Merge tag 'v3.10.102' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / can / dev.c
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/netdevice.h>
24 #include <linux/if_arp.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
31
32 #define MOD_DESC "CAN device driver interface"
33
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38 /* CAN DLC to real data length conversion helpers */
39
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 8, 12, 16, 20, 24, 32, 48, 64};
42
43 /* get data length from can_dlc with sanitized can_dlc */
44 u8 can_dlc2len(u8 can_dlc)
45 {
46 return dlc2len[can_dlc & 0x0F];
47 }
48 EXPORT_SYMBOL_GPL(can_dlc2len);
49
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
51 9, 9, 9, 9, /* 9 - 12 */
52 10, 10, 10, 10, /* 13 - 16 */
53 11, 11, 11, 11, /* 17 - 20 */
54 12, 12, 12, 12, /* 21 - 24 */
55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60
61 /* map the sanitized data length to an appropriate data length code */
62 u8 can_len2dlc(u8 len)
63 {
64 if (unlikely(len > 64))
65 return 0xF;
66
67 return len2dlc[len];
68 }
69 EXPORT_SYMBOL_GPL(can_len2dlc);
70
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73
74 /*
75 * Bit-timing calculation derived from:
76 *
77 * Code based on LinCAN sources and H8S2638 project
78 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79 * Copyright 2005 Stanislav Marek
80 * email: pisa@cmp.felk.cvut.cz
81 *
82 * Calculates proper bit-timing parameters for a specified bit-rate
83 * and sample-point, which can then be used to set the bit-timing
84 * registers of the CAN controller. You can find more information
85 * in the header file linux/can/netlink.h.
86 */
87 static int can_update_spt(const struct can_bittiming_const *btc,
88 int sampl_pt, int tseg, int *tseg1, int *tseg2)
89 {
90 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91 if (*tseg2 < btc->tseg2_min)
92 *tseg2 = btc->tseg2_min;
93 if (*tseg2 > btc->tseg2_max)
94 *tseg2 = btc->tseg2_max;
95 *tseg1 = tseg - *tseg2;
96 if (*tseg1 > btc->tseg1_max) {
97 *tseg1 = btc->tseg1_max;
98 *tseg2 = tseg - *tseg1;
99 }
100 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
101 }
102
103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
104 {
105 struct can_priv *priv = netdev_priv(dev);
106 const struct can_bittiming_const *btc = priv->bittiming_const;
107 long rate, best_rate = 0;
108 long best_error = 1000000000, error = 0;
109 int best_tseg = 0, best_brp = 0, brp = 0;
110 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
111 int spt_error = 1000, spt = 0, sampl_pt;
112 u64 v64;
113
114 if (!priv->bittiming_const)
115 return -ENOTSUPP;
116
117 /* Use CIA recommended sample points */
118 if (bt->sample_point) {
119 sampl_pt = bt->sample_point;
120 } else {
121 if (bt->bitrate > 800000)
122 sampl_pt = 750;
123 else if (bt->bitrate > 500000)
124 sampl_pt = 800;
125 else
126 sampl_pt = 875;
127 }
128
129 /* tseg even = round down, odd = round up */
130 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
131 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
132 tsegall = 1 + tseg / 2;
133 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
134 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
135 /* chose brp step which is possible in system */
136 brp = (brp / btc->brp_inc) * btc->brp_inc;
137 if ((brp < btc->brp_min) || (brp > btc->brp_max))
138 continue;
139 rate = priv->clock.freq / (brp * tsegall);
140 error = bt->bitrate - rate;
141 /* tseg brp biterror */
142 if (error < 0)
143 error = -error;
144 if (error > best_error)
145 continue;
146 best_error = error;
147 if (error == 0) {
148 spt = can_update_spt(btc, sampl_pt, tseg / 2,
149 &tseg1, &tseg2);
150 error = sampl_pt - spt;
151 if (error < 0)
152 error = -error;
153 if (error > spt_error)
154 continue;
155 spt_error = error;
156 }
157 best_tseg = tseg / 2;
158 best_brp = brp;
159 best_rate = rate;
160 if (error == 0)
161 break;
162 }
163
164 if (best_error) {
165 /* Error in one-tenth of a percent */
166 error = (best_error * 1000) / bt->bitrate;
167 if (error > CAN_CALC_MAX_ERROR) {
168 netdev_err(dev,
169 "bitrate error %ld.%ld%% too high\n",
170 error / 10, error % 10);
171 return -EDOM;
172 } else {
173 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
174 error / 10, error % 10);
175 }
176 }
177
178 /* real sample point */
179 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
180 &tseg1, &tseg2);
181
182 v64 = (u64)best_brp * 1000000000UL;
183 do_div(v64, priv->clock.freq);
184 bt->tq = (u32)v64;
185 bt->prop_seg = tseg1 / 2;
186 bt->phase_seg1 = tseg1 - bt->prop_seg;
187 bt->phase_seg2 = tseg2;
188
189 /* check for sjw user settings */
190 if (!bt->sjw || !btc->sjw_max)
191 bt->sjw = 1;
192 else {
193 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
194 if (bt->sjw > btc->sjw_max)
195 bt->sjw = btc->sjw_max;
196 /* bt->sjw must not be higher than tseg2 */
197 if (tseg2 < bt->sjw)
198 bt->sjw = tseg2;
199 }
200
201 bt->brp = best_brp;
202 /* real bit-rate */
203 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
204
205 return 0;
206 }
207 #else /* !CONFIG_CAN_CALC_BITTIMING */
208 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
209 {
210 netdev_err(dev, "bit-timing calculation not available\n");
211 return -EINVAL;
212 }
213 #endif /* CONFIG_CAN_CALC_BITTIMING */
214
215 /*
216 * Checks the validity of the specified bit-timing parameters prop_seg,
217 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
218 * prescaler value brp. You can find more information in the header
219 * file linux/can/netlink.h.
220 */
221 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
222 {
223 struct can_priv *priv = netdev_priv(dev);
224 const struct can_bittiming_const *btc = priv->bittiming_const;
225 int tseg1, alltseg;
226 u64 brp64;
227
228 if (!priv->bittiming_const)
229 return -ENOTSUPP;
230
231 tseg1 = bt->prop_seg + bt->phase_seg1;
232 if (!bt->sjw)
233 bt->sjw = 1;
234 if (bt->sjw > btc->sjw_max ||
235 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
236 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
237 return -ERANGE;
238
239 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
240 if (btc->brp_inc > 1)
241 do_div(brp64, btc->brp_inc);
242 brp64 += 500000000UL - 1;
243 do_div(brp64, 1000000000UL); /* the practicable BRP */
244 if (btc->brp_inc > 1)
245 brp64 *= btc->brp_inc;
246 bt->brp = (u32)brp64;
247
248 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
249 return -EINVAL;
250
251 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
252 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
253 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
254
255 return 0;
256 }
257
258 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
259 {
260 struct can_priv *priv = netdev_priv(dev);
261 int err;
262
263 /* Check if the CAN device has bit-timing parameters */
264 if (priv->bittiming_const) {
265
266 /* Non-expert mode? Check if the bitrate has been pre-defined */
267 if (!bt->tq)
268 /* Determine bit-timing parameters */
269 err = can_calc_bittiming(dev, bt);
270 else
271 /* Check bit-timing params and calculate proper brp */
272 err = can_fixup_bittiming(dev, bt);
273 if (err)
274 return err;
275 }
276
277 return 0;
278 }
279
280 /*
281 * Local echo of CAN messages
282 *
283 * CAN network devices *should* support a local echo functionality
284 * (see Documentation/networking/can.txt). To test the handling of CAN
285 * interfaces that do not support the local echo both driver types are
286 * implemented. In the case that the driver does not support the echo
287 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
288 * to perform the echo as a fallback solution.
289 */
290 static void can_flush_echo_skb(struct net_device *dev)
291 {
292 struct can_priv *priv = netdev_priv(dev);
293 struct net_device_stats *stats = &dev->stats;
294 int i;
295
296 for (i = 0; i < priv->echo_skb_max; i++) {
297 if (priv->echo_skb[i]) {
298 kfree_skb(priv->echo_skb[i]);
299 priv->echo_skb[i] = NULL;
300 stats->tx_dropped++;
301 stats->tx_aborted_errors++;
302 }
303 }
304 }
305
306 /*
307 * Put the skb on the stack to be looped backed locally lateron
308 *
309 * The function is typically called in the start_xmit function
310 * of the device driver. The driver must protect access to
311 * priv->echo_skb, if necessary.
312 */
313 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
314 unsigned int idx)
315 {
316 struct can_priv *priv = netdev_priv(dev);
317
318 BUG_ON(idx >= priv->echo_skb_max);
319
320 /* check flag whether this packet has to be looped back */
321 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
322 kfree_skb(skb);
323 return;
324 }
325
326 if (!priv->echo_skb[idx]) {
327
328 skb = can_create_echo_skb(skb);
329 if (!skb)
330 return;
331
332 /* make settings for echo to reduce code in irq context */
333 skb->protocol = htons(ETH_P_CAN);
334 skb->pkt_type = PACKET_BROADCAST;
335 skb->ip_summed = CHECKSUM_UNNECESSARY;
336 skb->dev = dev;
337
338 /* save this skb for tx interrupt echo handling */
339 priv->echo_skb[idx] = skb;
340 } else {
341 /* locking problem with netif_stop_queue() ?? */
342 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
343 kfree_skb(skb);
344 }
345 }
346 EXPORT_SYMBOL_GPL(can_put_echo_skb);
347
348 /*
349 * Get the skb from the stack and loop it back locally
350 *
351 * The function is typically called when the TX done interrupt
352 * is handled in the device driver. The driver must protect
353 * access to priv->echo_skb, if necessary.
354 */
355 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
356 {
357 struct can_priv *priv = netdev_priv(dev);
358
359 BUG_ON(idx >= priv->echo_skb_max);
360
361 if (priv->echo_skb[idx]) {
362 struct sk_buff *skb = priv->echo_skb[idx];
363 struct can_frame *cf = (struct can_frame *)skb->data;
364 u8 dlc = cf->can_dlc;
365
366 netif_rx(priv->echo_skb[idx]);
367 priv->echo_skb[idx] = NULL;
368
369 return dlc;
370 }
371
372 return 0;
373 }
374 EXPORT_SYMBOL_GPL(can_get_echo_skb);
375
376 /*
377 * Remove the skb from the stack and free it.
378 *
379 * The function is typically called when TX failed.
380 */
381 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
382 {
383 struct can_priv *priv = netdev_priv(dev);
384
385 BUG_ON(idx >= priv->echo_skb_max);
386
387 if (priv->echo_skb[idx]) {
388 dev_kfree_skb_any(priv->echo_skb[idx]);
389 priv->echo_skb[idx] = NULL;
390 }
391 }
392 EXPORT_SYMBOL_GPL(can_free_echo_skb);
393
394 /*
395 * CAN device restart for bus-off recovery
396 */
397 static void can_restart(unsigned long data)
398 {
399 struct net_device *dev = (struct net_device *)data;
400 struct can_priv *priv = netdev_priv(dev);
401 struct net_device_stats *stats = &dev->stats;
402 struct sk_buff *skb;
403 struct can_frame *cf;
404 int err;
405
406 BUG_ON(netif_carrier_ok(dev));
407
408 /*
409 * No synchronization needed because the device is bus-off and
410 * no messages can come in or go out.
411 */
412 can_flush_echo_skb(dev);
413
414 /* send restart message upstream */
415 skb = alloc_can_err_skb(dev, &cf);
416 if (skb == NULL) {
417 err = -ENOMEM;
418 goto restart;
419 }
420 cf->can_id |= CAN_ERR_RESTARTED;
421
422 netif_rx(skb);
423
424 stats->rx_packets++;
425 stats->rx_bytes += cf->can_dlc;
426
427 restart:
428 netdev_dbg(dev, "restarted\n");
429 priv->can_stats.restarts++;
430
431 /* Now restart the device */
432 err = priv->do_set_mode(dev, CAN_MODE_START);
433
434 netif_carrier_on(dev);
435 if (err)
436 netdev_err(dev, "Error %d during restart", err);
437 }
438
439 int can_restart_now(struct net_device *dev)
440 {
441 struct can_priv *priv = netdev_priv(dev);
442
443 /*
444 * A manual restart is only permitted if automatic restart is
445 * disabled and the device is in the bus-off state
446 */
447 if (priv->restart_ms)
448 return -EINVAL;
449 if (priv->state != CAN_STATE_BUS_OFF)
450 return -EBUSY;
451
452 /* Runs as soon as possible in the timer context */
453 mod_timer(&priv->restart_timer, jiffies);
454
455 return 0;
456 }
457
458 /*
459 * CAN bus-off
460 *
461 * This functions should be called when the device goes bus-off to
462 * tell the netif layer that no more packets can be sent or received.
463 * If enabled, a timer is started to trigger bus-off recovery.
464 */
465 void can_bus_off(struct net_device *dev)
466 {
467 struct can_priv *priv = netdev_priv(dev);
468
469 netdev_dbg(dev, "bus-off\n");
470
471 netif_carrier_off(dev);
472 priv->can_stats.bus_off++;
473
474 if (priv->restart_ms)
475 mod_timer(&priv->restart_timer,
476 jiffies + (priv->restart_ms * HZ) / 1000);
477 }
478 EXPORT_SYMBOL_GPL(can_bus_off);
479
480 static void can_setup(struct net_device *dev)
481 {
482 dev->type = ARPHRD_CAN;
483 dev->mtu = CAN_MTU;
484 dev->hard_header_len = 0;
485 dev->addr_len = 0;
486 dev->tx_queue_len = 10;
487
488 /* New-style flags. */
489 dev->flags = IFF_NOARP;
490 dev->features = NETIF_F_HW_CSUM;
491 }
492
493 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
494 {
495 struct sk_buff *skb;
496
497 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
498 sizeof(struct can_frame));
499 if (unlikely(!skb))
500 return NULL;
501
502 skb->protocol = htons(ETH_P_CAN);
503 skb->pkt_type = PACKET_BROADCAST;
504 skb->ip_summed = CHECKSUM_UNNECESSARY;
505
506 skb_reset_mac_header(skb);
507 skb_reset_network_header(skb);
508 skb_reset_transport_header(skb);
509
510 skb_reset_mac_header(skb);
511 skb_reset_network_header(skb);
512 skb_reset_transport_header(skb);
513
514 can_skb_reserve(skb);
515 can_skb_prv(skb)->ifindex = dev->ifindex;
516
517 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
518 memset(*cf, 0, sizeof(struct can_frame));
519
520 return skb;
521 }
522 EXPORT_SYMBOL_GPL(alloc_can_skb);
523
524 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
525 {
526 struct sk_buff *skb;
527
528 skb = alloc_can_skb(dev, cf);
529 if (unlikely(!skb))
530 return NULL;
531
532 (*cf)->can_id = CAN_ERR_FLAG;
533 (*cf)->can_dlc = CAN_ERR_DLC;
534
535 return skb;
536 }
537 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
538
539 /*
540 * Allocate and setup space for the CAN network device
541 */
542 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
543 {
544 struct net_device *dev;
545 struct can_priv *priv;
546 int size;
547
548 if (echo_skb_max)
549 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
550 echo_skb_max * sizeof(struct sk_buff *);
551 else
552 size = sizeof_priv;
553
554 dev = alloc_netdev(size, "can%d", can_setup);
555 if (!dev)
556 return NULL;
557
558 priv = netdev_priv(dev);
559
560 if (echo_skb_max) {
561 priv->echo_skb_max = echo_skb_max;
562 priv->echo_skb = (void *)priv +
563 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
564 }
565
566 priv->state = CAN_STATE_STOPPED;
567
568 init_timer(&priv->restart_timer);
569
570 return dev;
571 }
572 EXPORT_SYMBOL_GPL(alloc_candev);
573
574 /*
575 * Free space of the CAN network device
576 */
577 void free_candev(struct net_device *dev)
578 {
579 free_netdev(dev);
580 }
581 EXPORT_SYMBOL_GPL(free_candev);
582
583 /*
584 * Common open function when the device gets opened.
585 *
586 * This function should be called in the open function of the device
587 * driver.
588 */
589 int open_candev(struct net_device *dev)
590 {
591 struct can_priv *priv = netdev_priv(dev);
592
593 if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
594 netdev_err(dev, "bit-timing not yet defined\n");
595 return -EINVAL;
596 }
597
598 /* Switch carrier on if device was stopped while in bus-off state */
599 if (!netif_carrier_ok(dev))
600 netif_carrier_on(dev);
601
602 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
603
604 return 0;
605 }
606 EXPORT_SYMBOL_GPL(open_candev);
607
608 /*
609 * Common close function for cleanup before the device gets closed.
610 *
611 * This function should be called in the close function of the device
612 * driver.
613 */
614 void close_candev(struct net_device *dev)
615 {
616 struct can_priv *priv = netdev_priv(dev);
617
618 del_timer_sync(&priv->restart_timer);
619 can_flush_echo_skb(dev);
620 }
621 EXPORT_SYMBOL_GPL(close_candev);
622
623 /*
624 * CAN netlink interface
625 */
626 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
627 [IFLA_CAN_STATE] = { .type = NLA_U32 },
628 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
629 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
630 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
631 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
632 [IFLA_CAN_BITTIMING_CONST]
633 = { .len = sizeof(struct can_bittiming_const) },
634 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
635 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
636 };
637
638 static int can_changelink(struct net_device *dev,
639 struct nlattr *tb[], struct nlattr *data[])
640 {
641 struct can_priv *priv = netdev_priv(dev);
642 int err;
643
644 /* We need synchronization with dev->stop() */
645 ASSERT_RTNL();
646
647 if (data[IFLA_CAN_CTRLMODE]) {
648 struct can_ctrlmode *cm;
649
650 /* Do not allow changing controller mode while running */
651 if (dev->flags & IFF_UP)
652 return -EBUSY;
653 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
654
655 /* check whether changed bits are allowed to be modified */
656 if (cm->mask & ~priv->ctrlmode_supported)
657 return -EOPNOTSUPP;
658
659 /* clear bits to be modified and copy the flag values */
660 priv->ctrlmode &= ~cm->mask;
661 priv->ctrlmode |= (cm->flags & cm->mask);
662 }
663
664 if (data[IFLA_CAN_BITTIMING]) {
665 struct can_bittiming bt;
666
667 /* Do not allow changing bittiming while running */
668 if (dev->flags & IFF_UP)
669 return -EBUSY;
670 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
671 if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
672 return -EINVAL;
673 err = can_get_bittiming(dev, &bt);
674 if (err)
675 return err;
676 memcpy(&priv->bittiming, &bt, sizeof(bt));
677
678 if (priv->do_set_bittiming) {
679 /* Finally, set the bit-timing registers */
680 err = priv->do_set_bittiming(dev);
681 if (err)
682 return err;
683 }
684 }
685
686 if (data[IFLA_CAN_RESTART_MS]) {
687 /* Do not allow changing restart delay while running */
688 if (dev->flags & IFF_UP)
689 return -EBUSY;
690 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
691 }
692
693 if (data[IFLA_CAN_RESTART]) {
694 /* Do not allow a restart while not running */
695 if (!(dev->flags & IFF_UP))
696 return -EINVAL;
697 err = can_restart_now(dev);
698 if (err)
699 return err;
700 }
701
702 return 0;
703 }
704
705 static size_t can_get_size(const struct net_device *dev)
706 {
707 struct can_priv *priv = netdev_priv(dev);
708 size_t size;
709
710 size = nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
711 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
712 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
713 size += nla_total_size(sizeof(struct can_bittiming)); /* IFLA_CAN_BITTIMING */
714 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
715 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
716 size += nla_total_size(sizeof(struct can_berr_counter));
717 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
718 size += nla_total_size(sizeof(struct can_bittiming_const));
719
720 return size;
721 }
722
723 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
724 {
725 struct can_priv *priv = netdev_priv(dev);
726 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
727 struct can_berr_counter bec;
728 enum can_state state = priv->state;
729
730 if (priv->do_get_state)
731 priv->do_get_state(dev, &state);
732 if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
733 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
734 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
735 nla_put(skb, IFLA_CAN_BITTIMING,
736 sizeof(priv->bittiming), &priv->bittiming) ||
737 nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
738 (priv->do_get_berr_counter &&
739 !priv->do_get_berr_counter(dev, &bec) &&
740 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
741 (priv->bittiming_const &&
742 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
743 sizeof(*priv->bittiming_const), priv->bittiming_const)))
744 goto nla_put_failure;
745 return 0;
746
747 nla_put_failure:
748 return -EMSGSIZE;
749 }
750
751 static size_t can_get_xstats_size(const struct net_device *dev)
752 {
753 return sizeof(struct can_device_stats);
754 }
755
756 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
757 {
758 struct can_priv *priv = netdev_priv(dev);
759
760 if (nla_put(skb, IFLA_INFO_XSTATS,
761 sizeof(priv->can_stats), &priv->can_stats))
762 goto nla_put_failure;
763 return 0;
764
765 nla_put_failure:
766 return -EMSGSIZE;
767 }
768
769 static int can_newlink(struct net *src_net, struct net_device *dev,
770 struct nlattr *tb[], struct nlattr *data[])
771 {
772 return -EOPNOTSUPP;
773 }
774
775 static struct rtnl_link_ops can_link_ops __read_mostly = {
776 .kind = "can",
777 .maxtype = IFLA_CAN_MAX,
778 .policy = can_policy,
779 .setup = can_setup,
780 .newlink = can_newlink,
781 .changelink = can_changelink,
782 .get_size = can_get_size,
783 .fill_info = can_fill_info,
784 .get_xstats_size = can_get_xstats_size,
785 .fill_xstats = can_fill_xstats,
786 };
787
788 /*
789 * Register the CAN network device
790 */
791 int register_candev(struct net_device *dev)
792 {
793 dev->rtnl_link_ops = &can_link_ops;
794 return register_netdev(dev);
795 }
796 EXPORT_SYMBOL_GPL(register_candev);
797
798 /*
799 * Unregister the CAN network device
800 */
801 void unregister_candev(struct net_device *dev)
802 {
803 unregister_netdev(dev);
804 }
805 EXPORT_SYMBOL_GPL(unregister_candev);
806
807 /*
808 * Test if a network device is a candev based device
809 * and return the can_priv* if so.
810 */
811 struct can_priv *safe_candev_priv(struct net_device *dev)
812 {
813 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
814 return NULL;
815
816 return netdev_priv(dev);
817 }
818 EXPORT_SYMBOL_GPL(safe_candev_priv);
819
820 static __init int can_dev_init(void)
821 {
822 int err;
823
824 can_led_notifier_init();
825
826 err = rtnl_link_register(&can_link_ops);
827 if (!err)
828 printk(KERN_INFO MOD_DESC "\n");
829
830 return err;
831 }
832 module_init(can_dev_init);
833
834 static __exit void can_dev_exit(void)
835 {
836 rtnl_link_unregister(&can_link_ops);
837
838 can_led_notifier_exit();
839 }
840 module_exit(can_dev_exit);
841
842 MODULE_ALIAS_RTNL_LINK("can");