net: use netdev_mc_count and netdev_mc_empty when appropriate
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / bmac.c
1 /*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/bitrev.h>
22 #include <linux/ethtool.h>
23 #include <asm/prom.h>
24 #include <asm/dbdma.h>
25 #include <asm/io.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/pmac_feature.h>
30 #include <asm/macio.h>
31 #include <asm/irq.h>
32
33 #include "bmac.h"
34
35 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
36 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
37
38 /*
39 * CRC polynomial - used in working out multicast filter bits.
40 */
41 #define ENET_CRCPOLY 0x04c11db7
42
43 /* switch to use multicast code lifted from sunhme driver */
44 #define SUNHME_MULTICAST
45
46 #define N_RX_RING 64
47 #define N_TX_RING 32
48 #define MAX_TX_ACTIVE 1
49 #define ETHERCRC 4
50 #define ETHERMINPACKET 64
51 #define ETHERMTU 1500
52 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
53 #define TX_TIMEOUT HZ /* 1 second */
54
55 /* Bits in transmit DMA status */
56 #define TX_DMA_ERR 0x80
57
58 #define XXDEBUG(args)
59
60 struct bmac_data {
61 /* volatile struct bmac *bmac; */
62 struct sk_buff_head *queue;
63 volatile struct dbdma_regs __iomem *tx_dma;
64 int tx_dma_intr;
65 volatile struct dbdma_regs __iomem *rx_dma;
66 int rx_dma_intr;
67 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
68 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
69 struct macio_dev *mdev;
70 int is_bmac_plus;
71 struct sk_buff *rx_bufs[N_RX_RING];
72 int rx_fill;
73 int rx_empty;
74 struct sk_buff *tx_bufs[N_TX_RING];
75 int tx_fill;
76 int tx_empty;
77 unsigned char tx_fullup;
78 struct timer_list tx_timeout;
79 int timeout_active;
80 int sleeping;
81 int opened;
82 unsigned short hash_use_count[64];
83 unsigned short hash_table_mask[4];
84 spinlock_t lock;
85 };
86
87 #if 0 /* Move that to ethtool */
88
89 typedef struct bmac_reg_entry {
90 char *name;
91 unsigned short reg_offset;
92 } bmac_reg_entry_t;
93
94 #define N_REG_ENTRIES 31
95
96 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
97 {"MEMADD", MEMADD},
98 {"MEMDATAHI", MEMDATAHI},
99 {"MEMDATALO", MEMDATALO},
100 {"TXPNTR", TXPNTR},
101 {"RXPNTR", RXPNTR},
102 {"IPG1", IPG1},
103 {"IPG2", IPG2},
104 {"ALIMIT", ALIMIT},
105 {"SLOT", SLOT},
106 {"PALEN", PALEN},
107 {"PAPAT", PAPAT},
108 {"TXSFD", TXSFD},
109 {"JAM", JAM},
110 {"TXCFG", TXCFG},
111 {"TXMAX", TXMAX},
112 {"TXMIN", TXMIN},
113 {"PAREG", PAREG},
114 {"DCNT", DCNT},
115 {"NCCNT", NCCNT},
116 {"NTCNT", NTCNT},
117 {"EXCNT", EXCNT},
118 {"LTCNT", LTCNT},
119 {"TXSM", TXSM},
120 {"RXCFG", RXCFG},
121 {"RXMAX", RXMAX},
122 {"RXMIN", RXMIN},
123 {"FRCNT", FRCNT},
124 {"AECNT", AECNT},
125 {"FECNT", FECNT},
126 {"RXSM", RXSM},
127 {"RXCV", RXCV}
128 };
129
130 #endif
131
132 static unsigned char *bmac_emergency_rxbuf;
133
134 /*
135 * Number of bytes of private data per BMAC: allow enough for
136 * the rx and tx dma commands plus a branch dma command each,
137 * and another 16 bytes to allow us to align the dma command
138 * buffers on a 16 byte boundary.
139 */
140 #define PRIV_BYTES (sizeof(struct bmac_data) \
141 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
142 + sizeof(struct sk_buff_head))
143
144 static int bmac_open(struct net_device *dev);
145 static int bmac_close(struct net_device *dev);
146 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
147 static void bmac_set_multicast(struct net_device *dev);
148 static void bmac_reset_and_enable(struct net_device *dev);
149 static void bmac_start_chip(struct net_device *dev);
150 static void bmac_init_chip(struct net_device *dev);
151 static void bmac_init_registers(struct net_device *dev);
152 static void bmac_enable_and_reset_chip(struct net_device *dev);
153 static int bmac_set_address(struct net_device *dev, void *addr);
154 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
155 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
156 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
157 static void bmac_set_timeout(struct net_device *dev);
158 static void bmac_tx_timeout(unsigned long data);
159 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
160 static void bmac_start(struct net_device *dev);
161
162 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
163 #define DBDMA_CLEAR(x) ( (x) << 16)
164
165 static inline void
166 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
167 {
168 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
169 return;
170 }
171
172 static inline unsigned long
173 dbdma_ld32(volatile __u32 __iomem *a)
174 {
175 __u32 swap;
176 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
177 return swap;
178 }
179
180 static void
181 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
182 {
183 dbdma_st32(&dmap->control,
184 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
185 eieio();
186 }
187
188 static void
189 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
190 {
191 dbdma_st32(&dmap->control,
192 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
193 eieio();
194 while (dbdma_ld32(&dmap->status) & RUN)
195 eieio();
196 }
197
198 static void
199 dbdma_setcmd(volatile struct dbdma_cmd *cp,
200 unsigned short cmd, unsigned count, unsigned long addr,
201 unsigned long cmd_dep)
202 {
203 out_le16(&cp->command, cmd);
204 out_le16(&cp->req_count, count);
205 out_le32(&cp->phy_addr, addr);
206 out_le32(&cp->cmd_dep, cmd_dep);
207 out_le16(&cp->xfer_status, 0);
208 out_le16(&cp->res_count, 0);
209 }
210
211 static inline
212 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
213 {
214 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
215 }
216
217
218 static inline
219 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
220 {
221 return in_le16((void __iomem *)dev->base_addr + reg_offset);
222 }
223
224 static void
225 bmac_enable_and_reset_chip(struct net_device *dev)
226 {
227 struct bmac_data *bp = netdev_priv(dev);
228 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
229 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
230
231 if (rd)
232 dbdma_reset(rd);
233 if (td)
234 dbdma_reset(td);
235
236 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
237 }
238
239 #define MIFDELAY udelay(10)
240
241 static unsigned int
242 bmac_mif_readbits(struct net_device *dev, int nb)
243 {
244 unsigned int val = 0;
245
246 while (--nb >= 0) {
247 bmwrite(dev, MIFCSR, 0);
248 MIFDELAY;
249 if (bmread(dev, MIFCSR) & 8)
250 val |= 1 << nb;
251 bmwrite(dev, MIFCSR, 1);
252 MIFDELAY;
253 }
254 bmwrite(dev, MIFCSR, 0);
255 MIFDELAY;
256 bmwrite(dev, MIFCSR, 1);
257 MIFDELAY;
258 return val;
259 }
260
261 static void
262 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
263 {
264 int b;
265
266 while (--nb >= 0) {
267 b = (val & (1 << nb))? 6: 4;
268 bmwrite(dev, MIFCSR, b);
269 MIFDELAY;
270 bmwrite(dev, MIFCSR, b|1);
271 MIFDELAY;
272 }
273 }
274
275 static unsigned int
276 bmac_mif_read(struct net_device *dev, unsigned int addr)
277 {
278 unsigned int val;
279
280 bmwrite(dev, MIFCSR, 4);
281 MIFDELAY;
282 bmac_mif_writebits(dev, ~0U, 32);
283 bmac_mif_writebits(dev, 6, 4);
284 bmac_mif_writebits(dev, addr, 10);
285 bmwrite(dev, MIFCSR, 2);
286 MIFDELAY;
287 bmwrite(dev, MIFCSR, 1);
288 MIFDELAY;
289 val = bmac_mif_readbits(dev, 17);
290 bmwrite(dev, MIFCSR, 4);
291 MIFDELAY;
292 return val;
293 }
294
295 static void
296 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
297 {
298 bmwrite(dev, MIFCSR, 4);
299 MIFDELAY;
300 bmac_mif_writebits(dev, ~0U, 32);
301 bmac_mif_writebits(dev, 5, 4);
302 bmac_mif_writebits(dev, addr, 10);
303 bmac_mif_writebits(dev, 2, 2);
304 bmac_mif_writebits(dev, val, 16);
305 bmac_mif_writebits(dev, 3, 2);
306 }
307
308 static void
309 bmac_init_registers(struct net_device *dev)
310 {
311 struct bmac_data *bp = netdev_priv(dev);
312 volatile unsigned short regValue;
313 unsigned short *pWord16;
314 int i;
315
316 /* XXDEBUG(("bmac: enter init_registers\n")); */
317
318 bmwrite(dev, RXRST, RxResetValue);
319 bmwrite(dev, TXRST, TxResetBit);
320
321 i = 100;
322 do {
323 --i;
324 udelay(10000);
325 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
326 } while ((regValue & TxResetBit) && i > 0);
327
328 if (!bp->is_bmac_plus) {
329 regValue = bmread(dev, XCVRIF);
330 regValue |= ClkBit | SerialMode | COLActiveLow;
331 bmwrite(dev, XCVRIF, regValue);
332 udelay(10000);
333 }
334
335 bmwrite(dev, RSEED, (unsigned short)0x1968);
336
337 regValue = bmread(dev, XIFC);
338 regValue |= TxOutputEnable;
339 bmwrite(dev, XIFC, regValue);
340
341 bmread(dev, PAREG);
342
343 /* set collision counters to 0 */
344 bmwrite(dev, NCCNT, 0);
345 bmwrite(dev, NTCNT, 0);
346 bmwrite(dev, EXCNT, 0);
347 bmwrite(dev, LTCNT, 0);
348
349 /* set rx counters to 0 */
350 bmwrite(dev, FRCNT, 0);
351 bmwrite(dev, LECNT, 0);
352 bmwrite(dev, AECNT, 0);
353 bmwrite(dev, FECNT, 0);
354 bmwrite(dev, RXCV, 0);
355
356 /* set tx fifo information */
357 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
358
359 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
360 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
361
362 /* set rx fifo information */
363 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
364 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
365
366 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
367 bmread(dev, STATUS); /* read it just to clear it */
368
369 /* zero out the chip Hash Filter registers */
370 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
371 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
372 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
373 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
374 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
375
376 pWord16 = (unsigned short *)dev->dev_addr;
377 bmwrite(dev, MADD0, *pWord16++);
378 bmwrite(dev, MADD1, *pWord16++);
379 bmwrite(dev, MADD2, *pWord16);
380
381 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
382
383 bmwrite(dev, INTDISABLE, EnableNormal);
384
385 return;
386 }
387
388 #if 0
389 static void
390 bmac_disable_interrupts(struct net_device *dev)
391 {
392 bmwrite(dev, INTDISABLE, DisableAll);
393 }
394
395 static void
396 bmac_enable_interrupts(struct net_device *dev)
397 {
398 bmwrite(dev, INTDISABLE, EnableNormal);
399 }
400 #endif
401
402
403 static void
404 bmac_start_chip(struct net_device *dev)
405 {
406 struct bmac_data *bp = netdev_priv(dev);
407 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
408 unsigned short oldConfig;
409
410 /* enable rx dma channel */
411 dbdma_continue(rd);
412
413 oldConfig = bmread(dev, TXCFG);
414 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
415
416 /* turn on rx plus any other bits already on (promiscuous possibly) */
417 oldConfig = bmread(dev, RXCFG);
418 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
419 udelay(20000);
420 }
421
422 static void
423 bmac_init_phy(struct net_device *dev)
424 {
425 unsigned int addr;
426 struct bmac_data *bp = netdev_priv(dev);
427
428 printk(KERN_DEBUG "phy registers:");
429 for (addr = 0; addr < 32; ++addr) {
430 if ((addr & 7) == 0)
431 printk(KERN_DEBUG);
432 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
433 }
434 printk(KERN_CONT "\n");
435
436 if (bp->is_bmac_plus) {
437 unsigned int capable, ctrl;
438
439 ctrl = bmac_mif_read(dev, 0);
440 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
441 if (bmac_mif_read(dev, 4) != capable ||
442 (ctrl & 0x1000) == 0) {
443 bmac_mif_write(dev, 4, capable);
444 bmac_mif_write(dev, 0, 0x1200);
445 } else
446 bmac_mif_write(dev, 0, 0x1000);
447 }
448 }
449
450 static void bmac_init_chip(struct net_device *dev)
451 {
452 bmac_init_phy(dev);
453 bmac_init_registers(dev);
454 }
455
456 #ifdef CONFIG_PM
457 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
458 {
459 struct net_device* dev = macio_get_drvdata(mdev);
460 struct bmac_data *bp = netdev_priv(dev);
461 unsigned long flags;
462 unsigned short config;
463 int i;
464
465 netif_device_detach(dev);
466 /* prolly should wait for dma to finish & turn off the chip */
467 spin_lock_irqsave(&bp->lock, flags);
468 if (bp->timeout_active) {
469 del_timer(&bp->tx_timeout);
470 bp->timeout_active = 0;
471 }
472 disable_irq(dev->irq);
473 disable_irq(bp->tx_dma_intr);
474 disable_irq(bp->rx_dma_intr);
475 bp->sleeping = 1;
476 spin_unlock_irqrestore(&bp->lock, flags);
477 if (bp->opened) {
478 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
479 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
480
481 config = bmread(dev, RXCFG);
482 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
483 config = bmread(dev, TXCFG);
484 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
485 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
486 /* disable rx and tx dma */
487 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
489 /* free some skb's */
490 for (i=0; i<N_RX_RING; i++) {
491 if (bp->rx_bufs[i] != NULL) {
492 dev_kfree_skb(bp->rx_bufs[i]);
493 bp->rx_bufs[i] = NULL;
494 }
495 }
496 for (i = 0; i<N_TX_RING; i++) {
497 if (bp->tx_bufs[i] != NULL) {
498 dev_kfree_skb(bp->tx_bufs[i]);
499 bp->tx_bufs[i] = NULL;
500 }
501 }
502 }
503 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
504 return 0;
505 }
506
507 static int bmac_resume(struct macio_dev *mdev)
508 {
509 struct net_device* dev = macio_get_drvdata(mdev);
510 struct bmac_data *bp = netdev_priv(dev);
511
512 /* see if this is enough */
513 if (bp->opened)
514 bmac_reset_and_enable(dev);
515
516 enable_irq(dev->irq);
517 enable_irq(bp->tx_dma_intr);
518 enable_irq(bp->rx_dma_intr);
519 netif_device_attach(dev);
520
521 return 0;
522 }
523 #endif /* CONFIG_PM */
524
525 static int bmac_set_address(struct net_device *dev, void *addr)
526 {
527 struct bmac_data *bp = netdev_priv(dev);
528 unsigned char *p = addr;
529 unsigned short *pWord16;
530 unsigned long flags;
531 int i;
532
533 XXDEBUG(("bmac: enter set_address\n"));
534 spin_lock_irqsave(&bp->lock, flags);
535
536 for (i = 0; i < 6; ++i) {
537 dev->dev_addr[i] = p[i];
538 }
539 /* load up the hardware address */
540 pWord16 = (unsigned short *)dev->dev_addr;
541 bmwrite(dev, MADD0, *pWord16++);
542 bmwrite(dev, MADD1, *pWord16++);
543 bmwrite(dev, MADD2, *pWord16);
544
545 spin_unlock_irqrestore(&bp->lock, flags);
546 XXDEBUG(("bmac: exit set_address\n"));
547 return 0;
548 }
549
550 static inline void bmac_set_timeout(struct net_device *dev)
551 {
552 struct bmac_data *bp = netdev_priv(dev);
553 unsigned long flags;
554
555 spin_lock_irqsave(&bp->lock, flags);
556 if (bp->timeout_active)
557 del_timer(&bp->tx_timeout);
558 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
559 bp->tx_timeout.function = bmac_tx_timeout;
560 bp->tx_timeout.data = (unsigned long) dev;
561 add_timer(&bp->tx_timeout);
562 bp->timeout_active = 1;
563 spin_unlock_irqrestore(&bp->lock, flags);
564 }
565
566 static void
567 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
568 {
569 void *vaddr;
570 unsigned long baddr;
571 unsigned long len;
572
573 len = skb->len;
574 vaddr = skb->data;
575 baddr = virt_to_bus(vaddr);
576
577 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
578 }
579
580 static void
581 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
582 {
583 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
584
585 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
586 virt_to_bus(addr), 0);
587 }
588
589 static void
590 bmac_init_tx_ring(struct bmac_data *bp)
591 {
592 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
593
594 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
595
596 bp->tx_empty = 0;
597 bp->tx_fill = 0;
598 bp->tx_fullup = 0;
599
600 /* put a branch at the end of the tx command list */
601 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
602 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
603
604 /* reset tx dma */
605 dbdma_reset(td);
606 out_le32(&td->wait_sel, 0x00200020);
607 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
608 }
609
610 static int
611 bmac_init_rx_ring(struct bmac_data *bp)
612 {
613 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614 int i;
615 struct sk_buff *skb;
616
617 /* initialize list of sk_buffs for receiving and set up recv dma */
618 memset((char *)bp->rx_cmds, 0,
619 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620 for (i = 0; i < N_RX_RING; i++) {
621 if ((skb = bp->rx_bufs[i]) == NULL) {
622 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
623 if (skb != NULL)
624 skb_reserve(skb, 2);
625 }
626 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627 }
628
629 bp->rx_empty = 0;
630 bp->rx_fill = i;
631
632 /* Put a branch back to the beginning of the receive command list */
633 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635
636 /* start rx dma */
637 dbdma_reset(rd);
638 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639
640 return 1;
641 }
642
643
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645 {
646 struct bmac_data *bp = netdev_priv(dev);
647 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648 int i;
649
650 /* see if there's a free slot in the tx ring */
651 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652 /* bp->tx_empty, bp->tx_fill)); */
653 i = bp->tx_fill + 1;
654 if (i >= N_TX_RING)
655 i = 0;
656 if (i == bp->tx_empty) {
657 netif_stop_queue(dev);
658 bp->tx_fullup = 1;
659 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660 return -1; /* can't take it at the moment */
661 }
662
663 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664
665 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666
667 bp->tx_bufs[bp->tx_fill] = skb;
668 bp->tx_fill = i;
669
670 dev->stats.tx_bytes += skb->len;
671
672 dbdma_continue(td);
673
674 return 0;
675 }
676
677 static int rxintcount;
678
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680 {
681 struct net_device *dev = (struct net_device *) dev_id;
682 struct bmac_data *bp = netdev_priv(dev);
683 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684 volatile struct dbdma_cmd *cp;
685 int i, nb, stat;
686 struct sk_buff *skb;
687 unsigned int residual;
688 int last;
689 unsigned long flags;
690
691 spin_lock_irqsave(&bp->lock, flags);
692
693 if (++rxintcount < 10) {
694 XXDEBUG(("bmac_rxdma_intr\n"));
695 }
696
697 last = -1;
698 i = bp->rx_empty;
699
700 while (1) {
701 cp = &bp->rx_cmds[i];
702 stat = ld_le16(&cp->xfer_status);
703 residual = ld_le16(&cp->res_count);
704 if ((stat & ACTIVE) == 0)
705 break;
706 nb = RX_BUFLEN - residual - 2;
707 if (nb < (ETHERMINPACKET - ETHERCRC)) {
708 skb = NULL;
709 dev->stats.rx_length_errors++;
710 dev->stats.rx_errors++;
711 } else {
712 skb = bp->rx_bufs[i];
713 bp->rx_bufs[i] = NULL;
714 }
715 if (skb != NULL) {
716 nb -= ETHERCRC;
717 skb_put(skb, nb);
718 skb->protocol = eth_type_trans(skb, dev);
719 netif_rx(skb);
720 ++dev->stats.rx_packets;
721 dev->stats.rx_bytes += nb;
722 } else {
723 ++dev->stats.rx_dropped;
724 }
725 if ((skb = bp->rx_bufs[i]) == NULL) {
726 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
727 if (skb != NULL)
728 skb_reserve(bp->rx_bufs[i], 2);
729 }
730 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731 st_le16(&cp->res_count, 0);
732 st_le16(&cp->xfer_status, 0);
733 last = i;
734 if (++i >= N_RX_RING) i = 0;
735 }
736
737 if (last != -1) {
738 bp->rx_fill = last;
739 bp->rx_empty = i;
740 }
741
742 dbdma_continue(rd);
743 spin_unlock_irqrestore(&bp->lock, flags);
744
745 if (rxintcount < 10) {
746 XXDEBUG(("bmac_rxdma_intr done\n"));
747 }
748 return IRQ_HANDLED;
749 }
750
751 static int txintcount;
752
753 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754 {
755 struct net_device *dev = (struct net_device *) dev_id;
756 struct bmac_data *bp = netdev_priv(dev);
757 volatile struct dbdma_cmd *cp;
758 int stat;
759 unsigned long flags;
760
761 spin_lock_irqsave(&bp->lock, flags);
762
763 if (txintcount++ < 10) {
764 XXDEBUG(("bmac_txdma_intr\n"));
765 }
766
767 /* del_timer(&bp->tx_timeout); */
768 /* bp->timeout_active = 0; */
769
770 while (1) {
771 cp = &bp->tx_cmds[bp->tx_empty];
772 stat = ld_le16(&cp->xfer_status);
773 if (txintcount < 10) {
774 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775 }
776 if (!(stat & ACTIVE)) {
777 /*
778 * status field might not have been filled by DBDMA
779 */
780 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781 break;
782 }
783
784 if (bp->tx_bufs[bp->tx_empty]) {
785 ++dev->stats.tx_packets;
786 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
787 }
788 bp->tx_bufs[bp->tx_empty] = NULL;
789 bp->tx_fullup = 0;
790 netif_wake_queue(dev);
791 if (++bp->tx_empty >= N_TX_RING)
792 bp->tx_empty = 0;
793 if (bp->tx_empty == bp->tx_fill)
794 break;
795 }
796
797 spin_unlock_irqrestore(&bp->lock, flags);
798
799 if (txintcount < 10) {
800 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801 }
802
803 bmac_start(dev);
804 return IRQ_HANDLED;
805 }
806
807 #ifndef SUNHME_MULTICAST
808 /* Real fast bit-reversal algorithm, 6-bit values */
809 static int reverse6[64] = {
810 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818 };
819
820 static unsigned int
821 crc416(unsigned int curval, unsigned short nxtval)
822 {
823 register unsigned int counter, cur = curval, next = nxtval;
824 register int high_crc_set, low_data_set;
825
826 /* Swap bytes */
827 next = ((next & 0x00FF) << 8) | (next >> 8);
828
829 /* Compute bit-by-bit */
830 for (counter = 0; counter < 16; ++counter) {
831 /* is high CRC bit set? */
832 if ((cur & 0x80000000) == 0) high_crc_set = 0;
833 else high_crc_set = 1;
834
835 cur = cur << 1;
836
837 if ((next & 0x0001) == 0) low_data_set = 0;
838 else low_data_set = 1;
839
840 next = next >> 1;
841
842 /* do the XOR */
843 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844 }
845 return cur;
846 }
847
848 static unsigned int
849 bmac_crc(unsigned short *address)
850 {
851 unsigned int newcrc;
852
853 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
855 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
856 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
857
858 return(newcrc);
859 }
860
861 /*
862 * Add requested mcast addr to BMac's hash table filter.
863 *
864 */
865
866 static void
867 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868 {
869 unsigned int crc;
870 unsigned short mask;
871
872 if (!(*addr)) return;
873 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
875 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876 mask = crc % 16;
877 mask = (unsigned char)1 << mask;
878 bp->hash_use_count[crc/16] |= mask;
879 }
880
881 static void
882 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883 {
884 unsigned int crc;
885 unsigned char mask;
886
887 /* Now, delete the address from the filter copy, as indicated */
888 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
890 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892 mask = crc % 16;
893 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894 bp->hash_table_mask[crc/16] &= mask;
895 }
896
897 /*
898 * Sync the adapter with the software copy of the multicast mask
899 * (logical address filter).
900 */
901
902 static void
903 bmac_rx_off(struct net_device *dev)
904 {
905 unsigned short rx_cfg;
906
907 rx_cfg = bmread(dev, RXCFG);
908 rx_cfg &= ~RxMACEnable;
909 bmwrite(dev, RXCFG, rx_cfg);
910 do {
911 rx_cfg = bmread(dev, RXCFG);
912 } while (rx_cfg & RxMACEnable);
913 }
914
915 unsigned short
916 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917 {
918 unsigned short rx_cfg;
919
920 rx_cfg = bmread(dev, RXCFG);
921 rx_cfg |= RxMACEnable;
922 if (hash_enable) rx_cfg |= RxHashFilterEnable;
923 else rx_cfg &= ~RxHashFilterEnable;
924 if (promisc_enable) rx_cfg |= RxPromiscEnable;
925 else rx_cfg &= ~RxPromiscEnable;
926 bmwrite(dev, RXRST, RxResetValue);
927 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
928 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929 bmwrite(dev, RXCFG, rx_cfg );
930 return rx_cfg;
931 }
932
933 static void
934 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935 {
936 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940 }
941
942 #if 0
943 static void
944 bmac_add_multi(struct net_device *dev,
945 struct bmac_data *bp, unsigned char *addr)
946 {
947 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948 bmac_addhash(bp, addr);
949 bmac_rx_off(dev);
950 bmac_update_hash_table_mask(dev, bp);
951 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953 }
954
955 static void
956 bmac_remove_multi(struct net_device *dev,
957 struct bmac_data *bp, unsigned char *addr)
958 {
959 bmac_removehash(bp, addr);
960 bmac_rx_off(dev);
961 bmac_update_hash_table_mask(dev, bp);
962 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963 }
964 #endif
965
966 /* Set or clear the multicast filter for this adaptor.
967 num_addrs == -1 Promiscuous mode, receive all packets
968 num_addrs == 0 Normal mode, clear multicast list
969 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
970 best-effort filtering.
971 */
972 static void bmac_set_multicast(struct net_device *dev)
973 {
974 struct dev_mc_list *dmi;
975 struct bmac_data *bp = netdev_priv(dev);
976 int num_addrs = netdev_mc_count(dev);
977 unsigned short rx_cfg;
978 int i;
979
980 if (bp->sleeping)
981 return;
982
983 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984
985 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987 bmac_update_hash_table_mask(dev, bp);
988 rx_cfg = bmac_rx_on(dev, 1, 0);
989 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991 rx_cfg = bmread(dev, RXCFG);
992 rx_cfg |= RxPromiscEnable;
993 bmwrite(dev, RXCFG, rx_cfg);
994 rx_cfg = bmac_rx_on(dev, 0, 1);
995 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996 } else {
997 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999 if (num_addrs == 0) {
1000 rx_cfg = bmac_rx_on(dev, 0, 0);
1001 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002 } else {
1003 for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
1004 bmac_addhash(bp, dmi->dmi_addr);
1005 bmac_update_hash_table_mask(dev, bp);
1006 rx_cfg = bmac_rx_on(dev, 1, 0);
1007 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008 }
1009 }
1010 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011 }
1012 #else /* ifdef SUNHME_MULTICAST */
1013
1014 /* The version of set_multicast below was lifted from sunhme.c */
1015
1016 static void bmac_set_multicast(struct net_device *dev)
1017 {
1018 struct dev_mc_list *dmi = dev->mc_list;
1019 char *addrs;
1020 int i;
1021 unsigned short rx_cfg;
1022 u32 crc;
1023
1024 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1025 bmwrite(dev, BHASH0, 0xffff);
1026 bmwrite(dev, BHASH1, 0xffff);
1027 bmwrite(dev, BHASH2, 0xffff);
1028 bmwrite(dev, BHASH3, 0xffff);
1029 } else if(dev->flags & IFF_PROMISC) {
1030 rx_cfg = bmread(dev, RXCFG);
1031 rx_cfg |= RxPromiscEnable;
1032 bmwrite(dev, RXCFG, rx_cfg);
1033 } else {
1034 u16 hash_table[4];
1035
1036 rx_cfg = bmread(dev, RXCFG);
1037 rx_cfg &= ~RxPromiscEnable;
1038 bmwrite(dev, RXCFG, rx_cfg);
1039
1040 for(i = 0; i < 4; i++) hash_table[i] = 0;
1041
1042 for(i = 0; i < netdev_mc_count(dev); i++) {
1043 addrs = dmi->dmi_addr;
1044 dmi = dmi->next;
1045
1046 if(!(*addrs & 1))
1047 continue;
1048
1049 crc = ether_crc_le(6, addrs);
1050 crc >>= 26;
1051 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1052 }
1053 bmwrite(dev, BHASH0, hash_table[0]);
1054 bmwrite(dev, BHASH1, hash_table[1]);
1055 bmwrite(dev, BHASH2, hash_table[2]);
1056 bmwrite(dev, BHASH3, hash_table[3]);
1057 }
1058 }
1059 #endif /* SUNHME_MULTICAST */
1060
1061 static int miscintcount;
1062
1063 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1064 {
1065 struct net_device *dev = (struct net_device *) dev_id;
1066 unsigned int status = bmread(dev, STATUS);
1067 if (miscintcount++ < 10) {
1068 XXDEBUG(("bmac_misc_intr\n"));
1069 }
1070 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1071 /* bmac_txdma_intr_inner(irq, dev_id); */
1072 /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1073 if (status & RxErrorMask) dev->stats.rx_errors++;
1074 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1075 if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1076 if (status & RxOverFlow) dev->stats.rx_over_errors++;
1077 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1078
1079 /* if (status & FrameSent) dev->stats.tx_dropped++; */
1080 if (status & TxErrorMask) dev->stats.tx_errors++;
1081 if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1082 if (status & TxNormalCollExp) dev->stats.collisions++;
1083 return IRQ_HANDLED;
1084 }
1085
1086 /*
1087 * Procedure for reading EEPROM
1088 */
1089 #define SROMAddressLength 5
1090 #define DataInOn 0x0008
1091 #define DataInOff 0x0000
1092 #define Clk 0x0002
1093 #define ChipSelect 0x0001
1094 #define SDIShiftCount 3
1095 #define SD0ShiftCount 2
1096 #define DelayValue 1000 /* number of microseconds */
1097 #define SROMStartOffset 10 /* this is in words */
1098 #define SROMReadCount 3 /* number of words to read from SROM */
1099 #define SROMAddressBits 6
1100 #define EnetAddressOffset 20
1101
1102 static unsigned char
1103 bmac_clock_out_bit(struct net_device *dev)
1104 {
1105 unsigned short data;
1106 unsigned short val;
1107
1108 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1109 udelay(DelayValue);
1110
1111 data = bmread(dev, SROMCSR);
1112 udelay(DelayValue);
1113 val = (data >> SD0ShiftCount) & 1;
1114
1115 bmwrite(dev, SROMCSR, ChipSelect);
1116 udelay(DelayValue);
1117
1118 return val;
1119 }
1120
1121 static void
1122 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1123 {
1124 unsigned short data;
1125
1126 if (val != 0 && val != 1) return;
1127
1128 data = (val << SDIShiftCount);
1129 bmwrite(dev, SROMCSR, data | ChipSelect );
1130 udelay(DelayValue);
1131
1132 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1133 udelay(DelayValue);
1134
1135 bmwrite(dev, SROMCSR, data | ChipSelect);
1136 udelay(DelayValue);
1137 }
1138
1139 static void
1140 reset_and_select_srom(struct net_device *dev)
1141 {
1142 /* first reset */
1143 bmwrite(dev, SROMCSR, 0);
1144 udelay(DelayValue);
1145
1146 /* send it the read command (110) */
1147 bmac_clock_in_bit(dev, 1);
1148 bmac_clock_in_bit(dev, 1);
1149 bmac_clock_in_bit(dev, 0);
1150 }
1151
1152 static unsigned short
1153 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1154 {
1155 unsigned short data, val;
1156 int i;
1157
1158 /* send out the address we want to read from */
1159 for (i = 0; i < addr_len; i++) {
1160 val = addr >> (addr_len-i-1);
1161 bmac_clock_in_bit(dev, val & 1);
1162 }
1163
1164 /* Now read in the 16-bit data */
1165 data = 0;
1166 for (i = 0; i < 16; i++) {
1167 val = bmac_clock_out_bit(dev);
1168 data <<= 1;
1169 data |= val;
1170 }
1171 bmwrite(dev, SROMCSR, 0);
1172
1173 return data;
1174 }
1175
1176 /*
1177 * It looks like Cogent and SMC use different methods for calculating
1178 * checksums. What a pain..
1179 */
1180
1181 static int
1182 bmac_verify_checksum(struct net_device *dev)
1183 {
1184 unsigned short data, storedCS;
1185
1186 reset_and_select_srom(dev);
1187 data = read_srom(dev, 3, SROMAddressBits);
1188 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1189
1190 return 0;
1191 }
1192
1193
1194 static void
1195 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1196 {
1197 int i;
1198 unsigned short data;
1199
1200 for (i = 0; i < 6; i++)
1201 {
1202 reset_and_select_srom(dev);
1203 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1204 ea[2*i] = bitrev8(data & 0x0ff);
1205 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1206 }
1207 }
1208
1209 static void bmac_reset_and_enable(struct net_device *dev)
1210 {
1211 struct bmac_data *bp = netdev_priv(dev);
1212 unsigned long flags;
1213 struct sk_buff *skb;
1214 unsigned char *data;
1215
1216 spin_lock_irqsave(&bp->lock, flags);
1217 bmac_enable_and_reset_chip(dev);
1218 bmac_init_tx_ring(bp);
1219 bmac_init_rx_ring(bp);
1220 bmac_init_chip(dev);
1221 bmac_start_chip(dev);
1222 bmwrite(dev, INTDISABLE, EnableNormal);
1223 bp->sleeping = 0;
1224
1225 /*
1226 * It seems that the bmac can't receive until it's transmitted
1227 * a packet. So we give it a dummy packet to transmit.
1228 */
1229 skb = dev_alloc_skb(ETHERMINPACKET);
1230 if (skb != NULL) {
1231 data = skb_put(skb, ETHERMINPACKET);
1232 memset(data, 0, ETHERMINPACKET);
1233 memcpy(data, dev->dev_addr, 6);
1234 memcpy(data+6, dev->dev_addr, 6);
1235 bmac_transmit_packet(skb, dev);
1236 }
1237 spin_unlock_irqrestore(&bp->lock, flags);
1238 }
1239 static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1240 {
1241 struct bmac_data *bp = netdev_priv(dev);
1242 strcpy(info->driver, "bmac");
1243 strcpy(info->bus_info, dev_name(&bp->mdev->ofdev.dev));
1244 }
1245
1246 static const struct ethtool_ops bmac_ethtool_ops = {
1247 .get_drvinfo = bmac_get_drvinfo,
1248 .get_link = ethtool_op_get_link,
1249 };
1250
1251 static const struct net_device_ops bmac_netdev_ops = {
1252 .ndo_open = bmac_open,
1253 .ndo_stop = bmac_close,
1254 .ndo_start_xmit = bmac_output,
1255 .ndo_set_multicast_list = bmac_set_multicast,
1256 .ndo_set_mac_address = bmac_set_address,
1257 .ndo_change_mtu = eth_change_mtu,
1258 .ndo_validate_addr = eth_validate_addr,
1259 };
1260
1261 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1262 {
1263 int j, rev, ret;
1264 struct bmac_data *bp;
1265 const unsigned char *prop_addr;
1266 unsigned char addr[6];
1267 struct net_device *dev;
1268 int is_bmac_plus = ((int)match->data) != 0;
1269
1270 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1271 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1272 return -ENODEV;
1273 }
1274 prop_addr = of_get_property(macio_get_of_node(mdev),
1275 "mac-address", NULL);
1276 if (prop_addr == NULL) {
1277 prop_addr = of_get_property(macio_get_of_node(mdev),
1278 "local-mac-address", NULL);
1279 if (prop_addr == NULL) {
1280 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1281 return -ENODEV;
1282 }
1283 }
1284 memcpy(addr, prop_addr, sizeof(addr));
1285
1286 dev = alloc_etherdev(PRIV_BYTES);
1287 if (!dev) {
1288 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1289 return -ENOMEM;
1290 }
1291
1292 bp = netdev_priv(dev);
1293 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1294 macio_set_drvdata(mdev, dev);
1295
1296 bp->mdev = mdev;
1297 spin_lock_init(&bp->lock);
1298
1299 if (macio_request_resources(mdev, "bmac")) {
1300 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1301 goto out_free;
1302 }
1303
1304 dev->base_addr = (unsigned long)
1305 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1306 if (dev->base_addr == 0)
1307 goto out_release;
1308
1309 dev->irq = macio_irq(mdev, 0);
1310
1311 bmac_enable_and_reset_chip(dev);
1312 bmwrite(dev, INTDISABLE, DisableAll);
1313
1314 rev = addr[0] == 0 && addr[1] == 0xA0;
1315 for (j = 0; j < 6; ++j)
1316 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1317
1318 /* Enable chip without interrupts for now */
1319 bmac_enable_and_reset_chip(dev);
1320 bmwrite(dev, INTDISABLE, DisableAll);
1321
1322 dev->netdev_ops = &bmac_netdev_ops;
1323 dev->ethtool_ops = &bmac_ethtool_ops;
1324
1325 bmac_get_station_address(dev, addr);
1326 if (bmac_verify_checksum(dev) != 0)
1327 goto err_out_iounmap;
1328
1329 bp->is_bmac_plus = is_bmac_plus;
1330 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1331 if (!bp->tx_dma)
1332 goto err_out_iounmap;
1333 bp->tx_dma_intr = macio_irq(mdev, 1);
1334 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1335 if (!bp->rx_dma)
1336 goto err_out_iounmap_tx;
1337 bp->rx_dma_intr = macio_irq(mdev, 2);
1338
1339 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1340 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1341
1342 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1343 skb_queue_head_init(bp->queue);
1344
1345 init_timer(&bp->tx_timeout);
1346
1347 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1348 if (ret) {
1349 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1350 goto err_out_iounmap_rx;
1351 }
1352 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1353 if (ret) {
1354 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1355 goto err_out_irq0;
1356 }
1357 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1358 if (ret) {
1359 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1360 goto err_out_irq1;
1361 }
1362
1363 /* Mask chip interrupts and disable chip, will be
1364 * re-enabled on open()
1365 */
1366 disable_irq(dev->irq);
1367 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1368
1369 if (register_netdev(dev) != 0) {
1370 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1371 goto err_out_irq2;
1372 }
1373
1374 printk(KERN_INFO "%s: BMAC%s at %pM",
1375 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1376 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1377 printk("\n");
1378
1379 return 0;
1380
1381 err_out_irq2:
1382 free_irq(bp->rx_dma_intr, dev);
1383 err_out_irq1:
1384 free_irq(bp->tx_dma_intr, dev);
1385 err_out_irq0:
1386 free_irq(dev->irq, dev);
1387 err_out_iounmap_rx:
1388 iounmap(bp->rx_dma);
1389 err_out_iounmap_tx:
1390 iounmap(bp->tx_dma);
1391 err_out_iounmap:
1392 iounmap((void __iomem *)dev->base_addr);
1393 out_release:
1394 macio_release_resources(mdev);
1395 out_free:
1396 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1397 free_netdev(dev);
1398
1399 return -ENODEV;
1400 }
1401
1402 static int bmac_open(struct net_device *dev)
1403 {
1404 struct bmac_data *bp = netdev_priv(dev);
1405 /* XXDEBUG(("bmac: enter open\n")); */
1406 /* reset the chip */
1407 bp->opened = 1;
1408 bmac_reset_and_enable(dev);
1409 enable_irq(dev->irq);
1410 return 0;
1411 }
1412
1413 static int bmac_close(struct net_device *dev)
1414 {
1415 struct bmac_data *bp = netdev_priv(dev);
1416 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1417 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1418 unsigned short config;
1419 int i;
1420
1421 bp->sleeping = 1;
1422
1423 /* disable rx and tx */
1424 config = bmread(dev, RXCFG);
1425 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1426
1427 config = bmread(dev, TXCFG);
1428 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1429
1430 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1431
1432 /* disable rx and tx dma */
1433 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1434 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1435
1436 /* free some skb's */
1437 XXDEBUG(("bmac: free rx bufs\n"));
1438 for (i=0; i<N_RX_RING; i++) {
1439 if (bp->rx_bufs[i] != NULL) {
1440 dev_kfree_skb(bp->rx_bufs[i]);
1441 bp->rx_bufs[i] = NULL;
1442 }
1443 }
1444 XXDEBUG(("bmac: free tx bufs\n"));
1445 for (i = 0; i<N_TX_RING; i++) {
1446 if (bp->tx_bufs[i] != NULL) {
1447 dev_kfree_skb(bp->tx_bufs[i]);
1448 bp->tx_bufs[i] = NULL;
1449 }
1450 }
1451 XXDEBUG(("bmac: all bufs freed\n"));
1452
1453 bp->opened = 0;
1454 disable_irq(dev->irq);
1455 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1456
1457 return 0;
1458 }
1459
1460 static void
1461 bmac_start(struct net_device *dev)
1462 {
1463 struct bmac_data *bp = netdev_priv(dev);
1464 int i;
1465 struct sk_buff *skb;
1466 unsigned long flags;
1467
1468 if (bp->sleeping)
1469 return;
1470
1471 spin_lock_irqsave(&bp->lock, flags);
1472 while (1) {
1473 i = bp->tx_fill + 1;
1474 if (i >= N_TX_RING)
1475 i = 0;
1476 if (i == bp->tx_empty)
1477 break;
1478 skb = skb_dequeue(bp->queue);
1479 if (skb == NULL)
1480 break;
1481 bmac_transmit_packet(skb, dev);
1482 }
1483 spin_unlock_irqrestore(&bp->lock, flags);
1484 }
1485
1486 static int
1487 bmac_output(struct sk_buff *skb, struct net_device *dev)
1488 {
1489 struct bmac_data *bp = netdev_priv(dev);
1490 skb_queue_tail(bp->queue, skb);
1491 bmac_start(dev);
1492 return NETDEV_TX_OK;
1493 }
1494
1495 static void bmac_tx_timeout(unsigned long data)
1496 {
1497 struct net_device *dev = (struct net_device *) data;
1498 struct bmac_data *bp = netdev_priv(dev);
1499 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1500 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1501 volatile struct dbdma_cmd *cp;
1502 unsigned long flags;
1503 unsigned short config, oldConfig;
1504 int i;
1505
1506 XXDEBUG(("bmac: tx_timeout called\n"));
1507 spin_lock_irqsave(&bp->lock, flags);
1508 bp->timeout_active = 0;
1509
1510 /* update various counters */
1511 /* bmac_handle_misc_intrs(bp, 0); */
1512
1513 cp = &bp->tx_cmds[bp->tx_empty];
1514 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1515 /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1516 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1517
1518 /* turn off both tx and rx and reset the chip */
1519 config = bmread(dev, RXCFG);
1520 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1521 config = bmread(dev, TXCFG);
1522 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1523 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1524 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1525 bmac_enable_and_reset_chip(dev);
1526
1527 /* restart rx dma */
1528 cp = bus_to_virt(ld_le32(&rd->cmdptr));
1529 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1530 out_le16(&cp->xfer_status, 0);
1531 out_le32(&rd->cmdptr, virt_to_bus(cp));
1532 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1533
1534 /* fix up the transmit side */
1535 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1536 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1537 i = bp->tx_empty;
1538 ++dev->stats.tx_errors;
1539 if (i != bp->tx_fill) {
1540 dev_kfree_skb(bp->tx_bufs[i]);
1541 bp->tx_bufs[i] = NULL;
1542 if (++i >= N_TX_RING) i = 0;
1543 bp->tx_empty = i;
1544 }
1545 bp->tx_fullup = 0;
1546 netif_wake_queue(dev);
1547 if (i != bp->tx_fill) {
1548 cp = &bp->tx_cmds[i];
1549 out_le16(&cp->xfer_status, 0);
1550 out_le16(&cp->command, OUTPUT_LAST);
1551 out_le32(&td->cmdptr, virt_to_bus(cp));
1552 out_le32(&td->control, DBDMA_SET(RUN));
1553 /* bmac_set_timeout(dev); */
1554 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1555 }
1556
1557 /* turn it back on */
1558 oldConfig = bmread(dev, RXCFG);
1559 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1560 oldConfig = bmread(dev, TXCFG);
1561 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1562
1563 spin_unlock_irqrestore(&bp->lock, flags);
1564 }
1565
1566 #if 0
1567 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1568 {
1569 int i,*ip;
1570
1571 for (i=0;i< count;i++) {
1572 ip = (int*)(cp+i);
1573
1574 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1575 ld_le32(ip+0),
1576 ld_le32(ip+1),
1577 ld_le32(ip+2),
1578 ld_le32(ip+3));
1579 }
1580
1581 }
1582 #endif
1583
1584 #if 0
1585 static int
1586 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1587 {
1588 int len = 0;
1589 off_t pos = 0;
1590 off_t begin = 0;
1591 int i;
1592
1593 if (bmac_devs == NULL)
1594 return (-ENOSYS);
1595
1596 len += sprintf(buffer, "BMAC counters & registers\n");
1597
1598 for (i = 0; i<N_REG_ENTRIES; i++) {
1599 len += sprintf(buffer + len, "%s: %#08x\n",
1600 reg_entries[i].name,
1601 bmread(bmac_devs, reg_entries[i].reg_offset));
1602 pos = begin + len;
1603
1604 if (pos < offset) {
1605 len = 0;
1606 begin = pos;
1607 }
1608
1609 if (pos > offset+length) break;
1610 }
1611
1612 *start = buffer + (offset - begin);
1613 len -= (offset - begin);
1614
1615 if (len > length) len = length;
1616
1617 return len;
1618 }
1619 #endif
1620
1621 static int __devexit bmac_remove(struct macio_dev *mdev)
1622 {
1623 struct net_device *dev = macio_get_drvdata(mdev);
1624 struct bmac_data *bp = netdev_priv(dev);
1625
1626 unregister_netdev(dev);
1627
1628 free_irq(dev->irq, dev);
1629 free_irq(bp->tx_dma_intr, dev);
1630 free_irq(bp->rx_dma_intr, dev);
1631
1632 iounmap((void __iomem *)dev->base_addr);
1633 iounmap(bp->tx_dma);
1634 iounmap(bp->rx_dma);
1635
1636 macio_release_resources(mdev);
1637
1638 free_netdev(dev);
1639
1640 return 0;
1641 }
1642
1643 static struct of_device_id bmac_match[] =
1644 {
1645 {
1646 .name = "bmac",
1647 .data = (void *)0,
1648 },
1649 {
1650 .type = "network",
1651 .compatible = "bmac+",
1652 .data = (void *)1,
1653 },
1654 {},
1655 };
1656 MODULE_DEVICE_TABLE (of, bmac_match);
1657
1658 static struct macio_driver bmac_driver =
1659 {
1660 .name = "bmac",
1661 .match_table = bmac_match,
1662 .probe = bmac_probe,
1663 .remove = bmac_remove,
1664 #ifdef CONFIG_PM
1665 .suspend = bmac_suspend,
1666 .resume = bmac_resume,
1667 #endif
1668 };
1669
1670
1671 static int __init bmac_init(void)
1672 {
1673 if (bmac_emergency_rxbuf == NULL) {
1674 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1675 if (bmac_emergency_rxbuf == NULL) {
1676 printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1677 return -ENOMEM;
1678 }
1679 }
1680
1681 return macio_register_driver(&bmac_driver);
1682 }
1683
1684 static void __exit bmac_exit(void)
1685 {
1686 macio_unregister_driver(&bmac_driver);
1687
1688 kfree(bmac_emergency_rxbuf);
1689 bmac_emergency_rxbuf = NULL;
1690 }
1691
1692 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1693 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1694 MODULE_LICENSE("GPL");
1695
1696 module_init(bmac_init);
1697 module_exit(bmac_exit);