained per queue of the port.
1365 */
1366 struct queue_port_stats {
1367 u64 tso;
1368 u64 tx_csum;
1369 u64 rx_csum;
1370 u64 vlan_ex;
1371 u64 vlan_ins;
1372 u64 lro_pkts;
1373 u64 lro_merged;
1374 };
1375
1376 /*
1377 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1378 * these need to match the order of statistics returned by
1379 * t4vf_get_port_stats().
1380 */
1381 static const char stats_strings[][ETH_GSTRING_LEN] = {
1382 /*
1383 * These must match the layout of the t4vf_port_stats structure.
1384 */
1385 "TxBroadcastBytes ",
1386 "TxBroadcastFrames ",
1387 "TxMulticastBytes ",
1388 "TxMulticastFrames ",
1389 "TxUnicastBytes ",
1390 "TxUnicastFrames ",
1391 "TxDroppedFrames ",
1392 "TxOffloadBytes ",
1393 "TxOffloadFrames ",
1394 "RxBroadcastBytes ",
1395 "RxBroadcastFrames ",
1396 "RxMulticastBytes ",
1397 "RxMulticastFrames ",
1398 "RxUnicastBytes ",
1399 "RxUnicastFrames ",
1400 "RxErrorFrames ",
1401
1402 /*
1403 * These are accumulated per-queue statistics and must match the
1404 * order of the fields in the queue_port_stats structure.
1405 */
1406 "TSO ",
1407 "TxCsumOffload ",
1408 "RxCsumGood ",
1409 "VLANextractions ",
1410 "VLANinsertions ",
1411 "GROPackets ",
1412 "GROMerged ",
1413 };
1414
1415 /*
1416 * Return the number of statistics in the specified statistics set.
1417 */
1418 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1419 {
1420 switch (sset) {
1421 case ETH_SS_STATS:
1422 return ARRAY_SIZE(stats_strings);
1423 default:
1424 return -EOPNOTSUPP;
1425 }
1426 /*NOTREACHED*/
1427 }
1428
1429 /*
1430 * Return the strings for the specified statistics set.
1431 */
1432 static void cxgb4vf_get_strings(struct net_device *dev,
1433 u32 sset,
1434 u8 *data)
1435 {
1436 switch (sset) {
1437 case ETH_SS_STATS:
1438 memcpy(data, stats_strings, sizeof(stats_strings));
1439 break;
1440 }
1441 }
1442
1443 /*
1444 * Small utility routine to accumulate queue statistics across the queues of
1445 * a "port".
1446 */
1447 static void collect_sge_port_stats(const struct adapter *adapter,
1448 const struct port_info *pi,
1449 struct queue_port_stats *stats)
1450 {
1451 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1452 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1453 int qs;
1454
1455 memset(stats, 0, sizeof(*stats));
1456 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1457 stats->tso += txq->tso;
1458 stats->tx_csum += txq->tx_cso;
1459 stats->rx_csum += rxq->stats.rx_cso;
1460 stats->vlan_ex += rxq->stats.vlan_ex;
1461 stats->vlan_ins += txq->vlan_ins;
1462 stats->lro_pkts += rxq->stats.lro_pkts;
1463 stats->lro_merged += rxq->stats.lro_merged;
1464 }
1465 }
1466
1467 /*
1468 * Return the ETH_SS_STATS statistics set.
1469 */
1470 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1471 struct ethtool_stats *stats,
1472 u64 *data)
1473 {
1474 struct port_info *pi = netdev2pinfo(dev);
1475 struct adapter *adapter = pi->adapter;
1476 int err = t4vf_get_port_stats(adapter, pi->pidx,
1477 (struct t4vf_port_stats *)data);
1478 if (err)
1479 memset(data, 0, sizeof(struct t4vf_port_stats));
1480
1481 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1482 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1483 }
1484
1485 /*
1486 * Return the size of our register map.
1487 */
1488 static int cxgb4vf_get_regs_len(struct net_device *dev)
1489 {
1490 return T4VF_REGMAP_SIZE;
1491 }
1492
1493 /*
1494 * Dump a block of registers, start to end inclusive, into a buffer.
1495 */
1496 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1497 unsigned int start, unsigned int end)
1498 {
1499 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1500
1501 for ( ; start <= end; start += sizeof(u32)) {
1502 /*
1503 * Avoid reading the Mailbox Control register since that
1504 * can trigger a Mailbox Ownership Arbitration cycle and
1505 * interfere with communication with the firmware.
1506 */
1507 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1508 *bp++ = 0xffff;
1509 else
1510 *bp++ = t4_read_reg(adapter, start);
1511 }
1512 }
1513
1514 /*
1515 * Copy our entire register map into the provided buffer.
1516 */
1517 static void cxgb4vf_get_regs(struct net_device *dev,
1518 struct ethtool_regs *regs,
1519 void *regbuf)
1520 {
1521 struct adapter *adapter = netdev2adap(dev);
1522
1523 regs->version = mk_adap_vers(adapter);
1524
1525 /*
1526 * Fill in register buffer with our register map.
1527 */
1528 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1529
1530 reg_block_dump(adapter, regbuf,
1531 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1532 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1533 reg_block_dump(adapter, regbuf,
1534 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1535 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1536 reg_block_dump(adapter, regbuf,
1537 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1538 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1539 reg_block_dump(adapter, regbuf,
1540 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1541 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1542
1543 reg_block_dump(adapter, regbuf,
1544 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1545 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1546 }
1547
1548 /*
1549 * Report current Wake On LAN settings.
1550 */
1551 static void cxgb4vf_get_wol(struct net_device *dev,
1552 struct ethtool_wolinfo *wol)
1553 {
1554 wol->supported = 0;
1555 wol->wolopts = 0;
1556 memset(&wol->sopass, 0, sizeof(wol->sopass));
1557 }
1558
1559 /*
1560 * TCP Segmentation Offload flags which we support.
1561 */
1562 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1563
1564 static struct ethtool_ops cxgb4vf_ethtool_ops = {
1565 .get_settings = cxgb4vf_get_settings,
1566 .get_drvinfo = cxgb4vf_get_drvinfo,
1567 .get_msglevel = cxgb4vf_get_msglevel,
1568 .set_msglevel = cxgb4vf_set_msglevel,
1569 .get_ringparam = cxgb4vf_get_ringparam,
1570 .set_ringparam = cxgb4vf_set_ringparam,
1571 .get_coalesce = cxgb4vf_get_coalesce,
1572 .set_coalesce = cxgb4vf_set_coalesce,
1573 .get_pauseparam = cxgb4vf_get_pauseparam,
1574 .get_link = ethtool_op_get_link,
1575 .get_strings = cxgb4vf_get_strings,
1576 .set_phys_id = cxgb4vf_phys_id,
1577 .get_sset_count = cxgb4vf_get_sset_count,
1578 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1579 .get_regs_len = cxgb4vf_get_regs_len,
1580 .get_regs = cxgb4vf_get_regs,
1581 .get_wol = cxgb4vf_get_wol,
1582 };
1583
1584 /*
1585 * /sys/kernel/debug/cxgb4vf support code and data.
1586 * ================================================
1587 */
1588
1589 /*
1590 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1591 */
1592 #define QPL 4
1593
1594 static int sge_qinfo_show(struct seq_file *seq, void *v)
1595 {
1596 struct adapter *adapter = seq->private;
1597 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1598 int qs, r = (uintptr_t)v - 1;
1599
1600 if (r)
1601 seq_putc(seq, '\n');
1602
1603 #define S3(fmt_spec, s, v) \
1604 do {\
1605 seq_printf(seq, "%-12s", s); \
1606 for (qs = 0; qs < n; ++qs) \
1607 seq_printf(seq, " %16" fmt_spec, v); \
1608 seq_putc(seq, '\n'); \
1609 } while (0)
1610 #define S(s, v) S3("s", s, v)
1611 #define T(s, v) S3("u", s, txq[qs].v)
1612 #define R(s, v) S3("u", s, rxq[qs].v)
1613
1614 if (r < eth_entries) {
1615 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1616 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1617 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1618
1619 S("QType:", "Ethernet");
1620 S("Interface:",
1621 (rxq[qs].rspq.netdev
1622 ? rxq[qs].rspq.netdev->name
1623 : "N/A"));
1624 S3("d", "Port:",
1625 (rxq[qs].rspq.netdev
1626 ? ((struct port_info *)
1627 netdev_priv(rxq[qs].rspq.netdev))->port_id
1628 : -1));
1629 T("TxQ ID:", q.abs_id);
1630 T("TxQ size:", q.size);
1631 T("TxQ inuse:", q.in_use);
1632 T("TxQ PIdx:", q.pidx);
1633 T("TxQ CIdx:", q.cidx);
1634 R("RspQ ID:", rspq.abs_id);
1635 R("RspQ size:", rspq.size);
1636 R("RspQE size:", rspq.iqe_len);
1637 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1638 S3("u", "Intr pktcnt:",
1639 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1640 R("RspQ CIdx:", rspq.cidx);
1641 R("RspQ Gen:", rspq.gen);
1642 R("FL ID:", fl.abs_id);
1643 R("FL size:", fl.size - MIN_FL_RESID);
1644 R("FL avail:", fl.avail);
1645 R("FL PIdx:", fl.pidx);
1646 R("FL CIdx:", fl.cidx);
1647 return 0;
1648 }
1649
1650 r -= eth_entries;
1651 if (r == 0) {
1652 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1653
1654 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1655 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1656 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1657 qtimer_val(adapter, evtq));
1658 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1659 adapter->sge.counter_val[evtq->pktcnt_idx]);
1660 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1661 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1662 } else if (r == 1) {
1663 const struct sge_rspq *intrq = &adapter->sge.intrq;
1664
1665 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1666 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1667 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1668 qtimer_val(adapter, intrq));
1669 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1670 adapter->sge.counter_val[intrq->pktcnt_idx]);
1671 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1672 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1673 }
1674
1675 #undef R
1676 #undef T
1677 #undef S
1678 #undef S3
1679
1680 return 0;
1681 }
1682
1683 /*
1684 * Return the number of "entries" in our "file". We group the multi-Queue
1685 * sections with QPL Queue Sets per "entry". The sections of the output are:
1686 *
1687 * Ethernet RX/TX Queue Sets
1688 * Firmware Event Queue
1689 * Forwarded Interrupt Queue (if in MSI mode)
1690 */
1691 static int sge_queue_entries(const struct adapter *adapter)
1692 {
1693 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1694 ((adapter->flags & USING_MSI) != 0);
1695 }
1696
1697 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1698 {
1699 int entries = sge_queue_entries(seq->private);
1700
1701 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1702 }
1703
1704 static void sge_queue_stop(struct seq_file *seq, void *v)
1705 {
1706 }
1707
1708 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1709 {
1710 int entries = sge_queue_entries(seq->private);
1711
1712 ++*pos;
1713 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1714 }
1715
1716 static const struct seq_operations sge_qinfo_seq_ops = {
1717 .start = sge_queue_start,
1718 .next = sge_queue_next,
1719 .stop = sge_queue_stop,
1720 .show = sge_qinfo_show
1721 };
1722
1723 static int sge_qinfo_open(struct inode *inode, struct file *file)
1724 {
1725 int res = seq_open(file, &sge_qinfo_seq_ops);
1726
1727 if (!res) {
1728 struct seq_file *seq = file->private_data;
1729 seq->private = inode->i_private;
1730 }
1731 return res;
1732 }
1733
1734 static const struct file_operations sge_qinfo_debugfs_fops = {
1735 .owner = THIS_MODULE,
1736 .open = sge_qinfo_open,
1737 .read = seq_read,
1738 .llseek = seq_lseek,
1739 .release = seq_release,
1740 };
1741
1742 /*
1743 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1744 */
1745 #define QPL 4
1746
1747 static int sge_qstats_show(struct seq_file *seq, void *v)
1748 {
1749 struct adapter *adapter = seq->private;
1750 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1751 int qs, r = (uintptr_t)v - 1;
1752
1753 if (r)
1754 seq_putc(seq, '\n');
1755
1756 #define S3(fmt, s, v) \
1757 do { \
1758 seq_printf(seq, "%-16s", s); \
1759 for (qs = 0; qs < n; ++qs) \
1760 seq_printf(seq, " %8" fmt, v); \
1761 seq_putc(seq, '\n'); \
1762 } while (0)
1763 #define S(s, v) S3("s", s, v)
1764
1765 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1766 #define T(s, v) T3("lu", s, v)
1767
1768 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1769 #define R(s, v) R3("lu", s, v)
1770
1771 if (r < eth_entries) {
1772 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1773 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1774 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1775
1776 S("QType:", "Ethernet");
1777 S("Interface:",
1778 (rxq[qs].rspq.netdev
1779 ? rxq[qs].rspq.netdev->name
1780 : "N/A"));
1781 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1782 R("RxPackets:", stats.pkts);
1783 R("RxCSO:", stats.rx_cso);
1784 R("VLANxtract:", stats.vlan_ex);
1785 R("LROmerged:", stats.lro_merged);
1786 R("LROpackets:", stats.lro_pkts);
1787 R("RxDrops:", stats.rx_drops);
1788 T("TSO:", tso);
1789 T("TxCSO:", tx_cso);
1790 T("VLANins:", vlan_ins);
1791 T("TxQFull:", q.stops);
1792 T("TxQRestarts:", q.restarts);
1793 T("TxMapErr:", mapping_err);
1794 R("FLAllocErr:", fl.alloc_failed);
1795 R("FLLrgAlcErr:", fl.large_alloc_failed);
1796 R("FLStarving:", fl.starving);
1797 return 0;
1798 }
1799
1800 r -= eth_entries;
1801 if (r == 0) {
1802 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1803
1804 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1805 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1806 evtq->unhandled_irqs);
1807 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1808 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1809 } else if (r == 1) {
1810 const struct sge_rspq *intrq = &adapter->sge.intrq;
1811
1812 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1813 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1814 intrq->unhandled_irqs);
1815 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1816 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1817 }
1818
1819 #undef R
1820 #undef T
1821 #undef S
1822 #undef R3
1823 #undef T3
1824 #undef S3
1825
1826 return 0;
1827 }
1828
1829 /*
1830 * Return the number of "entries" in our "file". We group the multi-Queue
1831 * sections with QPL Queue Sets per "entry". The sections of the output are:
1832 *
1833 * Ethernet RX/TX Queue Sets
1834 * Firmware Event Queue
1835 * Forwarded Interrupt Queue (if in MSI mode)
1836 */
1837 static int sge_qstats_entries(const struct adapter *adapter)
1838 {
1839 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1840 ((adapter->flags & USING_MSI) != 0);
1841 }
1842
1843 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1844 {
1845 int entries = sge_qstats_entries(seq->private);
1846
1847 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1848 }
1849
1850 static void sge_qstats_stop(struct seq_file *seq, void *v)
1851 {
1852 }
1853
1854 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1855 {
1856 int entries = sge_qstats_entries(seq->private);
1857
1858 (*pos)++;
1859 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1860 }
1861
1862 static const struct seq_operations sge_qstats_seq_ops = {
1863 .start = sge_qstats_start,
1864 .next = sge_qstats_next,
1865 .stop = sge_qstats_stop,
1866 .show = sge_qstats_show
1867 };
1868
1869 static int sge_qstats_open(struct inode *inode, struct file *file)
1870 {
1871 int res = seq_open(file, &sge_qstats_seq_ops);
1872
1873 if (res == 0) {
1874 struct seq_file *seq = file->private_data;
1875 seq->private = inode->i_private;
1876 }
1877 return res;
1878 }
1879
1880 static const struct file_operations sge_qstats_proc_fops = {
1881 .owner = THIS_MODULE,
1882 .open = sge_qstats_open,
1883 .read = seq_read,
1884 .llseek = seq_lseek,
1885 .release = seq_release,
1886 };
1887
1888 /*
1889 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1890 */
1891 static int resources_show(struct seq_file *seq, void *v)
1892 {
1893 struct adapter *adapter = seq->private;
1894 struct vf_resources *vfres = &adapter->params.vfres;
1895
1896 #define S(desc, fmt, var) \
1897 seq_printf(seq, "%-60s " fmt "\n", \
1898 desc " (" #var "):", vfres->var)
1899
1900 S("Virtual Interfaces", "%d", nvi);
1901 S("Egress Queues", "%d", neq);
1902 S("Ethernet Control", "%d", nethctrl);
1903 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1904 S("Ingress Queues", "%d", niq);
1905 S("Traffic Class", "%d", tc);
1906 S("Port Access Rights Mask", "%#x", pmask);
1907 S("MAC Address Filters", "%d", nexactf);
1908 S("Firmware Command Read Capabilities", "%#x", r_caps);
1909 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1910
1911 #undef S
1912
1913 return 0;
1914 }
1915
1916 static int resources_open(struct inode *inode, struct file *file)
1917 {
1918 return single_open(file, resources_show, inode->i_private);
1919 }
1920
1921 static const struct file_operations resources_proc_fops = {
1922 .owner = THIS_MODULE,
1923 .open = resources_open,
1924 .read = seq_read,
1925 .llseek = seq_lseek,
1926 .release = single_release,
1927 };
1928
1929 /*
1930 * Show Virtual Interfaces.
1931 */
1932 static int interfaces_show(struct seq_file *seq, void *v)
1933 {
1934 if (v == SEQ_START_TOKEN) {
1935 seq_puts(seq, "Interface Port VIID\n");
1936 } else {
1937 struct adapter *adapter = seq->private;
1938 int pidx = (uintptr_t)v - 2;
1939 struct net_device *dev = adapter->port[pidx];
1940 struct port_info *pi = netdev_priv(dev);
1941
1942 seq_printf(seq, "%9s %4d %#5x\n",
1943 dev->name, pi->port_id, pi->viid);
1944 }
1945 return 0;
1946 }
1947
1948 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1949 {
1950 return pos <= adapter->params.nports
1951 ? (void *)(uintptr_t)(pos + 1)
1952 : NULL;
1953 }
1954
1955 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1956 {
1957 return *pos
1958 ? interfaces_get_idx(seq->private, *pos)
1959 : SEQ_START_TOKEN;
1960 }
1961
1962 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1963 {
1964 (*pos)++;
1965 return interfaces_get_idx(seq->private, *pos);
1966 }
1967
1968 static void interfaces_stop(struct seq_file *seq, void *v)
1969 {
1970 }
1971
1972 static const struct seq_operations interfaces_seq_ops = {
1973 .start = interfaces_start,
1974 .next = interfaces_next,
1975 .stop = interfaces_stop,
1976 .show = interfaces_show
1977 };
1978
1979 static int interfaces_open(struct inode *inode, struct file *file)
1980 {
1981 int res = seq_open(file, &interfaces_seq_ops);
1982
1983 if (res == 0) {
1984 struct seq_file *seq = file->private_data;
1985 seq->private = inode->i_private;
1986 }
1987 return res;
1988 }
1989
1990 static const struct file_operations interfaces_proc_fops = {
1991 .owner = THIS_MODULE,
1992 .open = interfaces_open,
1993 .read = seq_read,
1994 .llseek = seq_lseek,
1995 .release = seq_release,
1996 };
1997
1998 /*
1999 * /sys/kernel/debugfs/cxgb4vf/ files list.
2000 */
2001 struct cxgb4vf_debugfs_entry {
2002 const char *name; /* name of debugfs node */
2003 mode_t mode; /* file system mode */
2004 const struct file_operations *fops;
2005 };
2006
2007 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2008 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2009 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2010 { "resources", S_IRUGO, &resources_proc_fops },
2011 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2012 };
2013
2014 /*
2015 * Module and device initialization and cleanup code.
2016 * ==================================================
2017 */
2018
2019 /*
2020 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2021 * directory (debugfs_root) has already been set up.
2022 */
2023 static int __devinit setup_debugfs(struct adapter *adapter)
2024 {
2025 int i;
2026
2027 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2028
2029 /*
2030 * Debugfs support is best effort.
2031 */
2032 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2033 (void)debugfs_create_file(debugfs_files[i].name,
2034 debugfs_files[i].mode,
2035 adapter->debugfs_root,
2036 (void *)adapter,
2037 debugfs_files[i].fops);
2038
2039 return 0;
2040 }
2041
2042 /*
2043 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2044 * it to our caller to tear down the directory (debugfs_root).
2045 */
2046 static void cleanup_debugfs(struct adapter *adapter)
2047 {
2048 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2049
2050 /*
2051 * Unlike our sister routine cleanup_proc(), we don't need to remove
2052 * individual entries because a call will be made to
2053 * debugfs_remove_recursive(). We just need to clean up any ancillary
2054 * persistent state.
2055 */
2056 /* nothing to do */
2057 }
2058
2059 /*
2060 * Perform early "adapter" initialization. This is where we discover what
2061 * adapter parameters we're going to be using and initialize basic adapter
2062 * hardware support.
2063 */
2064 static int __devinit adap_init0(struct adapter *adapter)
2065 {
2066 struct vf_resources *vfres = &adapter->params.vfres;
2067 struct sge_params *sge_params = &adapter->params.sge;
2068 struct sge *s = &adapter->sge;
2069 unsigned int ethqsets;
2070 int err;
2071
2072 /*
2073 * Wait for the device to become ready before proceeding ...
2074 */
2075 err = t4vf_wait_dev_ready(adapter);
2076 if (err) {
2077 dev_err(adapter->pdev_dev, "device didn't become ready:"
2078 " err=%d\n", err);
2079 return err;
2080 }
2081
2082 /*
2083 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2084 * 2.6.31 and later we can't call pci_reset_function() in order to
2085 * issue an FLR because of a self- deadlock on the device semaphore.
2086 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2087 * cases where they're needed -- for instance, some versions of KVM
2088 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2089 * use the firmware based reset in order to reset any per function
2090 * state.
2091 */
2092 err = t4vf_fw_reset(adapter);
2093 if (err < 0) {
2094 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2095 return err;
2096 }
2097
2098 /*
2099 * Grab basic operational parameters. These will predominantly have
2100 * been set up by the Physical Function Driver or will be hard coded
2101 * into the adapter. We just have to live with them ... Note that
2102 * we _must_ get our VPD parameters before our SGE parameters because
2103 * we need to know the adapter's core clock from the VPD in order to
2104 * properly decode the SGE Timer Values.
2105 */
2106 err = t4vf_get_dev_params(adapter);
2107 if (err) {
2108 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2109 " device parameters: err=%d\n", err);
2110 return err;
2111 }
2112 err = t4vf_get_vpd_params(adapter);
2113 if (err) {
2114 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2115 " VPD parameters: err=%d\n", err);
2116 return err;
2117 }
2118 err = t4vf_get_sge_params(adapter);
2119 if (err) {
2120 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2121 " SGE parameters: err=%d\n", err);
2122 return err;
2123 }
2124 err = t4vf_get_rss_glb_config(adapter);
2125 if (err) {
2126 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2127 " RSS parameters: err=%d\n", err);
2128 return err;
2129 }
2130 if (adapter->params.rss.mode !=
2131 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2132 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2133 " mode %d\n", adapter->params.rss.mode);
2134 return -EINVAL;
2135 }
2136 err = t4vf_sge_init(adapter);
2137 if (err) {
2138 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2139 " err=%d\n", err);
2140 return err;
2141 }
2142
2143 /*
2144 * Retrieve our RX interrupt holdoff timer values and counter
2145 * threshold values from the SGE parameters.
2146 */
2147 s->timer_val[0] = core_ticks_to_us(adapter,
2148 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2149 s->timer_val[1] = core_ticks_to_us(adapter,
2150 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2151 s->timer_val[2] = core_ticks_to_us(adapter,
2152 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2153 s->timer_val[3] = core_ticks_to_us(adapter,
2154 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2155 s->timer_val[4] = core_ticks_to_us(adapter,
2156 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2157 s->timer_val[5] = core_ticks_to_us(adapter,
2158 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2159
2160 s->counter_val[0] =
2161 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2162 s->counter_val[1] =
2163 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2164 s->counter_val[2] =
2165 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2166 s->counter_val[3] =
2167 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2168
2169 /*
2170 * Grab our Virtual Interface resource allocation, extract the
2171 * features that we're interested in and do a bit of sanity testing on
2172 * what we discover.
2173 */
2174 err = t4vf_get_vfres(adapter);
2175 if (err) {
2176 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2177 " resources: err=%d\n", err);
2178 return err;
2179 }
2180
2181 /*
2182 * The number of "ports" which we support is equal to the number of
2183 * Virtual Interfaces with which we've been provisioned.
2184 */
2185 adapter->params.nports = vfres->nvi;
2186 if (adapter->params.nports > MAX_NPORTS) {
2187 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2188 " virtual interfaces\n", MAX_NPORTS,
2189 adapter->params.nports);
2190 adapter->params.nports = MAX_NPORTS;
2191 }
2192
2193 /*
2194 * We need to reserve a number of the ingress queues with Free List
2195 * and Interrupt capabilities for special interrupt purposes (like
2196 * asynchronous firmware messages, or forwarded interrupts if we're
2197 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2198 * matched up one-for-one with Ethernet/Control egress queues in order
2199 * to form "Queue Sets" which will be aportioned between the "ports".
2200 * For each Queue Set, we'll need the ability to allocate two Egress
2201 * Contexts -- one for the Ingress Queue Free List and one for the TX
2202 * Ethernet Queue.
2203 */
2204 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2205 if (vfres->nethctrl != ethqsets) {
2206 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2207 " ingress/egress queues (%d/%d); using minimum for"
2208 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2209 ethqsets = min(vfres->nethctrl, ethqsets);
2210 }
2211 if (vfres->neq < ethqsets*2) {
2212 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2213 " to support Queue Sets (%d); reducing allowed Queue"
2214 " Sets\n", vfres->neq, ethqsets);
2215 ethqsets = vfres->neq/2;
2216 }
2217 if (ethqsets > MAX_ETH_QSETS) {
2218 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2219 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2220 ethqsets = MAX_ETH_QSETS;
2221 }
2222 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2223 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2224 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2225 }
2226 adapter->sge.max_ethqsets = ethqsets;
2227
2228 /*
2229 * Check for various parameter sanity issues. Most checks simply
2230 * result in us using fewer resources than our provissioning but we
2231 * do need at least one "port" with which to work ...
2232 */
2233 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2234 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2235 " virtual interfaces (too few Queue Sets)\n",
2236 adapter->sge.max_ethqsets, adapter->params.nports);
2237 adapter->params.nports = adapter->sge.max_ethqsets;
2238 }
2239 if (adapter->params.nports == 0) {
2240 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2241 "usable!\n");
2242 return -EINVAL;
2243 }
2244 return 0;
2245 }
2246
2247 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2248 u8 pkt_cnt_idx, unsigned int size,
2249 unsigned int iqe_size)
2250 {
2251 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2252 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2253 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2254 ? pkt_cnt_idx
2255 : 0);
2256 rspq->iqe_len = iqe_size;
2257 rspq->size = size;
2258 }
2259
2260 /*
2261 * Perform default configuration of DMA queues depending on the number and
2262 * type of ports we found and the number of available CPUs. Most settings can
2263 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2264 * being brought up for the first time.
2265 */
2266 static void __devinit cfg_queues(struct adapter *adapter)
2267 {
2268 struct sge *s = &adapter->sge;
2269 int q10g, n10g, qidx, pidx, qs;
2270 size_t iqe_size;
2271
2272 /*
2273 * We should not be called till we know how many Queue Sets we can
2274 * support. In particular, this means that we need to know what kind
2275 * of interrupts we'll be using ...
2276 */
2277 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2278
2279 /*
2280 * Count the number of 10GbE Virtual Interfaces that we have.
2281 */
2282 n10g = 0;
2283 for_each_port(adapter, pidx)
2284 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2285
2286 /*
2287 * We default to 1 queue per non-10G port and up to # of cores queues
2288 * per 10G port.
2289 */
2290 if (n10g == 0)
2291 q10g = 0;
2292 else {
2293 int n1g = (adapter->params.nports - n10g);
2294 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2295 if (q10g > num_online_cpus())
2296 q10g = num_online_cpus();
2297 }
2298
2299 /*
2300 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2301 * The layout will be established in setup_sge_queues() when the
2302 * adapter is brough up for the first time.
2303 */
2304 qidx = 0;
2305 for_each_port(adapter, pidx) {
2306 struct port_info *pi = adap2pinfo(adapter, pidx);
2307
2308 pi->first_qset = qidx;
2309 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2310 qidx += pi->nqsets;
2311 }
2312 s->ethqsets = qidx;
2313
2314 /*
2315 * The Ingress Queue Entry Size for our various Response Queues needs
2316 * to be big enough to accommodate the largest message we can receive
2317 * from the chip/firmware; which is 64 bytes ...
2318 */
2319 iqe_size = 64;
2320
2321 /*
2322 * Set up default Queue Set parameters ... Start off with the
2323 * shortest interrupt holdoff timer.
2324 */
2325 for (qs = 0; qs < s->max_ethqsets; qs++) {
2326 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2327 struct sge_eth_txq *txq = &s->ethtxq[qs];
2328
2329 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2330 rxq->fl.size = 72;
2331 txq->q.size = 1024;
2332 }
2333
2334 /*
2335 * The firmware event queue is used for link state changes and
2336 * notifications of TX DMA completions.
2337 */
2338 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2339
2340 /*
2341 * The forwarded interrupt queue is used when we're in MSI interrupt
2342 * mode. In this mode all interrupts associated with RX queues will
2343 * be forwarded to a single queue which we'll associate with our MSI
2344 * interrupt vector. The messages dropped in the forwarded interrupt
2345 * queue will indicate which ingress queue needs servicing ... This
2346 * queue needs to be large enough to accommodate all of the ingress
2347 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2348 * from equalling the CIDX if every ingress queue has an outstanding
2349 * interrupt). The queue doesn't need to be any larger because no
2350 * ingress queue will ever have more than one outstanding interrupt at
2351 * any time ...
2352 */
2353 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2354 iqe_size);
2355 }
2356
2357 /*
2358 * Reduce the number of Ethernet queues across all ports to at most n.
2359 * n provides at least one queue per port.
2360 */
2361 static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2362 {
2363 int i;
2364 struct port_info *pi;
2365
2366 /*
2367 * While we have too many active Ether Queue Sets, interate across the
2368 * "ports" and reduce their individual Queue Set allocations.
2369 */
2370 BUG_ON(n < adapter->params.nports);
2371 while (n < adapter->sge.ethqsets)
2372 for_each_port(adapter, i) {
2373 pi = adap2pinfo(adapter, i);
2374 if (pi->nqsets > 1) {
2375 pi->nqsets--;
2376 adapter->sge.ethqsets--;
2377 if (adapter->sge.ethqsets <= n)
2378 break;
2379 }
2380 }
2381
2382 /*
2383 * Reassign the starting Queue Sets for each of the "ports" ...
2384 */
2385 n = 0;
2386 for_each_port(adapter, i) {
2387 pi = adap2pinfo(adapter, i);
2388 pi->first_qset = n;
2389 n += pi->nqsets;
2390 }
2391 }
2392
2393 /*
2394 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2395 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2396 * need. Minimally we need one for every Virtual Interface plus those needed
2397 * for our "extras". Note that this process may lower the maximum number of
2398 * allowed Queue Sets ...
2399 */
2400 static int __devinit enable_msix(struct adapter *adapter)
2401 {
2402 int i, err, want, need;
2403 struct msix_entry entries[MSIX_ENTRIES];
2404 struct sge *s = &adapter->sge;
2405
2406 for (i = 0; i < MSIX_ENTRIES; ++i)
2407 entries[i].entry = i;
2408
2409 /*
2410 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2411 * plus those needed for our "extras" (for example, the firmware
2412 * message queue). We _need_ at least one "Queue Set" per Virtual
2413 * Interface plus those needed for our "extras". So now we get to see
2414 * if the song is right ...
2415 */
2416 want = s->max_ethqsets + MSIX_EXTRAS;
2417 need = adapter->params.nports + MSIX_EXTRAS;
2418 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2419 want = err;
2420
2421 if (err == 0) {
2422 int nqsets = want - MSIX_EXTRAS;
2423 if (nqsets < s->max_ethqsets) {
2424 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2425 " for %d Queue Sets\n", nqsets);
2426 s->max_ethqsets = nqsets;
2427 if (nqsets < s->ethqsets)
2428 reduce_ethqs(adapter, nqsets);
2429 }
2430 for (i = 0; i < want; ++i)
2431 adapter->msix_info[i].vec = entries[i].vector;
2432 } else if (err > 0) {
2433 pci_disable_msix(adapter->pdev);
2434 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2435 " not using MSI-X\n", err);
2436 }
2437 return err;
2438 }
2439
2440 static const struct net_device_ops cxgb4vf_netdev_ops = {
2441 .ndo_open = cxgb4vf_open,
2442 .ndo_stop = cxgb4vf_stop,
2443 .ndo_start_xmit = t4vf_eth_xmit,
2444 .ndo_get_stats = cxgb4vf_get_stats,
2445 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2446 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2447 .ndo_validate_addr = eth_validate_addr,
2448 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2449 .ndo_change_mtu = cxgb4vf_change_mtu,
2450 .ndo_fix_features = cxgb4vf_fix_features,
2451 .ndo_set_features = cxgb4vf_set_features,
2452 #ifdef CONFIG_NET_POLL_CONTROLLER
2453 .ndo_poll_controller = cxgb4vf_poll_controller,
2454 #endif
2455 };
2456
2457 /*
2458 * "Probe" a device: initialize a device and construct all kernel and driver
2459 * state needed to manage the device. This routine is called "init_one" in
2460 * the PF Driver ...
2461 */
2462 static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2463 const struct pci_device_id *ent)
2464 {
2465 static int version_printed;
2466
2467 int pci_using_dac;
2468 int err, pidx;
2469 unsigned int pmask;
2470 struct adapter *adapter;
2471 struct port_info *pi;
2472 struct net_device *netdev;
2473
2474 /*
2475 * Print our driver banner the first time we're called to initialize a
2476 * device.
2477 */
2478 if (version_printed == 0) {
2479 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2480 version_printed = 1;
2481 }
2482
2483 /*
2484 * Initialize generic PCI device state.
2485 */
2486 err = pci_enable_device(pdev);
2487 if (err) {
2488 dev_err(&pdev->dev, "cannot enable PCI device\n");
2489 return err;
2490 }
2491
2492 /*
2493 * Reserve PCI resources for the device. If we can't get them some
2494 * other driver may have already claimed the device ...
2495 */
2496 err = pci_request_regions(pdev, KBUILD_MODNAME);
2497 if (err) {
2498 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2499 goto err_disable_device;
2500 }
2501
2502 /*
2503 * Set up our DMA mask: try for 64-bit address masking first and
2504 * fall back to 32-bit if we can't get 64 bits ...
2505 */
2506 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2507 if (err == 0) {
2508 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2509 if (err) {
2510 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2511 " coherent allocations\n");
2512 goto err_release_regions;
2513 }
2514 pci_using_dac = 1;
2515 } else {
2516 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2517 if (err != 0) {
2518 dev_err(&pdev->dev, "no usable DMA configuration\n");
2519 goto err_release_regions;
2520 }
2521 pci_using_dac = 0;
2522 }
2523
2524 /*
2525 * Enable bus mastering for the device ...
2526 */
2527 pci_set_master(pdev);
2528
2529 /*
2530 * Allocate our adapter data structure and attach it to the device.
2531 */
2532 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2533 if (!adapter) {
2534 err = -ENOMEM;
2535 goto err_release_regions;
2536 }
2537 pci_set_drvdata(pdev, adapter);
2538 adapter->pdev = pdev;
2539 adapter->pdev_dev = &pdev->dev;
2540
2541 /*
2542 * Initialize SMP data synchronization resources.
2543 */
2544 spin_lock_init(&adapter->stats_lock);
2545
2546 /*
2547 * Map our I/O registers in BAR0.
2548 */
2549 adapter->regs = pci_ioremap_bar(pdev, 0);
2550 if (!adapter->regs) {
2551 dev_err(&pdev->dev, "cannot map device registers\n");
2552 err = -ENOMEM;
2553 goto err_free_adapter;
2554 }
2555
2556 /*
2557 * Initialize adapter level features.
2558 */
2559 adapter->name = pci_name(pdev);
2560 adapter->msg_enable = dflt_msg_enable;
2561 err = adap_init0(adapter);
2562 if (err)
2563 goto err_unmap_bar;
2564
2565 /*
2566 * Allocate our "adapter ports" and stitch everything together.
2567 */
2568 pmask = adapter->params.vfres.pmask;
2569 for_each_port(adapter, pidx) {
2570 int port_id, viid;
2571
2572 /*
2573 * We simplistically allocate our virtual interfaces
2574 * sequentially across the port numbers to which we have
2575 * access rights. This should be configurable in some manner
2576 * ...
2577 */
2578 if (pmask == 0)
2579 break;
2580 port_id = ffs(pmask) - 1;
2581 pmask &= ~(1 << port_id);
2582 viid = t4vf_alloc_vi(adapter, port_id);
2583 if (viid < 0) {
2584 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2585 " err=%d\n", port_id, viid);
2586 err = viid;
2587 goto err_free_dev;
2588 }
2589
2590 /*
2591 * Allocate our network device and stitch things together.
2592 */
2593 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2594 MAX_PORT_QSETS);
2595 if (netdev == NULL) {
2596 dev_err(&pdev->dev, "cannot allocate netdev for"
2597 " port %d\n", port_id);
2598 t4vf_free_vi(adapter, viid);
2599 err = -ENOMEM;
2600 goto err_free_dev;
2601 }
2602 adapter->port[pidx] = netdev;
2603 SET_NETDEV_DEV(netdev, &pdev->dev);
2604 pi = netdev_priv(netdev);
2605 pi->adapter = adapter;
2606 pi->pidx = pidx;
2607 pi->port_id = port_id;
2608 pi->viid = viid;
2609
2610 /*
2611 * Initialize the starting state of our "port" and register
2612 * it.
2613 */
2614 pi->xact_addr_filt = -1;
2615 netif_carrier_off(netdev);
2616 netdev->irq = pdev->irq;
2617
2618 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2619 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2620 NETIF_F_HW_VLAN_RX | NETIF_F_RXCSUM;
2621 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2622 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2623 NETIF_F_HIGHDMA;
2624 netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_TX;
2625 if (pci_using_dac)
2626 netdev->features |= NETIF_F_HIGHDMA;
2627
2628 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2629 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2630
2631 /*
2632 * Initialize the hardware/software state for the port.
2633 */
2634 err = t4vf_port_init(adapter, pidx);
2635 if (err) {
2636 dev_err(&pdev->dev, "cannot initialize port %d\n",
2637 pidx);
2638 goto err_free_dev;
2639 }
2640 }
2641
2642 /*
2643 * The "card" is now ready to go. If any errors occur during device
2644 * registration we do not fail the whole "card" but rather proceed
2645 * only with the ports we manage to register successfully. However we
2646 * must register at least one net device.
2647 */
2648 for_each_port(adapter, pidx) {
2649 netdev = adapter->port[pidx];
2650 if (netdev == NULL)
2651 continue;
2652
2653 err = register_netdev(netdev);
2654 if (err) {
2655 dev_warn(&pdev->dev, "cannot register net device %s,"
2656 " skipping\n", netdev->name);
2657 continue;
2658 }
2659
2660 set_bit(pidx, &adapter->registered_device_map);
2661 }
2662 if (adapter->registered_device_map == 0) {
2663 dev_err(&pdev->dev, "could not register any net devices\n");
2664 goto err_free_dev;
2665 }
2666
2667 /*
2668 * Set up our debugfs entries.
2669 */
2670 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2671 adapter->debugfs_root =
2672 debugfs_create_dir(pci_name(pdev),
2673 cxgb4vf_debugfs_root);
2674 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2675 dev_warn(&pdev->dev, "could not create debugfs"
2676 " directory");
2677 else
2678 setup_debugfs(adapter);
2679 }
2680
2681 /*
2682 * See what interrupts we'll be using. If we've been configured to
2683 * use MSI-X interrupts, try to enable them but fall back to using
2684 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2685 * get MSI interrupts we bail with the error.
2686 */
2687 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2688 adapter->flags |= USING_MSIX;
2689 else {
2690 err = pci_enable_msi(pdev);
2691 if (err) {
2692 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2693 " err=%d\n",
2694 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2695 goto err_free_debugfs;
2696 }
2697 adapter->flags |= USING_MSI;
2698 }
2699
2700 /*
2701 * Now that we know how many "ports" we have and what their types are,
2702 * and how many Queue Sets we can support, we can configure our queue
2703 * resources.
2704 */
2705 cfg_queues(adapter);
2706
2707 /*
2708 * Print a short notice on the existence and configuration of the new
2709 * VF network device ...
2710 */
2711 for_each_port(adapter, pidx) {
2712 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2713 adapter->port[pidx]->name,
2714 (adapter->flags & USING_MSIX) ? "MSI-X" :
2715 (adapter->flags & USING_MSI) ? "MSI" : "");
2716 }
2717
2718 /*
2719 * Return success!
2720 */
2721 return 0;
2722
2723 /*
2724 * Error recovery and exit code. Unwind state that's been created
2725 * so far and return the error.
2726 */
2727
2728 err_free_debugfs:
2729 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2730 cleanup_debugfs(adapter);
2731 debugfs_remove_recursive(adapter->debugfs_root);
2732 }
2733
2734 err_free_dev:
2735 for_each_port(adapter, pidx) {
2736 netdev = adapter->port[pidx];
2737 if (netdev == NULL)
2738 continue;
2739 pi = netdev_priv(netdev);
2740 t4vf_free_vi(adapter, pi->viid);
2741 if (test_bit(pidx, &adapter->registered_device_map))
2742 unregister_netdev(netdev);
2743 free_netdev(netdev);
2744 }
2745
2746 err_unmap_bar:
2747 iounmap(adapter->regs);
2748
2749 err_free_adapter:
2750 kfree(adapter);
2751 pci_set_drvdata(pdev, NULL);
2752
2753 err_release_regions:
2754 pci_release_regions(pdev);
2755 pci_set_drvdata(pdev, NULL);
2756 pci_clear_master(pdev);
2757
2758 err_disable_device:
2759 pci_disable_device(pdev);
2760
2761 return err;
2762 }
2763
2764 /*
2765 * "Remove" a device: tear down all kernel and driver state created in the
2766 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2767 * that this is called "remove_one" in the PF Driver.)
2768 */
2769 static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2770 {
2771 struct adapter *adapter = pci_get_drvdata(pdev);
2772
2773 /*
2774 * Tear down driver state associated with device.
2775 */
2776 if (adapter) {
2777 int pidx;
2778
2779 /*
2780 * Stop all of our activity. Unregister network port,
2781 * disable interrupts, etc.
2782 */
2783 for_each_port(adapter, pidx)
2784 if (test_bit(pidx, &adapter->registered_device_map))
2785 unregister_netdev(adapter->port[pidx]);
2786 t4vf_sge_stop(adapter);
2787 if (adapter->flags & USING_MSIX) {
2788 pci_disable_msix(adapter->pdev);
2789 adapter->flags &= ~USING_MSIX;
2790 } else if (adapter->flags & USING_MSI) {
2791 pci_disable_msi(adapter->pdev);
2792 adapter->flags &= ~USING_MSI;
2793 }
2794
2795 /*
2796 * Tear down our debugfs entries.
2797 */
2798 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2799 cleanup_debugfs(adapter);
2800 debugfs_remove_recursive(adapter->debugfs_root);
2801 }
2802
2803 /*
2804 * Free all of the various resources which we've acquired ...
2805 */
2806 t4vf_free_sge_resources(adapter);
2807 for_each_port(adapter, pidx) {
2808 struct net_device *netdev = adapter->port[pidx];
2809 struct port_info *pi;
2810
2811 if (netdev == NULL)
2812 continue;
2813
2814 pi = netdev_priv(netdev);
2815 t4vf_free_vi(adapter, pi->viid);
2816 free_netdev(netdev);
2817 }
2818 iounmap(adapter->regs);
2819 kfree(adapter);
2820 pci_set_drvdata(pdev, NULL);
2821 }
2822
2823 /*
2824 * Disable the device and release its PCI resources.
2825 */
2826 pci_disable_device(pdev);
2827 pci_clear_master(pdev);
2828 pci_release_regions(pdev);
2829 }
2830
2831 /*
2832 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2833 * delivery.
2834 */
2835 static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2836 {
2837 struct adapter *adapter;
2838 int pidx;
2839
2840 adapter = pci_get_drvdata(pdev);
2841 if (!adapter)
2842 return;
2843
2844 /*
2845 * Disable all Virtual Interfaces. This will shut down the
2846 * delivery of all ingress packets into the chip for these
2847 * Virtual Interfaces.
2848 */
2849 for_each_port(adapter, pidx) {
2850 struct net_device *netdev;
2851 struct port_info *pi;
2852
2853 if (!test_bit(pidx, &adapter->registered_device_map))
2854 continue;
2855
2856 netdev = adapter->port[pidx];
2857 if (!netdev)
2858 continue;
2859
2860 pi = netdev_priv(netdev);
2861 t4vf_enable_vi(adapter, pi->viid, false, false);
2862 }
2863
2864 /*
2865 * Free up all Queues which will prevent further DMA and
2866 * Interrupts allowing various internal pathways to drain.
2867 */
2868 t4vf_free_sge_resources(adapter);
2869 }
2870
2871 /*
2872 * PCI Device registration data structures.
2873 */
2874 #define CH_DEVICE(devid, idx) \
2875 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2876
2877 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2878 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2879 CH_DEVICE(0x4800, 0), /* T440-dbg */
2880 CH_DEVICE(0x4801, 0), /* T420-cr */
2881 CH_DEVICE(0x4802, 0), /* T422-cr */
2882 CH_DEVICE(0x4803, 0), /* T440-cr */
2883 CH_DEVICE(0x4804, 0), /* T420-bch */
2884 CH_DEVICE(0x4805, 0), /* T440-bch */
2885 CH_DEVICE(0x4806, 0), /* T460-ch */
2886 CH_DEVICE(0x4807, 0), /* T420-so */
2887 CH_DEVICE(0x4808, 0), /* T420-cx */
2888 CH_DEVICE(0x4809, 0), /* T420-bt */
2889 CH_DEVICE(0x480a, 0), /* T404-bt */
2890 { 0, }
2891 };
2892
2893 MODULE_DESCRIPTION(DRV_DESC);
2894 MODULE_AUTHOR("Chelsio Communications");
2895 MODULE_LICENSE("Dual BSD/GPL");
2896 MODULE_VERSION(DRV_VERSION);
2897 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2898
2899 static struct pci_driver cxgb4vf_driver = {
2900 .name = KBUILD_MODNAME,
2901 .id_table = cxgb4vf_pci_tbl,
2902 .probe = cxgb4vf_pci_probe,
2903 .remove = __devexit_p(cxgb4vf_pci_remove),
2904 .shutdown = __devexit_p(cxgb4vf_pci_shutdown),
2905 };
2906
2907 /*
2908 * Initialize global driver state.
2909 */
2910 static int __init cxgb4vf_module_init(void)
2911 {
2912 int ret;
2913
2914 /*
2915 * Vet our module parameters.
2916 */
2917 if (msi != MSI_MSIX && msi != MSI_MSI) {
2918 printk(KERN_WARNING KBUILD_MODNAME
2919 ": bad module parameter msi=%d; must be %d"
2920 " (MSI-X or MSI) or %d (MSI)\n",
2921 msi, MSI_MSIX, MSI_MSI);
2922 return -EINVAL;
2923 }
2924
2925 /* Debugfs support is optional, just warn if this fails */
2926 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2927 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2928 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2929 " debugfs entry, continuing\n");
2930
2931 ret = pci_register_driver(&cxgb4vf_driver);
2932 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2933 debugfs_remove(cxgb4vf_debugfs_root);
2934 return ret;
2935 }
2936
2937 /*
2938 * Tear down global driver state.
2939 */
2940 static void __exit cxgb4vf_module_exit(void)
2941 {
2942 pci_unregister_driver(&cxgb4vf_driver);
2943 debugfs_remove(cxgb4vf_debugfs_root);
2944 }
2945
2946 module_init(cxgb4vf_module_init);
2947 module_exit(cxgb4vf_module_exit);